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Abstract— Automated segmentation of the spleen in CT
volumes is difficult due to variations in size, shape, and position
of the spleen within the abdominal cavity as well as similarity
of intensity values among organs in the abdominal cavity. In
this paper we present a method for automated localization
and segmentation of the spleen within axial abdominal CT
volumes using trained classification models, active contours,
anatomical information, and adaptive features. The results show
an average Dice score of 0.873 on patients experiencing various
chest, abdominal, and pelvic traumas taken at different contrast
phases.
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I. INTRODUCTION

Automated spleen segmentation can be used as prepro-
cessing for fast diagnosis of the severity of blunt splenic
injury, one of the most commonly injured abdominal organs.
Computed tomography (CT) scanning is the modality of
choice when gauging abdominal trauma [1]. The severity of
blunt splenic injury is often a criterion for determining the
necessity of surgical intervention [2].

In addition to blunt injury detection, changes in splenic
volume can assist in long-term monitoring of a range under-
lying conditions such as infection, immunological disorders,
circulatory disorders, leukemia, and haematopoietic diseases
[3]. The gold standard method for estimation of in vivo
splenic volume is via summation of splenic volume in
contiguous axial CT scans. However, manual segmentation
is time-consuming and subject to variations based on the
observer [4].

While scans captured at the portal venous phase, ap-
proximately 80 seconds after injection of contrast dye, are
preferred for visualization of the spleen in CT scans, prior
knowledge of contrast phase cannot always be assumed
[1]. Therefore, any computer-aided diagnosis system (CAD)
must be robust to variations in contrast phase. Two major
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challenges a CAD must address are localization of an organ
within a CT volume and segmentation of its boundaries
in each scan [5]. Previous methods used to localize the
spleen include ensemble learning approaches [6] as well as
localization during multi-organ segmentation using relative
location [5], [7], [8], [9], [10], [11]. Much of previous work
in spleen segmentation utilized atlas-based methods [12],
[13], [7], [8], [9]. However, a previously derived atlas may
not be robust to the variations in the size and shape of injured
spleens [14]. Other past approaches include neural networks
[5], multi-boost learning [10], fast marching methods [11].

We propose an algorithm for fully automated localiza-
tion and segmentation of the spleen within an axial CT
volume. Localization utilizes machine learning techniques
to identify a small region contained within the spleen. No
prior knowledge regarding which portions of the chest,
abdomen, and/or pelvic region are included in the CT volume
are required. Segmentation is performed via series of re-
initialized active contours using this small region as an seed
mask. Relative pixel intensity within the mask is observed
before each re-initialization to refine the contour and avoid
over-segmentation. Results show that the proposed method
performs well in the presence blunt abdominal trauma.

II. METHODS

The proposed algorithm incorporates a variety of infor-
mation, including active contours, texture information, and
spatial information. The broad flow of the algorithm is
illustrated in Figure 1. First, we apply preprocessing to the
raw images. Next, spatial and anatomical information is used
to localize the spleen. Localization occurs on two planes.
The abdomen is localized along the axis of the body. The
abdominal region is then used to run a targeted detection
algorithm which selects a single image in the CT volume
which contains the spleen. An initial spleen location is then
determined using the relative position of the spleen within
the abdomen with respect to the spine, ribcage, and relative
pixel intensity information. We then apply an adaptive bright
object mask and move on to perform segmentation.

A. Preprocessing

Preprocessing is applied to the images in order to re-
move noise and artifacts outside the abdomen. Preprocessing
consists of standard contrast adjustment based on metadata
provided in the dicom volumes followed by the abdomen



Fig. 1: Flow chart of the proposed method.

masking procedure of Soureshmehr et. al. to remove artifacts
outside of the abdomen [14]. In order to further emphasize
abdominal organs within the region, the dimmest 30% of
possible pixel intensities are removed and the image is
normalized via intensity stretching. The non-local means
filter (NLMF) is applied to perform image denoising, and
local contrast enhancement is performed to sharpen edges.
Figure 1 shows the raw input image and the result post-
preprocessing.

