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COLLUSION RESISTANT TRAITOR TRACING FROM LEARNING
WITH ERRORS\ast 

RISHAB GOYAL\dagger , VENKATA KOPPULA\dagger , AND BRENT WATERS\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this work we provide a traitor tracing construction with ciphertexts that grow
polynomially in log(n), where n is the number of users, and prove it secure under the learning with
errors (LWE) assumption. This is the first traitor tracing scheme with such parameters provably
secure from a standard assumption. In addition to achieving new traitor tracing results, we be-
lieve our techniques push forward the broader area of computing on encrypted data under standard
assumptions. Notably, traitor tracing is a substantially different problem from other cryptography
primitives that have seen recent progress in LWE solutions. We achieve our results by first conceiving
a novel approach to building traitor tracing that starts with a new form of functional encryption
that we call Mixed FE. In a Mixed FE system the encryption algorithm is bimodal and works with
either a public key or master secret key. Ciphertexts encrypted using the public key can only encrypt
one type of functionality. On the other hand, the secret key encryption can be used to encode many
different types of programs, but is only secure as long as the attacker sees a bounded number of such
ciphertexts. We first show how to combine mixed FE with attribute-based encryption to achieve
traitor tracing. Second, we build Mixed FE systems for polynomial-sized branching programs (which
corresponds to the complexity class logspace) by relying on the polynomial hardness of the LWE
assumption with superpolynomial modulus-to-noise ratio.
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1. Introduction. In a (traitor) tracing [CFN94] system an authority runs a
setup algorithm that takes in a security parameter \lambda and the number, n, of users in
the system. The setup outputs a public key \sansp \sansk , master secret key \sansm \sanss \sansk , and n secret
keys (\sanss \sansk 1, \sanss \sansk 2, . . . , \sanss \sansk n). The system has an encryption algorithm that uses the public
key \sansp \sansk to create a ciphertext for a message m that is decryptable by any of the n
secret keys, but where the message will be hidden from any user who does not have
access to the keys. Finally, suppose that some subset S of users colludes to create a
decoding box D which is capable of decrypting ciphertexts with some nonnegligible
probability. The tracing property of the system states that there exists an algorithm
\sansT \sansr \sansa \sansc \sanse which, given the master secret and oracle access to D, outputs a set of users T
where T contains at least one user from the colluding set S and no users outside of S.

Existing approaches for achieving collusion resistant broadcast encryption can be
fit in the framework of private linear broadcast encryption (PLBE) introduced by
Boneh, Sahai, and Waters (BSW) [BSW06]. In a PLBE system the setup algorithm
takes as input a security parameter \lambda and the number of users n. It outputs a public
key \sansp \sansk , master secret key \sansm \sanss \sansk , and n private keys \sanss \sansk 1, \sanss \sansk 2, . . . , \sanss \sansk n where a user with
index j is given key \sanss \sansk j . Any of the private keys is capable of decrypting a ciphertext
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\sansc \sanst created using \sansp \sansk . However, there is an additional \sansT \sansr \sansE \sansn \sansc \sansr \sansy \sansp \sanst algorithm that takes in
the master secret key, a message, and an index i. This produces a ciphertext that only
users with index j > i can decrypt. Moreover, any adversary-produced decryption
box D that was created with private keys in the set of S will not be able to distinguish
between encryptions to index i - 1 or i, where i /\in S. In addition, encryptions of two
different messages m0,m1 to index n must be indistinguishable.

The tracing system is set up by simply running the PLBE setup and distributing
each PLBE key to the corresponding user. To trace the set of colluding parties
given a decoding box D, the tracing algorithm first measures (with several samples)
the probability that D correctly decrypts a ciphertext encrypted to index i for all
i \in [0, n]. If the box D originally decrypted with probability \epsilon , then there must exist
some index i where the probability the box decrypts on index i - 1 is at least \epsilon /n more
than the probability it decrypts on ciphertexts encrypted to index i, since by PLBE
security D cannot decrypt encryptions to index n with nonnegligible probability. At
this point the tracing algorithm marks user i as a colluder.

Currently, there are three approaches to building PLBE. The most basic approach
is to simply create n public/private key pairs under a standard IND-CPA secure public
key encryption system. A PLBE ciphertext is formed by encrypting the message m to
each user's public key individually and concatenating all of the subciphertexts to form
one long ciphertext, \sansc \sanst = (\sansc \sanst 1, \sansc \sanst 2, . . . , \sansc \sanst n). A user with secret key \sanss \sansk i in the system
will decrypt by running decryption on \sansc \sanst i and ignore the rest of the ciphertext com-
ponents. To \sansT \sansr \sansE \sansn \sansc \sansr \sansy \sansp \sanst to index i simply encrypt the all 0's string in first i ciphertexts
\sansc \sanst 1, . . . , \sansc \sanst i in place of the message. The index hiding property follows directly from
IND-CPA security of the underlying encryption scheme, since without secret key i no
attacker can determine whether \sansc \sanst i is an encryption of the message or all 0's string.

The above approach works because there is a portion of the ciphertext \sansc \sanst i dedi-
cated to each user i in the system which is not touched during the decryption process
of other users with keys \sanss \sansk j for j \not = i. This dedicated ciphertext space strategy makes
it easy to silently kill user i's ability to access the message in a way unnoticeable to
other users, but also inherently requires a ciphertext size that grows linearly in n. In
order to achieve PLBE with sublinear size ciphertexts, one needs to implement some
form of computing on encrypted data.

BSW [BSW06] provided the first construction that achieved PLBE with cipher-
text growth that was sublinear in n. They leveraged composite order bilinear groups
to achieve ciphertexts that grew proportionally to

\surd 
n. While future variants [BW06,

GKSW10, Fre10] used bilinear maps to obtain additional properties, the ciphertext
size for all bilinear map--based constructions remained stuck at the

\surd 
n mark.

Several years later Boneh and Zhandry [BZ14] showed how to utilize indistin-
guishability obfuscation and apply punctured programming techniques to achieve the
ideal case where ciphertexts grow polynomially in log(n) and \lambda . The downside of ap-
plying indistinguishability obfuscation is that all current obfuscation candidates are
based on nonstandard multilinear map group assumptions, and several such multi-
linear candidates have been attacked (see [CLT14, CHL+15, CGH+15, BGH+15,
CLLT16, CLLT17, BWZ14, HJ16, Hal15, CFL+16, MSZ16, CJL16, ADGM16] and
the references therein). (One could also achieve similar results by using the functional
encryption scheme of Garg et al. [GGH+13], but this also relies on multilinear maps.)
This leaves open the following question:

Can we build secure traitor tracing with poly(\lambda , log(n))-sized ciphertexts from
standard assumptions?
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Our results. In this work we resolve the above question by providing a traitor
tracing construction with ciphertexts that grow polynomially in log(n) and \lambda and
prove it secure under the learning with errors (LWE) assumption. This is the first
traitor tracing scheme with such parameters that is provably secure from a standard
assumption. In addition to achieving new traitor tracing results, we believe our tech-
niques push forward the broader area of computing on encrypted data under standard
assumptions. Notably, traitor tracing is a substantially different problem from other
cryptography primitives that have seen recent progress in LWE solutions.

We achieve our result by first conceiving a novel approach to building traitor
tracing that starts with a new form of functional encryption that we call Mixed FE.
In a Mixed FE system the encryption algorithm is bimodal and works with either a
public key or master secret key. Ciphertexts encrypted using the public key can only
encrypt one type of functionality. On the other hand, the secret key encryption can
be used to encode many different types of programs, but is only secure as long as the
attacker sees a bounded number of such ciphertexts.

We first show how to combine Mixed FE with attribute-based encryption (ABE)
to achieve traitor tracing. Second, we show under the LWE assumption how to con-
struct Mixed FE systems for polynomial-sized branching programs (which corresponds
to the complexity class logspace).

1.1. Technical overview. We now give a technical overview of our work. This
overview is broken into four parts. In the first part we review the BSW notion
of private linear broadcast encryption (PLBE) and its transformation into a traitor
tracing system. Along the way we discover that the PLBE definitions as presented
in [BSW06] do not imply traitor tracing. We then show how to repair the argument
by giving the attacker an additional oracle encryption query in the PLBE definitions.
Second, we present the notion of Mixed FE and show how an ABE and Mixed FE
system (for the right functionalities) can be used to construct a PLBE system. The
third part of our overview describes a new LWE toolkit which includes ``enhanced""
versions of lattice trapdoor sampling algorithms with additional security properties.
Finally, we outline our main ideas for constructing the Mixed FE system and proving
it secure under the LWE assumption.

Part 1: Breaking and repairing the PLBE to tracing argument. First,
let us review the PLBE algorithms as defined in [BSW06]. A PLBE scheme consists of
a setup, encryption, decryption, and trace-encryption algorithm. The setup algorithm
outputs a public key, a master secret key, and n secret keys, one for each index in
[n]. The encryption/decryption algorithms are self-explanatory; the trace-encryption
algorithm is a special encryption algorithm that requires the master secret key, and
can be used to encrypt a message to any index i \in [0, n]. The output ciphertext can
be decrypted only by secret keys for indices j > i. BSW defined three security prop-
erties. The first security property (public to zero-index indistinguishability) requires
that a standard encryption of message m is indistinguishable from a trace-encryption
of m to the index 0, even when the adversary has all n secret keys. The second se-
curity property (index hiding) states that a trace-encryption of m to index i  - 1 is
indistinguishable from a trace-encryption of m to index i, even when the adversary
has all the secret keys except the ith one. Finally, the third security property states
that trace-encryption of m0 to index n is indistinguishable from trace-encryption of
m1 to index n, even when the adversary is given all n secret keys.

BSW argued that these three properties of PLBE are sufficient for constructing
a traitor tracing (TT) scheme. In their transformation, the TT public key and n
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secret keys are set to be the PLBE public key and n secret keys, respectively. The TT
encryption/decryption algorithms are identical to the PLBE encryption/decryption
algorithms. Finally, the tracing algorithm uses the PLBE trace-encryption algorithm.
Given a decoder box D, the tracing algorithm encrypts random messages to each
index and checks if D can decrypt it correctly. If the decoder box is \epsilon -successful1

in decrypting (standard) encryptions, then it is also \epsilon successful in decrypting trace-
encryptions to index 0 (via the first security property). Next, note that the decoder
box cannot decrypt trace-encryptions to index n (via the message indistinguishability
property). Therefore, there must exist an index i\ast \in [n] where the success of the
decoder box in decrypting trace-encryptions to index i\ast  - 1 is at least \epsilon /n more than
its success in decrypting trace-encryptions to i\ast . This index i\ast must be one of the
indices queried by the adversary (since if the adversary does not have a key for index
i\ast , then the decoder box must not be able to distinguish between trace-encryptions
to i\ast  - 1 and i\ast ). For each index i, the tracing algorithm computes an estimate
of the decoder box's success probability in decrypting random trace-encryptions for
index i. For all indices i where the measured success probabilities for i - 1 and i are
substantially different, user i is declared to be a traitor.

At an intuitive level, it seems like the BSW transformation should work. How-
ever, here we argue that it is indeed possible to have a PLBE scheme secure under
the original BSW definition, but produce an insecure TT scheme in this regard. The
problem lies in the fact that there is a ``semantic gap"" between the TT definition and
the PLBE definition. The TT definition considers an attacker that produces a (state-
less) decoder D whose success on decrypting multiple trace-encryptions is measured,
whereas the PLBE definition considers indistinguishability on a single ciphertext (in
particular, no ciphertext queries). Diving deeper, we show a separation by adding
a feature to a PLBE scheme where the feature does not impact PLBE security, but
results in an insecure TT scheme.

Given any secure PLBE scheme \sansP , consider a scheme \sansP \prime defined as follows. The
setup algorithm of \sansP \prime is similar to the setup of \sansP , except it also samples an additional
pseudorandom function (PRF) key K as part of the master secret key (we will assume
the PRF has single-bit output). The (standard) encryption algorithm computes a
ciphertext \sansc \sanst using the underlying scheme's encryption algorithm, chooses a uniformly
random bit b, and outputs (\sansc \sanst , b). The trace-encryption of message m is the ciphertext
\sansc \sanst \prime = (\sansc \sanst , y = PRFK(i)), where \sansc \sanst is the ciphertext obtained from the trace-encryption
algorithm of \sansP . It is easy to see that the new scheme satisfies all three PLBE security
definitions, since there are no encryption queries allowed in the PLBE scheme beyond
the challenge ciphertext.

However, it is possible to construct a decoding box using only the secret key for
index n such that the trace algorithm falsely accuses some user i < n. The decoder
D, on input of a ciphertext \sansc \sanst \prime = (\sansc \sanst , y), tests if y = 1. If so, it decrypts the ciphertext
using key \sanss \sansk n; otherwise it outputs a random message. Using PRF security, we can
argue that there exists an index i < n such that PRFK(i - 1) = 1 and PRFK(i) = 0
with high probability. In this case the probability that D decrypts ciphertexts for
index i - 1 will be measurably different than the case in which it decrypts ciphertext
for index i. Thus user i will be flagged as a colluder.

We repair the BSW transformation from PLBE to TT by considering a modified
set of PLBE security definitions and prove that these do imply TT. We do so in two

1A decoder box is said to be \epsilon -successful if its probability of correctly decrypting a ciphertext is
at least \epsilon , where the probability is taken over the choice of the ciphertext and D's random coins.
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steps. First, we consider a decoder-based version of the BSW PLBE definitions. For
concreteness, let us consider the index hiding definition. The decoder-based version
of the index hiding version states that no adversary, given all secret keys except the
ith one, can produce a decoder box D and a message m such that D can distinguish
between trace-encryptions of m to index i - 1 and trace-encryptions of m to index i.
Decoder-based versions of the other properties are defined similarly.

Now that we have decoder-based PLBE definitions that align with the decoder in
the TT definitions, it is fairly straightforward to prove that the BSW transformation
implies TT. The downside of introducing decoder-based PLBE definitions is that they
are more difficult to work with as a target for a construction. We address this issue
by circling back to the original (BSW) PLBE definitions and augmenting them by
allowing an attacker to make an a priori bounded number of queries to an encryption
oracle. We show that 1-query PLBE implies decoder-based PLBE. This gives us an
easier target (that is, 1-query PLBE).

Before describing the transformation from 1-query PLBE to decoder-based PLBE,
we would like to point out that if the BSW definitions were augmented to allow an
unbounded number of ciphertext queries, then decoder-based security follows imme-
diately. For instance, let us consider the index hiding game. The reduction algorithm
(that reduces unbounded-query PLBE to decoder-based PLBE) receives a decoder
box D from the attacker. Given the unbounded queries, the reduction algorithm can
measure (with reasonable accuracy) the success probabilities of D for indices i - 1 and
i, and therefore whether it can use D to distinguish between an encryption to index
i  - 1 and i. However, with only 1 encryption query no such precise measurement is
possible. Therefore, showing an attacker on decoder-based PLBE security implies an
attacker on 1-query PLBE is a bit tricky. The reduction algorithm, after receiving the
decoder box and message m from the adversary, chooses a random index i\ast \in \{ i - 1, i\} ,
and queries the challenger for encryption of m for index i\ast . It receives a ciphertext
\sansc \sanst . Next, it queries the challenger with challenge message m and receives a challenge
ciphertext \sansc \sanst \ast . The reduction algorithm checks if D(\sansc \sanst ) = D(\sansc \sanst \ast ); if so, it guesses
that m was encrypted for index i\ast . We would like to point out that choosing query
index i\ast uniformly at random from \{ i - 1, i\} (as opposed to just fixing one of the two)
is important for our analysis. The idea of running the decoder twice is sometimes
referred to as the double-run trick [BDK+11, BG11, DY13]. The complete details of
our analysis can be found in section 4.1.

Impact on prior TT works using the PLBE framework. Traitor tracing schemes
that had secret key tracing would need a new proof under the new PLBE definitions
with 1-query allowed. We believe the bilinear map constructions [BSW06, GKSW10,
Fre10] are likely secure under this definition, but showing this is outside scope of
this paper. Note that the same problem is not present in PLBE with public trace-
encryption (e.g., [BW06]), since the public key allows the reduction algorithm to
generate ciphertexts.

Part 2: Constructing PLBE from Mixed FE. The hardness of constructing
a PLBE scheme stems from the fact that it needs to satisfy the following two proper-
ties at the same time. First, a PLBE scheme needs to provide a predicate encryption
(PE) like functionality where each secret key is associated with an ``index,"" and each
ciphertext is associated with an index comparison predicate. Also, the ciphertexts
must not reveal any more information about the associated index comparison predi-
cate other than what can be learned by running decryption. Second, the scheme must
provide a broadcast encryption (BE) like compactness guarantee, which is that the
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size of ciphertexts must be short. In particular, the index needs to be represented in
binary, which means the index comparison must be ``sufficiently complex.""

In this work, instead of directly building a PLBE scheme, we further reduce the
task to constructing a new form of functional encryption scheme called Mixed FE.
We show how Mixed FE can be combined with ABE for circuits to obtain PLBE.
At a very high level, our approach is to decouple the functionality (delivering the
message to users) and security requirements of a PLBE scheme, and to deal with
them separately.

We begin by informally introducing the notion of Mixed FE. A Mixed FE scheme
consists of setup, normal (or public key) encryption, secret key encryption, key gen-
eration, and decryption algorithms. The setup algorithm takes as input the security
parameter \lambda and description of a function class \scrF and outputs the public parameters
\sansp \sansp and the master secret key \sansm \sanss \sansk . The normal encryption algorithm only takes as
input the public parameters \sansp \sansp and outputs a (normal) ciphertext \sansc \sanst . The secret key
encryption algorithm takes as input the master secret key \sansm \sanss \sansk and a function f \in \scrF 
and outputs a (secret key) ciphertext \sansc \sanst . The key generation algorithm takes as input
the master secret key \sansm \sanss \sansk and a message m and outputs a key \sanss \sansk m. The decryption
algorithm takes as input a ciphertext \sansc \sanst and a secret key \sanss \sansk m and outputs a single bit.
Now for correctness we require that decrypting a secret key encryption of any func-
tion f using a secret key \sanss \sansk m outputs the evaluation of function f on message m, i.e.,
f(m), whereas the decryption algorithm (almost) always outputs 1 when given a nor-
mal ciphertext as input, irrespective of the secret key used. Thus, one could visualize
the normal encryption algorithm as always encrypting a ``canonical"" always-accepting
function.

Intuitively, security states that no attacker should be able to distinguish between
two ciphertexts that decrypt to the same values under all the secret keys in the at-
tacker's possession. Now since there are two separate encryption algorithms, we have
two different security properties. The first property says that secret key encryptions
of two functions f0 and f1 should be indistinguishable if for every key in the attacker's
possession the output of f0, f1 is identical. We call this function the indistinguishabil-
ity property. The second property says that it should be hard to distinguish between
a normal (public key) encryption and secret key encryption of a function f , where
f(m) must be equal to 1 for all keys \sanss \sansk m in the attacker's possession. We call this the
accept indistinguishability property.

We show that we can construct a PLBE scheme from a (key-policy) ABE scheme
and a Mixed FE scheme. The idea is to encrypt a message using the ABE system
with the attribute being set to be a Mixed FE ciphertext. Each user's secret key
will be an ABE private key. Here the ABE private key is generated for the Mixed
FE decryption circuit in which a Mixed FE secret key, corresponding to the user's
index, is hardwired. The high level intuition is that when the attribute is a normal
functional encryption ciphertext then all Mixed FE keys decrypt it to 1; thus any user
with an appropriate ABE key could perform the decryption, whereas if the attribute
is set to be a secret key ciphertext, then we can control the users who can decrypt it.

Formally, the scheme works as follows. During setup, the algorithm samples both
ABE and Mixed FE key pairs (\sansa \sansb \sanse .\sansp \sansp , \sansa \sansb \sanse .\sansm \sanss \sansk ), (\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ,\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk ). To compute
the ith user's private key, it samples a Mixed FE secret key \sansM \sansi \sansx \sanse \sansd .\sanss \sansk i for input i and
also computes an ABE key \sansa \sansb \sanse .\sanss \sansk i for predicate \sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc (\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i, \cdot ), i.e., Mixed
FE decryption circuit with key\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i hardwired. And the ABE key \sansa \sansb \sanse .\sanss \sansk i is set to
be the ith user's private key. Now to encrypt a message m, the algorithm simply runs
the ABE encryption algorithm with attributes set to be a Mixed FE ciphertext \sansc \sanst \sansa \sanst \sanst \sansr .
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For standard PLBE encryption, \sansc \sanst \sansa \sanst \sanst \sansr is computed as a Mixed FE normal ciphertext,
and for PLBE index encryption to some index i, \sansc \sanst \sansa \sanst \sanst \sansr is computed as a Mixed FE
secret key encryption of function greater than i. Lastly, the PLBE decryption is the
same as the ABE decryption algorithm.

Correctness can be observed directly. For standard PLBE ciphertext, \sansc \sanst \sansa \sanst \sanst \sansr is a
normal FE ciphertext which decrypts to 1; thus the predicate \sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc (\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i, \cdot )
is satisfied for all i. Therefore, by ABE correctness, the ABE decryption algorithm
will output the message m. For the PLBE index i ciphertext, \sansc \sanst \sansa \sanst \sanst \sansr is a Mixed FE
secret key encryption of function ``> i"" which decrypts to 1 for all keys \sansM \sansi \sansx \sanse \sansd .\sanss \sansk j
with j > i; thus the predicate is satisfied for all users with indices larger than i.
Therefore, by ABE correctness, the ABE decryption algorithm will output the message
m whenever j > i. For proving security, we rely on the fact that Mixed FE ciphertexts
are indistinguishable to any adversary that does not have distinguishing secret keys.
For instance, suppose there exists an adversary that can distinguish between PLBE
normal encryptions and index 0 encryptions; then such an adversary can also be
used to distinguish between Mixed FE normal ciphertexts and secret key ciphertexts
encrypting function ``> 0"" (note that this is an always-accepting function). Thus,
such an attack can be used to break the accept indistinguishability property of the
Mixed FE scheme. Similarly, we can prove index hiding and message hiding security of
the construction by reducing to Mixed FE and ABE (selective) security, respectively.
Now if the Mixed FE scheme is 1-query secure, then so is the PLBE scheme.

Now the size of ciphertexts has only \sansp \sanso \sansl \sansy -log dependence on the number of users
n as required. Because each user can be uniquely identified using a bit string of
length log n, so the length of the attribute (Mixed FE ciphertext) will be polynomial
in log n, and thus the PLBE ciphertext, which is in turn an ABE ciphertext, will have
length polynomial in log n as well. Also, note that to use the above transformation
it is sufficient to construct a Mixed FE scheme that supports comparison operation
on log n bit strings. In this work, we show how to construct a Mixed FE scheme for
any class of polynomial-sized branching program from the LWE assumption.2 Our
construction relies only on the polynomial hardness of LWE, although we require a
superpolynomial modulus-to-noise ratio. Since we already have circuit ABE schemes
from the LWE assumption [GVW13, BGG+14], combining that with our Mixed FE
construction gives us collusion resistant traitor tracing from the LWE assumption as
well.

Looking back, it is easy to observe that Mixed FE for branching programs that
support comparison functionality is sufficient for our application. However, as a design
choice, here we instead chose to construct Mixed FE for general polynomial length
branching programs as it is possible that this generalization leads to more applica-
tions in the future. Moreover, focusing on logarithmic length branching programs
supporting comparisons, instead of general branching programs, did not lead to any
significant simplification in the Mixed FE construction or its proof.

Part 3: An enhanced LWE toolkit. Before describing our LWE-based con-
struction for Mixed FE, we define new ``enhanced"" properties for lattice trapdoors
that will be useful in our work, and we believe it will find more applications in the fu-
ture. In many LWE-based works, in addition to the LWE assumption itself, a critical
tool has been the notion of lattice trapdoors [Ajt99, GPV08]. Lattice trapdoor sam-
plers consist of a pair of algorithms, \sansT \sansr \sansa \sansp \sansG \sanse \sansn and \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse . The trapdoor generation

2Note that this also gives us an alternate construction for selectively secure private key functional
encryption with bounded collusions [SS10, GVW12].

D
ow

nl
oa

de
d 

10
/0

5/
21

 to
 1

28
.8

3.
14

1.
10

0 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-101

algorithm \sansT \sansr \sansa \sansp \sansG \sanse \sansn outputs a matrix A (that defines the lattice) and a trapdoor T\bfA .
The preimage sampling algorithm \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse takes as input a matrix Z, a trapdoor
for matrix A, and a Gaussian parameter \sigma and outputs a matrix U such that U maps
A to Z (that is, A \cdot U = Z).3

These algorithms satisfy the following properties. First, the matrix A output by
the trapdoor generation algorithm ``looks like"" a uniformly random matrix; we call
this the well-sampledness of matrix property. Second, the matrix output by \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse 
is indistinguishable from a matrix drawn from a discrete Gaussian distribution with
parameter \sigma over the set of all matrices V such that A \cdot V = Z. In particular, if Z
is chosen uniformly at random, then the output of \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse ``looks like"" a matrix
U drawn from a discrete Gaussian distribution with parameter \sigma ; we call this the
preimage sampling property. Lattice trapdoors with these properties have found a
remarkable number of applications in building LWE-based cryptography.

In this work, we introduce two new enhanced properties for lattice trapdoors.
The first property is the row removal property, which can be intuitively described as
follows. Consider a setting where an adversary specifies some ``target vectors,"" and
the challenger must output a matrix A and a matrix U such that U maps some of the
rows of A to the target vectors, and maps the remaining rows to uniformly random
vectors. Then these rows targeting uniformly random vectors can be removed from the
trapdoor sampling. In particular, the challenger can sample a shorter matrix B with a
trapdoor, extend B with uniformly random vectors to get A, and set U to be a matrix
that maps B to the target vectors. These two scenarios will be indistinguishable for
the PPT adversary.

The second property is called the target switching property. In this setting, con-
sider an adversary that specifies two matrices, Z0,Z1, and a set of ``target"" indices
such that the rows of Z0 and Z1 agree on these target indices. The challenger is
supposed to sample a matrix A with a trapdoor, compute a matrix U that maps
A to Z0,

4 and output U together with the rows of A corresponding to the target
indices and only those rows. Then the challenger can switch the U to map A to Z1,
and the target switching property requires that this change is indistinguishable to
the adversary (note that this would not be possible if the adversary receives any of
the nontarget rows of A). Moreover, the adversary is allowed to adaptively query for
different target vectors/indices in both these games.

Now that we have these enhanced properties, let us discuss how to construct
lattice trapdoors with these enhanced properties (using standard lattice trapdoors).
Our construction is similar to the \sansS \sansa \sansm \sansp \sansl \sanse \sansL \sanse \sansf \sanst /\sansS \sansa \sansm \sansp \sansl \sanse \sansR \sansi \sansg \sansh \sanst algorithms of [ABB10,
CHKP10]. The enhanced trapdoor generation algorithm uses the standard trapdoor
sampling algorithm to sample two matrices, A1,A2, together with the respective
trapdoors T\bfA 1 , T\bfA 2 . It outputs A = [A1| A2] as the matrix and T\bfA = (T\bfA 1 , T\bfA 2)
as the trapdoor. To sample a matrix U that maps A to Z, the preimage sampling
algorithm first chooses a uniformly random matrix W (of the same dimensions as
Z). It then uses T\bfA 1

to compute a matrix U1 that maps A1 to W, and uses T\bfA 2
to

compute a matrix U2 that maps A2 to Z  - W. The final preimage matrix is set to
be
\bigl[ 
\bfU 1

\bfU 2

\bigr] 
. We use the matrix well-sampledness and preimage sampling properties of

the standard lattice trapdoors to prove these enhanced properties; the detailed proof
can be found in section 7.2.

3Although the notion of preimage sampling is usually defined with respect to (w.r.t.) vectors
instead of matrices, here we stick to using matrices for technical reasons discussed later in section 7.

4Strictly speaking, we require \bfU to map the target vectors of \bfA to the target vectors of \bfZ 0, but
the remaining vectors of \bfA approximately map to the corresponding vectors of \bfZ 0.
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Part 4: Constructing Mixed FE from LWE. Here we outline our Mixed
FE construction for polynomial-sized (leveled) branching programs from the LWE as-
sumption. The main ingredient of our construction is the ``enhanced"" lattice trapdoor
sampling procedure \sansL \sansT \sanse \sansn = (\sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn ,\sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse ) discussed above.

First, let us recall the notion of leveled branching programs. A leveled branching
program of length \ell and width w can be represented using w states per level, 2\ell state
transition functions \pi j,b for each level j \leq \ell , an input-selector function \sansi \sansn \sansp (\cdot ) which
determines the input read at each level, and an accepting and rejecting state. The
program execution starts at state \sanss \sanst = 1 of level 1. Suppose the branching program
reads the first input bit (say, b) at level 1 (i.e., \sansi \sansn \sansp (1) = 1). Then the state of the
program changes from \sanss \sanst to \pi 1,b(\sanss \sanst ). Such a process is carried out (iteratively) until
the program's final state at level \ell is computed. Depending upon the final state, the
program either accepts or rejects.

For ease of exposition we will start with a simpler goal of constructing a 0-query
secure Mixed FE scheme for a class of width-w read-once branching programs where
each input bit is read once and in ascending order. Below we first outline a construc-
tion for such a 0-query system as it contains most of the central ideas, but is easier to
digest. Later we discuss the modifications with which we can improve it to a secure
1-query scheme (and, more generally, q-query secure for any polynomial q) as well as
expand the function class to arbitrary polynomial-sized branching programs.

