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Abstract— Fast and accurate midline shift (MLS) estimation
has a significant impact on diagnosis and treatment of patients
with Traumatic Brain Injury (TBI). In this paper, we propose
an automated method to calculate the amount of shift in
the midline structure of TBI patients. The MLS values were
annotated by a neuroradiologist. We first select a number of
slices among all the slices in a CT scan based on metadata
as well as information extracted from the images. After the
slice selection, we propose an efficient segmentation technique
to detect the ventricles. We use the ventricular geometric
patterns to calculate the actual midline and also anatomical
information to detect the ideal midline. The distance between
these two lines is used as an estimate of MLS. The proposed
methods are applied on a TBI dataset where they show a
significant improvement of the the proposed method upon
existing approach.

I. INTRODUCTION

Traumatic Brain Injury (TBI) is a major cause of
morbidity and mortality [1]. Due to its potential lifetime
impact, proper diagnosis has a vital role in treatment.
Clinicians use different parameters such as Midline Shift
(MLS) to estimate the amount of TBI severity and outcome
prediction [2]. CT classification scoring systems use MLS
as one of the most decisive features to score the amount
of severity [3]. MLS is the amount of brain shift due
to injury [2]. It is mostly computed by locating the line
between shifted ventricles in head CT scans. The actual
midline is defined as the line that goes between the left and
right lateral ventricles or passes through the third ventricle.
It is found by performing ventricle segmentation, and then
is used to estimate MLS [4]. Due to many factors, such as
poor quality of CT images, the result of such segmentations
are often noisy and include false positives, or missing
regions. Thus, an automated and robust clinical decision
support system (CDSS) can have a significant impact on
optimal diagnosis.

Over the past decade, there has been a plethora of research
on automatic MLS estimation as a CDSS. Liao et al. [5]
estimated the amount of MLS. To do this, they considered
a parametric model of shifted midline as a combination of
three segments of upper and lower straight lines of the falx
cerebri and a quadratic curve middle segment. To calculate
the MLS from the model, the extracranial pixels are removed
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and then generated a symmetry map of the brain tissue along
the horizontal direction. However, as the following reasons
show, their method has a low performance for most of the
cases and in particular severe TBI. Their proposed approach
is not fully automatic and needs manual slice selection.
It first needs to rotate each slice in such a way that the
ideal midline is in a vertical position. Xiao et al. [6] used
the combination of a type of level set segmentation and
Hugh transformation. Ideal midline detection was proposed
in [7] that is based on offline and online phases. The
offline phase is the model training using “scale invariant
feature transform” as well as template matching. In the
online phase, the features of the CT slices are compared
to the offline template to locate the ideal midline. [8] used
the information of lesion to estimate the amount of MLS.
They proposed their method for brain images using magnetic
resonance imaging (MRI). CT scans are the better choice
24h after the injury due to its availability, cost-effectiveness,
shorter imaging time and easiness for injured patients. A CT
image segmentation method based on a probabilistic map of
ventricles and brain tissues proposed in [9]. They had used
normal brain MRIs to generate the probabilistic atlas of white
matter and gray matter and ventricles. However, this method
is only applicable to cases without severe damage. Chen et
al. [4] proposed several steps for MLS detection. In their
method, the ideal midline is located by defining a measure
of symmetry that calculates the symmetry of the skull with
respect to a vertical line passing through the center of mass
of the image. The image is rotated and the angle that yields
the best symmetry is selected. The falx cerebri and anterior
bone protrusion locations are also employed to make the
rotation more precise. Then, the ventricles in some slices are
located. This step is done by applying the Gaussian Mixture
Model (GMM) [4], [10] which is a probabilistic model of K-
means clustering. At the final step, the ventricles are detected
using template matching and actual midline and MLS are
estimated. Qi et al. [11] used a similar approach to [10] to
calculate the MLS. They substituted the GMM method with
a level set segmentation for locating the ventricles. In this
paper, we modify the method proposed in [4] by improving
the rotation, segmentation, and slice selection. The proposed
method is a fully automated approach that increases detection
performance. Our contribution is fourfold as follows:

• automated slice selection using head CT scan metadata;
• excluding irrelevant slices;
• rotating slices to improve the detection of the ideal

midline; and



Fig. 1: IML detection phase

• using a new method for ventricle segmentation.
The rest of this paper is organized as follows. In Section

II we describe the general method of MLS estimation. Our
method is divided to two main phases and described in the
parts II-A and II-B. In Section III we show the experimental
results on brain CT images with TBI. In this section, we
compare our method with available results from a previous
method. Finally, Section IV concludes the paper.