B. Vertical localization

We begin by localization of the abdominal cavity in order
to narrow down a region of interest. We define the abdominal
cavity as beginning at the first CT image containing the
liver and ending at the first CT image containing the iliac
crest. Figure 1 provides an example of slices selected as
the top and bottom of the abdominal cavity. All object
detectors are boosted cascading object detectors, trained to

Fig. 2: Positive regions targeted by the four detectors. From
left to right, they target the portion of the pelvis containing
the iliac crest, the portion of the heart where the ventricles
are visible and the liver is not visible, the portion of the
abdomen below the kidneys and above the pelvis, and slices
containing the spleen but not the heart or both kidneys.

detect recognizable regions within the abdomen using Haar-
like features [15].

Pelvic detection: We begin by detecting the pelvic region
containing the iliac wing. In order to remove false posi-
tives, run a detector trained to localize the region of the
abdomen below the kidneys and above the pelvis on all
images between the first and last slices flagged by the pelvis
detector. Remove images within and above this portion of
the abdomen from the list of detected pelvic images.

Spine localization: Next, we need to localize the spine; it
will help locate the iliac crest(s) in the next step. Locate the
spine via weighted voting over imbinarizations of a collection
of scans from the 10 cm region directly above the highest
detected pelvis slice, which are known to contain the spinal
column. To imbinarize, remove the lowest 50% of possible
pixel values then apply Otsu’s method to the normalized
image to determine a threshold.

Iliac crest detection: The top of the pelvis is localized
by moving up through the volume, beginning at the highest
detected pelvic scan, and comparing each scan to the scan
above it. Imbinarize the images using the above method and
remove the vertebral region from both images, as well as
other artifacts occurring outside of the region which should
contain the ilium. Track the pelvic bones by moving up
through the volume and comparing consecutive scans until
the iliac bones are no longer visible.

Heart detection: Next, run a detector to locate scans
containing the heart ventricles and no portion of the liver.
Only run the detector on images which occur above the pelvis
as detected in the previous steps.

Spleen detection: Run a targeted detection algorithm on
the images within the abdominal cavity as determined above
in order to localize scans which contain the spleen, are below
the heart, and contain no more than one kidney. If more
than one slice is detected, select the slice in the center of all
detected scans.

C. Axial localization

We localize the spleen within this axial scan via location
and intensity using a method similar to [14]. Narrow down
the region of interest to bottom right quarter of the abdomen
in the axial scan. Next, mask the brightest 80% of possible
pixel intensities in order to remove bone from the image and
locate the weighted centroid of the remaining region. This



location is used to define the center of a smaller sub-region
and the weighted centroid of this sub-region is located; repeat
this process using a progressively smaller sub-region until it
is only a few pixels in size. This small region constitutes the
initial spleen localization.

D. Adaptive mask

Next, we mask bright objects in the volume. The threshold
is determined based off of the pixel intensity values of the
localized spleen region. Remove the brightest pixel intensity
value within the axial slice containing the detected spleen
pixels as well as all pixel values outside of the spleen region.
Create a histogram with 50 bins from the resulting image.
Remove all values from the first and last bins, and remove
all values from bins which are less than 20% as full as
the maximum bin count. Divide the index of the largest
remaining non-empty bin by 50 to determine your threshold
percentage; for each image, remove all pixels which lie above
this threshold percentage.

E. Transition to 3D

Set up the volume of 2-D CT images as a single 3-D
volume in preparation for 3D active contour segmentation.
Create two volumes, the masked volume and the 3-D seed
region volume. The 3D volumes are constructed “to scale,”
meaning each slice is repeated in the volume until the
amount of space represented by a single voxel in the z-axis
corresponds as closely as possible to the space represented
by the width and height of a pixel in the axial plane.

F. Automated segmentation

Use the 3-D Chan-Vese active contour algorithm for
segmentation with the initial mask volume as an input mask
[16]. Re-initialize the contour at regular intervals to prevent
over-segmentation, using the output mask from the previous
step as the input mask to initialize the next step. Start with a
contraction bias heavily weighted towards expansion in order
to rapidly grow the initial seed and slowly taper down this
contraction bias. Let S denote the set of all pixel intensity
values (with repetition) which lie within the detected spleen
region after each iteration of the active contour. Let Ŝ
denote the mean of S. After each re-initialization, perform
an intensity analysis to remove pixels from the mask whose
intensity lies outside the range (Ŝ − t, Ŝ + t) for threshold
value

t = max

{
Ŝ −min(S)

2
,
max(S)− Ŝ

2

}
.