Moving on to our 0-query Mixed FE construction, the master secret key consists
of two sets of matrices and some trapdoor information. The first set, labeled as
``randomization"" matrices, consists of 4\ell matrices \{ Bi,b,Ci,b\} i,b for i \in [\ell ], b \in \{ 0, 1\} .
The second set, labeled as ``program"" matrices, consists of w\ell matrices \{ Pi,v\} i,v for

i \in [\ell ], v \in [w]. Here the Ci,b matrices are sampled uniformly at random from \BbbZ n\times m
q ,

whereas the remaining (randomization and program matrices) are sampled jointly
with common trapdoors (per level). Basically, for each level i \in [\ell ], we sample a
(w + 2)n\times m matrix Mi as

(Mi, Ti)\leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1(w+2)n, 1m, q).

Now each Mi matrix is parsed as w+2 matrices of dimensions n\times m stacked on top
of each other, where the first two matrices are the randomization matrices and the
remaining w matrices are the program matrices for the ith level. That is, for each i,\left[       

Bi,0

Bi,1

Pi,1

...
Pi,w

\right]       = Mi.

All \ell trapdoors T1, . . . , T\ell are stored as the trapdoor information in the master secret
key. The public parameters, on the other hand, only include the matrix dimensions,
LWE modulus, and noise parameters, but none of these matrices or trapdoor infor-
mation.

At a high level, the encryption and key generation algorithms will adhere to the
following structure. To (secret key) encrypt a branching program, the trapdoors will
be used to sample 2\ell low norm matrices \{ Ui,b\} i,b (two per level) such that each matrix

Ui,b encodes the corresponding state transition function by mapping/targeting level
i ``program"" matrices to level i + 1 ``program"" matrices per the transition function
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\pi i,b. Now the secret key for an input x will consist of \ell + 1 key vectors \{ ti\} i. The
first key component, t1, will contain the program matrix P1,1 (which represents the
starting state) plus some randomization component generated using the level 1 ran-
domization matrix B1,b. The remaining \ell key vectors will have two components---the
first component will cancel the previous randomization component, and the second
component will add new randomization terms.5 The idea is that if decryption is
performed honestly, then all the randomization terms will get canceled and the final
output will reflect the output of the branching program.

So this way the program matrices will be tied in such a manner that they encode
the state transition information, and they can be used to perform the branching
program execution. And the randomization matrices are added to make sure that
(1) the computation is hidden at each step, and (2) if ciphertext matrices and key
vectors are combined in any inadmissible way, then the randomization components
do not get canceled. Let us now look at how to execute the above ideas.

Key generation. The key generation algorithm takes as input a string x and
generates key vectors \{ ti\} i as follows. It chooses \ell uniform secret vectors si \in \BbbZ n

q for
i \in [\ell ] and \ell + 1 noise vectors ei \in \BbbZ m

q for i \in [\ell + 1]. It also chooses a short secret
vector \widetilde s \in \BbbZ n

q and sets key vectors as follows:

\forall i \in [\ell + 1], ti =

\left\{     
s1 \cdot B1,x1

+ \widetilde s \cdot P1,1 + e1 if i = 1,

 - si - 1 \cdot Ci - 1,xi - 1
+ si \cdot Bi,xi

+ ei if 1 < i \leq \ell ,

 - s\ell \cdot C\ell ,x\ell 
+ e\ell +1 if i = \ell + 1.

In words, the randomization component (likewise, cancellation component) added in
the ith key vector ((i + 1)th key vector) is an LWE sample where the public matrix
used depends on the ith bit of input x. Looking ahead, choosing the ``randomization""
matrices depending on the string x would assert that the ciphertext matrices cannot
be arbitrarily combined to learn meaningful terms.

Normal encryption. The normal (public key) encryption algorithm simply samples
2\ell random short matrices \{ Ui,b\} i,b as Ui,b \leftarrow \chi m\times m, where \chi is the noise distribution
chosen during setup.

Secret key encryption. Moving on to the secret key encryption algorithm, on input
the master secret key and a branching program \sansB \sansP =

\bigl( 
\{ \pi i,b\} i,b , \sansa \sansc \sansc , \sansr \sanse \sansj 

\bigr) 
, it samples

low norm matrices \{ Ui,b\} as follows. It first chooses two ``program"" matrices for the
last level \ell + 1 as P\ell +1,\sansr \sanse \sansj = 0n\times m and P\ell +1,\sansa \sansc \sansc \leftarrow \BbbZ n\times m

q . That is, for the accepting
state, it chooses a random program matrix, and for the rejecting state it sets the
matrix to be all zeros. Next, using the ith trapdoor Ti (included in the master secret
key) it runs the \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse algorithm to sample the ciphertext (transition) matrices
Ui,0,Ui,1 such that they map/target matrix Mi as follows:\left[       

Bi,0

Bi,1

Pi,1

...
Pi,w

\right]       
Ui,0 -  -  - \rightarrow 

\left[       
Ci,0

\$
Pi+1,\pi i,0(1)

...
Pi+1,\pi i,0(w)

\right]       ,

\left[       
Bi,0

Bi,1

Pi,1

...
Pi,w

\right]       
Ui,1 -  -  - \rightarrow 

\left[       
\$

Ci,1

Pi+1,\pi i,1(1)

...
Pi+1,\pi i,1(w)

\right]       .

5Technically, the last key vector will only remove the previous randomization component. It
doesn't add a new randomization term.
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Here we use ``\$"" to denote a uniformly random n\times m matrix of appropriate dimension.
In words, the structure we enforce here is that the matrix Ui,b targets the Bi,b ran-
domization matrix to its Ci,b counterpart, and the Bi,1 - b randomization matrix to a
random matrix. Additionally, Ui,b encodes the information about transition function
\pi i,b by targeting the level i program matrices to their level i+1 counterparts per \pi i,b.
Thus, from the perspective of both correctness and security, this guarantees that a
key vector ti for some input x must be combined with ciphertext component Ui,xi

, as
otherwise the randomization matrix would be mapped to a random matrix, thereby
destroying the underlying structure.

Decryption. First, let us focus on decrypting a secret key encryption of branch-
ing program \sansB \sansP using a secret key \{ ti\} i corresponding to an input x. Intuitively,
one could visualize the matrices \{ Ui,0,Ui,1\} i in the ciphertext as ``encodings"" of
the branching program state transition functions \pi i,0, \pi i,1, respectively. Therefore,
decrypting the ciphertext using a secret key for some input x will be analogous to
evaluating the branching programs \sansB \sansP on input x directly. Recall that we assumed
(for ease of exposition) that the branching programs are read-once, and input bits
are read sequentially in ascending order. Thus, the first input bit x1 is read at level
1. Then evaluation of \sansB \sansP at level 1 would map the state \sanss \sanst 1 = 1 at level 1 to state
\sanss \sanst 2 = \pi 1,x1

(1) at level 2. Analogously, the decryptor can compute

t1 \cdot U1,x1 + t2 \approx (s1 \cdot B1,x1 + \widetilde s \cdot P1,1) \cdot U1,x1 + t2

\approx s1 \cdot C1,x1 + \widetilde s \cdot P2,\sanss \sanst 2 + t2

\approx �����s1 \cdot C1,x1 + \widetilde s \cdot P2,\sanss \sanst 2 +
\bigl( 
����� - s1 \cdot C1,x1 + s2 \cdot B2,x2

\bigr) 
\approx s2 \cdot B2,x2 + \widetilde s \cdot P2,\sanss \sanst 2 .

In general, if the program state at level i during execution is \sanss \sanst i, then the decryptor
will accumulate the term of the form si \cdot Bi,xi

+\widetilde s \cdot Pi,\sanss \sanst i by successively summing and
multiplying secret key and ciphertext components as

(\cdot \cdot \cdot ((t1 \cdot U1,x1
+ t2) \cdot U2,x2

+ t3) \cdot \cdot \cdot + ti) .

This can be verified as follows. We know that the bit read at level i is xi, and thus the
new state at level i+ 1 will be \sanss \sanst i+1 = \pi i,xi(\sanss \sanst i). Now the accumulated sum-product
during decryption will be

(si \cdot Bi,xi
+ \widetilde s \cdot Pi,\sanss \sanst i) \cdot Ui,xi

+ ti+1

\approx ����si \cdot Ci,xi
+ \widetilde s \cdot Pi+1,\sanss \sanst i+1

+
\bigl( 
����� - si \cdot Ci,xi

+ si+1 \cdot Bi+1,xi+1

\bigr) 
\approx si+1 \cdot Bi+1,xi+1

+ \widetilde s \cdot Pi+1,\sanss \sanst i+1
.

Therefore, the invariant is maintained. Continuing in this way, the decryptor can
iteratively compute the sum-product combining all key and ciphertext components.
Note that (by definition) adding in the (\ell +1)th key component t\ell does not introduce
a term like s\ell +1 \cdot B\ell +1,x\ell +1

to the sum-product; thus the accumulated term at the top
will be \approx \widetilde s\cdot P\ell +1,\sanss \sanst \ell +1

, where \sanss \sanst \ell +1 is either \sansa \sansc \sansc or \sansr \sanse \sansj depending on \sansB \sansP (x). Finally, the
decryptor simply checks whether the norm of the final sum-product term is small or
not. Recall that the program matrix for the last level corresponding to the rejecting
state is set to be all zeros, i.e., P\ell +1,\sansr \sanse \sansj = 0n\times m. Therefore, if \sansB \sansP (x) = 0, then the
norm of the final sum-product term will be small, which the decryptor can test and
output 0. Otherwise, with high probability the final sum-product term will be large
and it outputs 1.
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By the above analysis, correctness follows in the case where ciphertext is a secret
key encryption. The correctness of decryption when the ciphertext is a normal (public
key) ciphertext follows from the fact that the ciphertext matrices \{ Ui,0,Ui,1\} i are
independently sampled random short matrices.

0-query security. To prove 0-query security of our construction, we need to argue
that it satisfies both function indistinguishability as well as accept indistinguishability
properties. We start by proving the function indistinguishability security. Recall that
in the 0-query function indistinguishability security game, an adversary submits two
branching programs, \sansB \sansP (0),\sansB \sansP (1), and is allowed to make a polynomial number of key
queries such that for each queried input x, \sansB \sansP (0)(x) = \sansB \sansP (1)(x) (i.e., every secret key
given out has same output on both the challenge programs). The adversary receives

secret key encryption of either \sansB \sansP (0) or \sansB \sansP (1), and its goal is to distinguish between
them.

Although the full security proof is technically involved, the main ideas behind our
proof are very intuitive. Before diving into the proof structure, we point out that the
construction described above has to be slightly modified for proving security. Below
we describe our proof ideas as well as discuss the modifications required along the
way.

At a high level, our idea is to ``hardwire"" the output of the challenge branching
programs in every secret key given to the adversary. Note that the security definition
states that both challenge programs must evaluate to the same value on all queried
inputs, and thus we only need to hardwire a single value in each key. For ease of
exposition, assume that the adversary makes exactly one secret key query. (In the
general case of polynomially many key queries, the proof proceeds by hardwiring the
level 1 components in all secret keys, followed by level 2 hardwiring, and so on.) Let
\{ Ui,b\} i,b be the challenge ciphertext, and let \{ ti\} i be the secret key computed by
the challenger. Our hardwiring strategy works as follows. We start by rewriting the
second secret key vector t2 in terms of t1 as follows:

t2 =  - s1 \cdot C1,x1
+ s2 \cdot B2,x2

+ e2

=  - s1 \cdot B1,x1
\cdot U1,x1

+ s2 \cdot B2,x2
+ e2

=  - s1 \cdot B1,x1
\cdot U1,x1

 - \widetilde s \cdot P2,\sanss \sanst 2 + \widetilde s \cdot P2,\sanss \sanst 2 + s2 \cdot B2,x2
+ e2

=  - (s1 \cdot B1,x1
+ \widetilde s \cdot P1,1) \cdot U1,x1

+ \widetilde s \cdot P2,\sanss \sanst 2 + s2 \cdot B2,x2
+ e2

=  - (t1  - e1) \cdot U1,x1
+ \widetilde s \cdot P2,\sanss \sanst 2 + s2 \cdot B2,x2

+ e2.

Here \sanss \sanst 2 is the state of the challenge branching program encrypted (after one step is
executed). Now in the above term, we can smudge the term e1 \cdot U1,x1

by appropriately
choosing the noise distributions, i.e., e2 \gg e1 \cdot U1,x1

.6 (Note that since we require
smudging here, thus the LWE modulus q needs to be superpolynomial in the lattice
dimension.) Thus, the second key component can be indistinguishably computed as
follows without requiring any explicit knowledge of the C1,x1

matrix:

t1 = s1 \cdot B1,x1 + \widetilde s \cdot P1,1 + e1,

t2 =
 - (t1  - e1) \cdot U1,x1 + \widetilde s \cdot P2,\sanss \sanst 2

+ s2 \cdot B2,x2
+ e2

\sansS \sansm \sansu \sansd \sansg \sansi \sansn \sansg  -  -  -  -  -  -  -  -  - \rightarrow t2 =
 - t1 \cdot U1,x1 + \widetilde s \cdot P2,\sanss \sanst 2

+ s2 \cdot B2,x2
+ e2.

Next, we use the row removal property of our enhanced trapdoor sampling algo-
rithms to remove the B1,0,B1,1 rows from the first matrix M1 and instead sample

6If we keep on smudging this way, our noise distributions will have to grow by an exponential
factor at each step. In the main body, we show how to avoid this by a better smudging argument.
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these randomly. To understand why this can be done, recall that in the actual con-
struction the encryptor needs the ability to create a ciphertext for any branching
program that could be chosen even after all the keys have been distributed. That is,
the encryptor must be able to sample matrices U1,0,U1,1 such that they map level
1 program matrices \{ P1,v\} v to level 2 program matrices \{ P2,v\} v per some transition
functions \{ \pi 1,b\} b, as well as ensure that B1,b \cdot U1,b = C1,b. Now since the keys contain
the matrices C1,0,C1,1 and they could be given out even before matrices U1,0,U1,1

are sampled, thus matrices B1,0,B1,1 must be sampled together with \{ P1,v\} v such
that they share a common trapdoor.

However, at this stage in the proof the challenge branching program is (selectively)
fixed ahead of any secret key queries. Therefore, in this context we can sample
matrices U1,0,U1,1 to only map level 1 program matrices to their level 2 counterparts,
and simply set the matrices C1,b as C1,b = B1,b \cdot U1,b and use these to compute the
secret keys. We would like to point out that in order to perform this row removal
securely, it is important that B1,b \cdot U1,1 - b = \$, that is, matrices U1,0,U1,1 map both
matrices B1,0,B1,1 to random and uncorrelated matrices.

Now once we have removed the B1,0,B1,1 rows from the first matrix, we use the
LWE assumption to switch the first key component t1 to a random vector. Note
that at this point since matrices B1,0,B1,1 are sampled uniformly (i.e., are no longer
sampled with trapdoor information) and secret vector s1 is not used in computing the
second key component t2, thus we can apply LWE to switch t1 to random, where the
LWE secret is s1 and the LWE public matrix will be B1,x1 .

7 Concretely, using LWE
we can perform the following switch, which essentially erases the information about
the level 1 program matrix P1,1 from the secret keys, thereby rendering the program
evaluation to start from level 2 and state \sanss \sanst 2 instead:

t1 = s1 \cdot B1,x1
+ \widetilde s \cdot P1,1 + e1

\sansL \sansW \sansE  -  -  -  -  -  - \rightarrow t1 = \$,

t2 =  - t1 \cdot U1,x1
+ \widetilde s \cdot P2,\sanss \sanst 2 + s2 \cdot B2,x2

+ e2.

Now iteratively performing this hardwiring strategy (\ell times), we end up switching
all but the last key components to be random vectors. Also, the last key component
will contain the final program matrix, which is either a random matrix or a zero ma-
trix, depending on the program output. Thus, the key vectors contain no information
about the ``program"" matrices chosen during setup. At this point, the challenge ma-
trices \{ Ui,b\} i,b still contain the information about the branching program encrypted
in the form of mapping between level i and i + 1 ``program"" matrices, i.e., the state
transition functions \{ \pi i,b\} i,b. Finally, to argue indistinguishability here (i.e., between

the challenge matrices) we use the target switching property of our enhanced trap-
doors. We apply a bottom-up approach to execute this change. First, note that the
level 1 program matrices do not explicitly appear anywhere, except that they are
used to sample the level 1 ciphertext matrices U1,0,U1,1. Thus, we can use the target
switching property to switch the targets of matrices U1,0,U1,1. Observe that this
now removes the information about level 2 program matrices as well as the level 1
transition functions of challenge branching programs. Next, by the same principle, we
can perform the same target switching step for U2,0,U2,1 and continue so on. If we
keep on performing the target switching step this way until the top, then the challenge

7In the general case of multiple key queries the LWE public matrices will be both \bfB 1,0,\bfB 1,1 and
the LWE secret will consist of all the secret key vectors \bfs i that are chosen independently and per
key.
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ciphertext will contain no information about the challenge programs (i.e., their state
transition functions), thereby completing our claim of function indistinguishability.8

This completes the first proof.
The proof of the 0-query accept indistinguishability security of our construction

is similar, but more technical due to the fact that we need to argue that the challenge
ciphertext is indistinguishable from random short matrices.

However, for our PLBE construction, the Mixed FE scheme must handle one
ciphertext query as well, and it is not clear how to prove the above construction
to be 1-query secure directly. The bottleneck is the fact that in the above proof
strategy we hardwire all secret key components to match the output of the challenge
program. Now if the adversary is allowed to make a secret key encryption query,
then it is not clear how the challenger would still program the secret key vectors. To
get around this problem, we expand our system such that it consists of \lambda pairs of
0-query subsystems. Very briefly, during encryption, the algorithm now also samples
a \lambda -bit string \sanst \sansa \sansg randomly and depending on each bit of \sanst \sansa \sansg , it chooses one sub-
system in each pair and runs the 0-query encryption for that subsystem. Now during
key generation, it (linearly) secret shares the starting program across these \lambda pairs of
subsystems such that the same secret share is used for both subsystems in each pair.
Then it runs the 0-query key generation algorithm for all these 2\lambda subsystems with
their corresponding secret shares as the starting program matrices. For decryption,
the subsystems chosen during encryption are combined with their counterparts in the
secret keys, and 0-query decryption is performed in these subsystems along with a
(linear) reconstruction on top of the output. More details are provided in the main
body.9

This completes the technical overview of our construction.

Relation to recent LWE-based schemes. There have been several recent works that
have advanced the state of the art in computing branching programs on encrypted
data with the goal of reducing security to LWE or LWE-like assumptions [GGH15,
BVWW16, BV15, GKW17b, CC17, GKW17a, WZ17]. While our construction above
benefits from that lineage, we wish to briefly call out a few important distinctions.

First, from a purely mechanical perspective, the construction of our Mixed FE
scheme is structurally very different from the constructions of the aforementioned
primitives. Very briefly, in all previous constructions the evaluator multiplies a set of
matrices and sums them up to get the final output, whereas in our construction, we
do not use this ``one-shot"" approach for evaluation. Instead, we multiply a component
from the ciphertext with a secret key component, then add in another secret key com-
ponent, multiply this sum with another ciphertext component, and so on. Thus, our
mechanism of combining the secret key and ciphertext components is much different
than what was used in prior works.10

8Technically, we cannot apply the target switching property here, because the target switching
property only guarantees that targets being switched are approximately mapped, whereas here we
target exactly. Therefore, we also need to add some noise in the targeted ``program"" matrices before
running \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse algorithm. For simplicity, we avoid this modification.

9We would like to point out that the above idea could also be used to improve the Mixed FE
construction to be q-query secure for any polynomial q. The idea will be to sample tag strings \sanst \sansa \sansg 
from a larger alphabet instead of \{ 0, 1\} . However, we only focus on 1-query security, as it is sufficient
for our result.

10Although one can always express such a nested matrix multiplication and addition mechanism
using only a sequence of matrix multiplications with much larger (and repetitive) matrices, we point
out that the underlying structure of such matrices as well as the modified evaluation algorithm will
still be much different from those used in previous works.
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Second, we structure our proof of security to hardwire the outputs for keys one
level at a time until we hit the final output level in which we have the final outputs
hardwired but lost information about the program that got us there. In this sense at a
high level this leveled programming proof structure much more closely resembles that
of garbled circuit proofs. Thus, we need to develop new lower LWE-specific techniques
to match these goals. In contrast, works such as [BVWW16, GKW17b, GKW17a,
WZ17] have a different aim of losing all meaningful information when a secret is not
known.

1.2. Some future directions. Our construction of Mixed FE relied on the LWE
assumption and leveraged certain algebraic properties in that setting. An intriguing
question is whether there are other avenues for achieving Mixed FE. A natural path
is to build Mixed FE with a garbled circuits [Yao86] backbone. If one starts with the
bounded key functional encryption scheme of Gorbunov, Vaikuntanathan and Wee
(GVW) [GVW12] and flips [AGVW13, BS15, KMUW17] the semantics of message
and function, one can get a secret key functional encryption scheme that is secure for
an unbounded number of private keys and bounded number of ciphertexts. To make it
a Mixed FE system we would somehow connect a public key mode of encryption to the
scheme. One possible path is to use a ``blinded"" [BLSV17] form of garbled circuits as
the underlying 1-bounded scheme in the GVW transformation. (Building on [DG17a,
DG17b], blinded garbled circuits were recently used to give anonymous identity-based
encryption (IBE) from new assumptions). It seems possible that this approach could
lead to a scheme with the accept indistinguishability property if no encryption oracle
queries are allowed. However, there appears to be technical difficulties in making a
public key--generated ciphertext indistinguishable from a master secret key--generated
ciphertext when the attacker gets oracle queries. That being said, we believe that a
garbled circuit approach remains a plausible future direction.

We remark that even if a garbled circuit approach becomes possible, the require-
ment for an ABE scheme supporting circuits will still indirectly require the LWE
assumption given the state of the art. In addition, we expect that our LWE toolkit
and underlying construction ideas will have future value in any case.

A second interesting direction is whether there are other applications that can
leverage a functional encryption system that has a bimodal encryption where the
public key and master secret key support different spaces of messages or functions. In
our Mixed FE system the public key only supported the always accept function, but
there could conceivably be other variants of interest.

Finally, a natural open question is to construct traitor tracing schemes with public
traceability from LWE. Currently, it is unclear if achieving public tracing is an easier
task than building general public key functional encryption.

1.3. Additional related work. Our transformation from Mixed FE to PLBE
using ABE has some high-level similarities to the predicate encryption scheme of Gor-
bunov, Vaikuntanathan, and Wee [GVW15] and the single-key functional encryption
scheme of Goldwasser et al. [GKP+13]. In both these cases, we have specialized
encryption schemes whose ciphertext serves as an attribute for the ABE scheme.

Concurrent/follow-up works. Concurrent to our work, Chen, Vaikuntanathan,
and Wee [CVW18b] also proposed a simplified variant of our row-removal and target
switching properties. They used these properties for constructing lockable obfusca-
tion schemes for nonpermutation branching programs. However, their properties are
weaker than the ones we define/construct in this work. In particular, their construc-
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tions do not allow the adversary to make any preimage queries. Following our work,
Chen et al. [CVW+18a] presented simpler constructions of Mixed FE.

Connections to differential privacy. Dwork et al. [DNR+09] showed that
existence of collusion resistant traitor tracing schemes implies hardness results for
efficient differentially private [DMNS06] data sanitization. In particular, they showed
that if there exists a traitor tracing scheme with ciphertexts of size s(\lambda , n), then there
exist a database of size n and a query class \scrQ of size 2s(\lambda ,n) such that it is hard to
sanitize the database D for query class \scrQ in a differentially private manner. Com-
bining our LWE-based construction with the result of Dwork et al., we get an LWE-
based hardness result for differentially private sanitization with query space of size
2\sansp \sanso \sansl \sansy (\lambda ,logn). We note that Goyal et al. [GKRW17] and Kowalczyk et al. [KMUW17]
recently achieved better differential privacy impossibility results from the security of
bilinear map assumptions and one-way functions, respectively.

Weaker notions of traitor tracing. Since the notion of traitor tracing (TT)
was first proposed [CFN94], several relaxed variants have been studied in order to
achieve short ciphertexts. The first natural relaxation is the bounded collusion setting,
where we have an a priori bound k that is fixed during setup, and security is guaranteed
only if the adversary gets at most k secret keys. Collusion bounded systems can either
be constructed via combinatorial tools [CFN94, SW98, CFNP00, SSW01, PST06,
BP08] or be algebraic and constructed under different cryptographic assumptions such
as DDH [KD98, BF99, KY02a, KY02b], bilinear DDH [CPP05, ADM+07, FNP07],
and LWE [LPSS14]. Recently, Agrawal et al. [ABP+17] showed a transformation from
inner product functional encryption to collusion-bounded TT, resulting in algebraic
constructions based on various assumptions such as DCR, DDH, and LWE. In all the
above works, the size of the ciphertext grows with the collusion bound.

The second relaxation is called threshold TT, introduced by [NP98, CFNP00].
In a threshold TT scheme, a threshold \delta \in [0, 1] is chosen during setup, and the
traceability guarantee only holds if the decoder box works with probability at least
\delta . Boneh and Naor [BN08] showed a threshold TT scheme where the ciphertexts
have size O(\lambda ) and the secret keys have size O(n2\lambda /\delta 2). While this scheme achieves
collusion resistance, the system must be configured with a specific \delta value, and once
it is set, one will not necessarily be able to identify a traitor from a box D that works
with smaller probability. In practice, it can be tricky to ascertain what threshold will
actually be okay. This is because the encrypted messages could have redundancy, so
even a decoder box with a small fraction of success might allow an attacker to learn
the underlying message.

Finally, in a recent work, Goyal et al. [GKRW17] introduced a new relaxation
called risky traitor tracing. In this notion, the scheme is fully collusion resistant (and
does not have the threshold restriction as above). Instead, the probability of tracing
a traitor, given a successful decoding box, can be substantially smaller than 1. For
instance, [GKRW17] showed a bilinear maps--based construction where the ciphertext
size grows as \lambda \cdot k, but the trace algorithm has only a k/n chance of catching a
traitor. The authors show that this weaker notion is actually enough to achieve
strong hardness results for differential privacy [DMNS06, DNR+09] and also argue
that in a certain ``continuous use"" setting, the probability of tracing can be amplified
back up to one. However, in general settings, the Goyal et al. tradeoff between the
probability of catching a traitor and the size of ciphertexts might be undesirable.
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1.4. Organization. In section 2, we present the preliminaries required for this
work. Next, in section 3, we have the traitor tracing and PLBE definitions. This
includes the new decoder-based and q-query PLBE definitions. In section 4, we show
how 1-query PLBE implies decoder-based PLBE, and how decoder-based PLBE suf-
fices for constructing TT schemes. Therefore, the problem of constructing a TT
scheme reduces to the problem of constructing a 1-query PLBE scheme. For this,
we introduce a new primitive called Mixed FE in section 5. In section 6, we show
how to construct 1-query PLBE using Mixed FE and ABE (the syntax and security
definitions of ABE can be found in Appendix A). Finally, in section 8, we present our
Mixed FE construction (before presenting the Mixed FE construction, in section 7 we
present new lattice tools which are required for our construction).

2. Preliminaries.

Notation. Let PPT denote probabilistic polynomial time. We will use lowercase
bold letters for vectors (e.g., v) and uppercase bold letters for matrices (e.g., A), and
we assume all vectors are row vectors. The jth row of a matrix A is denoted by A[j].
For any integer q \geq 2, we let \BbbZ q denote the ring of integers modulo q. We represent
\BbbZ q as integers in the range ( - q/2, q/2]. For a vector v, we let \| v\| denote its \ell 2 norm
and \| v\| \infty denote its infinity norm. Similarly, for matrices, \| \cdot \| and \| \cdot \| \infty denote their
\ell 2 and infinity norms, respectively.

We denote the set of all positive integers up to n as [n] := \{ 1, . . . , n\} . Throughout
this paper, unless specified, all polynomials we consider are positive polynomials. Also,
we represent each finite set on integers S \subset \BbbN as an ordered set S = \{ i1, i2, . . . , in\} ,
i.e., ij < ik for every 1 \leq j < k \leq n. For any finite set S, x \leftarrow S denotes a
uniformly random element x from the set S. Similarly, for any distribution \scrD , x\leftarrow \scrD 
denotes an element x drawn from distribution \scrD . The distribution \scrD n is used to
represent a distribution over vectors of n components, where each component is drawn
independently from the distribution \scrD .

For two distributionsX,Y , over a finite domain \Omega , the statistical distance between

X and Y is defined as \sansS \sansD (X,Y )
def
= 1

2

\sum 
\omega \in \Omega | X(\omega ) - Y (\omega )| . A family of distributions

\scrD 1 = \{ \scrD 1(\lambda )\} \lambda and \scrD 2 = \{ \scrD 2(\lambda )\} \lambda , parameterized by security parameter \lambda , are
said to be statistically indistinguishable, represented by \scrD 1 \approx s \scrD 2, if there exists
a negligible function negl(\cdot ) such that, for all \lambda \in \BbbN , \sansS \sansD (\scrD 1(\lambda ),\scrD 2(\lambda )) \leq negl(\lambda ).
For a family of distributions \scrD = \{ \scrD (\lambda )\} \lambda over the integers, and integer bounds
B = \{ B(\lambda )\} \lambda , we say that \scrD is B-bounded if Pr[| x| \leq B(\lambda ) : x \leftarrow \scrD (\lambda )] = 1. In
words, a B-bounded distribution is supported only on the range [ - B,B]. Below we
state the ``smudging"" lemma as it appears in prior works.

Lemma 2.1 (Smudging Lemma [AJW11, Lemma 2.1, paraphrased]). Let B1, B2

be two polynomials over the integers, and let \scrD = \{ \scrD (\lambda )\} \lambda be any B1-bounded dis-
tribution family. Let U = \{ U(\lambda )\} \lambda and U(\lambda ) denote the uniform distribution over
integers [ - B2(\lambda ), B2(\lambda )]. The family of distributions \scrD and U is statistically indis-
tinguishable, \scrD +U \approx s U , if there exists a negligible function negl(\cdot ) such that for all
\lambda \in \BbbN , B1(\lambda )/B2(\lambda ) \leq negl(\lambda ).