II. METHOD

The MLS computation includes two main phases. In the
first phase, the ideal midline shift (IML) is located. In
this phase non-informative slices are excluded from the CT
images and rotated to locate the IML. By locating IML, the
approach goes to the next phase where the actual midline
(AML) is estimated. To do this, a segmentation algorithm
is applied to the selected slices. Then, a template matching
is used to find the ventricles. Template images are binary
images that only present ventricles. In the final step the
amount of MLS is estimated using the ventricular geometric
patterns. The schematic diagram of the proposed method for
IML estimation is depicted in Fig. 1. Details of each step of
the method are described below.

A. IML detection phase

Head CT scans have different views and types that are
used for diverse diagnoses and treatments. Among the dif-
ferent types of images we use axial images to detect the
MLS. The algorithm performs this specific slice selection
automatically using the metadata available for each slice.
The slice selection steps are shown in Fig. 2.

In our method, we use two different tags from metadata,
“Image Type” and “Window Center”, to keep or drop a
slice [12]. These tags are set by either the scanner automat-
ically or a radiologist. Although excluding irrelevant slices
is necessary for automatic analysis, the output of this stage
still has non-informative slices for midline estimation. In
other words, the specific slices passing this step are not
useful for MLS estimation as they don’t have ventricles.
To select appropriate slices for MLS estimation, subtentorial
slices are identified and excluded from the chosen slices.

First, the objects smaller than a predefined threshold are
removed in each slice. After dilation of each processed
slice, the number of separate objects are counted and the
size of the filled skull is computed. If these two criteria
meet the thresholds, the slice is chosen for the next steps,
otherwise marked as a subtentorial slice and discarded. This
step improves the precision of the algorithm by reducing
the non-informative slices. Moreover, those slices with larger
area of skull in comparison to their brain tissue are excluded
as well. Two samples of those slices for MLS estimation
are shown in Fig. 3. The slice selection step, in addition
to the automatically appropriate slice selection for IML and
AML computation, reduces the redundancy of computation
for the irrelevant slices. The next step of this phase is the
contrast adjustment that is necessary for the following step,
which extracts the skull. The skulls are used to rotate and
translate the slices . The slices are rotated in a way to have
the best bilateral symmetry. Using skull image of all the
selected slices and stacking them helps improve the rotation
calculation as compared to the method of [4]. To improve
the performance of this step, two sub-steps are added. In
the first stage, the rotation angle that maximizes the distance
between the highest y-axis value of skull and the lowest value
of skull is selected. This is due to the pseudo-elliptic shape
of the head skull in the axial plane. However, as the skull is
not completely elliptic, we use a different type of symmetry
to find the best rotation and shift. To do this, all the extracted
skulls of all chosen slices are stacked on top of each other
to create one image. Then, the internal part of the stack is
filled. The symmetry of the generated image is computed
and the angle which has the highest vertical symmetry is
picked. Then, all of the selected slices are rotated with
the angles acquired in this step. Section III shows that the
proposed rotation improves the whole performance of the
MLS estimation. After rotation, the line that divides the
rotated slices to two equal right and left partitions is marked
as IML. With this step, the IML detection phase is completed.

B. AML detection phase

By finding the IML, the next phase is locating the AML.
By locating both IML and AML, the MLS can be easily
calculated. Clinicians usually calculate the MLS using those
slices that contain the ventricles. This is due to the clear

Fig. 2: Slice selection using CT scan metadata



Fig. 3: Examples of slices that are dropped due to their
irrelevancy for MLS estimation

visual difference between the ventricles and other tissues of
the brain. By checking the amount of shift, they estimate the
amount of the MLS and the severity of the TBI. Therefore,
a similar method is imitated in automatic MLS estimation.
To do this, we use the steps shown in Fig. 4. In the
first step, the brain tissues in each image are segmented.
Chen et al. [4] used a GMM based method where they
segmented the brain tissues into either three or four different
clusters. For clustering into three regions, they excluded the
skull and suggested segmenting the brain tissue into gray
matter, white matter, and ventricles. For clustering into four
regions, they included skull as well as the aforementioned
tissues and segmented each CT slice into four different
regions. While their proposed GMM method can calculate
MLS in many cases, the method often fails to segment the
ventricles properly, preventing the algorithm from estimating
the MLS. As mentioned before, ventricle segmentation alone
is sufficient for MLS estimation. Thus our methods focuses
on ventricle segmentation rather that classifying brain tissue
into multiple regions as in [4]. In the results section, we
use a “thresholding” method to segment the brain tissues and
locate the ventricles. In addition, this method can concentrate
on the ventricle segmentation and consequently reduce the
computation overhead. As the ventricles are not visible in
all slices, those slices that contain ventricles are passed to
the next step, template matching. Using template matching
proposed in [4] the ventricles are detected and matched. The
slices with the matched ventricles are passed to the next step
to locate the AML. The AML of each slice is then estimated.
To find the final values, post-processing is performed and the
median value of MLS is calculated and is considered as the
MLS value at the final step.