Enforce the constraint that the segmentation must encompass
one three-dimensional connected component.

III. EXPERIMENTS AND RESULTS

A. Dataset

The University of Michigan provided CT scans for 137
patients who experienced traumatic injuries. Additional train-
ing data was obtained from the CIREN dataset containing

Fig. 3: Segmentation results on healthy spleens under various
contrast phases.

CT volumes for patients who experienced traumatic injuries
in a motor vehicle accident. For each patient we obtained
an axial abdominopelvic CT volume of between 42 and
122 scans of 5mm thickness acquired and various unknown
contrast phases. Manual spleen annotations reviewed by an
expert radiologist were obtained for a total of 39 patients
experiencing abdominal, chest, or pelvic blunt trauma.

B. Experiments

Four boosted cascading object detectors were trained with
Haar-like features over contrast-adjusted images from 108
different chest-abdomen-pelvic CT volumes in the University
of Michigan and CIREN datasets [15]. Images from the
testing set were not used for training. The first detector was
trained to localize the middle of the heart within 1 cm of the
top of the liver using 6 cascading stages using 5, 515 negative
samples and 137 positive samples. The second detector was
trained with 356 positive samples consisting of pelvic scans
and 26, 636 negative samples in 20 stages. The third detector
was trained using 252 positive samples consisting of slices
of the abdomen from above the pelvis but below the kidneys
and 3, 242 negative samples, and was used to remove false
positives flagged by the second detector. The last detector
was trained over 205 positive samples containing the spleen
and 8, 382 negative samples in 13 cascading stages. Samples
in the second and third detectors were trained using contrast
adjustment based on highlighting the bone in the samples.

C. Results and Discussion

Localization of the top of the iliac crest was tested in
60 CT volumes which contained the pelvis and succeeded
in all 60 cases. The algorithm successfully determined no



pelvis was present in 8 of 10 additional cases consisting of
chest and abdominal CT volumes which did not contain the
pelvis. Localization of the top slice containing the liver was
tested on 71 cases and was localized within 1 cm in 87% of
volumes. Axial localization of the spleen succeeded in 40 of
42 test volumes.

Our algorithm performed with an average Dice score
of 0.873 on 37 annotated cases. Spleen localization failed
on two cases out of 39. We do not have access to data
needed to compare our method to current models, such as
contrast phase information. Furthermore, most previous work
focuses on multi-organ segmentation rather than just spleen
segmentation and the authors are able to improve their results
via multi-organ refinement steps. In addition, our datasets
specifically contain patients with blunt chest, pelvic, and
abdominal injuries, the presence of which introduces further
obstructions to segmentation in terms of additional variation
in size and shape as well as presence of other artifacts in the
abdomen such as hemotoma and blood. The robustness of
published methods in the presence of these various traumas
is unclear.

Localization was performed on an additional two volumes
for which expert annotation was unavailable due to the
severity of spleen lacerations present in the volumes. Figure
4 shows segmentation results on three separate patients with
spleen lacerations. The left and center subjects’ injuries were
too severe for annotation to be provided. The patient on the
right’s lacerated spleen was segmented with a Dice score of
0.937.

IV. CONCLUSION AND FUTURE WORK

Automated spleen segmentation can help fast diagnosis of
splenic injury. Here, we proposed a fully automated spleen
localization method followed by segmentation. It requires
only a very rough, small-pixel-region localization of the
spleen in order to provide segmentation via active contours.
The spleen was segmented with an average Dice score of
0.873 and a highest Dice score of 0.938. Advantages include
that method does not require image registration or use of any
atlas-based methods. Future work will focus on creating a 2-
D segmentation refinement step and obtaining more ground
truth segmentations for testing. Ultimately, our goal is to
incorporate spleen segmentation in a CAD system for long-
term spleen monitoring and detection of blunt splenic injury.
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