2.1. Lattice preliminaries. An m-dimensional lattice \scrL is a discrete additive
subgroup of \BbbR m. Given positive integers n,m, q and a matrix A \in \BbbZ n\times m

q , we let

\Lambda \bot 
q (A) denote the lattice \{ x \in \BbbZ m : A \cdot xT = 0T mod q\} . For u \in \BbbZ n

q , we let

\Lambda \bfu 
q (A) denote the coset \{ x \in \BbbZ m : A \cdot xT = uT mod q\} .

Discrete Gaussians. Let \sigma be any positive real number. The Gaussian dis-
tribution \scrD \sigma with parameter \sigma is defined by the probability distribution function
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\rho \sigma (x) = exp( - \pi \| x\| 2 /\sigma 2). For any set \scrL \subset \BbbR m, define \rho \sigma (\scrL ) =
\sum 

\bfx \in \scrL \rho \sigma (x). The
discrete Gaussian distribution \scrD \scrL ,\sigma over \scrL with parameter \sigma is defined by the prob-
ability distribution function \rho \scrL ,\sigma (x) = \rho \sigma (x)/\rho \sigma (\scrL ) for all x \in \scrL .

The following lemma (Lemma 4.4 of [MR07], [GPV08]) shows that if the param-
eter \sigma of a discrete Gaussian distribution is small, then any vector drawn from this
distribution will be short (with high probability).

Lemma 2.2. Let m,n, q be positive integers with m > n, q \geq 2, and \sigma = \~\Omega (n).
Then

Pr[\| x\| >
\surd 
m \cdot \sigma : x\leftarrow \scrD \scrL ,\sigma : A\leftarrow \BbbZ n\times m

q ,\scrL = \Lambda \bot 
q (A)] \leq negl(n).

Truncated discrete Gaussians. The truncated discrete Gaussian distribution
over \BbbZ m with parameter \sigma , denoted by \widetilde \scrD \BbbZ m,\sigma , is the same as the discrete Gaussian
distribution \scrD \BbbZ m,\sigma except it outputs 0 whenever the \ell \infty norm exceeds

\surd 
m \cdot \sigma . Note

that, by definition, \widetilde \scrD \BbbZ m,\sigma is
\surd 
m \cdot \sigma -bounded. Also, by the above lemma we get that\widetilde \scrD \BbbZ m,\sigma \approx s \scrD \BbbZ m,\sigma .

2.1.1. Learning with errors. The learning with errors (LWE) problem was
introduced by Regev [Reg05], who showed that solving LWE on average is as hard
as quantumly solving several standard lattice-based problems in the worst case. The
LWE assumption states that no polynomial time adversary can distinguish between
the following oracles. In one case, the oracle chooses a uniformly random secret s,
and for each query, it chooses a vector a uniformly at random, scalar e from a noise
distribution, and outputs (a, s\cdot aT +e). In the second case, the oracle simply outputs a
uniformly random vector a together with a uniformly random scalar u. Regev showed
that if there exists a polynomial time adversary that can break the LWE assumption,
then there exists a polynomial time quantum algorithm that can solve some hard
lattice problems in the worst case.

Several works also explored different variants of the LWE assumption, where the
secret vector s, public vectors a, and noise are drawn from different distributions.
In this work, we will be using two of these variants. First, we will be using the
LWE version with short secrets (also known as the normal form), introduced by
Applebaum et al. [ACPS09]. In this variant, the secret vector s is also drawn from
the noise distribution. Applebaum et al. showed that this version is as hard as the
LWE problem if the modulus is pe for some prime p and integer e. This was later
generalized to all moduli by Brakerski et al. [BLP+13]. The second variant, which
was proposed by Boneh et al. [BLMR13], allows the public vectors a to be chosen
from the noise distribution as well. Boneh et al. showed that this version of LWE is
as hard as standard LWE.

We will first present the LWE assumption in a general framework,11 which cap-
tures the standard LWE, LWE with short secrets, and LWE with short public vectors.
In this framework, we will have an explicit security parameter \lambda , and the other pa-
rameters are allowed to grow as a function of the security parameter.

Definition 2.3 (generalized learning with errors). Fix any polynomial n(\cdot ), func-
tion q(\cdot ), secret distribution \eta (\cdot ), public vector distribution \phi (\cdot ), and noise distribution

11Canetti and Chen [CC17] proposed the general LWE problem. However, their version requires
the public vectors to be sampled from a uniform distribution, whereas we require the public vectors
to be sampled from nonuniform distributions. Also, it is possible to generalize our version further.
Here, we present the minimal generalization that suffices for our work.
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\chi (\cdot ), where n : \BbbN \rightarrow \BbbN , q : \BbbN \rightarrow \BbbN and for each \lambda \in \BbbN , \eta (\lambda ) and \phi (\lambda ) are distribu-

tions over \BbbZ n(\lambda )
q(\lambda ) and \chi (\lambda ) is a distribution over \BbbZ . We say that the generalized LWE

assumption \sansG \sansL \sansW \sansE n,q,\eta ,\phi ,\chi holds if for any PPT adversary \scrA , there exists a negligible
function negl(\cdot ) such that for all \lambda \in \BbbN , q = q(\lambda ), n = n(\lambda ), \eta = \eta (\lambda ), \phi = \phi (\lambda ), and

\chi = \chi (\lambda ), \sansA \sansd \sansv n,q,\eta ,\phi ,\chi \sansG \sansL \sansW \sansE ,\scrA (\lambda ) \leq negl(\lambda ), where

\sansA \sansd \sansv n,q,\eta ,\phi ,\chi \sansG \sansL \sansW \sansE ,\scrA (\lambda ) = Pr
\Bigl[ 
\scrA O\bfs 

1()(1\lambda ) = 1 : s\leftarrow \eta 
\Bigr] 
 - Pr

\Bigl[ 
\scrA O2()(1\lambda = 1)

\Bigr] 
,

and oracles O\bfs 
1(), O2() are defined as follows: oracle O\bfs 

1() has s \in \BbbZ n
q hardwired, and

on each query it chooses a\leftarrow \phi , e\leftarrow \chi and outputs
\bigl( 
a, s \cdot aT + e mod q

\bigr) 
, and oracle

O2() (on each query) chooses a\leftarrow \phi , u\leftarrow \BbbZ q and outputs (a, u).

We now present different variants of the LWE assumption and discuss the param-
eters for which they are believed to be secure.

Assumption 1 (learning with errors). Let n : \BbbN \rightarrow \BbbN be a polynomial, and let q :
\BbbN \rightarrow \BbbN , \sigma : \BbbN \rightarrow \BbbR + be functions. The \sansL \sansW \sansE n,q,\sigma assumption states that \sansG \sansL \sansW \sansE n,q,\eta ,\phi ,\chi 

holds, where \eta (\lambda ), \phi (\lambda ) are uniform distributions over \BbbZ n(\lambda )
q(\lambda ) , and \chi (\lambda ) \equiv \scrD \BbbZ ,\sigma (\lambda ).

The following theorem shows that breaking LWE is as hard as solving hard lattice
problems. In particular, given the current state of the art of lattice problems, the LWE
assumption is believed to be true for any polynomial n(\cdot ) and functions q(\cdot ), \sigma (\cdot ) such
that for all \lambda \in \BbbN , n = n(\lambda ), q = q(\lambda ), \sigma = \sigma (\lambda ), the following constraints are
satisfied: 0 < \sigma < q < 2n, n \cdot q/\sigma < 2n

\epsilon 

(for any constant \epsilon < 1), and \sigma > 2
\surd 
n.

Theorem 2.4 (LWE to worst-case lattice problem [Reg05, Pei09, BLP+13]). Fix
any polynomial n(\cdot ) and functions q(\cdot ), \sigma (\cdot ) such that for all \lambda \in \BbbN , n = n(\lambda ), q =
q(\lambda ), \sigma = \sigma (\lambda ), 0 < \sigma < q < 2n, and \sigma > 2

\surd 
n. For every \lambda \in \BbbN , let \eta = \eta (\lambda ) and

\phi = \phi (\lambda ) denote the uniform distributions over \BbbZ n
q and \chi = \chi (\lambda ) \equiv \scrD \BbbZ ,\sigma . If there

exist a PPT algorithm \scrA and a nonnegligible function \epsilon \scrA (\cdot ) such that for all \lambda \in \BbbN ,
\sansA \sansd \sansv n,q,\eta ,\phi ,\chi \sansG \sansL \sansW \sansE ,\scrA (\lambda ) \geq \epsilon \scrA (\lambda ), then there exist a PPT algorithm \scrB and a nonnegligible
function \epsilon \scrB (\cdot ) such that for all \lambda \in \BbbN and all instances X of \sansG \sansa \sansp \sansS \sansV \sansP n,n\cdot q/\sigma , \scrB can
solve X with probability at least \epsilon \scrB (\lambda ).

Assumption 2 (LWE with short secrets). Let n : \BbbN \rightarrow \BbbN be a polynomial,
and let q : \BbbN \rightarrow \BbbN , \sigma : \BbbN \rightarrow \BbbR + be functions. The \sansL \sansW \sansE -\sanss \sanss n,q,\sigma assumption states

that \sansG \sansL \sansW \sansE n,q,\eta ,\phi ,\chi holds, where \phi (\lambda ) is the uniform distributions over \BbbZ n(\lambda )
q(\lambda ) , \eta (\lambda ) \equiv 

\scrD \BbbZ n(\lambda ),
\surd 
2\sigma (\lambda ), and \chi (\lambda ) \equiv \scrD \BbbZ ,\sigma (\lambda ).

The next theorem shows that breaking LWE with short secrets is as hard as
breaking (standard) LWE, provided 0 < \sigma (\lambda ) < q(\lambda ) < 2n(\lambda ) and \sigma (\lambda ) > \lambda .

Theorem 2.5 (LWE with short secrets [ACPS09, Lemma 2], [BLP+13, Lemma
2.12]). Fix any polynomial n(\cdot ) and functions q(\cdot ), \sigma (\cdot ) such that for all \lambda \in \BbbN , n =
n(\lambda ), q = q(\lambda ), \sigma = \sigma (\lambda ), 0 < \sigma < q < 2n, and \sigma > \lambda .12 For every \lambda \in \BbbN , let
\eta (\lambda ) \equiv \scrD \BbbZ n

q ,
\surd 
2\sigma , let \phi (\lambda ) be the uniform distribution over \BbbZ n

q , and let \chi (\lambda ) \equiv \scrD \BbbZ ,\sigma . If

there exist a PPT algorithm \scrA and a nonnegligible function \epsilon \scrA (\cdot ) such that for all \lambda \in 
\BbbN , \sansA \sansd \sansv n,q,\eta ,\phi ,\chi \sansG \sansL \sansW \sansE ,\scrA (\lambda ) \geq \epsilon \scrA (\lambda ), then there exist a PPT algorithm \scrB and a nonnegligible

function \epsilon \scrB (\cdot ) such that for all \lambda \in \BbbN , \sansA \sansd \sansv n,q,\phi ,\phi ,\chi \sansG \sansL \sansW \sansE ,\scrB (\lambda ) \geq \epsilon \scrB (\lambda ).

12Strictly speaking, it is only required that \sigma >
\sqrt{} 

lnn+ \omega (1) ln\lambda .
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Assumption 3 (LWE with short public vectors). Let n : \BbbN \rightarrow \BbbN be a polynomial,
let q : \BbbN \rightarrow \BbbN , \sigma : \BbbN \rightarrow \BbbR + be functions, and let \{ \chi (\lambda )\} \lambda \in \BbbN be the family of distri-
butions over \BbbZ . The \sansL \sansW \sansE -\sanss \sansp n,q,\sigma ,\chi assumption states that \sansG \sansL \sansW \sansE n,q,\eta ,\phi ,\chi holds, where

\eta (\lambda ) is the uniform distributions over \BbbZ n(\lambda )
q(\lambda ) , \phi (\lambda ) \equiv \scrD \BbbZ n(\lambda ),\sigma (\lambda ).

The last theorem in this sequence shows a reduction from LWE with short public
vectors to (standard) LWE with a lower dimension.

Theorem 2.6 (LWE with short public vectors [BLMR13, Corollary 4.6]). Fix
any polynomials n(\cdot ), k(\cdot ) and functions q(\cdot ), \sigma (\cdot ) such that for all \lambda \in \BbbN , n = n(\lambda ),
q = q(\lambda ), k = k(\lambda ), \sigma = \sigma (\lambda ), 0 < \sigma < q < 2n, k \geq 6n log q, and \sigma \geq 

\surd 
n log q.

For every \lambda \in \BbbN , let \phi (\lambda ) \equiv \scrD \BbbZ k
q ,\sigma 

, and let \eta (\lambda ), \phi \prime (\lambda ) denote the uniform distribu-

tions over \BbbZ k
q and \BbbZ n

q , respectively. Now for any distribution \chi (\lambda ) over \BbbZ , if there
exist a PPT algorithm \scrA and a nonnegligible function \epsilon \scrA (\cdot ) such that for all \lambda \in \BbbN ,
\sansA \sansd \sansv k,q,\eta ,\phi ,\chi \sansG \sansL \sansW \sansE ,\scrA (\lambda ) \geq \epsilon \scrA (\lambda ), then there exist a PPT algorithm \scrB and a nonnegligible func-

tion \epsilon \scrB (\cdot ) such that for all \lambda \in \BbbN , \sansA \sansd \sansv n,q,\phi 
\prime ,\phi \prime ,\chi 

\sansG \sansL \sansW \sansE ,\scrB (\lambda ) \geq \epsilon \scrB (\lambda ).

2.1.2. Lattice trapdoors. Lattices with trapdoors are lattices that are indis-
tinguishable from randomly chosen lattices, but have certain ``trapdoors"" that allow
efficient solutions to hard lattice problems.

A trapdoor lattice sampler [Ajt99, GPV08] consists of algorithms \sansT \sansr \sansa \sansp \sansG \sanse \sansn and
\sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse with the following syntax and properties:

\bullet \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1m, q)\rightarrow (A, T\bfA ): The lattice generation algorithm is a random-
ized algorithm that takes as input the matrix dimensions n,m, modulus q,
and outputs a matrix A \in \BbbZ n\times m

q together with a trapdoor T\bfA .
\bullet \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A, T\bfA , \sigma ,u) \rightarrow s: The presampling algorithm takes as input a
matrix A, trapdoor T\bfA , a vector u \in \BbbZ n

q , and a parameter \sigma \in \BbbR (which
determines the length of the output vectors).13 It outputs a vector s \in \BbbZ m

q

such that A \cdot sT = uT and \| s\| \leq 
\surd 
m \cdot \sigma .

We require these algorithms to satisfy the following well-sampledness properties.
While these properties are similar in spirit to the ones in previous works on lattice
trapdoors [Ajt99, GPV08, MP12], there are a couple of differences. First, we pres-
ent these properties as a security game between a challenger and a computationally
bounded adversary.14 Second, we separate out the dimensions of the matrix and the
security parameter.

The first property (well-sampledness of matrix) states that the matrix output by
\sansT \sansr \sansa \sansp \sansG \sanse \sansn should look like a uniformly random matrix.

Definition 2.7 (well-sampledness of matrix). Fix any function q : \BbbN \rightarrow \BbbN . A
pair of trapdoor generation algorithms \scrT = (\sansT \sansr \sansa \sansp \sansG \sanse \sansn ,\sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse ) is said to satisfy
the q-well-sampledness of matrix property if for any stateful PPT adversary \scrA , there
exists a negligible function negl(\cdot ) such that for all \lambda \in \BbbN , q = q(\lambda ), \sansp \sansr matrix,q

\scrT ,\scrA (\lambda ) =

Pr[1\leftarrow \sansE \sansx \sansp \sanst matrix,q
\scrT ,\scrA (\lambda )] \leq 1/2 + negl(\lambda ), where \sansE \sansx \sansp \sanst matrix,q

\scrT ,\scrA (\lambda ) is defined in Figure 1.

The next property states that the preimage of a uniformly random vector/matrix
is indistinguishable from a matrix with entries drawn from Gaussian distribution.

13Note that the preimage sampling algorithm could be easily generalized to generate preimages
of matrices in \BbbZ n\times k

q (for any k) by independently running \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse algorithm on each column of

the matrix. Throughout this work, we overload the notation by directly giving matrices \bfU \in \BbbZ n\times k
q

as inputs to the \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse algorithm.
14In some cases, we can consider computationally unbounded adversaries if the inputs of the

adversary are polynomially bounded.
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\sansE \sansx \sansp \sanst matrix,q
\scrT ,\scrA (\lambda )

1. Adversary \scrA receives input 1\lambda and sends 1n, 1m such that m > n log q(\lambda )+
\lambda .

2. Challenger chooses b \leftarrow \{ 0, 1\} and (A0, T\bfA ) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1m, q) and
A1 \leftarrow \BbbZ n\times m

q . It sends Ab to the adversary.
3. \scrA outputs its guess b\prime . The experiment outputs 1 iff b = b\prime .

Fig. 1. Experiment \sansE \sansx \sansp \sanst matrix,q
\scrT ,\scrA .

Definition 2.8 (preimage sampling). Fix any functions q : \BbbN \rightarrow \BbbN and \sigma : \BbbN \rightarrow 
\BbbN . A pair of trapdoor generation algorithms \scrT = (\sansT \sansr \sansa \sansp \sansG \sanse \sansn ,\sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse ) is said to
satisfy the (q, \sigma )-preimage sampling property if for any stateful PPT adversary \scrA ,
there exists a negligible function negl(\cdot ) such that for all \lambda \in \BbbN , q = q(\lambda ), \sigma = \sigma (\lambda ),

\sansp \sansr preimg,q,\sigma 
\scrT ,\scrA (\lambda ) = Pr[1\leftarrow \sansE \sansx \sansp \sanst preimg,q,\sigma 

\scrT ,\scrA (\lambda )] \leq 1/2 + negl(\lambda ), where \sansE \sansx \sansp \sanst preimg,q,\sigma 
\scrT ,\scrA (\lambda ) is

defined in Figure 2.

\sansE \sansx \sansp \sanst preimg,q,\sigma 
\scrT ,\scrA (\lambda )

1. Adversary \scrA receives input 1\lambda and sends 1n, 1m, 1k such that \sigma (\lambda ) >\surd 
n \cdot log q \cdot logm+ \lambda and m > n log q(\lambda ) + \lambda .

2. Challenger chooses b \leftarrow \{ 0, 1\} and (A, T\bfA ) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1m, q); Z \leftarrow 
\BbbZ n\times k
q , U0 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A, T\bfA , \sigma ,Z) and U1 \leftarrow \scrD m\times k

\BbbZ ,\sigma . It sends (A,Ub)
to the adversary.

3. \scrA outputs its guess b\prime . The experiment outputs 1 iff b = b\prime .

Fig. 2. Experiment \sansE \sansx \sansp \sanst preimg,q,\sigma 
\scrT ,\scrA .

These properties are satisfied by the trapdoor-based preimage samplers of [GPV08,
MP12].

2.2. Branching programs. Branching programs are a model of computation
used to capture space-bounded computations [BDFP86, Bar86]. In this work, we will
be working with leveled branching programs.

Definition 2.9 (leveled branching program). A leveled branching program of
length L, width w, and input space \{ 0, 1\} n consists of a sequence of 2L functions
\pi i,b : [w] \rightarrow [w] for 1 \leq i \leq L, b \in \{ 0, 1\} , an input selection function \sansi \sansn \sansp : [L] \rightarrow [n],
an accepting state \sansa \sansc \sansc \in [w], and a rejection state \sansr \sanse \sansj \in [w]. The starting state \sanss \sanst 0
is set to be 1 without loss of generality. The branching program evaluation on input
x \in \{ 0, 1\} n proceeds as follows:

\bullet For i = 1 to L,
-- Let \sansp \sanso \sanss = \sansi \sansn \sansp (i) and b = x\sansp \sanso \sanss . Compute \sanss \sanst i = \pi i,b(\sanss \sanst i - 1).

\bullet If \sanss \sanst L = \sansa \sansc \sansc , output 1. If \sanss \sanst L = \sansr \sanse \sansj , output 0, else output \bot .
Additionally, we also define a notion of ``input-circling"" (leveled) branching pro-

grams. In an input-circling branching program, the input bits are read sequentially
in ascending order (i.e., 1, . . . , n, 1, . . .). Thus, the input-selector function \sansi \sansn \sansp is fixed.
Additionally, each bit must be read the same number of times. Formally, we describe
this as follows.

Definition 2.10. A branching program \sansB \sansP =
\bigl( 
\{ \pi i,b : [w]\rightarrow [w]\} i\in [L],b\in \{ 0,1\} ,

\sansa \sansc \sansc \in [w], \sansr \sanse \sansj \in [w]
\bigr) 
with input space \{ 0, 1\} n is said to be a input-circling branch-

ing program if for all i \leq L, \sansi \sansn \sansp (i) = ((i - 1) mod n) + 1, and L mod n = 0.
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Any leveled branching program of length L and input space \{ 0, 1\} n can be easily
transformed to an input-circling branching program of length n \cdot L. Here, we work
with classes of branching programs that all share the same input selector function
\sansi \sansn \sansp (\cdot ) which is known during setup. The input selector as described above is just
one possibility, and we stick with it for simplicity. Note that we do not require the
transition functions \pi i,b to be permutations.

3. Traitor tracing. In this section, we will first present the syntax and security
definitions for traitor tracing schemes. Next, we will introduce the notion of pri-
vate linear broadcast encryption (PLBE), and finally show that PLBE implies traitor
tracing.

The notion of traitor tracing was introduced by Chor, Fiat, and Naor [CFN94]. In
a TT scheme for n parties, the setup algorithm chooses a master secret key, a public
key, and n secret keys for the users. Encryption can be performed using the public key,
and each user can decrypt the ciphertext using his/her secret key. There is also a trace
algorithm that, given black box access to a successful pirate decoding box, can catch
the traitors who colluded to create the pirate decoding box. Traditional definitions of
traitor tracing [CFN94, BSW06] required that the trace algorithm must catch a traitor
if a pirate decoding box can decrypt an encryption of a random ciphertext. In this
work, we will be using the indistinguishability-based definition introduced by Goyal
et al. [GKRW17], which is itself based on the definition introduced by Nishimaki,
Wichs, and Zhandry [NWZ16]. In this definition, the trace algorithm must catch a
traitor even if the pirate decoder box can only distinguish between encryptions of two
adversarially chosen messages.

3.1. Public key traitor tracing. A traitor tracing scheme \scrT with message
space\scrM = \{ \scrM \lambda \} \lambda consists of four PPT algorithms, \sansS \sanse \sanst \sansu \sansp ,\sansE \sansn \sansc ,\sansD \sanse \sansc , and \sansT \sansr \sansa \sansc \sanse , with
the following syntax:

\bullet \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n)\rightarrow (\sansm \sanss \sansk , \sansp \sansk , (\sanss \sansk 1, . . . , \sanss \sansk n)) . The setup algorithm takes as input
the security parameter \lambda and number of users n and outputs a master secret
key \sansm \sanss \sansk , a public key \sansp \sansk , and n secret keys \sanss \sansk 1, \sanss \sansk 2, . . . , \sanss \sansk n.

\bullet \sansE \sansn \sansc (\sansp \sansk ,m \in \scrM \lambda )\rightarrow \sansc \sanst . The encryption algorithm takes as input a public key
\sansp \sansk and message m \in \scrM \lambda and outputs a ciphertext \sansc \sanst .

\bullet \sansD \sanse \sansc (\sanss \sansk , \sansc \sanst )\rightarrow y. The decryption algorithm takes as input a secret key \sanss \sansk and
ciphertext \sansc \sanst and outputs y \in \scrM \lambda \cup \{ \bot \} .

\bullet \sansT \sansr \sansa \sansc \sanse D(\sansm \sanss \sansk , 1y,m0,m1) \rightarrow T. The trace algorithm has oracle access to a
program D; it takes as input a master secret key \sansm \sanss \sansk , parameter y (in unary),
and two messages m0,m1. It outputs a set T \subset \{ 1, 2, . . . , n\} .

Correctness. Informally, a correctness requirement states that decrypting an
encryption of message m using any one of the valid secret keys must output m.
Formally, a TT scheme is said to be correct if there exists a negligible function negl(\cdot )
such that for all \lambda \in \BbbN , n \in \BbbN , m \in \scrM \lambda , and i \in \{ 1, 2, . . . , n\} , the following holds:

Pr

\biggl[ 
\sansD \sanse \sansc (\sanss \sansk i, \sansc \sanst ) = m :

(\sansm \sanss \sansk , \sansp \sansk , \{ \sanss \sansk i\} i\in [n])\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n)
\sansc \sanst \leftarrow \sansE \sansn \sansc (\sansp \sansk ,m)

\biggr] 
\geq 1 - negl(\lambda ).

3.1.1. Security. There are two security requirements for a TT scheme. First, it
is required that it satisfy IND-CPA security. Second, it is required that the tracing
algorithm must (almost always) correctly trace at least one key used to create a
pirate decoding box (whenever the pirate box successfully decrypts with noticeable
probability) and also should not falsely accuse any user of cheating. The formal
definitions are provided below.
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Definition 3.1 (\sansI \sansN \sansD -\sansC \sansP \sansA security). A TT scheme \scrT = (\sansS \sanse \sanst \sansu \sansp , \sansE \sansn \sansc , \sansD \sanse \sansc , \sansT \sansr \sansa \sansc \sanse )
is \sansI \sansN \sansD -\sansC \sansP \sansA secure if for every stateful PPT adversary \scrA , there exists a negligible
function negl(\cdot ) such that for all \lambda \in \BbbN , the following holds:

Pr

\left[  \scrA (\sansc \sanst ) = b :
1n \leftarrow \scrA (1\lambda ); b\leftarrow \{ 0, 1\} ;

(\sansm \sanss \sansk , \sansp \sansk , (\sanss \sansk 1, . . . , \sanss \sansk n))\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n);
(m0,m1)\leftarrow \scrA (\sansp \sansk ); \sansc \sanst \leftarrow \sansE \sansn \sansc (\sansp \sansk ,mb)

\right]  \leq 1

2
+ negl(\lambda ).

Definition 3.2 (ind-secure traitor tracing). Let \scrT = (\sansS \sanse \sanst \sansu \sansp ,\sansE \sansn \sansc ,\sansD \sanse \sansc ,\sansT \sansr \sansa \sansc \sanse ) be
a TT scheme. For any nonnegligible function \epsilon (\cdot ) and PPT adversary \scrA , consider
the experiment \sansE \sansx \sansp \sanst -\sansT \sansT \scrT 

\scrA ,\epsilon (\lambda ) defined in Figure 3.

Experiment \sansE \sansx \sansp \sanst -\sansT \sansT \scrT 
\scrA ,\epsilon (\lambda )

\bullet 1n \leftarrow \scrA (1\lambda ).
\bullet (\sansm \sanss \sansk , \sansp \sansk , (\sanss \sansk 1, . . . , \sanss \sansk n))\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n).
\bullet (D,m0,m1)\leftarrow \scrA O(\cdot )(\sansp \sansk ).
\bullet T \leftarrow \sansT \sansr \sansa \sansc \sanse D(\sansm \sanss \sansk , 11/\epsilon (\lambda ),m0,m1).

Here, O(\cdot ) is an oracle that has \{ \sanss \sansk i\} i\in [n] hardwired, takes as input an index
i \in [n], and outputs \sanss \sansk i. Let S be the set of indices queried by \scrA .

Fig. 3. Experiment \sansE \sansx \sansp \sanst -\sansT \sansT .

Based on the above experiment, we now define the following (probabilistic) events
and the corresponding probabilities (which are functions of \lambda , parameterized by \scrA , \epsilon ):

\bullet \sansG \sanso \sanso \sansd -\sansD \sanse \sansc \sanso \sansd \sanse \sansr : Pr[D(\sansc \sanst ) = b : b\leftarrow \{ 0, 1\} , \sansc \sanst \leftarrow \sansE \sansn \sansc (\sansp \sansk ,mb)] \geq 1/2 + \epsilon (\lambda ).
Pr -\sansG -\sansD \scrA ,\epsilon (\lambda ) = Pr[\sansG \sanso \sanso \sansd -\sansD \sanse \sansc \sanso \sansd \sanse \sansr ].

\bullet \sansC \sanso \sansr -\sansT \sansr : T \not = \emptyset \wedge T \subseteq S.
Pr -\sansC \sanso \sansr -\sansT \sansr \scrA ,\epsilon (\lambda ) = Pr[\sansC \sanso \sansr -\sansT \sansr ].

\bullet \sansF \sansa \sansl -\sansT \sansr : T \not \subseteq S.
Pr -\sansF \sansa \sansl -\sansT \sansr \scrA ,\epsilon (\lambda ) = Pr[\sansF \sansa \sansl -\sansT \sansr ].

A TT scheme \scrT is said to be ind-secure if for every PPT adversary \scrA , polynomial
q(\cdot ), and nonnegligible function \epsilon (\cdot ), there exist negligible functions negl1(\cdot ), negl2(\cdot )
such that for all \lambda \in \BbbN satisfying \epsilon (\lambda ) > 1/q(\lambda ) the following hold:

Pr -\sansF \sansa \sansl -\sansT \sansr \scrA ,\epsilon (\lambda ) \leq negl1(\lambda ), Pr -\sansC \sanso \sansr -\sansT \sansr \scrA ,\epsilon (\lambda ) \geq Pr -\sansG -\sansD \scrA ,\epsilon (\lambda ) - negl2(\lambda ).