III. RESULTS

This section compares the results of the proposed method
and the method of [4]. The proposed method was imple-
mented in “MATLAB 2016b”. An internal dataset from the
University of Michigan has been used for the performance
assessment. This dataset contains around 170 sets of CT
scans of TBI patients. As mentioned above, all steps, from
the proper slice selection to the MLS estimation, are done au-

tomatically. Table I shows the statistical comparison among
different rotation methods. The clinicians’ inspected MLS
and the value computed by the methods are subtracted and
the mean and standard deviation of these subtraction for all
participants are computed. It is clear from this table that the
proposed rotation outperforms the former one. In addition,
the results show that thresholding with the proposed rotation
method outperforms all other combinations. Another impor-
tant observation from these results is that the performance
of the thresholding approach with the old rotation is lower
than the combination of this segmentation algorithm with the
proposed rotation. It shows that all steps are important and
have a great impact on the final estimation of the MLS. This
table shows a clear and sharp improvement by the proposed
method in this paper.

Fig. 5 shows the impact of different rotation methods
on IML detection and final MLS estimation. In both slices
shown in Fig. 5, the green and red lines show correct IML,
the estimated IML, respectively. The left image is acquired
by the rotation method used in [4]. It is clear from the
figure that the estimated IML does not coincide with the
correct IML. However, the right image shows the result of
the proposed algorithm, where IML of the proposed method
coincide the manual one.

The amount of the MLS is a primary factor in TBI severity
and outcome prediction scales, with MLS greater than 5mm
typically representing a severe injury [2]. Therefore, we
measure the performance of the proposed method using
this metric and thus classify MLS values to two groups:1)
greater than 5mm and 2)less than or equal to 5mm. Table II
shows the comparison between the proposed method and the
method of [4] in terms of sensitivity, specificity, precision,
accuracy and F1 score. The results are generated using CT
scans of 170 TBI patients from the University of Michigan
database. There are 59 cases with MLS values greater than
5mm and 111 cases with MLS values smaller than or equal
to 5mm. As shown in Table II, the proposed method outper-
forms the GMM-based method [4] significantly. Therefore, it
can be a proper decision support system (DSS) for clinicians.
However, it needs to be more reliable to be considered as a

Fig. 4: AML detection phase



Fig. 5: Rotation comparison; left: Rotation of [4]; right:
Proposed Rotation

highly trusted method.
Fig. 6 shows the comparison between the MLS estimated

by [4] and the proposed method for the same selected image.
The red and blue lines show IML and AML, respectively.
The IML in both left and right are the same. However,
their computed AML are different. The left slice shows the
result of the [4]. The MLS values of the ground truth, the
proposed method and the method of [4] are 8mm, 8.09mm
and 18.87mm respectively.

IV. CONCLUSION AND FUTURE WORK

MLS estimation is a significant feature that helps clinicians
decide on a course of action for TBI patients. In this paper,
we have proposed an automated MLS estimation by first
selecting informative slices that contain ventricles. We then
have proposed a rotation mechanism in which we used
skull symmetry and stacking approaches. After that we have
calculated the ideal midline using anatomical features. In
order to estimate the actual midline we have used a simple
thresholding approach to segment ventricles. We have used
ventricular geometric patterns to find the actual midline. The
experimental results have shown a significant improvement

TABLE I: MLS approaches comparison; mean and standard
deviation of difference between the ground truth values and
computed ones in mm.

Method Mean STD
GMM with old Rotation 5.08 4.92

Thresholding with old Rotation 3.99 4.16
GMM with new Rotation 4.66 4.22

Thresholding with new Rotation 3.78 3.74

TABLE II: Proposed method vs. [4]

Measures Proposed [4]
Sensitivity 0.75 0.39
Specificity 0.65 0.46
Precision 0.53 0.28
Accuracy 0.68 0.44
F1 Score 0.62 0.32

Fig. 6: MLS comparison; left: [4]; right: Proposed Approach

of the proposed method performance in comparison with the
similar approach. In future work, the segmentation method
template matching will be improved as it can improve the
total performance of the method.
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