3.2. Private linear broadcast encryption. Next, we present the notion of
private linear broadcast encryption (PLBE). PLBE was introduced by Boneh, Sahai,
and Waters [BSW06] as a framework for constructing TT schemes. There are four
algorithms in a PLBE scheme: \sansS \sanse \sanst \sansu \sansp ,\sansE \sansn \sansc ,\sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx ,\sansD \sanse \sansc . The setup algorithm out-
puts a master secret key, public parameters, and n secret keys, one for each user in
the system. The public key encryption algorithm can be used to encrypt messages,
and ciphertexts can be decrypted using one of the n secret keys via the decryption
algorithm. In addition to these algorithms, there is also a special trace-encryption
algorithm. This algorithm, which uses the master secret key, can be used to en-
crypt messages to any index i \in \{ 0, 1, . . . , n\} . A secret key for user j can decrypt a
ciphertext for index i only if j > i.

Boneh, Sahai, and Waters [BSW06] proposed three security definitions for PLBE
schemes. The first one requires that special encryptions to index 0 must be indistin-
guishable from public key encryptions, even if the adversary has all the secret keys.
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COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-117

The next security requirement is that special encryptions to index i  - 1 must be in-
distinguishable from special encryptions to index i if the adversary does not have a
secret key for user i. Finally, the third security property is that special encryption of
message m0 to index n must be indistinguishable from special encryption of message
m1 to index n, even if the adversary has all secret keys. However, as discussed in
section 1.1, the BSW definitions of PLBE do not suffice for constructing TT schemes.
Here, we first provide the PLBE syntax, and then present the decoder-based and
query-based security definitions of PLBE.

Syntax. A PLBE scheme \sansP \sansL \sansB \sansE = (\sansS \sanse \sanst \sansu \sansp ,\sansE \sansn \sansc ,\sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx ,\sansD \sanse \sansc ) for message space
\scrM = \{ \scrM \lambda \} \lambda has the following syntax:

\bullet \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n)\rightarrow (\sansm \sanss \sansk , \sansp \sansp , (\sanss \sansk 1, . . . , \sanss \sansk n)) . The setup algorithm takes as input
the security parameter \lambda and number of users n and outputs public parame-
ters \sansp \sansp , master secret key \sansm \sanss \sansk , and n secret keys (\sanss \sansk 1, \sanss \sansk 2, . . . , \sanss \sansk n).

\bullet \sansE \sansn \sansc (\sansp \sansp ,m)\rightarrow \sansc \sanst . The encryption algorithm takes as input public parameters
\sansp \sansp and message m \in \scrM \lambda and outputs a ciphertext \sansc \sanst .

\bullet \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, i \in \{ 0, 1, 2, . . . , n\} ) \rightarrow \sansc \sanst . The index-encryption algorithm
takes as input the master secret key \sansm \sanss \sansk , message m \in \scrM \lambda , and index
i \in \{ 0, 1, 2, . . . , n\} and outputs a ciphertext \sansc \sanst .

\bullet \sansD \sanse \sansc (\sanss \sansk , \sansc \sanst )\rightarrow y. The decryption algorithm takes as input a secret key \sanss \sansk and
ciphertext \sansc \sanst and outputs y \in \scrM \lambda \cup \{ \bot \} .

Correctness. A PLBE scheme is said to be correct if there exist negligible func-
tions \mu 1(\cdot ), \mu 2(\cdot ), \mu 3(\cdot ) such that for all \lambda \in \BbbN , n \in \BbbN , m \in \scrM \lambda , and i \in \{ 0, 1, . . . , n\} ,
j \in \{ 1, 2, . . . , n\} , the following hold:

Pr

\biggl[ 
\sansD \sanse \sansc (\sanss \sansk j , \sansc \sanst ) = m :

(\sansm \sanss \sansk , \sansp \sansp , \{ \sanss \sansk k\} k\in [n])\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n)
\sansc \sanst \leftarrow \sansE \sansn \sansc (\sansp \sansp ,m)

\biggr] 
\geq 1 - \mu 1(\lambda ),

i < j \Rightarrow Pr

\biggl[ 
\sansD \sanse \sansc (\sanss \sansk j , \sansc \sanst ) = m :

(\sansm \sanss \sansk , \sansp \sansp , \{ \sanss \sansk k\} k\in [n])\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n)
\sansc \sanst \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, i)

\biggr] 
\geq 1 - \mu 2(\lambda ),

i \geq j \Rightarrow Pr

\biggl[ 
\sansD \sanse \sansc (\sanss \sansk j , \sansc \sanst ) = \bot :

(\sansm \sanss \sansk , \sansp \sansp , \{ \sanss \sansk k\} k\in [n])\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n)
\sansc \sanst \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, i)

\biggr] 
\geq 1 - \mu 3(\lambda ).

3.2.1. \bfitq -bounded PLBE security. In this section we extend the existing
PLBE security definitions by allowing the adversary to make a bounded number of
index-encryption queries. Below we describe them in detail.

Definition 3.3 (q-bounded normal hiding security). Let q(\cdot ) be any fixed poly-
nomial. A PLBE scheme is said to satisfy q-bounded normal hiding security if for
every stateful PPT adversary \scrA , there exists a negligible function negl(\cdot ) such that for

every \lambda \in \BbbN , pq,\sansn \sansr \sansm \sansl 
\scrA (\lambda ) \leq 1

2 + negl(\lambda ), where pq,\sansn \sansr \sansm \sansl 
\scrA (\lambda ) is defined as follows:

Pr

\left[      \scrA \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,\cdot ,0)(\sansc \sanst b) = b :

1n \leftarrow \scrA (1\lambda );\bigl( 
\sansp \sansp ,\sansm \sanss \sansk , \{ \sanss \sansk i\} i\in [n]

\bigr) 
\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n);

m\leftarrow \scrA \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,\cdot ,0) \bigl( \sansp \sansp , \{ \sanss \sansk i\} i\in [n]

\bigr) 
;

b\leftarrow \{ 0, 1\} ; \sansc \sanst 0 \leftarrow \sansE \sansn \sansc (\sansp \sansp ,m);
\sansc \sanst 1 \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, 0)

\right]      ,

where \scrA can make at most q(\lambda ) queries to the \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk , \cdot , 0) oracle. Note that
here \scrA is only allowed to query for ciphertexts corresponding to index 0.

Definition 3.4 (q-bounded index hiding security). Let q(\cdot ) be any fixed polyno-
mial. A PLBE scheme is said to satisfy q-bounded index hiding security if for every
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stateful PPT adversary \scrA , there exists a negligible function negl(\cdot ) such that for ev-

ery \lambda \in \BbbN and every index i\ast \in \{ 0, . . . , n - 1\} , pq,\sansi \sansn \sansd \scrA (\lambda , i\ast ) \leq 1
2 + negl(\lambda ), where

pq,\sansi \sansn \sansd \scrA (\lambda , i\ast ) is defined as follows:

Pr

\left[    \scrA \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,\cdot ,\cdot )(\sansc \sanst ) = b :

1n \leftarrow \scrA (1\lambda );\bigl( 
\sansp \sansp ,\sansm \sanss \sansk , \{ \sanss \sansk i\} i\in [n]

\bigr) 
\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n);

m\leftarrow \scrA \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,\cdot ,\cdot ) \bigl( \sansp \sansp , \{ \sanss \sansk i\} i\in \{ 1,...,n\} \setminus \{ i\ast +1\} 
\bigr) 
;

b\leftarrow \{ 0, 1\} ; \sansc \sanst \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, i\ast + b)

\right]    ,

where \scrA can make at most q(\lambda ) queries to the \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk , \cdot , \cdot ) oracle. Note that
here \scrA can query the encryption oracle on arbitrary message-index pairs.

Definition 3.5 (q-bounded message hiding security). Let q(\cdot ) be any fixed poly-
nomial. A PLBE scheme is said to satisfy q-bounded message hiding security if for
every stateful PPT adversary \scrA , there exists a negligible function negl(\cdot ) such that for
every \lambda \in \BbbN , pq,\sansm \sanss \sansg 

\scrA (\lambda ) \leq 1
2 + negl(\lambda ), where pq,\sansm \sanss \sansg 

\scrA (\lambda ) is defined as follows:

Pr

\left[    \scrA \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,\cdot ,\cdot )(\sansc \sanst ) = b :

1n \leftarrow \scrA (1\lambda );\bigl( 
\sansp \sansp ,\sansm \sanss \sansk , \{ \sanss \sansk i\} i\in [n]

\bigr) 
\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n);

(m0,m1)\leftarrow \scrA \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,\cdot ,\cdot ) \bigl( \sansp \sansp , \{ \sanss \sansk i\} i\in [n]

\bigr) 
;

b\leftarrow \{ 0, 1\} ; \sansc \sanst \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,mb, n)

\right]    ,

where \scrA can make at most q(\lambda ) queries to the \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk , \cdot , \cdot ) oracle. Note that
here \scrA can query the encryption oracle on arbitrary message-index pairs.

3.2.2. Decoder-based PLBE security. In this section we introduce new de-
coder-based security definitions for PLBE schemes. We start by formally defining the
notion of good distinguishers for PLBE schemes w.r.t. different encryption modes.

PLBE distinguishers. For any \gamma \in [ - 1/2, 1/2], PPT algorithm D, \lambda , n \in \BbbN ,
\sansp \sansa \sansr \sansa \sansm \sanss = (\sansp \sansp ,\sansm \sanss \sansk , (\sanss \sansk 1, . . . , \sanss \sansk n)) \leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n), and message m \in \scrM \lambda , we say D
is \gamma -\sansD \sansi \sanss \sanst \sansn \sansr \sansm \sansl ,0

\sansp \sansa \sansr \sansa \sansm \sanss for m if

Pr

\biggl[ 
D(\sansc \sanst b) = b :

b\leftarrow \{ 0, 1\} ; \sansc \sanst 0 \leftarrow \sansE \sansn \sansc (\sansp \sansp ,m);
\sansc \sanst 1 \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, 0)

\biggr] 
\geq 1

2
+ \gamma ,

where the probability is taken over the random coins used during encryption, the
random coins of D, and the choice of b.

Similarly, for any i \in \{ 0, . . . , n - 1\} we can define D to be \gamma -\sansD \sansi \sanss \sanst i,i+1
\sansp \sansa \sansr \sansa \sansm \sanss for m if

Pr

\biggl[ 
D(\sansc \sanst b) = b :

b\leftarrow \{ 0, 1\} ;
\sansc \sanst \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, i+ b)

\biggr] 
\geq 1

2
+ \gamma .

Finally, we also define D to be \gamma -\sansD \sansi \sanss \sanst n\sansp \sansa \sansr \sansa \sansm \sanss for messages m0,m1 if

Pr

\biggl[ 
D(\sansc \sanst b) = b :

b\leftarrow \{ 0, 1\} ;
\sansc \sanst \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,mb, n)

\biggr] 
\geq 1

2
+ \gamma .

Definition 3.6 (decoder-based normal hiding security). A PLBE scheme is said
to satisfy decoder-based normal hiding security if for any PPT adversary \scrA , non-
negligible function \gamma (\cdot ), and polynomial q(\cdot ), there exists a negligible function negl(\cdot )
such that for all \lambda \in \BbbN satisfying \gamma (\lambda ) > 1/q(\lambda ), p\sansd \sanse \sansc ,\sansn \sansr \sansm \sansl 

\scrA ,\gamma ,q (\lambda ) \leq negl(\lambda ), where

p\sansd \sanse \sansc ,\sansn \sansr \sansm \sansl 
\scrA ,\gamma ,q (\lambda ) is defined as follows:

Pr

\left[  D is \gamma (\lambda )-\sansD \sansi \sanss \sanst \sansn \sansr \sansm \sansl ,0
\sansp \sansa \sansr \sansa \sansm \sanss for m :

1n \leftarrow \scrA (1\lambda );
\sansp \sansa \sansr \sansa \sansm \sanss =

\bigl( 
\sansp \sansp ,\sansm \sanss \sansk , \{ \sanss \sansk i\} i\in [n]

\bigr) 
\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n);

(D,m)\leftarrow \scrA 
\bigl( 
\sansp \sansp , \{ \sanss \sansk i\} i\in [n]

\bigr) 
\right]  .
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Definition 3.7 (decoder-based index hiding security). A PLBE scheme is said to
satisfy decoder-based index hiding security if for any PPT adversary \scrA , nonnegligible
function \gamma (\cdot ), and polynomial q(\cdot ) there exists a negligible function negl(\cdot ) such that

for all \lambda \in \BbbN satisfying \gamma (\lambda ) > 1/q(\lambda ) and i\ast \in \{ 0, . . . , n - 1\} , p\sansd \sanse \sansc ,\sansi \sansn \sansd \scrA ,\gamma ,q (\lambda , i
\ast ) \leq negl(\lambda ),

where p\sansd \sanse \sansc ,\sansi \sansn \sansd \scrA ,\gamma ,q (\lambda , i
\ast ) is defined as follows:

Pr

\left[  D is \gamma (\lambda )-\sansD \sansi \sanss \sanst i
\ast ,i\ast +1
\sansp \sansa \sansr \sansa \sansm \sanss for m :

1n \leftarrow \scrA (1\lambda );
\sansp \sansa \sansr \sansa \sansm \sanss =

\bigl( 
\sansp \sansp ,\sansm \sanss \sansk , \{ \sanss \sansk i\} i\in [n]

\bigr) 
\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n);

(D,m)\leftarrow \scrA 
\bigl( 
\sansp \sansp , \{ \sanss \sansk i\} i\in \{ 1,...,n\} \setminus \{ i\ast +1\} 

\bigr) 
\right]  .

Definition 3.8 (decoder-based message hiding security). A PLBE scheme is said
to satisfy decoder-based message hiding security if for any PPT adversary \scrA , non-
negligible function \gamma (\cdot ), and polynomial q(\cdot ) there exists a negligible function negl(\cdot )
such that for all \lambda \in \BbbN satisfying \gamma (\lambda ) > 1/q(\lambda ), p\sansd \sanse \sansc ,\sansm \sanss \sansg 

\scrA ,\gamma ,q (\lambda ) \leq negl(\lambda ), where

p\sansd \sanse \sansc ,\sansm \sanss \sansg 
\scrA ,\gamma ,q (\lambda ) is defined as follows:

Pr

\left[    D is \gamma (\lambda )-\sansD \sansi \sanss \sanst n\sansp \sansa \sansr \sansa \sansm \sanss for m0,m1 :

1n \leftarrow \scrA (1\lambda );
\sansp \sansa \sansr \sansa \sansm \sanss \leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n);

\sansp \sansa \sansr \sansa \sansm \sanss =
\bigl( 
\sansp \sansp ,\sansm \sanss \sansk , \{ \sanss \sansk i\} i\in [n]

\bigr) 
;

(D,m0,m1)\leftarrow \scrA 
\bigl( 
\sansp \sansp , \{ \sanss \sansk i\} i\in [n]

\bigr) 
\right]    .

4. Traitor tracing from 1-bounded secure PLBE. In this section, we show
how to construct TT schemes from PLBE schemes that achieve 1-bounded security.
Our construction is divided into two components. First, we show that PLBE schemes
that achieve 1-bounded security also satisfy decoder-based security. Later, we show
how to construct a TT scheme from PLBE schemes that achieves decoder-based se-
curity.

4.1. Decoder-based PLBE from 1-bounded secure PLBE. Let \sansP \sansL \sansB \sansE =
(\sansS \sanse \sanst \sansu \sansp ,\sansE \sansn \sansc ,\sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx ,\sansD \sanse \sansc ) be a PLBE scheme that satisfies 1-bounded security. We
will show that the same scheme also satisfies decoder-based security.

Lemma 4.1. If \sansP \sansL \sansB \sansE satisfies 1-bounded normal hiding security (Definition 3.3),
then it also satisfies decoder-based normal hiding security (Definition 3.6).

Proof. Suppose, on the contrary, there exists a PPT adversary \scrA , nonnegligible
function \gamma (\cdot ), polynomials q(\cdot ), r(\cdot ), and an infinite sequence of security parameters

\Lambda = \{ \lambda i\} i\in \BbbN such that for all \lambda \in \Lambda , \gamma (\lambda ) > 1/q(\lambda ) and p\sansd \sanse \sansc ,\sansn \sansr \sansm \sansl 
\scrA ,\gamma ,q (\lambda ) \geq 1/r(\lambda ). We

will use \scrA that plays the 1-bounded normal hiding security game to build a PPT
reduction algorithm \scrB that plays the decoder-based normal hiding security game as
follows.

For any \lambda \in \BbbN , the reduction algorithm first receives 1n from \scrA , which it forwards
to the challenger. It then receives \sansp \sansp and n secret keys \sanss \sansk 1, . . . , \sanss \sansk n from the challenger,
which it forwards to \scrA . The adversary \scrA outputs D and m. The reduction algorithm
then queries the challenger for an encryption ofm for index 0 (recall that the reduction
algorithm is allowed one query). Let the challenger's response be \sansc \sanst 1. It then computes
\sansc \sanst 0 \leftarrow \sansE \sansn \sansc (\sansp \sansp ,m). Next, it sends challenge message m and receives \sansc \sanst \ast , which is either
a normal encryption of m or an encryption of m for index 0. The reduction algorithm
chooses a random bit \beta \leftarrow \{ 0, 1\} and checks if D(\sansc \sanst \beta ) = D(\sansc \sanst \ast ). If so, it outputs
b\prime = \beta ; otherwise it outputs b\prime = 1 - \beta as its guess.

Let us now analyze \scrB 's advantage. We need to show that there exist polynomials
q\scrB (\cdot ) and an infinite sequence \Lambda \scrB = \{ \lambda i\} i such that for all \lambda \in \Lambda \scrB , p

1,\sansn \sansr \sansm \sansl 
\scrB \geq 1/2 +
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1/q\scrB (\lambda ). Let \Lambda B = \Lambda and q\scrB (\cdot ) = q2(\cdot ) \cdot r(\cdot )/2. Fix any \lambda \in \Lambda , and let \gamma = \gamma (\lambda ), q =
q(\lambda ), r = r(\lambda ). Let b denote the 1-bounded challenger's choice (recall the challenger
chooses b\leftarrow \{ 0, 1\} ; if b = 0, it sends a normal encryption, else it sends an encryption
to index 0). First, let us fix \sansp \sansa \sansr \sansa \sansm \sanss = (\sansp \sansp , \sansm \sanss \sansk , \{ \sanss \sansk i\} i\leq n) \leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n) and

(D,m)\leftarrow \scrA 
\bigl( 
\sansp \sansp , \{ \sanss \sansk i\} i\leq n

\bigr) 
such that

Pr

\biggl[ 
D(\sansc \sanst b) = b :

b\leftarrow \{ 0, 1\} ; \sansc \sanst 0 \leftarrow \sansE \sansn \sansc (\sansp \sansp ,m);
\sansc \sanst 1 \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, 0)

\biggr] 
=

1

2
+ \alpha \sansp \sansa \sansr \sansa \sansm \sanss ,D,m

for some \alpha \sansp \sansa \sansr \sansa \sansm \sanss ,D,m \in [ - 1/2, 1/2]. Next, consider the following probability:

\rho \sansp \sansa \sansr \sansa \sansm \sanss ,D,m = Pr

\left[    b = b\prime :

b\leftarrow \{ 0, 1\} ;\beta \leftarrow \{ 0, 1\} ;
\sansc \sanst \ast 0 \leftarrow \sansE \sansn \sansc (\sansp \sansp ,m); \sansc \sanst \ast 1 \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, 0);
\sansc \sanst 0 \leftarrow \sansE \sansn \sansc (\sansp \sansp ,m); \sansc \sanst 1 \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, 0);
b\prime = \beta if D(\sansc \sanst \ast b) = D(\sansc \sanst \beta ), else b\prime = 1 - \beta 

\right]    .

Since the decoder D is run on ciphertexts \sansc \sanst \ast b , \sansc \sanst \beta independently, we could rewrite the
above probability as follows:

\rho \sansp \sansa \sansr \sansa \sansm \sanss ,D,m =Pr

\biggl[ 
D(\sansc \sanst \ast b) = b :

b\leftarrow \{ 0, 1\} ; \sansc \sanst \ast 0 \leftarrow \sansE \sansn \sansc (\sansp \sansp ,m);
\sansc \sanst \ast 1 \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, 0)

\biggr] 
\times Pr

\biggl[ 
D(\sansc \sanst \beta ) = \beta :

\beta \leftarrow \{ 0, 1\} ; \sansc \sanst 0 \leftarrow \sansE \sansn \sansc (\sansp \sansp ,m);
\sansc \sanst 1 \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, 0)

\biggr] 
+ Pr

\biggl[ 
D(\sansc \sanst \ast b) \not = b :

b\leftarrow \{ 0, 1\} ; \sansc \sanst \ast 0 \leftarrow \sansE \sansn \sansc (\sansp \sansp ,m);
\sansc \sanst \ast 1 \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, 0)

\biggr] 
\times Pr

\biggl[ 
D(\sansc \sanst \beta ) \not = \beta :

\beta \leftarrow \{ 0, 1\} ; \sansc \sanst 0 \leftarrow \sansE \sansn \sansc (\sansp \sansp ,m);
\sansc \sanst 1 \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, 0)

\biggr] 
=Pr

\biggl[ 
D(\sansc \sanst b) = b :

b\leftarrow \{ 0, 1\} ; \sansc \sanst 0 \leftarrow \sansE \sansn \sansc (\sansp \sansp ,m);
\sansc \sanst 1 \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, 0)

\biggr] 2
+ Pr

\biggl[ 
D(\sansc \sanst b) \not = b :

b\leftarrow \{ 0, 1\} ; \sansc \sanst 0 \leftarrow \sansE \sansn \sansc (\sansp \sansp ,m);
\sansc \sanst 1 \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, 0)

\biggr] 2
=

\biggl( 
1

2
+ \alpha \sansp \sansa \sansr \sansa \sansm \sanss ,D,m

\biggr) 2

+

\biggl( 
1

2
 - \alpha \sansp \sansa \sansr \sansa \sansm \sanss ,D,m

\biggr) 2

=
1

2
+ 2 \cdot \alpha 2

\sansp \sansa \sansr \sansa \sansm \sanss ,D,m.

Thus, we get that for any decoder D that is \delta -\sansD \sansi \sanss \sanst \sansn \sansr \sansm \sansl ,0
\sansp \sansa \sansr \sansa \sansm \sanss for message m,

\rho \sansp \sansa \sansr \sansa \sansm \sanss ,D,m = 1/2 + 2 \cdot \alpha 2
\sansp \sansa \sansr \sansa \sansm \sanss ,D,m \geq 1/2 + 2 \cdot \delta 2.

Also, since \alpha 2
\sansp \sansa \sansr \sansa \sansm \sanss ,D,m \geq 0, we get that for every decoder D, \rho \sansp \sansa \sansr \sansa \sansm \sanss ,D,m \geq 1/2.

Therefore, since the adversary \scrA outputs a 1/q-\sansD \sansi \sanss \sanst \sansn \sansr \sansm \sansl ,0
\sansp \sansa \sansr \sansa \sansm \sanss box with probability at

least 1/r, we get that the reduction algorithm \scrB 's winning probability p1,\sansn \sansr \sansm \sansl 
\scrB ,n (as

defined in Definition 3.3) is

p1,\sansn \sansr \sansm \sansl 
\scrB ,n \geq 1

r
\cdot 
\biggl( 
1

2
+

2

q2

\biggr) 
+

\biggl( 
1 - 1

r

\biggr) 
\cdot 
\biggl( 
1

2

\biggr) 
.

\geq 1

2
+

2

r \cdot q2
.

This concludes our proof.
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Lemma 4.2. If \sansP \sansL \sansB \sansE satisfies 1-bounded index hiding security (Definition 3.4),
then it also satisfies decoder-based index hiding security (Definition 3.7).

The proof of this lemma is identical to the proof of Lemma 4.1, except that the
reduction algorithm queries for either a special encryption of m for index i or a special
encryption of m for index i+ 1 (depending on \beta \leftarrow \{ 0, 1\} ).

Lemma 4.3. If \sansP \sansL \sansB \sansE satisfies 1-bounded message hiding security (Definition 3.5),
then it also satisfies decoder-based message hiding security (Definition 3.8).

The proof of this lemma is identical to the proof of Lemma 4.1, except that the
reduction algorithm queries for either a special encryption of m0 for index n or a
special encryption of m1 for index n (depending on \beta \leftarrow \{ 0, 1\} ).

4.2. Traitor tracing from decoder-based PLBE. Consider a PLBE scheme
\sansP \sansL \sansB \sansE = (\sansP \sansL \sansB \sansE .\sansS \sanse \sanst \sansu \sansp , \sansP \sansL \sansB \sansE .\sansE \sansn \sansc , \sansP \sansL \sansB \sansE .\sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx , \sansP \sansL \sansB \sansE .\sansD \sanse \sansc ) with decoder-based se-
curity. We will use \sansP \sansL \sansB \sansE to construct a TT scheme \scrT = (\sansS \sanse \sanst \sansu \sansp , \sansE \sansn \sansc , \sansD \sanse \sansc , \sansT \sansr \sansa \sansc \sanse ) as
follows. The construction is identical to the transformation in [BSW06]; however, the
security proof provided in [BSW06] was not correct. Concretely, to argue correctness
of tracing they incorrectly leveraged the indistinguishability-based security of the un-
derlying PLBE scheme. We show that the same transformation could be proven to
satisfy correct tracing if one starts with a PLBE scheme that achieves decoder-based
security.
\sansS \sanse \sanst \sansu \sansp (1\lambda , 1n): The setup algorithm samples parameters as (\sansp \sansp ,\sansm \sanss \sansk , (\sanss \sansk 1, . . . , \sanss \sansk n))

\leftarrow \sansP \sansL \sansB \sansE .\sansS \sanse \sanst \sansu \sansp (1\lambda , 1n). The public parameters are \sansp \sansp , the master secret key
is \sansm \sanss \sansk , and the n secret keys are (\sanss \sansk 1, . . . , \sanss \sansk n).

\sansE \sansn \sansc (\sansp \sansp ,m): The encryption algorithm outputs \sansc \sanst \leftarrow \sansP \sansL \sansB \sansE .\sansE \sansn \sansc (\sansp \sansp ,m).
\sansD \sanse \sansc (\sanss \sansk , \sansc \sanst ): The decryption algorithm outputs \sansP \sansL \sansB \sansE .\sansD \sanse \sansc (\sanss \sansk , \sansc \sanst ).
\sansT \sansr \sansa \sansc \sanse D(\sansm \sanss \sansk , 1y,m0,m1): Let \epsilon = 1/y and W = \lambda \cdot (n \cdot y)2. For i = 0 to n, the trace

algorithm does the following:
1. It first sets \sansc \sanso \sansu \sansn \sanst i = 0. For j = 1 to W , it does the following:

(a) It chooses a bit bi,j \leftarrow \{ 0, 1\} and sets \sansc \sanst i,j \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,mb, i).
If D(\sansc \sanst i,j) = bi,j , it sets \sansc \sanso \sansu \sansn \sanst i = \sansc \sanso \sansu \sansn \sanst i + 1.

2. It sets \^pi = \sansc \sanso \sansu \sansn \sanst i/W .
The trace algorithm outputs every index i \in \{ 1, 2, . . . , n\} such that \^pi - 1 - \^pi \geq 
\epsilon /4n.

Correctness. This follows directly from the first correctness property of the
PLBE scheme.

4.2.1. IND-CPA security. We would like to point out that the scheme is IND-
CPA secure even if \sansP \sansL \sansB \sansE only satisfies 0-bounded security. In other words, we do not
need \sansP \sansL \sansB \sansE to achieve stronger decoder-based security. Thus, the proof of IND-CPA
security is identical to that provided in [BSW06]. Below we provide a high level
sketch.

Theorem 4.4. Assuming the PLBE scheme \sansP \sansL \sansB \sansE = (\sansS \sanse \sanst \sansu \sansp ,\sansE \sansn \sansc ,\sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx ,\sansD \sanse \sansc )
satisfies the security properties in Definitions 3.6, 3.7, and 3.8, the traitor tracing
scheme described above is IND-CPA secure (Definition 3.1).

Proof. We will construct a sequence of 2n+ 2 hybrid experiments to prove IND-
CPA security. The first experiment, Hybrid H0, is exactly the IND-CPA game.

Hybrid \bfitH \bfzero . In this experiment, the challenger sends public parameters \sansp \sansp , re-
ceives m0,m1 from \scrA , and sends \sansc \sanst \leftarrow \sansE \sansn \sansc (\sansp \sansp ,m0) to \scrA .
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Hybrid \bfitH \bfiti ,\bfitb (for \bfiti \leq \bfitn , \bfitb \in \{ 0, 1\} ). This experiment is identical to the IND-
CPA experiment, except that the adversary, after sending challenge messages m0,m1,
receives \sansc \sanst \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk , i,mb).

Hybrid \bfitH \bfone . In this experiment, the challenger sends public parameters \sansp \sansp , re-
ceives m0,m1 from \scrA , and sends \sansc \sanst \leftarrow \sansE \sansn \sansc (\sansp \sansp ,m1) to \scrA .

For any PPT adversary \scrA , let p\scrA ,x(\cdot ) be a function of \lambda that denotes the prob-
ability of \scrA outputting 0 in Hx. Note that p\scrA ,0  - p\scrA ,1 is the advantage of \scrA in the
IND-CPA security game.

Claim 4.5. Assuming \sansP \sansL \sansB \sansE satisfies Definition 3.6, for any PPT adversary \scrA ,
there exists a negligible function such that for all \lambda \in \BbbN and b \in \{ 0, 1\} , | p\scrA ,b - p\scrA ,0,b| \leq 
negl(\lambda ).

This follows from decoder-based indistinguishability of normal and 0-index en-
cryptions (Definition 3.6) of \sansP \sansL \sansB \sansE .

Claim 4.6. Assuming \sansP \sansL \sansB \sansE satisfies Definition 3.7, for any PPT adversary \scrA ,
there exists a negligible function such that for all \lambda \in \BbbN , b \in \{ 0, 1\} , and i \in [n],
p\scrA ,i - 1,b  - p\scrA ,i,b \leq negl(\lambda ).

This follows from the decoder-based index hiding security notion (Definition 3.7)
of \sansP \sansL \sansB \sansE .

Claim 4.7. Assuming \sansP \sansL \sansB \sansE satisfies Definition 3.8, for any PPT adversary \scrA ,
there exists a negligible function such that for all \lambda \in \BbbN , p\scrA ,n,0  - p\scrA ,n,1 \leq negl(\lambda ).

This follows from the decoder-based message hiding security notion (Definition 3.8)
of \sansP \sansL \sansB \sansE .

From the above claims, it follows that p\scrA ,0  - p\scrA ,1 is bounded by a negligible
function.

4.2.2. Correctness of tracing. Next, we will show that the false trace proba-
bility is bounded by a negligible function, and the correct trace probability is close to
the probability of \scrA outputting an \epsilon -successful decoding box.

First, we will introduce some notation. Given any pirate decoder box D and
messages m0,m1, for any i \in \{ 0, 1, . . . , n\} , let

pDi = Pr[D(\sansc \sanst ) = b : b\leftarrow \{ 0, 1\} , \sansc \sanst \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk , i,mb)],

where the probability is taken over random coins of decoder D as well as the random-
ness used during encryption. Similarly, let pD\sansn \sansr \sansm \sansl = Pr[D(\sansc \sanst ) = b : b \leftarrow \{ 0, 1\} , \sansc \sanst \leftarrow 
\sansE \sansn \sansc (\sansm \sanss \sansk ,mb)].

False trace probability. First, we show that the tracing algorithm never falsely
accuses any user. Formally, we prove the following.

Theorem 4.8. For every PPT adversary \scrA , polynomial q(\cdot ), and nonnegligible
function \epsilon (\cdot ), there exists a negligible function negl(\cdot ) such that for all \lambda \in \BbbN satisfying
\epsilon (\lambda ) > 1/q(\lambda ),

Pr -\sansF \sansa \sansl -\sansT \sansr \scrA ,\epsilon (\lambda ) \leq negl(\lambda ),

where Pr -\sansF \sansa \sansl -\sansT \sansr \scrA ,\epsilon (\cdot ) is as defined in Definition 3.2.

Proof. We will skip the dependence of \epsilon (\cdot ) on \lambda for simplicity of notation. Let S
be the set of keys queried and D the decoder output by \scrA . For i \in \{ 1, 2, . . . , n\} , we
define events \sansD \sansi ff-\sansA \sansd \sansv Di : pDi - 1 - pDi > \epsilon /8n and \sansD \sansi ff-\sansA \sansd \sansv D :

\bigvee 
k\in \{ 1,...,n\} \setminus S \sansD \sansi ff-\sansA \sansd \sansv Dk .
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First, note that the probability of the event false trace can be rewritten as follows
by conditioning on the events defined above:

Pr[\sansF \sansa \sansl -\sansT \sansr ] \leq Pr[\sansF \sansa \sansl -\sansT \sansr | \sansD \sansi ff-\sansA \sansd \sansv D] +
\sum 

i\in \{ 1,...,n\} 

Pr[i /\in S \wedge \sansD \sansi ff-\sansA \sansd \sansv Di ].

We will show that each of these terms is bounded by a negligible function.

Lemma 4.9. For every PPT adversary \scrA there exists a negligible function negl1(\cdot )
such that for all \lambda \in \BbbN ,

Pr[\sansF \sansa \sansl -\sansT \sansr | \sansD \sansi ff-\sansA \sansd \sansv D] \leq negl1(\lambda ).

Proof. The proof of this lemma follows from Chernoff bounds. Let n be the
number of users chosen by the adversary \scrA . Fix any i \in \{ 1, . . . , n\} \setminus S and decode
box D. Let us consider the probability that the output of \sansT \sansr \sansa \sansc \sanse algorithm includes
i, given that \sansD \sansi ff-\sansA \sansd \sansv Di does not occur. Note that the tracing algorithm includes i in
the traitor set if the estimates \^pi - 1 and \^pi differ by at least \epsilon /4n.

Let Xk,j denote the random variable that is 1 if D(\sansc \sanst k,j) = bk,j for k \in \{ i - 1, i\} 
and j \in \{ 1, 2, . . . ,W\} (here the randomness is over the choice of bk,j and the random-

ness used by \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx and D) and Zi,j = Xi - 1,j  - Xi,j . Then (
\sum W

j=1 Xk,j)/W = \^pk
and \mu i = \BbbE [Zi,j ] = pDi - 1  - pDi .

Since the Zi's are independent samples, using Chernoff bounds, we get that
Pr[
\sum 

j Zj/W > 2\mu i] \leq 2 - O(\lambda ). Using this, we can write that for every i \in \{ 1, . . . , n\} \setminus 
S, Pr[\sansF \sansa \sansl -\sansT \sansr \wedge i \in T | \sansD \sansi ff-\sansA \sansd \sansv D] \leq 2 - O(\lambda ), where T denotes the set of indices output
by \sansT \sansr \sansa \sansc \sanse . Finally, using a union bound, we get that

Pr[\sansF \sansa \sansl -\sansT \sansr | \sansD \sansi ff-\sansA \sansd \sansv D] \leq n \cdot 2 - O(\lambda ) = negl1(\lambda ).

Lemma 4.10. Assuming \sansP \sansL \sansB \sansE is a secure PLBE scheme satisfying the decoder-
based index hiding security property (Definition 3.7), for every PPT adversary \scrA , poly-
nomial q(\cdot ), and nonnegligible function \epsilon (\cdot ), there exists a negligible function negl2(\cdot )
such that for all \lambda \in \BbbN satisfying \epsilon (\lambda ) > 1/q(\lambda ) and i \in \{ 1, 2, . . . , n\} ,

Pr[i /\in S \wedge \sansD \sansi ff-\sansA \sansd \sansv Di ] \leq negl2(\lambda ),

where n is the number of users, S is the set of key queries, and D is the decoder box
sent by \scrA .

Proof. Suppose, on the contrary, there exists a PPT adversary \scrA , polynomial q(\cdot ),
and nonnegligible functions \epsilon (\cdot ), \delta (\cdot ) such that for all \lambda \in \BbbN satisfying \epsilon (\lambda ) > 1/q(\lambda ),
there exists an i\ast \in \{ 1, 2, . . . , n\} such that Pr[i\ast /\in S \wedge \sansD \sansi ff-\sansA \sansd \sansv Di\ast ] \geq \delta (\lambda ). Then we
can use \scrA to build a PPT reduction algorithm \scrB that breaks the index hiding security
property of \sansP \sansL \sansB \sansE .

The reduction algorithm \scrB first receives 1n from the adversary, which it forwards
to the challenger. It then receives the PLBE public parameters \sansp \sansp from the chal-
lenger, which it sends to \scrA . Next, it chooses an index i \leftarrow \{ 1, 2, . . . , n\} and sends it
to the PLBE challenger.15 It receives secret keys \sanss \sansk 1, . . . , \sanss \sansk i - 1, \sanss \sansk i+1, . . . , \sanss \sansk n. The
adversary \scrA queries for secret keys. If \scrA queries for i, \scrB sends an empty decoding

15In other words, the reduction algorithm randomly guesses the index hiding challenger with
which it interacts.
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box to the PLBE challenger. Otherwise, on receiving query j \not = i from \scrA , it sends \sanss \sansk j
to \scrA . After all queries, the adversary sends a decoding box D and messages m0,m1

to \scrB . The reduction algorithm chooses a uniformly random bit b\prime \leftarrow \{ 0, 1\} and sends
D,mb\prime to the PLBE challenger.

Let pDj,b = Pr[D(\sansc \sanst ) = b : \sansc \sanst \leftarrow \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk , j,mb)], where the probability is
taken over the coins of decoder D and the encryption algorithm. Recall that we have
Pr[i\ast /\in S \wedge \sansD \sansi ff-\sansA \sansd \sansv i\ast ] \geq \delta (\lambda ). Therefore, we can write that

Pr
\bigl[ 
i\ast /\in S \wedge 

\bigl( 
(pDi\ast  - 1,0 + pDi\ast  - 1,1)/2 - (pDi\ast ,0 + pDi\ast ,1)/2

\bigr) 
\geq \epsilon /8n

\bigr] 
\geq \delta (\lambda )

\Rightarrow Pr
\bigl[ 
i = i\ast \wedge i\ast /\in S \wedge 

\bigl( 
(pDi - 1,0 + pDi - 1,1)/2 - (pDi,0 + pDi,1)/2

\bigr) 
\geq \epsilon /8n

\bigr] 
\geq \delta (\lambda )/n.

Thus, we can also write that there exists a bit b such that

Pr
\bigl[ 
i = i\ast \wedge i\ast /\in S \wedge 

\bigl( 
pDi - 1,b  - pDi,b

\bigr) 
\geq \epsilon /8n

\bigr] 
\geq \delta (\lambda )/n.

Now since the reduction algorithm \scrB simply randomly guesses this bit b, thus we have
that with probability at least \delta /2n, \scrB outputs a decoding box D and a message mb

such that D can distinguish between encryptions of mb to indices i  - 1 and i with
advantage at least \epsilon /8n. Thus, the lemma follows.

From the above lemmas, it follows that the probability of false trace is at most
negl1(\lambda ) + n \cdot negl2(\lambda ), and thus the theorem follows.

Correct trace probability. Now we show that whenever the adversary outputs
a good decoder, then with all but negligible probability the tracing algorithm outputs a
nonempty set T . Combining this with Theorem 4.8, we get that the tracing algorithm
correctly traces. Formally, we show the following.

Theorem 4.11. For every PPT adversary \scrA , polynomial q(\cdot ), and nonnegligible
function \epsilon (\cdot ), there exists a negligible function negl(\cdot ) such that for all \lambda \in \BbbN satisfying
\epsilon (\lambda ) > 1/q(\lambda ),

Pr -\sansC \sanso \sansr -\sansT \sansr \scrA ,\epsilon (\lambda ) \geq Pr -\sansG -\sansD \scrA ,\epsilon (\lambda ) - negl(\lambda ),

where Pr -\sansC \sanso \sansr -\sansT \sansr \scrA ,\epsilon (\cdot ) and Pr -\sansG -\sansD \scrA ,\epsilon (\cdot ) are as defined in Definition 3.2.

Proof. Let us start by analyzing the probability that the tracing algorithm out-
puts a nonempty set T . First, we know that if event \sansG \sanso \sanso \sansd -\sansD \sanse \sansc \sanso \sansd \sanse \sansr occurs, then
pD\sansn \sansr \sansm \sansl \geq 1/2+ \epsilon . Next, let S be the set of indices i \in \{ 1, . . . , n\} such that pDi - 1  - pDi >
\epsilon /2n. Using Chernoff bounds, we get that

(4.1) \forall i \in S, Pr
\bigl[ 
\^pDi - 1  - \^pDi < \epsilon /4n

\bigr] 
\leq 2 - O(\lambda ) = negl1(\lambda ).

Note that by message hiding security of the underlying PLBE scheme, we have that
pDn \leq 1/2+negl2(\lambda ) for some negligible function negl2(\cdot ). Also, by indistinguishability
of normal and index 0 ciphertexts, we have that pD\sansn \sansr \sansm \sansl  - pD0 \leq negl3(\lambda ) for some
negligible function negl3(\cdot ). Thus, pD0  - pDn \geq \epsilon  - negl2(\lambda )  - negl3(\lambda ) > \epsilon /2. Given
this, we can conclude that the set S as defined above (i.e., for i \in S, pDi - 1 - pDi > \epsilon /2n)
must be nonempty whenever event \sansG \sanso \sanso \sansd -\sansD \sanse \sansc \sanso \sansd \sanse \sansr occurs. Combining this with (4.1),
we get that

Pr[T \not = \emptyset ] \geq (1 - negl1(\lambda )) \cdot Pr -\sansG -\sansD \scrA ,\epsilon (\lambda ) \geq Pr -\sansG -\sansD \scrA ,\epsilon (\lambda ) - negl(\lambda ).

Finally, combining with Theorem 4.8, we get that

Pr -\sansC \sanso \sansr -\sansT \sansr \scrA ,\epsilon (\lambda ) \geq Pr -\sansG -\sansD \scrA ,\epsilon (\lambda ) - negl(\lambda ).

This concludes the proof.
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5. Mixed functional encryption. A functional encryption scheme consists
of a setup, an encryption, a key generation, and a decryption algorithm. The setup
algorithm takes the security parameter and functionality index as inputs, and outputs
public parameters and a master secret key. The encryption algorithm uses the public
parameters to encrypt a message, while the key generation algorithm uses the master
secret key to compute a secret key corresponding to a function. The decryption
algorithm takes as input a ciphertext and a secret key, and outputs the function
evaluation on the message.

In this work, we introduce the notion of Mixed Functional Encryption (Mixed
FE). A Mixed FE scheme is defined as a dual of the standard functional encryption
(i.e., ciphertext-policy) in which the secrets keys are associated with a message, and
ciphertexts are associated with (boolean) functions. Additionally, in a Mixed FE
system, there are two encryption algorithms: \sansE \sansn \sansc and \sansS \sansK -\sansE \sansn \sansc . The normal encryption
algorithm \sansE \sansn \sansc takes as input only the public parameters and outputs an encryption of
a ``canonical"" always-accepting function. The ``secret key"" encryption algorithm, on
the other hand, takes as input the master secret key and a function f and encrypts f .
The decryption algorithm in a Mixed FE system works similarly to that in standard
functional encryption; that is, it outputs the evaluation of encrypted function f on
the message m associated with the secret key. Below we provide a formal definition.

Consider function classes \scrF = \{ \scrF \kappa \} \kappa and message spaces\scrM = \{ \scrM \kappa \} \kappa , where f :
\scrM \kappa \rightarrow \{ 0, 1\} for each f \in \scrF \kappa .

16 A Mixed FE scheme \sansM \sansi \sansx \sanse \sansd -\sansF \sansE , for function classes
\scrF and message spaces \scrM , consists of five polytime algorithms (\sansS \sanse \sanst \sansu \sansp ,\sansE \sansn \sansc ,\sansS \sansK -\sansE \sansn \sansc ,
\sansK \sanse \sansy \sansG \sanse \sansn ,\sansD \sanse \sansc ) with the following syntax:

\bullet \sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa ) \rightarrow (\sansp \sansp ,\sansm \sanss \sansk ). The setup algorithm takes as input the security
parameter \lambda and functionality index \kappa and outputs the public parameters \sansp \sansp 
and the master secret key \sansm \sanss \sansk .

\bullet \sansE \sansn \sansc (\sansp \sansp ) \rightarrow \sansc \sanst . The normal encryption algorithm takes as input public pa-
rameters \sansp \sansp and outputs a ciphertext \sansc \sanst .

\bullet \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk , f) \rightarrow \sansc \sanst . The secret key encryption algorithm takes as input
master secret key \sansm \sanss \sansk and a function f \in \scrF \kappa . It outputs a ciphertext \sansc \sanst .

\bullet \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk ,m)\rightarrow \sanss \sansk m. The key generation algorithm takes as input master
secret key \sansm \sanss \sansk and a message/input m \in \scrM \kappa . It outputs a secret key \sanss \sansk m.

\bullet \sansD \sanse \sansc (\sanss \sansk m, \sansc \sanst ) \rightarrow \{ 0, 1\} . The decryption algorithm takes as input a secret key
\sanss \sansk m and a ciphertext \sansc \sanst , and it outputs a single bit.

Correctness. A Mixed FE scheme is said to be correct if there exist negligible
functions negl1(\cdot ),negl2(\cdot ) such that for all \lambda , \kappa \in \BbbN and for every f \in \scrF \kappa , m \in \scrM \kappa ,
the following hold:

Pr

\biggl[ 
\sansD \sanse \sansc (\sanss \sansk m, \sansc \sanst ) = 1 :

(\sansp \sansp ,\sansm \sanss \sansk )\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa );
\sanss \sansk m \leftarrow \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk ,m); \sansc \sanst \leftarrow \sansE \sansn \sansc (\sansp \sansp )

\biggr] 
\geq 1 - negl1(\lambda ),

Pr

\left[  \sansD \sanse \sansc (\sanss \sansk m, \sansc \sanst ) = f(m) :
(\sansp \sansp ,\sansm \sanss \sansk )\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa );
\sanss \sansk m \leftarrow \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk ,m);
\sansc \sanst \leftarrow \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk , f)

\right]  \geq 1 - negl2(\lambda ).

Security. Informally, for security we require that no PPT adversary should be
able to distinguish between secret key encryptions of two functions f0 and f1 if for
every key in its possession, the output of f0, f1 is identical. Additionally, we also

16The following definition could be easily generalized for multibit function classes, but for sim-
plicity we stick to boolean functions.
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require that it should be hard to distinguish between normal encryptions and secret
key encryptions of the special always-accepting function. In this work, we are only
interested in Mixed FE schemes that guarantee security against adversaries which
make a bounded number of secret key encryption queries. Below we formally define
it.

Definition 5.1 (q-bounded function indistinguishability). Let q(\cdot ) be any fixed
polynomial. A Mixed FE scheme \sansM \sansi \sansx \sanse \sansd -\sansF \sansE = (\sansS \sanse \sanst \sansu \sansp , \sansE \sansn \sansc , \sansS \sansK -\sansE \sansn \sansc , \sansK \sanse \sansy \sansG \sanse \sansn , \sansD \sanse \sansc )
is said to satisfy q-bounded function indistinguishability security if for every stateful
PPT adversary \scrA there exists a negligible function negl(\cdot ), such that for every \lambda \in \BbbN 
the following holds:

Pr

\left[  \scrA \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk ,\cdot ),\sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk ,\cdot )(\sansc \sanst ) = b :

1\kappa \leftarrow \scrA (1\lambda ); (\sansp \sansp ,\sansm \sanss \sansk )\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa );
(f (0), f (1))\leftarrow \scrA \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk ,\cdot ),\sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk ,\cdot )(\sansp \sansp );

b\leftarrow \{ 0, 1\} ; \sansc \sanst \leftarrow \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk , f (b))

\right]  
\leq 1

2
+ negl(\lambda ),

where
\bullet \scrA can make at most q(\lambda ) queries to \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk , \cdot ) oracle; and
\bullet every secret key query m made by adversary \scrA to the \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk , \cdot ) oracle

must satisfy the condition that f (0)(m) = f (1)(m).

We also define a restricted version of the function indistinguishability game in
which the adversary must declare its challenge functions (f (0), f (1)) at the beginning,
and it must make all its q encryption queries before any of its key generation queries.

Definition 5.2 (q-bounded restricted function indistinguishability). Let q(\cdot ) be
any fixed polynomial. A Mixed FE scheme \sansM \sansi \sansx \sanse \sansd -\sansF \sansE = (\sansS \sanse \sanst \sansu \sansp , \sansE \sansn \sansc , \sansS \sansK -\sansE \sansn \sansc , \sansK \sanse \sansy \sansG \sanse \sansn ,
\sansD \sanse \sansc ) is said to satisfy q-bounded selective function indistinguishability security if for
every stateful PPT adversary \scrA there exists a negligible function negl(\cdot ), such that for
every \lambda \in \BbbN the following holds:

Pr

\left[  \scrA \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk ,\cdot ),\sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk ,\cdot )(\sansp \sansp , \sansc \sanst ) = b :
(1\kappa , f (0), f (1))\leftarrow \scrA (1\lambda );
(\sansp \sansp ,\sansm \sanss \sansk )\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa );

b\leftarrow \{ 0, 1\} ; \sansc \sanst \leftarrow \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk , f (b))

\right]  
\leq 1

2
+ negl(\lambda ),

where
\bullet \scrA can make at most q(\lambda ) queries to the \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk , \cdot ) oracle;
\bullet every secret key query m made by adversary \scrA to the \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk , \cdot ) oracle

must satisfy the condition that f (0)(m) = f (1)(m); and
\bullet \scrA must make all (at most q(\lambda )) \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk , \cdot ) oracle queries before making
any query to the \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk , \cdot ) oracle.

Definition 5.3 (q-bounded accept indistinguishability). Let q(\cdot ) be any fixed
polynomial. A Mixed FE scheme \sansM \sansi \sansx \sanse \sansd -\sansF \sansE = (\sansS \sanse \sanst \sansu \sansp , \sansE \sansn \sansc , \sansS \sansK -\sansE \sansn \sansc , \sansK \sanse \sansy \sansG \sanse \sansn , \sansD \sanse \sansc )
is said to satisfy q-bounded accept indistinguishability security if for every stateful
PPT adversary \scrA there exists a negligible function negl(\cdot ), such that for every \lambda \in \BbbN 
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the following holds:

Pr

\left[    \scrA \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk ,\cdot ),\sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk ,\cdot )(\sansc \sanst b) = b :

1\kappa \leftarrow \scrA (1\lambda ); (\sansp \sansp ,\sansm \sanss \sansk )\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa );
f\ast \leftarrow \scrA \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk ,\cdot ),\sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk ,\cdot )(\sansp \sansp );
b\leftarrow \{ 0, 1\} ; \sansc \sanst 1 \leftarrow \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk , f\ast );

\sansc \sanst 0 \leftarrow \sansE \sansn \sansc (\sansp \sansp )

\right]    
\leq 1

2
+ negl(\lambda ),

where
\bullet \scrA can make at most q queries to \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk , \cdot ) oracle; and
\bullet every secret key query m made by adversary \scrA to the \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk , \cdot ) oracle

must satisfy the condition that f\ast (m) = 1.

Additionally, we also define a restricted notion of the accept indistinguishability
property for Mixed FE schemes, in which the adversary must declare its challenge
function f\ast at the beginning, and it must make all its q encryption queries before any
of its key generation queries, and it is restricted to only making ciphertext queries for
functions f such that all queried f 's evaluate to 1 on all (secret key) queried messages
m. Below we formally describe it.

Definition 5.4 (q-bounded restricted accept indistinguishability). Let q(\cdot ) be
any fixed polynomial. A Mixed FE scheme \sansM \sansi \sansx \sanse \sansd -\sansF \sansE = (\sansS \sanse \sanst \sansu \sansp , \sansE \sansn \sansc , \sansS \sansK -\sansE \sansn \sansc , \sansK \sanse \sansy \sansG \sanse \sansn ,
\sansD \sanse \sansc ) is said to satisfy q-bounded restricted accept indistinguishability security if for
every stateful PPT adversary \scrA there exists a negligible function negl(\cdot ), such that for
every \lambda \in \BbbN the following holds:

Pr

\left[    \scrA \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk ,\cdot ),\sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk ,\cdot )(\sansp \sansp , \sansc \sanst b) = b :

(1\kappa , f\ast )\leftarrow \scrA (1\lambda );
(\sansp \sansp ,\sansm \sanss \sansk )\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa );

b\leftarrow \{ 0, 1\} ; \sansc \sanst 1 \leftarrow \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk , f\ast );
\sansc \sanst 0 \leftarrow \sansE \sansn \sansc (\sansp \sansp )

\right]    
\leq 1

2
+ negl(\lambda ),

where
\bullet \scrA can make at most q(\lambda ) queries to \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk , \cdot ) oracle;
\bullet every secret key query m made by adversary \scrA to the \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk , \cdot ) oracle

must satisfy the condition that f\ast (m) = 1 as well as f(m) = 1 for every
ciphertext query f made by \scrA to the \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk , \cdot ) oracle; and

\bullet \scrA must make all (at most q(\lambda )) \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk , \cdot ) oracle queries before making
any query to the \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk , \cdot ) oracle.

6. Construction of PLBE from Mixed FE and ABE. In this section, we
construct a private linear broadcast encryption (PLBE) scheme from any key-policy
attribute-based encryption (KP-ABE) scheme and a Mixed FE scheme. Our con-
struction inherits the message space of the underlying KP-ABE scheme. Also, we
show that if the underlying ABE scheme is selectively secure, and the Mixed FE
scheme satisfies 1-bounded restricted function and accept indistinguishability proper-
ties, then our PLBE scheme satisfies 1-bounded normal, index, and message hiding
security properties.

Outline. The idea is to use the ABE system to encrypt a message with attributes
being set to either the ``normal"" ciphertext (i.e., encryption of the canonical always-
accepting function) or a special (secret key) ciphertext which encrypts the comparison
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function depending on the type of PLBE encryption operation being performed. Each
user's secret key will be an ABE private key. Here the ABE private key is generated
for the Mixed FE decryption circuit in which a Mixed FE secret key, corresponding
to the user's index, is hardwired. The high level intuition is that when the attribute
is a normal functional encryption ciphertext, then all keys decrypt it to 1; thus any
user with an appropriate ABE key could perform the decryption. Also, when the
attribute is set to be a special ciphertext (that encrypts comparison with some index
i), then only those users whose indices are larger than the threshold i set can perform
the decryption. For proving security, we rely on the fact that special ciphertexts
are indistinguishable to any adversary that does not have distinguishing secret keys.
Below we provide a detailed overview.

The PLBE setup algorithm starts by sampling an ABE key pair (\sansa \sansb \sanse .\sansp \sansp , \sansa \sansb \sanse .\sansm \sanss \sansk )
and a Mixed FE key pair (\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ,\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk ). To generate the private key for the
ith user, it first generates a Mixed FE secret key \sansM \sansi \sansx \sanse \sansd .\sanss \sansk i for message i, and later
computes an ABE key \sansa \sansb \sanse .\sanss \sansk i for predicate \sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc (\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i, \cdot ), i.e., \sansM \sansi \sansx \sanse \sansd -\sansF \sansE 
decryption circuit with key \sansM \sansi \sansx \sanse \sansd .\sanss \sansk i hardwired. For PLBE normal encryption, one
simply computes ciphertext \sansc \sanst as an encryption of message m under attributes \sansc \sanst \sansa \sanst \sanst \sansr ,
where \sansc \sanst \sansa \sanst \sanst \sansr is a Mixed FE normal ciphertext. For encrypting a message to index i, the
encryption algorithm works identically, except now the attribute is set to be a special
ciphertext corresponding to function greater than i. Finally, the PLBE decryption is
simply the ABE decryption algorithm.

Now correctness follows directly from the correctness of ABE and functional en-
cryption schemes. For proving security, the main idea is as follows: Suppose there
exists an adversary that can distinguish between PLBE normal ciphertexts and index
0 ciphertexts; then it can be used to distinguish between Mixed FE normal cipher-
texts and secret key ciphertexts encrypting function greater than 0 (note that this is
an always-accepting function). In other words, such an attack can be used to break
the restricted accept indistinguishability property of the Mixed FE scheme. Similarly,
we can also reduce a successful attack on the index hiding, or message hiding security
to an attacker on restricted function indistinguishability of Mixed FE or ABE security,
respectively. Below we describe our construction \sansP \sansL \sansB \sansE = (\sansS \sanse \sanst \sansu \sansp ,\sansE \sansn \sansc ,\sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx ,\sansD \sanse \sansc )
for message spaces \{ \scrM \kappa \} \kappa in detail.

The following construction only achieves the statistical notion of correctness. In
Appendix B, we provide an alternate construction that achieves perfect correctness
from the same assumptions.

6.1. Construction. Let \scrA \scrB \scrE = (\sansA \sansB \sansE .\sansS \sanse \sanst \sansu \sansp ,\sansA \sansB \sansE .\sansE \sansn \sansc ,\sansA \sansB \sansE .\sansK \sanse \sansy \sansG \sanse \sansn ,\sansA \sansB \sansE .\sansD \sanse \sansc )
be a KP-ABE scheme for a set of attribute spaces \{ \scrX \kappa \} \kappa , predicate classes \{ \scrC \kappa \} \kappa , and
message spaces \{ \scrM \kappa \} \kappa , and let \sansM \sansi \sansx \sanse \sansd -\sansF \sansE = (\sansM \sansi \sansx \sanse \sansd .\sansS \sanse \sanst \sansu \sansp , \sansM \sansi \sansx \sanse \sansd .\sansE \sansn \sansc , \sansM \sansi \sansx \sanse \sansd .\sansS \sansK -\sansE \sansn \sansc ,
\sansM \sansi \sansx \sanse \sansd .\sansK \sanse \sansy \sansG \sanse \sansn , \sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc ) be a Mixed FE scheme for function classes \{ \scrF \kappa \} \kappa and
message space \{ \scrI \kappa \} \kappa , with ciphertexts of length \ell (\lambda , \kappa ). For every n, let \kappa = \kappa (n)
be the lexicographically smallest functionality index such that every string of length
log(n) can be uniquely represented in message space \scrI \kappa (i.e., \{ 0, 1\} log(n) \subseteq \scrI \kappa ), and
function class \scrF \kappa contains the ``comparison"" (>) operator. Also, let \widetilde \kappa = \widetilde \kappa (\lambda , \kappa ) be the
lexicographically smallest functionality index such that every string of length \ell (\lambda , \kappa )
can be uniquely represented in attribute class \scrX \widetilde \kappa (i.e., \{ 0, 1\} \ell (\lambda ,\kappa ) \subseteq \scrX \widetilde \kappa ), and \scrC \widetilde \kappa 
contains Mixed FE decryption circuit corresponding to functionality index \kappa . Below
we describe our construction.

\bullet \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n) \rightarrow 
\bigl( 
\sansp \sansp ,\sansm \sanss \sansk , \{ \sanss \sansk i\} i\leq n

\bigr) 
. The setup algorithm runs \sansA \sansB \sansE .\sansS \sanse \sanst \sansu \sansp 

and \sansM \sansi \sansx \sanse \sansd .\sansS \sanse \sanst \sansu \sansp to generate ABE and Mixed FE public parameters and
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master secret key as (\sansa \sansb \sanse .\sansp \sansp , \sansa \sansb \sanse .\sansm \sanss \sansk ) \leftarrow \sansA \sansB \sansE .\sansS \sanse \sanst \sansu \sansp (1\lambda , 1\widetilde \kappa ) and (\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ,
\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk ) \leftarrow \sansM \sansi \sansx \sanse \sansd .\sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa ). Next, it runs \sansM \sansi \sansx \sanse \sansd .\sansK \sanse \sansy \sansG \sanse \sansn to generate
n mixed FE secret keys \sansM \sansi \sansx \sanse \sansd .\sanss \sansk i as

\forall i \leq n, \sansM \sansi \sansx \sanse \sansd .\sanss \sansk i \leftarrow \sansM \sansi \sansx \sanse \sansd .\sansK \sanse \sansy \sansG \sanse \sansn (\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk , i).

Let C\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i denote the circuit\sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc (\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i, \cdot ), i.e., \sansM \sansi \sansx \sanse \sansd -\sansF \sansE decryp-
tion circuit with key \sansM \sansi \sansx \sanse \sansd .\sanss \sansk i hardwired. Next, it computes n ABE secret
keys \sansa \sansb \sanse .\sanss \sansk i as

\forall i \leq n, \sansa \sansb \sanse .\sanss \sansk i \leftarrow \sansA \sansB \sansE .\sansK \sanse \sansy \sansG \sanse \sansn (\sansa \sansb \sanse .\sansm \sanss \sansk , C\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i).

Finally, it sets \sansp \sansp = (\sansa \sansb \sanse .\sansp \sansp ,\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ), \sansm \sanss \sansk = (\sansa \sansb \sanse .\sansm \sanss \sansk ,\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk ) and
\sanss \sansk i = \sansa \sansb \sanse .\sanss \sansk i for i \leq n.

\bullet \sansE \sansn \sansc (\sansp \sansp ,m) \rightarrow \sansc \sanst . Let \sansp \sansp = (\sansa \sansb \sanse .\sansp \sansp ,\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ). The encryption algorithm
first computes \sansc \sanst \sansa \sanst \sanst \sansr \leftarrow \sansM \sansi \sansx \sanse \sansd .\sansE \sansn \sansc (\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ). Next, it encrypts message m as
\sansc \sanst \leftarrow \sansA \sansB \sansE .\sansE \sansn \sansc (\sansa \sansb \sanse .\sansp \sansp , \sansc \sanst \sansa \sanst \sanst \sansr ,m), and outputs ciphertext \sansc \sanst .

\bullet \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, i) \rightarrow \sansc \sanst . Let \sansm \sanss \sansk = (\sansa \sansb \sanse .\sansm \sanss \sansk ,\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk ) and let \sansc \sanso \sansm \sansp i

denote the comparison function
?
> i, i.e., \sansc \sanso \sansm \sansp i(x) = 1 iff x > i. The en-

cryption algorithm first computes \sansc \sanst \sansa \sanst \sanst \sansr \leftarrow \sansM \sansi \sansx \sanse \sansd .\sansS \sansK -\sansE \sansn \sansc (\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk , \sansc \sanso \sansm \sansp i).
Next, it encrypts message m as \sansc \sanst \leftarrow \sansA \sansB \sansE .\sansE \sansn \sansc (\sansa \sansb \sanse .\sansp \sansp , \sansc \sanst \sansa \sanst \sanst \sansr ,m) and outputs
ciphertext \sansc \sanst .

\bullet \sansD \sanse \sansc (\sanss \sansk , \sansc \sanst ) \rightarrow m or \bot . The decryption algorithm runs \sansA \sansB \sansE .\sansD \sanse \sansc on \sansc \sanst using
key \sanss \sansk as y = \sansA \sansB \sansE .\sansD \sanse \sansc (\sanss \sansk , \sansc \sanst ) and sets y as the output of decryption.

6.2. Correctness. For all \lambda , n \in \BbbN , message m \in \scrM \lambda , public parameters and
master secret keys (\sansa \sansb \sanse .\sansp \sansp , \sansa \sansb \sanse .\sansm \sanss \sansk ) \leftarrow \sansA \sansB \sansE .\sansS \sanse \sanst \sansu \sansp (1\lambda , 1\widetilde \kappa ), (\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ,\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk ) \leftarrow 
\sansM \sansi \sansx \sanse \sansd .\sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa ), the secret keys \sanss \sansk i for i \leq n are simply the ABE keys \sansa \sansb \sanse .\sanss \sansk i \leftarrow 
\sansA \sansB \sansE .\sansK \sanse \sansy \sansG \sanse \sansn (\sansa \sansb \sanse .\sansm \sanss \sansk , C\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i). For any index i \leq n, consider the following two
cases:

1. Normal encryption. For any ciphertext computed as \sansc \sanst \leftarrow \sansA \sansB \sansE .\sansE \sansn \sansc (\sansa \sansb \sanse .\sansp \sansp ,
\sansc \sanst \sansa \sanst \sanst \sansr , m), where \sansc \sanst \sansa \sanst \sanst \sansr \leftarrow \sansM \sansi \sansx \sanse \sansd .\sansE \sansn \sansc (\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ), we know that with all but
negligible probability \sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc (\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i, \sansc \sanst \sansa \sanst \sanst \sansr ) = 1 by correctness of the
Mixed FE scheme. In other words, C\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i(\sansc \sanst \sansa \sanst \sanst \sansr ) = 1. Therefore, by cor-
rectness of the ABE scheme, we get that with all but negligible probability
\sansA \sansB \sansE .\sansD \sanse \sansc (\sansa \sansb \sanse .\sanss \sansk i, \sansc \sanst ) = m.

2. Index encryption. For any index 0 \leq j \leq n and ciphertext \sansc \sanst computed
as \sansc \sanst \leftarrow \sansA \sansB \sansE .\sansE \sansn \sansc (\sansa \sansb \sanse .\sansp \sansp , \sansc \sanst \sansa \sanst \sanst \sansr ,m), where \sansc \sanst \sansa \sanst \sanst \sansr \leftarrow \sansM \sansi \sansx \sanse \sansd .\sansS \sansK -\sansE \sansn \sansc (\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk ,
\sansc \sanso \sansm \sansp j), we know that with all but negligible probability

\sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc (\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i, \sansc \sanst \sansa \sanst \sanst \sansr ) =

\Biggl\{ 
1 if i > j,

0 otherwise

by correctness of the Mixed FE scheme. In other words, C\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i(\sansc \sanst \sansa \sanst \sanst \sansr ) =
\sansc \sanso \sansm \sansp j(i) = (i > j). Therefore, by correctness of the ABE scheme, we have
that with all but negligible probability \sansA \sansB \sansE .\sansD \sanse \sansc (\sansa \sansb \sanse .\sanss \sansk i, \sansc \sanst ) = m for i > j
and \bot otherwise.

Therefore, \sansP \sansL \sansB \sansE satisfies the PLBE correctness condition.

6.3. Security. We will now show that the scheme described above is 1-bounded
secure per Definitions 3.3, 3.4, and 3.5. In other words, it satisfies normal hiding, index
hiding, and message hiding security properties. Formally, we prove the following.
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Theorem 6.1. If \scrA \scrB \scrE = (\sansA \sansB \sansE .\sansS \sanse \sanst \sansu \sansp ,\sansA \sansB \sansE .\sansE \sansn \sansc ,\sansA \sansB \sansE .\sansK \sanse \sansy \sansG \sanse \sansn ,\sansA \sansB \sansE .\sansD \sanse \sansc ) is a se-
lectively secure ABE scheme for a set of attribute spaces \{ \scrX \kappa \} \kappa , predicate classes
\{ \scrC \kappa \} \kappa , and message spaces \{ \scrM \kappa \} \kappa satisfying Definition A.2, and \sansM \sansi \sansx \sanse \sansd -\sansF \sansE = (\sansM \sansi \sansx \sanse \sansd .\sansS \sanse \sanst \sansu \sansp ,
\sansM \sansi \sansx \sanse \sansd .\sansE \sansn \sansc , \sansM \sansi \sansx \sanse \sansd .\sansS \sansK -\sansE \sansn \sansc , \sansM \sansi \sansx \sanse \sansd .\sansK \sanse \sansy \sansG \sanse \sansn , \sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc ) is a Mixed FE scheme, for func-
tion classes \{ \scrF \kappa \} \kappa and message spaces \{ \scrI \kappa \} \kappa , satisfying 1-bounded restricted function
indistinguishability (Definition 5.2) and 1-bounded restricted accept indistinguishabil-
ity (Definition 5.4) properties, then \sansP \sansL \sansB \sansE = (\sansS \sanse \sanst \sansu \sansp , \sansE \sansn \sansc , \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx , \sansD \sanse \sansc ) is a secure
PLBE scheme, for messages spaces \{ \scrM \kappa \} \kappa , satisfying 1-bounded normal, index, and
message hiding security properties per Definitions 3.3, 3.4, and 3.5, respectively.

Our proof is divided into three components/lemmas, one for each PLBE security
property. Let \scrA be any PPT adversary that wins the normal/index/message hiding
game with nonnegligible advantage. We argue that such an adversary must break the
security of at least one underlying primitive.

6.3.1. Normal hiding security.

Lemma 6.2. If \sansM \sansi \sansx \sanse \sansd -\sansF \sansE = (\sansM \sansi \sansx \sanse \sansd .\sansS \sanse \sanst \sansu \sansp ,\sansM \sansi \sansx \sanse \sansd .\sansE \sansn \sansc , \sansM \sansi \sansx \sanse \sansd .\sansS \sansK -\sansE \sansn \sansc , \sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc ,
\sansM \sansi \sansx \sanse \sansd .\sansK \sanse \sansy \sansG \sanse \sansn ) is a Mixed FE scheme satisfying the 1-bounded restricted accept indis-
tinguishability (Definition 5.4) property, then \sansP \sansL \sansB \sansE = (\sansS \sanse \sanst \sansu \sansp ,\sansE \sansn \sansc , \sansD \sanse \sansc , \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx ) is
a PLBE scheme satisfying the 1-bounded normal hiding security property per Defini-
tion 3.3.

Proof. Suppose there exists an adversary \scrA such that \scrA 's advantage in a 1-
bounded normal hiding security game is nonnegligible. We construct an algorithm \scrB 
that can distinguish normal encryptions from secret key encryptions, therefore break-
ing the 1-bounded restricted accept indistinguishability security of the Mixed FE
scheme.

The reduction algorithm \scrB receives 1n from \scrA . It sets \kappa , \widetilde \kappa as in the construction
and sends \kappa as the functionality index and \sansc \sanso \sansm \sansp 0 (i.e., comparison with 0) as its
challenge function to the Mixed FE challenger. The challenger generates a key pair
(\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ,\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk ) and sends \sansM \sansi \sansx \sanse \sansd .\sansp \sansp as the public parameters and challenge
ciphertext \sansc \sanst \ast \sansa \sanst \sanst \sansr to \scrB . Next, \scrB makes an encryption query for function \sansc \sanso \sansm \sansp 0. Let the
challenger's response be ciphertext \sansc \sanst \sansa \sanst \sanst \sansr . \scrB then queries the challenger on n messages
i (\leq n) for corresponding mixed FE secret keys and receives back keys \sansM \sansi \sansx \sanse \sansd .\sanss \sansk i
for i \leq n. It then chooses an ABE key pair (\sansa \sansb \sanse .\sansp \sansp , \sansa \sansb \sanse .\sansm \sanss \sansk ) \leftarrow \sansA \sansB \sansE .\sansS \sanse \sanst \sansu \sansp (1\lambda , 1\widetilde \kappa )
and computes n ABE keys as \sansa \sansb \sanse .\sanss \sansk i \leftarrow \sansA \sansB \sansE .\sansK \sanse \sansy \sansG \sanse \sansn (\sansa \sansb \sanse .\sansm \sanss \sansk , C\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i). Next, it
sends (\sansa \sansb \sanse .\sansp \sansp ,\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ) and \{ \sansa \sansb \sanse .\sanss \sansk i\} i\leq n as the PLBE public parameters and secret
keys to \scrA . After receiving all the keys, \scrA sends its challenge message m\ast to \scrB , and
it can also make a single encryption query for message m on index 0. Here \scrA is
allowed to make the encryption query either before or after challenge query. The
reduction algorithm \scrB responds to each query as follows: \scrB encrypts message m as
\sansc \sanst \leftarrow \sansA \sansB \sansE .\sansE \sansn \sansc (\sansa \sansb \sanse .\sansp \sansp , \sansc \sanst \sansa \sanst \sanst \sansr ,m) and sends \sansc \sanst to \scrA as its response to the encryption
query. Also, it computes ciphertext \sansc \sanst \ast as \sansc \sanst \ast \leftarrow \sansA \sansB \sansE .\sansE \sansn \sansc (\sansa \sansb \sanse .\sansp \sansp , \sansc \sanst \ast \sansa \sanst \sanst \sansr ,m

\ast ) and
sends \sansc \sanst \ast as the challenge ciphertext to \scrA . Note that \scrA could instead have sent its
challenge query before sending the index encryption query. Also, \scrB does not need to
query the Mixed FE challenger for answering any query at this point as it already has
ciphertexts \sansc \sanst \sansa \sanst \sanst \sansr , \sansc \sanst 

\ast 
\sansa \sanst \sanst \sansr . Finally, \scrA sends its guess b to \scrB , and \scrB forwards b as its own

guess.
First, note that both \scrA and \scrB are allowed to make at most 1 index encryption

and polynomially many secret key encryption queries, respectively. Also, note that
\scrB sends its secret key encryption query as well as its challenge query before making
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making key generation queries; thus \scrB is an admissible adversary in the 1-bounded re-
stricted accept indistinguishability game. Since \scrA is only allowed to make encryption
queries to index 0 (in the 1-bounded normal hiding security game), thus \scrB queries
the Mixed FE challenger on functions \sansc \sanso \sansm \sansp 0 which are always accepting functions
and therefore admissible queries per the restricted accept indistinguishability game.
Next, for each query made by \scrA , \scrB queries the Mixed FE challenger exactly once,
and thus all the queries are honestly and exactly answered. Finally, note that if the
Mixed FE challenger computed \sansc \sanst \ast \sansa \sanst \sanst \sansr as a normal functional encryption ciphertext,
then \scrB computes \sansc \sanst \ast as a normal PLBE ciphertext; otherwise it computes \sansc \sanst \ast as a
PLBE ciphertext for index 0. Thus, \scrB perfectly simulates the 1-bounded normal hid-
ing security game for \scrA . As a result, if \scrA 's advantage is nonnegligible, then \scrB breaks
the 1-bounded restricted accept indistinguishability security with nonnegligible ad-
vantage. This completes the proof.

6.3.2. Index hiding security.

Lemma 6.3. If \sansM \sansi \sansx \sanse \sansd -\sansF \sansE = (\sansM \sansi \sansx \sanse \sansd .\sansS \sanse \sanst \sansu \sansp ,\sansM \sansi \sansx \sanse \sansd .\sansE \sansn \sansc ,\sansM \sansi \sansx \sanse \sansd .\sansS \sansK -\sansE \sansn \sansc , \sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc ,
\sansM \sansi \sansx \sanse \sansd .\sansK \sanse \sansy \sansG \sanse \sansn ) is a Mixed FE scheme satisfying the 1-bounded restricted function in-
distinguishability (Definition 5.2) property, then \sansP \sansL \sansB \sansE = (\sansS \sanse \sanst \sansu \sansp ,\sansE \sansn \sansc , \sansD \sanse \sansc , \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx )
is a PLBE scheme satisfying the 1-bounded index hiding security property per Defini-
tion 3.4.

Proof. The proof of this lemma is similar to that of Lemma 6.2, with the addi-
tional modification that the reduction algorithm now guesses the indices i, i\ast on which
the PLBE adversary makes its encryption query and challenge query, respectively, and
the reduction algorithm aborts if its guess is incorrect. This leads to a polynomial
loss (\approx 1/n2) in the reduction algorithm's advantage.17

Suppose there exists an adversary \scrA such that \scrA 's advantage in the 1-bounded
index hiding security game is nonnegligible. We construct an algorithm \scrB that can
distinguish between two secret key encryptions, therefore breaking the 1-bounded
restricted function indistinguishability security of the Mixed FE scheme.

The reduction algorithm \scrB receives 1n from \scrA . It sets \kappa , \widetilde \kappa as in the construc-
tion. Next, it guesses the challenge index i\ast \in \{ 0, . . . , n - 1\} and query index
i \in \{ 0, . . . , n\} .18 It sends \kappa as the functionality index and (\sansc \sanso \sansm \sansp i\ast , \sansc \sanso \sansm \sansp i\ast +1) (i.e.,
comparison with i\ast and i\ast +1) as its challenge functions to the Mixed FE challenger.
The challenger generates a key pair (\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ,\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk ) and sends \sansM \sansi \sansx \sanse \sansd .\sansp \sansp as the
public parameters and challenge ciphertext \sansc \sanst \ast \sansa \sanst \sanst \sansr to \scrB . Next, \scrB makes an encryp-
tion query for function \sansc \sanso \sansm \sansp i. Let the challenger's response be ciphertext \sansc \sanst \sansa \sanst \sanst \sansr . \scrB 
then queries the challenger on n  - 1 messages j(\in [n] \setminus \{ i\ast + 1\} ) for corresponding
mixed FE secret keys and receives back keys \sansM \sansi \sansx \sanse \sansd .\sanss \sansk j for each j. It then chooses
an ABE key pair (\sansa \sansb \sanse .\sansp \sansp , \sansa \sansb \sanse .\sansm \sanss \sansk ) \leftarrow \sansA \sansB \sansE .\sansS \sanse \sanst \sansu \sansp (1\lambda , 1\widetilde \kappa ) and computes n  - 1 ABE
keys as \sansa \sansb \sanse .\sanss \sansk j \leftarrow \sansA \sansB \sansE .\sansK \sanse \sansy \sansG \sanse \sansn (\sansa \sansb \sanse .\sansm \sanss \sansk , C\sansM \sansi \sansx \sanse \sansd .\sanss \sansk j ). Next, it sends (\sansa \sansb \sanse .\sansp \sansp ,\sansM \sansi \sansx \sanse \sansd .\sansp \sansp )
and \{ \sansa \sansb \sanse .\sanss \sansk j\} j\in [n]\setminus \{ i\ast +1\} as the PLBE public parameters and secret keys to \scrA . After

receiving all the keys, \scrA sends its challenge message m\ast to \scrB , and it can also make an

17Due to the fact that the reduction algorithm has to guess the index, we can only extend the
current analysis to prove q-bounded PLBE (adaptive) security assuming q-bounded Mixed FE (re-
stricted) security for constant q. However, we would like to point out that one could prove q-bounded
PLBE selective security directly from q-bounded Mixed FE (restricted) security without any security
loss.

18Basically, the reduction algorithm guesses two things: First, it guesses the index hiding chal-
lenger with which \scrA interacts and wins with nonnegligible probability; second, it guesses the index
on which adversary \scrA queries the PLBE challenger for index encryption.
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encryption query for message m on index \~i. Here \scrA is allowed to make the encryption
query either before or after the challenge query. The reduction algorithm \scrB proceeds
as follows. If i \not = \~i, \scrB aborts and sends a random bit as its guess to the Mixed FE
challenger. Otherwise, it responds to each query as follows. \scrB encrypts message m
as \sansc \sanst \leftarrow \sansA \sansB \sansE .\sansE \sansn \sansc (\sansa \sansb \sanse .\sansp \sansp , \sansc \sanst \sansa \sanst \sanst \sansr ,m) and sends \sansc \sanst to \scrA as its response to the encryp-
tion query. Also, it computes ciphertext \sansc \sanst \ast as \sansc \sanst \ast \leftarrow \sansA \sansB \sansE .\sansE \sansn \sansc (\sansa \sansb \sanse .\sansp \sansp , \sansc \sanst \ast \sansa \sanst \sanst \sansr ,m

\ast ) and
sends \sansc \sanst \ast as the challenge ciphertext to \scrA . Note that \scrA could instead have sent its
challenge query before sending the index encryption query. Also, \scrB does not need to
query the Mixed FE challenger for answering any query at this point as it already has
ciphertexts \sansc \sanst \sansa \sanst \sanst \sansr , \sansc \sanst 

\ast 
\sansa \sanst \sanst \sansr . Finally, \scrA sends its guess b to \scrB , and \scrB forwards b as its own

guess.
First, note that both \scrA and \scrB are allowed to make at most 1 index encryption

and polynomially many secret key encryption queries, respectively. Also, note that
\scrB sends its secret key encryption query as well as its challenge query before making
making key generation queries; thus \scrB is an admissible adversary in the 1-bounded
restricted function indistinguishability game. Next, for each query made by \scrA , \scrB 
queries the Mixed FE challenger exactly once, and thus all the queries are honestly
and exactly answered. Finally, note that if the Mixed FE challenger computed \sansc \sanst \ast \sansa \sanst \sanst \sansr 
as a secret key FE ciphertext for function \sansc \sanso \sansm \sansp i\ast , then \scrB computes \sansc \sanst \ast as a PLBE
ciphertext for index i\ast ; otherwise it computes \sansc \sanst \ast as a PLBE ciphertext for index i\ast +1.
Thus, \scrB perfectly simulates the 1-bounded index hiding security game for \scrA . Also,
since \scrB randomly guesses the challenge index i\ast as well as query index i, therefore
with at least 1/n(n + 1) probability \scrB 's guess will be correct; thus if \scrA 's advantage
is (nonnegligible) \epsilon , then \scrB breaks 1-bounded restricted function indistinguishability
security with (nonnegligible) advantage \epsilon /n(n+ 1). This completes the proof.

6.3.3. Message hiding security.

Lemma 6.4. If \scrA \scrB \scrE = (\sansA \sansB \sansE .\sansS \sanse \sanst \sansu \sansp ,\sansA \sansB \sansE .\sansE \sansn \sansc ,\sansA \sansB \sansE .\sansK \sanse \sansy \sansG \sanse \sansn ,\sansA \sansB \sansE .\sansD \sanse \sansc ) is a selec-
tively secure ABE scheme per Definition A.2, then \sansP \sansL \sansB \sansE = (\sansS \sanse \sanst \sansu \sansp , \sansE \sansn \sansc , \sansD \sanse \sansc , \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx )
is a PLBE scheme satisfying the 1-bounded message hiding security property per Def-
inition 3.5.

Proof. Suppose there exists an adversary \scrA such that \scrA 's advantage in the 1-
bounded message hiding security game is nonnegligible. We construct an algorithm
\scrB that can distinguish between ABE encryptions of two different messages, therefore
breaking the security of the ABE scheme.

The reduction algorithm receives 1n from \scrA . It sets the parameters \kappa , \widetilde \kappa as in the
construction, and starts by choosing Mixed FE parameters as (\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ,\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk )\leftarrow 
\sansM \sansi \sansx \sanse \sansd .\sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa ). It then computes \sansc \sanst \ast \sansa \sanst \sanst \sansr \leftarrow \sansM \sansi \sansx \sanse \sansd .\sansS \sansK -\sansE \sansn \sansc (\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk , \sansc \sanso \sansm \sansp n) and
sends to the ABE challenger 1\widetilde \kappa and \sansc \sanst \ast \sansa \sanst \sanst \sansr as its challenge attribute. The ABE chal-
lenger generates a key pair (\sansa \sansb \sanse .\sansp \sansp , \sansa \sansb \sanse .\sanss \sansk ) and sends \sansa \sansb \sanse .\sansp \sansp to \scrB . For i \leq n, \scrB 
generates Mixed FE secret keys as \sansM \sansi \sansx \sanse \sansd .\sanss \sansk i \leftarrow \sansM \sansi \sansx \sanse \sansd .\sansK \sanse \sansy \sansG \sanse \sansn (\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk , i) and
sends C\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i as a predicate query to the ABE challenger and receives back se-
cret key \sansa \sansb \sanse .\sanss \sansk i. Next, it sends (\sansa \sansb \sanse .\sansp \sansp ,\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ) and \{ \sansa \sansb \sanse .\sanss \sansk i\} i\leq n as the PLBE
public parameters and secret keys to \scrA . After receiving all the keys, \scrA makes a
single index encryption query (m, j) to \scrB . \scrB answers it by computing ciphertexts
\sansc \sanst \sansa \sanst \sanst \sansr \leftarrow \sansM \sansi \sansx \sanse \sansd .\sansS \sansK -\sansE \sansn \sansc (\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk , \sansc \sanso \sansm \sansp j) and \sansc \sanst \leftarrow \sansA \sansB \sansE .\sansE \sansn \sansc (\sansa \sansb \sanse .\sansp \sansp , \sansc \sanst \sansa \sanst \sanst \sansr ,m) and
sends \sansc \sanst to \scrA as its response. \scrA also sends two challenge messages (m\ast 

0,m
\ast 
1) to \scrB .

\scrB then forwards (m\ast 
0,m

\ast 
1) as its challenge messages to ABE challenger. Next, \scrB for-

wards the challenge ciphertext \sansc \sanst \ast it receives from ABE challenger to \scrA . Note that \scrA 
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could instead have sent its challenge query before sending the index encryption query.
In that case, the reduction algorithm simply answers that first. Finally, \scrA sends its
guess b to \scrB , and \scrB forwards b as its own guess.

First, note that the challenge attribute \sansc \sanst \ast \sansa \sanst \sanst \sansr on each predicate (C\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i) queried
made by \scrB evaluates to 0, with all but negligible probability. This follows from the
correctness condition of the Mixed FE system as \sansc \sanst \ast \sansa \sanst \sanst \sansr encrypts function \sansc \sanso \sansm \sansp n and
for all i \leq n, \sansc \sanso \sansm \sansp n(i) = 0, and thus decrypting \sansc \sanst \ast \sansa \sanst \sanst \sansr using \sansM \sansi \sansx \sanse \sansd .\sanss \sansk i outputs 0.
With all-but-negligible probability, reduction algorithm \scrB is therefore an admissible
adversary in the ABE security game. Thus, \scrB perfectly simulates the 1-bounded19

message hiding security game for\scrA . As a result, if\scrA 's advantage is nonnegligible, then
\scrB breaks ABE security with nonnegligible advantage. This completes the proof.

7. A new LWE toolkit. In section 2, we defined the notion of lattice trapdoors
along with certain well-sampledness properties. Recall that using lattice trapdoors,
it is easy to compute a preimage U of any matrix Z with respect to a matrix A given
the trapdoor information generated while sampling A. For any matrix U sampled
as above, we say U targets A to matrix Z. Now the well-sampledness properties
(at a high level) state that a matrix sampled using the \sansT \sansr \sansa \sansp \sansG \sanse \sansn algorithm looks
uniformly random when not given the trapdoor information, and a preimage matrix
that targets to a random matrix looks like a matrix with entries drawn from a Gaussian
distribution.

In this section, we introduce certain enhanced security properties for lattice trap-
doors that will be useful later in proving security of our Mixed FE system. We also
provide a generic construction of lattice trapdoors that achieves these enhanced prop-
erties from any lattice trapdoor scheme that satisfies the well-sampledness properties
described above. At a very high level, the enhanced security properties state the fol-
lowing: (1) For any matrix A that is sampled using the \sansT \sansr \sansa \sansp \sansG \sanse \sansn algorithm, all those
rows of A which are only used to target random rows look like random rows them-
selves (when not given the trapdoor information). (2) Two preimage matrices U0,U1

that target a matrix A to different matrices Z0,Z1 should look indistinguishable to
any adversary even when the adversary is given those rows of A where Z0,Z1 are
identical. We point out that due to technical constraints in the proof of property (2)
we chose to define the enhanced properties w.r.t. matrices instead of vectors.

7.1. Enhanced lattice trapdoors. Let (\sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn ,\sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse ) be a pair of
randomized algorithms with the following syntax:
\sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1m, q)\rightarrow (A, T\bfA ). The trapdoor generation algorithm takes as input

n,m, q and outputs a matrix A \in \BbbZ n\times m
q together with a trapdoor T\bfA .

\sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A, T\bfA , \sigma , z) \rightarrow u. The preimage sampling algorithm takes as input a
matrix A \in \BbbZ n\times m

q together with its trapdoor T\bfA , a target vector z \in \BbbZ n
q , and

a parameter \sigma .20 It outputs u \in \BbbZ m
q such that A \cdot uT = zT and \| u\| \leq 

\surd 
m \cdot \sigma .

We require these algorithms to satisfy the following properties. These properties
are captured via security games between a challenger and a computationally bounded
adversary.

19We would like to point out that the current construction actually gives a PLBE scheme that
satisfies the q-bounded message hiding security property for arbitrary q, i.e., the number of queries
need not be bounded, as long as the ABE scheme is not q-bounded selectively secure.

20As before, the preimage sampling algorithm could be easily generalized to generate preimages of
matrices instead of vectors by independently running the \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse algorithm on each column of
the matrix. Throughout this work, we overload the notation by directly giving matrices \bfU \in \BbbZ n\times k

q

(for any k) as inputs to the \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse algorithm.
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Notation. First, we introduce some more notation. We start by defining a
matrix rearrangement procedure \sansA \sansr \sansr \sansa \sansn \sansg \sanse which takes as input dimensions n1, n2,m,
and two matrices A \in \BbbZ n1\times m

q ,B \in \BbbZ n2\times m
q , and an ordered set S \subseteq [n1 + n2] of

size n1, and it outputs a larger combined matrix C \in \BbbZ (n1+n2)\times m
q . Concretely, C =

\sansA \sansr \sansr \sansa \sansn \sansg \sanse (1n1 , 1n2 , 1m,A,B, S). The rearrangement procedure is defined as follows.
Let S = \{ i1, i2, . . . , in1

\} , where ij < ik for every 1 \leq j < k \leq n1. Similarly, let
S = ([n1+n2]\setminus S) =

\bigl\{ 
i\prime 1, i

\prime 
2, . . . , i

\prime 
n2

\bigr\} 
denote the (ordered) complement of set S. Now

matrix C is obtained by appending rows of matrices A and B as follows: for j \in [n1],
C[ij ] = A[j], and for j \in [n2], C[i\prime j ] = B[j]. For simplicity of notation, we drop the
dimensions n1, n2,m as explicit inputs to \sansA \sansr \sansr \sansa \sansn \sansg \sanse procedure throughout this section
whenever clear from the context.

Additionally, we define a matrix restriction procedure \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst which takes as
input dimensions n,m, and matrix A \in \BbbZ n\times m

q , and an ordered set S \subseteq [n] of size \ell ,

and it outputs a smaller matrix C \in \BbbZ \ell \times m
q . Concretely, C = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (1n, 1m,A, S).

The restriction procedure is defined as follows.
Let S = \{ i1, i2, . . . , in\} , where ij < ik for every 1 \leq j < k \leq \ell . Now matrix C

is obtained by removing rows of matrix A which do not lie in set S. Formally, for
j \in [\ell ], C[j] = A[ij ]. As before, for simplicity of notation, we drop the dimensions
n,m as inputs whenever clear from the context.

7.1.1. Row removal property. The first property we introduce is called the
row removal property. It is defined via an interactive security game between the
challenger and an adversary. In the game, the adversary specifies matrix dimensions
n,m, a set of k (\leq n) indices, which represent the ``target"" set, and the adversary
must distinguish between the following scenarios.

In the first scenario, the challenger chooses an n\times m matrix A with a trapdoor,
and sends A to the adversary. The adversary then participates in a query phase. For
each query, the adversary sends a set of k target vectors. The challenger responds by
outputting a matrix U such that for each index i in the target set, U maps the ith
row of A to one of the target vectors. The matrix U maps the remaining rows of \scrA 
to uniformly random vectors.

In the second scenario, the challenger chooses a k\times m matrix A with a trapdoor,
extends A to dimension n \times m by attaching uniformly random rows, and sends this
extended matrix to the adversary. Next, the adversary sends queries, each query
consisting of k target vectors. The challenger outputs a matrix U such that U maps
the ith row of A to the ith target vector.21

Definition 7.1 (row removal property). Fix any function q : \BbbN \rightarrow \BbbN and pa-
rameter \sigma : \BbbN \rightarrow \BbbR +. A pair of trapdoor generation algorithms \sansL \sansT = (\sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn ,
\sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse ) is said to satisfy the (q, \sigma )-row removal property if for any PPT ad-
versary \scrA there exists a negligible function negl(\cdot ) such that for all \lambda \in \BbbN , q = q(\lambda ),
\sigma = \sigma (\lambda )

\sansp \sansr row - rem,q,\sigma 
\sansL \sansT ,\scrA (\lambda ) = Pr

\Bigl[ 
1\leftarrow \sansE \sansx \sansp \sanst row - rem,q,\sigma 

\sansL \sansT ,\scrA (\lambda )
\Bigr] 
\leq 1/2 + negl(\lambda ),

where \sansE \sansx \sansp \sanst row - rem,q,\sigma 
\sansL \sansT ,\scrA (\cdot ) is as defined in Figure 4.

21Although one might observe some weak resemblance between our row removal property and
lattice trapdoor properties used in [ALS16, BF11], we would like to point out that after a closer
inspection we observe that our row removal property is different.
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\sansE \sansx \sansp \sanst row - rem,q,\sigma 
\sansL \sansT ,\scrA (\lambda )

1. Setup Phase. The adversary \scrA , after receiving as input the security
parameter \lambda , sends dimensions 1n, 1m and a set S \subseteq [n] of size k, such
that m > 2n log q + 2\lambda and \sigma >

\surd 
n \cdot log q \cdot logm + \lambda , to the challenger.a

The challenger chooses a random bit b\leftarrow \{ 0, 1\} and proceeds as follows:
(a) If b = 0, then it samples two matrices B,P as (B, T\bfB ) \leftarrow 

\sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1k, 1m, q), P \leftarrow \BbbZ (n - k)\times m
q . Next, it sets A =

\sansA \sansr \sansr \sansa \sansn \sansg \sanse (B,P, S) and sends A to the adversary.
(b) Otherwise, if b = 1, then it chooses matrix A as (A, T\bfA ) \leftarrow 

\sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1m, q) and sends A to the adversary.
2. Query Phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ k\times t
q . The challenger responds to

each query as follows.
(a) If b = 0, it samples matrix U as U\leftarrow \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (B, T\bfB , \sigma ,C) and

sends U to the adversary.
(b) Otherwise if b = 1, it chooses a random matrix Q as Q \leftarrow \BbbZ (n - k)\times t

q

and sets matrix D as D = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (C,Q, S). Next, it samples matrix
U as U\leftarrow \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A, T\bfA , \sigma ,D) and sends U to the adversary.

3. \scrA sends its guess b\prime . The experiment outputs 1 iff b = b\prime .

aThe parameter constraints could be taken out of the security games, but for technical
reasons we include them as part of the definition itself.

Fig. 4. Experiment \sansE \sansx \sansp \sanst row - rem,q,\sigma 
\sansL \sansT ,\scrA .

A weaker row removal property is one where, in each query, the adversary is
restricted to choosing a set S of size n - 1 during setup phase, and now during query

phase it must make preimage queries of the form (1t,C \in \BbbZ (n - 1)\times t
q ). A different way

to represent the set S in this case is by a single index i \in [n] such that \{ i\} = [n] \setminus S.
We call this property the single row removal property. In our construction, we will
first show a scheme that satisfies the single row removal property and then, via a
simple hybrid argument, we show that the single row removal property implies the
row removal property.

7.1.2. Target switching property. Next, we introduce the target switching
property. For any target Z, if we choose a matrix B with a trapdoor and output
only the preimage of Z with respect to B, then this preimage looks like a random
low-norm matrix. The target switching property is an extension of this property and
is captured via a security game between a challenger and an adversary. In this game,
the challenger specifies the matrix dimensions n,m and a set S \subseteq [n] of size k. The
challenger chooses an n\times m matrix B and sends the rows of B corresponding to the
set S. It also chooses a challenge bit b which is used in the query phase.

Next, the adversary is allowed polynomially many queries. In each query, the
adversary specifies two matrices, Z0,Z1, such that for every index i \in S, the ith rows
of Z0 and Z1 are identical. The challenger outputs a matrix U such that for every
i \in S, U maps the ith row of B to the ith row of Z0 (which is equal to the ith row
of Z1). For the remaining indices i /\in S, U approximately maps the ith row of A to
the ith row of Zb. Intuitively, since the adversary does not have the rows indexed by
S, the challenger can switch the targets from rows of Z0 to Z1.

Definition 7.2 (target switching property). Fix any function q : \BbbN \rightarrow \BbbN , noise
distribution family \{ \chi (\lambda )\} \lambda \in \BbbN , and parameter \sigma : \BbbN \rightarrow \BbbR +. A pair of trapdoor gener-
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ation algorithms \sansL \sansT = (\sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn ,\sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse ) is said to satisfy the (q, \chi , \sigma )-target
switching property if for any PPT adversary \scrA , there exists a negligible function
negl(\cdot ) such that for all \lambda \in \BbbN , q = q(\lambda ), \chi = \chi (\lambda ), \sigma = \sigma (\lambda ),

\sansp \sansr switch,q,\chi ,\sigma 
\sansL \sansT ,\scrA (\lambda ) = Pr

\Bigl[ 
1\leftarrow \sansE \sansx \sansp \sanst switch,q,\chi ,\sigma 

\sansL \sansT ,\scrA (\lambda )
\Bigr] 
\leq 1/2 + negl(\lambda ),

where \sansE \sansx \sansp \sanst switch,q,\chi ,\sigma 
\sansL \sansT ,\scrA (\cdot ) is as defined in Figure 5.

\sansE \sansx \sansp \sanst switch,q,\chi ,\sigma 
\sansL \sansT ,\scrA (\cdot )

1. Setup Phase. The adversary \scrA , after receiving as input the security
parameter \lambda , sends dimensions 1n, 1m, set S \subseteq [n] of size k, such that
m > 2n log q+12\lambda \cdot log q and \sigma >

\surd 
n \cdot log q \cdot logm+\lambda , to the challenger.a

The challenger chooses a random bit b \in \{ 0, 1\} and proceeds as follows:
(a) It samples matrix A as (A, T\bfA )\leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1m, q).
(b) Next, it sets B = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A, S) and sends B to the adversary.

2. Query Phase. The adversary makes polynomially many queries of
the form (1t,Z0,Z1), where Z0,Z1 \in \BbbZ n\times t

q and \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z0, S) =
\sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z1, S). The challenger responds to each query as follows:
(a) It chooses matrix E as E \leftarrow \chi (n - k)\times t and sets F =

\sansA \sansr \sansr \sansa \sansn \sansg \sanse (0k\times t,E, S).
(b) Next, it samples matrix U as U \leftarrow \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A, T\bfA , \sigma ,Zb + E)

and sends U to the adversary.
3. \scrA sends its guess b\prime , and the experiment outputs 1 iff b = b\prime .

aThe parameter constraints could be taken out of the security games, but for technical
reasons we include them as part of the definition itself.

Fig. 5. \sansE \sansx \sansp \sanst switch,q,\chi ,\sigma 
\sansL \sansT ,\scrA (\cdot ).

As before, we will introduce a weaker notion called the single target switching
property, where in each query the adversary is restricted to outputting only a single
index i \in [n], and Z0 and Z1 must agree on all indices j \not = i. We will first show that
our construction satisfies the single target switching property, and then, via a hybrid
argument, we show that single target switching implies the target switching property.

7.2. Our construction of enhanced lattice trapdoors. Let q : \BbbN \rightarrow \BbbN , \sigma :
\BbbN \rightarrow \BbbR + be functions, and let \sansL \sansT = (\sansT \sansr \sansa \sansp \sansG \sanse \sansn ,\sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse ) be a pair of algorithms
that satisfy q-well-sampledness of matrix (Definition 2.7), (q, \sigma )-preimage sampling
(Definition 2.8). We will construct enhanced lattice trapdoors \sansL \sansT \sanse \sansn = (\sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn ,
\sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse ) using \sansL \sansT as follows. The construction is reminiscent of the trapdoor
extension algorithms of [ABB10, CHKP10].
\sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1m, q) \rightarrow (A, T\bfA ). The trapdoor generation algorithm samples two

matrices, A1,A2, of dimensions n\times \lceil m/2\rceil and n\times \lfloor m/2\rfloor as follows:

(A1, T\bfA 1
)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lceil m/2\rceil , q),

(A2, T\bfA 2)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lfloor m/2\rfloor , q).

It appends both these matrices columnwise to obtain a larger matrix as
A = [A1 | A2], and it sets the trapdoor T\bfA to be the combined trapdoor
information T\bfA = (T\bfA 1

, T\bfA 2
).

\sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A, T\bfA ,Z, \sigma ) \rightarrow U. The preimage sampling algorithm takes as input
A = [A1 | A2], trapdoor T\bfA = (T\bfA 1

, T\bfA 2
), parameter \sigma , and matrix Z \in 
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\BbbZ n\times k
q . It chooses a uniformly randommatrixW\leftarrow \BbbZ n\times k

q and setsY = Z - W.

Next, it computes matrices U1 \in \BbbZ \lceil m/2\rceil \times k
q ,U2 \in \BbbZ \lfloor m/2\rfloor \times k

q as

U1 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A1, T\bfA 1
, \sigma ,W),

U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A2, T\bfA 2
, \sigma ,Y).

Finally, it computes the final output matrix U \in \BbbZ m\times k
q by rowwise appending

matrices U1 and U2. Concretely, U =
\bigl[ 
\bfU 1

\bfU 2

\bigr] 
.

Correctness. Correctness follows directly from the correctness of \sansL \sansT .

7.3. Proving security of \bfsansL \bfsansT \bfsanse \bfsansn . We will now prove that our enhanced trapdoor
sampling scheme satisfies the preimage sampling, row removal, and target switching
properties. First, we show that it satisfies the preimage sampling property if the
underlying trapdoor scheme satisfies the preimage sampling property.

Theorem 7.3. Fix any functions q : \BbbN \rightarrow \BbbN and \sigma : \BbbN \rightarrow \BbbR +. If \sansL \sansT satis-
fies (q, \sigma )-preimage sampling (Definition 2.8), then \sansL \sansT \sanse \sansn also satisfies (q, \sigma )-preimage
sampling.

Proof sketch. This follows directly from our construction. The preimage sampling
requires that the preimage of a uniformly random matrix Z looks like a Gaussian
sample with parameter \sigma . In our construction, the preimage of a random matrix Z
consists of preimages of W and Z  - W, where W is uniformly random. Since Z is
random, so is Z  - W. As a result, using the preimage sampling property of \sansL \sansT , we

can argue that these two preimages look like two matrices drawn from \scrD \lceil m/2\rceil \times k
\BbbZ ,\sigma and

\scrD \lfloor m/2\rfloor \times k
\BbbZ ,\sigma , respectively.

7.3.1. Row removal property. Now we prove that our trapdoor sampling
scheme satisfies the row removal property. Formally, we prove the following.

Theorem 7.4. Fix any functions q : \BbbN \rightarrow \BbbN and \sigma : \BbbN \rightarrow \BbbR +. If \sansL \sansT satis-
fies (q, \sigma )-preimage sampling (Definition 2.8) and q-well-sampledness of the matrix
(Definition 2.7), then \sansL \sansT \sanse \sansn also satisfies the (q, \sigma )-single row removal property (Defi-
nition 7.1).

Proof. Our proof follows from a sequence of hybrid experiments. We start by
defining a sequence of hybrid experiments such that the first and last experiments
correspond to the original row removal security game when the challenger chooses its
challenge bit b to be 0 and 1, respectively. To complete the proof we show that the
adversary's advantage must be negligible between any two consecutive hybrids.

We now define hybrids Hx for x \in \{ 0, 1, . . . , 12\} . In all the hybrid experiments
below, we set q = q(\lambda ) and \sigma = \sigma (\lambda ). Also, below in each successive hybrid step,
we only describe the modifications. Later in Appendix C.1, we provide the detailed
hybrids.

Hybrid \bfitH \bfzero . This corresponds to the original game (per Definition 7.1, with the
single row removal restriction) with b = 0.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (B1, T\bfB 1

) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n - 1, 1\lceil m/2\rceil , q), (B2,
T\bfB 2

) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n - 1, 1\lfloor m/2\rfloor , q). It sets B = [B1 | B2].
(b) It also chooses a vector p \leftarrow \BbbZ m

q and sets matrix A \in \BbbZ n\times m
q as A =

\sansA \sansr \sansr \sansa \sansn \sansg \sanse (B,p, [n] \setminus \{ i\} ).
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(c) Finally, it sends A to \scrA .
2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:

(a) It chooses W\leftarrow \BbbZ (n - 1)\times t
q and samples U1 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (B1, T\bfB 1

, \sigma ,W).
(b) Next, it sets Y = C - B1 \cdot U1 (which is equal to C - W) and computes

U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (B2, T\bfB 2
, \sigma ,Y).

(c) Finally, it sends U =
\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. The adversary outputs a bit b\prime .

Hybrid \bfitH \bfone . In this experiment, the challenger chooses U1 to be a random
Gaussian matrix with parameter \sigma for each query.

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:

(a) It samples U1 \leftarrow \scrD \lceil m/2\rceil \times t
\BbbZ ,\sigma .

Hybrid \bfitH \bftwo . In this hybrid, the challenger chooses B1 uniformly at random,
instead of choosing it using \sansT \sansr \sansa \sansp \sansG \sanse \sansn . At this point, note that the left half of A is a
uniformly random matrix.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:

(a) It first chooses B1 \leftarrow \BbbZ (n - 1)\times \lceil m/2\rceil 
q , (B2, T\bfB 2)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n - 1, 1\lfloor m/2\rfloor ,

q). It sets B = [B1 | B2].

Hybrid \bfitH \bfthree . This hybrid involves syntactic changes. The challenger chooses

A1 \leftarrow \BbbZ n\times \lceil m/2\rceil 
q and derives B1 by removing the ith row of A1.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:

(a) It first chooses A1 \leftarrow \BbbZ n\times \lceil m/2\rceil 
q , (B2, T\bfB 2

) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n - 1, 1\lfloor m/2\rfloor , q).
It sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n] \setminus \{ i\} ) and B = [B1 | B2].

(b) It also chooses a vector p2 \leftarrow \BbbZ \lfloor m/2\rfloor 
q and sets A2 = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (B2,p2, [n]\setminus 

\{ i\} ), A = [A1 | A2].

Hybrid \bfitH \bffour . In this hybrid, the challenger chooses the left half of A using
\sansT \sansr \sansa \sansp \sansG \sanse \sansn .

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (A1, T\bfA 1)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn 

\bigl( 
1n, 1\lceil m/2\rceil , q

\bigr) 
, (B2, T\bfB 2)

\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n - 1, 1\lfloor m/2\rfloor , q). It sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n] \setminus \{ i\} ) and
B = [B1 | B2].

Hybrid \bfitH \bffive . In this hybrid, the challenger chooses U1 using \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse for each
query.

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:
(a) It chooses W\prime \leftarrow \BbbZ n\times t

q , sets W = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (W\prime , [n] \setminus \{ i\} ), and samples
U1 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A1, T\bfA 1 , \sigma ,W

\prime ).
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Hybrid \bfitH \bfsix . This hybrid represents a syntactic change in which the challenger,
for each query, chooses Y as a uniformly random matrix, and sets W = C  - Y =
C - B2 \cdot U2.

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:

(a) It chooses Y \leftarrow \BbbZ (n - 1)\times t
q and samples U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (B2, T\bfB 2

, \sigma ,Y).
(b) Next, it sets W = C  - B2 \cdot U2 (which is equal to C  - Y), chooses a

uniformly random vector w \leftarrow \BbbZ t
q, sets W\prime = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (W,w, [n] \setminus \{ i\} ),

and computes U1 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A1, T\bfA 1
, \sigma ,W\prime ).

Hybrid \bfitH \bfseven . In this hybrid experiment, the challenger chooses U2 from a Gauss-
ian distribution with parameter \sigma .

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:

(a) It samples U2 \leftarrow \scrD \lfloor m/2\rfloor \times t
\BbbZ ,\sigma .

Hybrid \bfitH \bfeight . In this hybrid, the challenger chooses matrix B2 uniformly at ran-
dom. Note that this means A2 is uniformly random in this hybrid.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (A1, T\bfA 1

) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn 
\bigl( 
1n, 1\lceil m/2\rceil , q

\bigr) 
, B2 \leftarrow 

\BbbZ (n - 1)\times \lfloor m/2\rfloor 
q . It sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n] \setminus \{ i\} ), and B = [B1 | B2].

Hybrid \bfitH \bfnine . In this hybrid, the matrix A2 is chosen using \sansT \sansr \sansa \sansp \sansG \sanse \sansn .
1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger

proceeds as follows:
(a) It first chooses matrices (A1, T\bfA 1)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn 

\bigl( 
1n, 1\lceil m/2\rceil , q

\bigr) 
, (A2, T\bfA 2)

\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lfloor m/2\rfloor , q). It sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n] \setminus \{ i\} ), B2 =
\sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A2, [n]\setminus \{ i\} ), and B = [B1 | B2].

Hybrid \bfitH \bfone \bfzero . In this hybrid, the challenger chooses U2 using \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse for each
query.

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:
(a) It chooses Y\prime \leftarrow \BbbZ n\times t

q and samples U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A2, T\bfA 2 , \sigma ,Y
\prime ).

Hybrid \bfitH \bfone \bfone . This hybrid represents a syntactic change in which the ith row of
matrix W\prime is set as a difference of random vector c and the ith row of A2 \cdot U2 instead
of being sampled uniformly at random directly.

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:
(b) Next, it chooses a random vector c \leftarrow \BbbZ t

q, sets C\prime = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (C, c,
[n] \setminus \{ i\} ), sets W\prime = C\prime  - A2 \cdot U2, and computes U1 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A1,
T\bfA 1

, \sigma , W\prime ).

Hybrid \bfitH \bfone \bftwo . This hybrid represents a syntactic change. It corresponds to the
security game in Definition 7.1 with b = 1.
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1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (A1, T\bfA 1

)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn 
\bigl( 
1n, 1\lceil m/2\rceil , q

\bigr) 
, (A2, T\bfA 2

)

\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lfloor m/2\rfloor , q). It sets A = [A1 | A2].
(b) Finally, it sends A to \scrA .

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:
(a) It chooses W\prime \leftarrow \BbbZ n\times t

q and computes U1 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A1, T\bfA 1
, \sigma ,W).

(b) Next, it chooses a random vector c \leftarrow \BbbZ t
q, sets C\prime = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (C, c,

[n] \setminus \{ i\} ), sets Y\prime = C\prime  - A1 \cdot U1 (which is equal to C\prime  - W\prime ), and
computes U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A2, T\bfA 2

, \sigma , Y\prime ).
(c) Finally, it sends U =

\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. The adversary outputs a bit b\prime .

Analysis. We will now show that any PPT adversary has at most negligible ad-
vantage in distinguishing any two consecutive hybrids. For any adversary \scrA , let p\scrA ,i :
\BbbN \rightarrow [0, 1] denote the function such that for all \lambda \in \BbbN , p\scrA ,i(\lambda ) is the probability that
\scrA , on input 1\lambda , outputs 1 in hybrid experiment Hi. From the definition of the hybrid
experiments, it follows that for all \lambda \in \BbbN , p\scrA ,0(\lambda ) - p\scrA ,12(\lambda ) = 2\sansp \sansr row - rem,q,\sigma 

\sansL \sansT \sanse \sansn ,\scrA (\lambda ) - 1.
Therefore, to show that \sansL \sansT \sanse \sansn satisfies the (q, \sigma )-row removal property, it suffices to
show that for all \scrA and i \in [12], there exist negligible functions negli such that for all
\lambda \in \BbbN , p\scrA ,i - 1(\lambda ) - p\scrA ,i(\lambda ) \leq negli(\lambda ).

Lemma 7.5. Assuming \sansL \sansT satisfies (q, \sigma )-preimage sampling, for any PPT adver-
sary \scrA there exists a negligible function negl1(\cdot ) such that for all \lambda \in \BbbN , p\scrA ,0(\lambda )  - 
p\scrA ,1(\lambda ) \leq negl1(\lambda ).

Proof. Suppose there exist an adversary \scrA and a nonnegligible function \eta (\cdot ) such
that for all \lambda \in \BbbN , p\scrA ,0(\lambda ) - p\scrA ,1(\lambda ) \geq \eta (\lambda ). Moreover, let s\scrA denote the number of
queries made by \scrA , and let t\scrA denote a bound on the number of columns in queried
matrix C (note that the reduction algorithm is allowed to depend on the adversary,
and therefore it knows s\scrA and t\scrA corresponding to \scrA ).22 Then we can construct a

reduction algorithm \scrB such that \sansp \sansr preimg,q,\sigma 
\sansL \sansT ,\scrB (\lambda ) \geq \eta (\lambda ) for all \lambda \in \BbbN .

The reduction algorithm receives n,m, index i \in [n] from \scrA such that m >
2n log q + 2\lambda and \sigma >

\surd 
n \cdot log q \cdot logm + \lambda . It forwards 1n - 1, 1\lceil m/2\rceil , 1s\scrA \cdot t\scrA to the

challenger.23 It receives B1 \in \BbbZ (n - 1)\times \lceil m/2\rceil 
q and \widetilde U \in \BbbZ \lceil m/2\rceil \times (s\scrA \cdot t\scrA )

q . Note that the
trapdoor for B1 is not used in hybrid H1. The reduction algorithm chooses (B2, T\bfB 2

)
using \sansT \sansr \sansa \sansp \sansG \sanse \sansn , computes A as in H0 (and H1), and sends A to \scrA . The challenger

also partitions \widetilde U =
\bigl[ \widetilde U1 | . . . | \widetilde Us\scrA 

\bigr] 
, where each \widetilde Uj \in \BbbZ \lceil m/2\rceil \times t\scrA 

q .
Next, the adversary sends queries. For the i\ast th query, the adversary sends (1t,C)

for some t \leq t\scrA . The reduction algorithm sets U1 to be the first t columns of \widetilde Ui\ast .
It computes Y = C  - B1 \cdot U1 and U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (B2, T\bfB 2

, \sigma ,Y). It sets U as in
H0/H1 and sends U to \scrA .

Finally, after all queries, if \scrA outputs 1, \scrB guesses that \widetilde U is sampled using

22Throughout this section, we construct the nonuniform reduction algorithm, as our reduction
algorithms depends on the number of queries made by the adversary as well as the size of the
matrices in each query. However, we would like to point out that the reduction could be made
uniform by simply guessing both of these bounds. This would result in a polynomial loss in the
reduction algorithm's advantage.

23Note that the reduction algorithm chooses admissible parameters, since \lceil m/2\rceil > n log q + \lambda >

(n - 1) log q + \lambda and \sigma >
\surd 
n \cdot log q \cdot logm+ \lambda >

\sqrt{} 
(n - 1) \cdot log q \cdot logm/2 + \lambda .
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\sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse ; otherwise it guesses that \widetilde U is a random Gaussian matrix sampled with
parameter \sigma .

Note that depending on whether \widetilde U is sampled using \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse or sampled from
Gaussian distribution, \scrB simulates either H0 or H1 perfectly. As a result, \scrB 's advan-
tage in the preimage sampling game is at least \eta (\lambda ).

Lemma 7.6. Assuming \sansL \sansT satisfies q-well-sampledness of matrix, for any adver-
sary \scrA , there exists a negligible function negl2(\cdot ) such that for all \lambda \in \BbbN , p\scrA ,1(\lambda )  - 
p\scrA ,2(\lambda ) \leq negl2(\lambda ).

Proof. Suppose there exist an adversary \scrA and a nonnegligible function \eta (\cdot ) such
that for all \lambda \in \BbbN , p\scrA ,1(\lambda )  - p\scrA ,2(\lambda ) \geq \eta (\lambda ). Then we can construct a reduction

algorithm \scrB such that \sansp \sansr matrix,q,\sigma 
\sansL \sansT ,\scrB (\lambda ) \geq \eta (\lambda ) for all \lambda \in \BbbN .

The reduction algorithm receives 1n, 1m, index i \in [n] from \scrA . It forwards
1n - 1, 1\lceil m/2\rceil to the challenger.24 It receives B1. The reduction algorithm chooses
(B2, T\bfB 2

) using \sansT \sansr \sansa \sansp \sansG \sanse \sansn , sets A as in H1 (and H2), and sends A to \scrA .
Next, the adversary sends queries. For each query C, the challenger chooses

U1 \leftarrow \scrD \lceil m/2\rceil \times t
\BbbZ ,\sigma and computes Y = C - B1 \cdot U1 and U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (B2, T\bfB 2

, \sigma ,Y).
It chooses p, sets U as in H1/H2, and sends U to \scrA .

After all the queries, if \scrA outputs 1, \scrB guesses that B1 is sampled using \sansT \sansr \sansa \sansp \sansG \sanse \sansn ;
otherwise it guesses that B1 is a uniformly random matrix. Note that, depending on
whether B1 is sampled using \sansT \sansr \sansa \sansp \sansG \sanse \sansn or sampled uniformly at random, \scrB simulates
either H1 or H2 perfectly. As a result, \scrB 's advantage in the matrix well-sampledness
game is at least \eta (\lambda ).

Lemma 7.7. For any adversary \scrA , p\scrA ,2(\lambda ) = p\scrA ,3(\lambda ).

Since the only changes fromH2 toH3 are syntactical, it follows that any adversary
has identical behavior in both hybrids.

Lemma 7.8. Assuming \sansL \sansT satisfies q-well-sampledness of matrix, for any PPT
adversary \scrA , there exists a negligible function negl4(\cdot ) such that for all \lambda \in \BbbN ,
p\scrA ,3(\lambda ) - p\scrA ,4(\lambda ) \leq negl4(\lambda ).

This proof is identical to the proof of Lemma 7.6, except that the reduction
algorithm must send 1n, 1\lceil m/2\rceil instead of 1n - 1, 1\lceil m/2\rceil .

Lemma 7.9. Assuming \sansL \sansT satisfies (q, \sigma )-preimage sampling, for any PPT adver-
sary \scrA , there exists a negligible function negl5(\cdot ) such that for all \lambda \in \BbbN , p\scrA ,4(\lambda )  - 
p\scrA ,5(\lambda ) \leq negl5(\lambda ).

This proof is identical to the proof of Lemma 7.5, except that the reduction
algorithm must send 1n, 1\lceil m/2\rceil , 1s\scrA \cdot t\scrA instead of 1n - 1, 1\lceil m/2\rceil , 1s\scrA \cdot t\scrA .

Lemma 7.10. For any adversary \scrA , p\scrA ,5(\lambda ) = p\scrA ,6(\lambda ).

Note that the distributions in H5 and H6 are identical. In hybrid H5, the chal-
lenger chooses W\prime \leftarrow \BbbZ n\times m

q , derives W from W\prime by removing the ith row, and sets

Y = C  - W. In hybrid H6, it chooses Y \leftarrow \BbbZ (n - 1)\times m
q , sets W = C  - Y, and sets

W\prime to be a matrix extended from W by inserting a random vector at row i. The
distribution of (W,W\prime ,Y) is identical in both hybrid experiments.

Lemma 7.11. Assuming \sansL \sansT satisfies (q, \sigma )-preimage sampling, for any PPT ad-
versary \scrA , there exists a negligible function negl7(\cdot ) such that for all \lambda \in \BbbN , p\scrA ,6(\lambda ) - 
p\scrA ,7(\lambda ) \leq negl7(\lambda ).

24Note that the reduction algorithm chooses admissible parameters, since \lceil m/2\rceil > n log q + \lambda >
(n - 1) log q + \lambda .
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This proof is identical to the proof of Lemma 7.5, except that the reduction
algorithm must send 1n - 1, 1\lfloor m/2\rfloor , 1s\scrA \cdot t\scrA instead of 1n - 1, 1\lceil m/2\rceil , 1s\scrA \cdot t\scrA . It uses the
challenger's response for setting B2,U2 and chooses the remaining components by
itself.

Lemma 7.12. Assuming \sansL \sansT satisfies q-well-sampledness of matrix, for any PPT
adversary \scrA there exists a negligible function negl8(\cdot ) such that for all \lambda \in \BbbN , p\scrA ,7(\lambda ) - 
p\scrA ,8(\lambda ) \leq negl8(\lambda ).

This proof is identical to the proof of Lemma 7.6, except that the reduction
algorithm must send 1n - 1, 1\lfloor m/2\rfloor instead of 1n - 1, 1\lceil m/2\rceil . It uses the challenger's
response for setting B2 and chooses the remaining components by itself.

Lemma 7.13. Assuming \sansL \sansT satisfies q-well-sampledness of matrix, for any adver-
sary \scrA , there exists a negligible function negl9(\cdot ) such that for all \lambda \in \BbbN , p\scrA ,8(\lambda )  - 
p\scrA ,9(\lambda ) \leq negl9(\lambda ).

This proof is identical to the proof of Lemma 7.6, except that the reduction algo-
rithm must send 1n, 1\lfloor m/2\rfloor instead of 1n - 1, 1\lceil m/2\rceil . It uses the challenger's response
for setting A2 and chooses the remaining components by itself.

Lemma 7.14. Assuming \sansL \sansT satisfies (q, \sigma )-preimage sampling, for any PPT ad-
versary \scrA there exists a negligible function negl10(\cdot ) such that for all \lambda \in \BbbN , p\scrA ,9(\lambda ) - 
p\scrA ,10(\lambda ) \leq negl10(\lambda ).

This proof is identical to the proof of Lemma 7.5, except that the reduction algo-
rithm must send 1n, 1\lfloor m/2\rfloor instead of 1n - 1, 1\lceil m/2\rceil . It uses the challenger's response
for setting A2,U2 and chooses the remaining components by itself.

Lemma 7.15. For any adversary \scrA , p\scrA ,10(\lambda ) = p\scrA ,11(\lambda ).

In hybrid experiment H10, the challenger chooses Y\prime \leftarrow \BbbZ n\times m
q and derives Y\prime 

by removing the ith row. It sets W = C  - Y, chooses a uniformly random vector
w \leftarrow \BbbZ m

q , and constructs W\prime from W and w. In hybrid H11, the challenger chooses
Y\prime uniformly at random, extends C\prime from C by inserting a random vector at the ith
row, and sets W\prime = C\prime  - Y\prime . As a result, (Y\prime ,W\prime ) are identically distributed in
both hybrids. The remaining components in the hybrids either are identical or can
be derived from Y\prime ,W\prime .

Lemma 7.16. For any adversary \scrA , p\scrA ,11(\lambda ) = p\scrA ,12(\lambda ).

Note that the distributions in H11 and H12 are identical. The proof is identical
to that of Lemma 7.10.

Using the above lemmas, it follows that the advantage of an adversary in the row
removal experiment is at most negl(\lambda ).

Theorem 7.17. Fix any function q : \BbbN \rightarrow \BbbN , \sigma : \BbbN \rightarrow \BbbR +. Assuming \sansL \sansT \sanse \sansn =
(\sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn ,\sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse ) satisfies the (q, \sigma )-single row removal property, \sansL \sansT \sanse \sansn also
satisfies the (q, \sigma )-row removal property.

Proof. This proof follows via a simple hybrid argument, where we gradually re-
move the nontargeted rows from A one by one. Suppose \scrA outputs set S of size k.
We will define n - k + 1 hybrids H1, . . . ,Hn - k+1 as follows.

Hybrid \bfitH \bfiti for 0 \leq \bfiti \leq \bfitn  - \bfitk . In hybrid Hi, the challenger does the following:
1. Let (1n, 1m, S \subseteq [n]) \leftarrow \scrA (1\lambda ), and let S = \{ i1, . . . , ik\} , S = \{ i\prime 1, . . . , i\prime n - k\} .

Let Si = S\cup \{ i\prime 1, . . . , i\prime i\} = \{ \~i1, . . . ,\~ik+i\} and Si = [n]\setminus Si =
\bigl\{ 
\~i\prime 1, . . . , \~i\prime n - k - i

\bigr\} 
.
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2. It chooses (B, T\bfB )\leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1k+i, 1m, q), P\leftarrow \BbbZ (n - k - i)\times m
q .

3. It sets A \in \BbbZ n\times m
q , where A[\~ij ] = B[j] for all j \leq k + i, and A[\~i\prime j ] = P[j] for

all j \leq n - k  - i, and it sends A to \scrA .
4. Next, the adversary sends queries. For each query \{ cj\} j\in S , the challenger

first chooses cj \leftarrow \BbbZ t
q for each j \in Si \setminus S, and sets C \in \BbbZ (k+i)\times t

q , where
C[j] = c\~ij for all j \leq k + i.

5. Next, it chooses U\leftarrow \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (B, T\bfB ,C, \sigma ) and sends (A,U).
6. Finally, after all queries, the adversary \scrA outputs a bit b\prime .

Note that H0 and Hn - k correspond to b = 0 and b = 1 in the row removal
experiment. For any adversary \scrA , let p\scrA ,i(\lambda ) denote the probability of \scrA outputting
1 in hybrid Hi. We will show that for any adversary \scrA , there exists a negligible
function negl(\cdot ) such that p\scrA ,i(\lambda ) and p\scrA ,i+1 differ by at most negl(\lambda ).

Lemma 7.18. Fix any index i \in \{ 0, 1, . . . , n  - k  - 1\} . Assuming \sansL \sansT \sanse \sansn satisfies
the single row removal property, for any PPT adversary \scrA , there exists a negligible
function negl(\cdot ) such that for all \lambda \in \BbbN , p\scrA ,i(\lambda ) - p\scrA ,i+1(\lambda ) \leq negl(\lambda ).

Proof. Suppose there exist an adversary \scrA and a nonnegligible function \eta (\cdot ) such
that for all \lambda \in \BbbN , p\scrA ,i(\lambda )  - p\scrA ,i+1(\lambda ) \geq \eta (\lambda ). We can use \scrA to build a reduction
algorithm \scrB that can break the single row removal property with advantage \eta (\cdot ).

The reduction algorithm first receives 1n, 1m, S = \{ i1, . . . , ik\} . It defines Si+1 =
S \cup \{ i\prime 1, . . . , i\prime i+1\} = \{ \~i1, . . . ,\~ik+i+1\} , and lets \sansi \sansn \sansd \sansx \in [k + i + 1] be the index such

that \~i\sansi \sansn \sansd \sansx = i\prime i+1. The reduction algorithm sends 1k+i+1, 1m and \sansi \sansn \sansd \sansx .25 It receives
B from the challenger. The reduction algorithm sets A \in \BbbZ n\times m

q such that for each

j \leq k + i+ 1, A[\~ij ] = B[j], and the remaining rows are chosen uniformly at random.
For each query \{ cj\} j\in S , the reduction algorithm chooses vectors \{ ci\prime 1 , . . . , ci\prime i\} 

uniformly at random from \BbbZ t
q and sends \{ c\~ij\} j\in [k+i+1],j \not =\sansi \sansn \sansd \sansx to the challenger. The

challenger sends U to the reduction algorithm. The reduction algorithm forwards U
to \scrA . Finally, after all the queries, \scrB outputs the adversary's final output bit.

Clearly, the reduction algorithm simulates either Hi or Hi+1, depending on the
challenger's output, and therefore the advantage of \scrB is p\scrA ,i(\lambda ) - p\scrA ,i+1(\lambda ).

7.3.2. Target switching property. Now we prove that our trapdoor sampling
scheme satisfies the target switching property. Formally, we prove the following.

Theorem 7.19. Fix any functions q : \BbbN \rightarrow \BbbN and \sigma : \BbbN \rightarrow \BbbR +, and error
distribution family \{ \chi (\lambda )\} \lambda . If \sansL \sansT satisfies q-well-distributedness of matrix (Defini-
tion 2.7), (q, \sigma )-well-distributedness of preimage (Definition 2.8), and \sansL \sansW \sansE -\sanss \sansp (d,q,\sigma ,\chi )
holds (LWE with short public vectors; Assumption 3) where d(\lambda ) = 6\lambda log q(\lambda ), then
\sansL \sansT \sanse \sansn satisfies the (q, \sigma , \chi )-single target switching property.

Proof. To prove the above theorem, we first define a sequence of hybrid games
where the first game is the single target switching security game, and in the last game
the adversary's advantage is exactly 0. Later we show that the adversary's advantage
in any two consecutive hybrid games is negligible. For simplicity of notation, we will
let d = d(\lambda ), q = q(\lambda ), \sigma = \sigma (\lambda ), and \chi = \chi (\lambda ). Below in each successive hybrid
game, we only describe the modifications. Later, in Appendix C.2, we provide the
detailed hybrid games.

25Note that the reduction algorithm chooses admissible parameters, since m > n log q + \lambda >
(k + i+ 1) log q + \lambda and \sigma >

\surd 
n \cdot log q \cdot logm+ \lambda >

\sqrt{} 
(k + i+ 1) \cdot log q \cdot logm+ \lambda .
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Hybrid \bfitH \bfzero . This corresponds to the single target switching security game.
1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger

proceeds as follows:
(a) It chooses matrices (A1, T\bfA 1) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lceil m/2\rceil , q) and (A2, T\bfA 2)
\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lfloor m/2\rfloor , q). It also chooses a random bit b\leftarrow \{ 0, 1\} .

(b) Next, it sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n]\setminus \{ i\} ), B2 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A2, [n]\setminus \{ i\} ) and
sends [B1 | B2] to \scrA .

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1t,Z0,Z1), where Z0,Z1 \in \BbbZ n\times t

q such that \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z0, [n]\setminus 
\{ i\} ) = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z1, [n]\setminus \{ i\} ). The challenger responds to each query as follows:
(a) It chooses W\leftarrow \BbbZ n\times t

q , computes U1 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A1, T\bfA 1 , \sigma ,W).

(b) It also samples vector e\leftarrow \chi t and sets E = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (0(n - 1)\times t, e, [n]\setminus \{ i\} ).
(c) Next, it sets Y = Zb - A1 \cdot U1 +E (which is equal to Zb - W+E) and

computes U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A2, T\bfA 2
, \sigma ,Y).

(d) Finally, it sends U =
\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. \scrA outputs its guess b\prime .

Hybrid \bfitH \bfone . In this hybrid experiment, the challenger sets U1 to be a Gaussian
matrix for each query.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1t,Z0,Z1), where Z0,Z1 \in \BbbZ n\times t

q such that \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z0, [n]\setminus 
\{ i\} ) = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z1, [n]\setminus \{ i\} ). The challenger responds to each query as follows:

(a) It computes U1 \leftarrow \scrD \lceil m/2\rceil \times t
\BbbZ ,\sigma .

Hybrid \bfitH \bftwo . In this hybrid experiment, the challenger sets A1 to be a uniformly
random matrix (that is, sampled without a trapdoor).

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:

(a) It chooses A1 \leftarrow \BbbZ n\times \lceil m/2\rceil 
q and (A2, T\bfA 2

) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lfloor m/2\rfloor , q). It
also chooses a random bit b\leftarrow \{ 0, 1\} .

Hybrid \bfitH \bfthree . This hybrid is a syntactic change. Here, we express Y in terms of
B1 and the ith row of A1. Note that the ith row of A1 is used only for computing
the ith row of Y.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1t,Z0,Z1), where Z0,Z1 \in \BbbZ n\times t

q such that \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z0, [n]\setminus 
\{ i\} ) = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z1, [n]\setminus \{ i\} ). The challenger responds to each query as follows:
(b) It also samples vector e\leftarrow \chi t and sets Z\prime 

b = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Zb, [n] \setminus \{ i\} ).
(c) Next, it sets Y\prime = Z\prime 

b  - B1 \cdot U1, y = Zb[i]  - A1[i] \cdot U1 + e, and Y =
\sansA \sansr \sansr \sansa \sansn \sansg \sanse (Y\prime ,y, [n] \setminus \{ i\} ). It then computes U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A2, T\bfA 2

, \sigma ,
Y).

Hybrid \bfitH \bffour . In this hybrid experiment, the challenger sets the ith row of Y to
be a uniformly random vector.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1t,Z0,Z1), where Z0,Z1 \in \BbbZ n\times t

q such that \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z0, [n]\setminus 
\{ i\} ) = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z1, [n]\setminus \{ i\} ). The challenger responds to each query as follows:
(c) Next, it setsY\prime = Z\prime 

b - B1\cdot U1, y\leftarrow \BbbZ t
q, andY = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (Y\prime ,y, [n]\setminus \{ i\} ).

It then computes U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A2, T\bfA 2
, \sigma ,Y).

Analysis. We will now analyze the adversary's advantage in the single target
switching experiment. Let p\scrA ,l(\lambda ) denote the probability of \scrA guessing correctly
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COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-145

(i.e., b\prime = b) at the end of hybrid experiment Hl. We will show that for every PPT
adversary \scrA and l \in [4] there exist negligible functions negll(\cdot ) such that for all \lambda \in \BbbN ,
p\scrA ,l - 1  - p\scrA ,l \leq negli(\lambda ).

Lemma 7.20. Assuming \sansL \sansT satisfies (q, \sigma )-preimage sampling, for any adversary
\scrA there exists a negligible function negl1(\cdot ) such that for all \lambda \in \BbbN , p\scrA ,0  - p\scrA ,1 \leq 
negl1(\lambda ).

The proof of this lemma is similar to the proof of Lemma 7.5.

Lemma 7.21. Assuming \sansL \sansT satisfies q-well-sampledness of matrix, for any adver-
sary \scrA there exists a negligible function negl2(\cdot ) such that for all \lambda \in \BbbN , p\scrA ,1 - p\scrA ,2 \leq 
negl2(\lambda ).

The proof of this lemma is similar to the proof of Lemma 7.6.

Lemma 7.22. For any adversary \scrA , p\scrA ,2 = p\scrA ,3.

Note that the only differences in H2 and H3 are syntactic changes with respect
to matrix Y. As a result, the distributions in the two hybrids are identical.

Lemma 7.23. If \sansL \sansW \sansE -\sanss \sansp (d,q,\sigma ,\chi ) holds (Assumption 3) where d(\lambda ) = 6\lambda log q(\lambda ),
then for any PPT adversary \scrA there exists a negligible function negl4(\cdot ) such that for
all \lambda \in \BbbN , p\scrA ,3  - p\scrA ,4 \leq negl4(\lambda ).

Proof. Suppose, on the contrary, there exist an adversary \scrA and a nonnegligible
function \eta (\cdot ) such that p\scrA ,3 - p\scrA ,4 \geq \eta (\lambda ) for all \lambda \in \BbbN . We will construct a reduction

algorithm \scrB such that \sansA \sansd \sansv \sansL \sansW \sansE -\sanss \sansp ,d,q,\sigma ,\chi 
\scrB (\lambda ) \geq \eta (\lambda ) for all \lambda \in \BbbN .

The reduction algorithm first receives 1n, 1m, i \in [n],Z0,Z1 from the adversary \scrA 
(such thatm > 2n log q+12\lambda log q). The reduction algorithm choosesB1 \leftarrow \BbbZ (n - 1)\times m

q ,
(A2, T\bfA 2)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lfloor m/2\rfloor , q) and derives B2 from A2 by removing the ith row.
It defines B = [B1 | B2] and sends it to the adversary. It also chooses a random bit
b\leftarrow \{ 0, 1\} .

Next, the reduction algorithm receives queries from the adversary, and it uses
the \sansL \sansW \sansE -\sanss \sansp challenger to define matrices U1 and y. For each query, the adversary
sends two matrices, Z0,Z1 \in \BbbZ n\times t

q , such that all their rows are equal, except the ith
one. The reduction algorithm queries the \sansL \sansW \sansE -\sanss \sansp challenger for t queries and receives

\{ (ar, ur)\} r\in [t], where ar \in \BbbZ d
q for each r \in [t]. It chooses \~ar \leftarrow \scrD \lceil m/2\rceil  - d

\BbbZ q,\sigma 
for each

r \in [m], \~s \leftarrow \BbbZ \lceil m/2\rceil  - d
q .26 Next, it sets U1 \in \BbbZ \lceil m/2\rceil \times m

q to be a matrix whose rth
column is [a | \~ar]T for each r \in [m]. It sets y \in \BbbZ m

q , where yr = Zb[i]r  - ur  - \~s \cdot \~aTr .
Once y and U1 are determined, the reduction algorithm can compute U2 using

B1,U1,Zb, T\bfA 2
. It sets B and U as in H3/H4 and sends U to \scrA .

Finally, after all the queries, the adversary outputs a bit b\prime . If b = b\prime , the reduction
algorithm guesses 0 (i.e., ur is an LWE sample); otherwise it guesses 1 (i.e., ur is a
uniformly random element).

Now note that if the \sansL \sansW \sansE -\sanss \sansp challenger uses oracle O2(), then the reduction
algorithm simulates H4; otherwise it simulates H3. Therefore, the advantage of \scrB is
at least p\scrA ,3  - p\scrA ,4.

26Since m > 2n log q+12\lambda \cdot log q and d = 6\lambda log q, thus \lceil m/2\rceil  - d \geq 0. Here we would like to point
out that in our target switching security game the adversary is allowed to choose the dimensions
m,n; as stated in our LWE assumption framework, however, the lattice dimensions are not chosen
by the adversary. Due to this definitional inconsistency, as a reduction algorithm we always choose
to attack the LWE problem for dimensions d(\lambda ) = 6\lambda log q(\lambda ). This could be avoided by adapting
the existing definitions.
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Using the above lemmas, it follows that any PPT adversary has an advantage
at most negl(\lambda ) in the single target switching security game, since in the last hybrid
game (H4) the challenger's response is independent of bit b and thus any adversary
advantage is exactly 0.

Theorem 7.24. Fix any function q : \BbbN \rightarrow \BbbN , \sigma : \BbbN \rightarrow \BbbR + and distribution family
\{ \chi (\lambda )\} \lambda . Assuming \sansL \sansT \sanse \sansn satisfies the (q, \sigma , \chi )-single target switching property, \sansL \sansT \sanse \sansn 

also satisfies the (q, \sigma , \chi )-target switching property.

The proof of this theorem follows from a hybrid argument similar to that in the
proof of Theorem 7.17.

8. Constructing 1-bounded mixed functional encryption. In this section
we describe our construction of Mixed FE for input-circling branching programs with
polynomial width and length. Concretely, \scrM \kappa = \{ 0, 1\} k and \scrF \kappa denotes the class
of input-circling branching programs with input space \{ 0, 1\} k, width w, and length
\ell = k \cdot L, where \kappa = (k,w, L). In other words, every branching program reads
each input bit L times in a circular fashion. Before describing our construction, we
introduce some shorthand notation that we will use throughout this section.

8.1. Notation. Consider a set of 4\ell \lambda matrices \{ B(j,\beta )
i,b \} i\in [\ell ],j\in [\lambda ],\beta ,b\in \{ 0,1\} and w\ell 

matrices \{ Pi,v\} i\in [\ell ],v\in [w], where each individual matrix lies in \BbbZ n\times m
q . For i \in [\ell ], let

Di be another matrix defined as below:

Di =

\left[                

B
(1,0)
i,0

B
(1,0)
i,1

B
(1,1)
i,0
...

B
(\lambda ,1)
i,1

Pi,1

...
Pi,w

\right]                

The matrix Di consists of matrices B
(j,\beta )
i,b arranged per ad-

joining well-defined ordering. Concretely, let (i, j, \beta , b) be
the indices of any B matrix. The ordering we define is that

(i, j1, \beta 1, b1) \prec (i, j2, \beta 2, b2) \Leftarrow \Rightarrow 

\left\{         
j1 < j2, or

j1 = j2 \wedge \beta 1 < \beta 2, or

j1 = j2 \wedge \beta 1 = \beta 2

\wedge b1 < b2.

Thus, per our ordering (i, 1, 0, 0), (i, 1, 0, 1), (i, 1, 1, 0),
(i, 1, 1, 1), . . . , (i, \lambda , 1, 1) is an increasing sequence of in-
dices. Similarly, we can define an ordering for matrices
Pi,v for v \in [w] (i.e., (i, v1) \prec (i, v2) \Leftarrow \Rightarrow v1 < v2).

In words, matrix Di is defined by rowwise appending matrices \{ B(j,\beta )
i,b \} j\in [\lambda ],\beta ,b\in \{ 0,1\} 

and \{ Pi,v\} v\in [w] in an increasing order per the ordering ``\prec "" defined above. We will use

the following shorthand notation for representing the above matrix more compactly:

Di =

\left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
j\in [\lambda ],\beta ,b\in \{ 0,1\} 

\{ Pi,v\} v\in [w]

\right]  .

Similarly, for any (possibly empty) sets S1 \subseteq [\lambda ] \times \{ 0, 1\} 2, S2 \subseteq [w], we will use the
shorthand

DS1,S2

i =

\Biggl[ \Bigl\{ 
B

(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S1

\{ Pi,v\} v\in S2

\Biggr] 
to represent the matrix generated by rowwise appending matrices \{ B(j,\beta )

i,b \} (j,\beta ,b)\in S1

and \{ Pi,v\} v\in S2
in an increasing order per the ordering ``\prec "".
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8.2. Construction. In this section, we present our Mixed FE scheme. First, we
provide the parameter constraints required by our correctness and security proof. For
functionality indices (k,w, L) (where k denotes the input length, and w, \ell (= k \cdot L) are
the width and length of branching programs), the setup algorithm chooses parameters
n,m, q, \sigma and noise distributions \chi \sansb \sansi \sansg , \chi \sansl \sansa \sanss \sanst , \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi s, \chi \sansl \sansw \sanse as follows.

Fix any \epsilon < 1. Let \chi 1, \chi 2 be a B1-bounded discrete Gaussian distribution with
parameter \sigma such that B1 =

\surd 
m \cdot \sigma . Also, for any B > 0, let UB denote the uniform

distribution on \BbbZ \cap [ - B,B], i.e., integers between \pm B. The setup algorithm chooses
parameters n,m, \sigma , q and sets noise distributions \chi \sansb \sansi \sansg , \chi \sansl \sansa \sanss \sanst , \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi s, \chi \sansl \sansw \sanse with the
following constraints. Also, we will use different versions of LWE, with different noise
distributions.

- \chi s = \chi \sansa \sansp \sansp \sansr = \chi \sansp \sansr \sanse = \chi 1 (for enhanced trapdoor sampling);
- n = \sansp \sanso \sansl \sansy (\lambda ), \chi \sansl \sansw \sanse = \chi 1, and q \leq 2n

\epsilon 

(for LWE security: \sansL \sansW \sansE n,q,\chi \sansl \sansw \sanse 
,

\sansL \sansW \sansE -\sanss \sanss n,q,\chi \sansl \sansw \sanse 
, \sansL \sansW \sansE -\sanss \sansp 6n log q,q,\sigma \sansp \sansr \sanse ,\chi \sansa \sansp \sansp \sansr 

);
- m > 2(4\lambda + w) \cdot n \cdot log q + 12n \cdot log q (for enhanced trapdoor sampling);
- \sigma >

\sqrt{} 
(4\lambda + w) \cdot n \cdot log q \cdot logm+ \lambda (for enhanced trapdoor sampling);

- \chi \sansb \sansi \sansg = U\sigma \sansb \sansi \sansg 
and \chi \sansl \sansa \sanss \sanst = U\sigma \sansl \sansa \sanss \sanst 

, where \sigma \sansb \sansi \sansg = \sigma \cdot 2\lambda , \sigma \sansl \sansa \sanss \sanst = (m \cdot \sigma )\ell \cdot 2\lambda 
(for smudging/security);

- \sigma \sansp \sansr \sanse = \sigma , (m \cdot (\sigma \sansb \sansi \sansg + \sigma \sansp \sansr \sanse ))
\ell \cdot (m \cdot (\sigma \sansl \sansa \sanss \sanst + \sigma \sansp \sansr \sanse )) \leq q/16 (for correctness);

- \sigma s = \sigma ,
\surd 
n \cdot \sigma s \cdot (m \cdot (\sigma \sansp \sansr \sanse + \sigma \sansa \sansp \sansp \sansr ))

\ell \leq q/16 (for correctness).
First, note that it is not necessary to have distributions \chi \sansl \sansw \sanse , \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse be the same
distribution. Keeping all these to be different distributions will only affect the under-
lying assumptions to which we reduce security. One possible setting of parameters is
as follows: n = (2\lambda \cdot \ell )1/\epsilon , m = n1+2\epsilon \cdot w, q = 2n

\epsilon 

, and \sigma = n \cdot 
\surd 
w.

We will now describe our Mixed FE construction.
\bullet \sansS \sanse \sanst \sansu \sansp (1\lambda , (1k, 1w, 1L)) \rightarrow (\sansp \sansp ,\sansm \sanss \sansk ). The setup algorithm takes as input the
security parameter \lambda , message length k, branching program width w, and
number of times it reads each bit L.27 It chooses an LWE modulus q, dimen-
sions n,m, and also distributions \chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst as described above.
Let \ell = k \cdot L and \widetilde n = (4\lambda +w)n. It runs the \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn algorithm \ell times as
follows:

\forall i \in [\ell ], (Mi, Ti)\leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde n, 1m, q).

For each i \in [\ell ], it interprets matrix Mi as 4\lambda + w matrices with dimensions
n\times m arranged as follows:

Mi =

\left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
j\in [\lambda ],\beta ,b\in \{ 0,1\} 

\{ Pi,v\} v\in [w]

\right]  .

Also, it samples 4\ell \lambda matrices \{ C(j,\beta )
i,b \} i,j,\beta ,b uniformly at random as C

(j,\beta )
i,b \leftarrow 

\BbbZ n\times m
q for i \in [\ell ], j \in [\lambda ], \beta , b \in \{ 0, 1\} . Finally, it sets the public parameters

and the master secret key as

\sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ),

\sansm \sanss \sansk =

\biggl( \Bigl\{ 
B

(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
i\in [\ell ],j\in [\lambda ],\beta ,b\in \{ 0,1\} 

, \{ Pi,v\} i\in [\ell ],v\in [w] , \{ Ti\} i\in [\ell ]

\biggr) 
.

27Note that here we slightly deviate from our definition as we have 3 separate functionality param-
eters instead of a single index. This could simply be handled by extending the Mixed FE definition
to multiple indices.
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\bullet \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk , x \in \{ 0, 1\} k)\rightarrow \sanss \sansk . The key generation algorithm takes as input
the master secret key \sansm \sanss \sansk and a message x \in \{ 0, 1\} k. Let

\sansm \sanss \sansk =

\biggl( \Bigl\{ 
B

(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
i\in [\ell ],j\in [\lambda ],\beta ,b\in \{ 0,1\} 

, \{ Pi,v\} i\in [\ell ],v\in [w] , \{ Ti\} i\in [\ell ]

\biggr) 
.

It chooses a secret vector \widetilde s of length n as \widetilde s\leftarrow \chi n
s and \lambda  - 1 random vectors

y(j) of length m as y(j) \leftarrow \BbbZ m
q for j \in [\lambda  - 1]. Next, it sets vector y(\lambda ) as

y(\lambda ) = \widetilde s \cdot P1,1  - 
\sum 

j\in [\lambda  - 1]

y(j).

The key generation algorithm then chooses 2\ell \lambda secret vectors \{ s(j,\beta )i \} i,j,\beta and

2(\ell + 1)\lambda error vectors \{ e(j,\beta )i \} i,j,\beta of length n and m, respectively, as

\forall i \in [\ell ], j \in [\lambda ], \beta \in \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall i \in [\ell ], j \in [\lambda ], \beta \in \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall j \in [\lambda ], \beta \in \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst .

Let \widetilde x = xL, i.e., \widetilde x is a k \cdot L-bit string obtained by appending string x to itself

L times. Next, it computes 2(\ell + 1)\lambda key vectors \{ t(j,\beta )i \} i,j,\beta as follows:

\forall i \in [\ell + 1], j \in [\lambda ], \beta \in \{ 0, 1\} ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1.

Finally, it outputs the secret key \sanss \sansk as

\sanss \sansk =

\biggl( 
x,
\Bigl\{ 
t
(j,\beta )
i

\Bigr\} 
i\in [\ell +1],j\in [\lambda ],\beta \in \{ 0,1\} 

\biggr) 
.

\bullet \sansE \sansn \sansc (\sansp \sansp )\rightarrow \sansc \sanst . The encryption algorithm takes as input the public parameters
\sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ). It first chooses a \lambda -bit string \sanst \sansa \sansg \leftarrow \{ 0, 1\} \lambda and
2\ell random short matrices \{ Ui,b\} i,b as

\forall i \in [\ell ], b \in \{ 0, 1\} , Ui,b \leftarrow \chi m\times m
\sansp \sansr \sanse .

Finally, it outputs the ciphertext \sansc \sanst as

\sansc \sanst =
\Bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\Bigr) 
.

\bullet \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk ,\sansB \sansP ) \rightarrow \sansc \sanst . The secret key encryption algorithm takes as input
the master secret key \sansm \sanss \sansk and an input-circling branching program \sansB \sansP . Let

\sansm \sanss \sansk =

\biggl( \Bigl\{ 
B

(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
i\in [\ell ],j\in [\lambda ],\beta ,b\in \{ 0,1\} 

, \{ Pi,v\} i\in [\ell ],v\in [w] , \{ Ti\} i\in [\ell ]

\biggr) 
,

\sansB \sansP =
\Bigl( 
\{ \pi i,b : [w]\rightarrow [w]\} i\in [\ell ],b\in \{ 0,1\} , \sansa \sansc \sansc \in [w], \sansr \sanse \sansj \in [w]

\Bigr) 
.
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It first chooses a \lambda -bit string \sanst \sansa \sansg \leftarrow \{ 0, 1\} \lambda and samples 8\ell \lambda matrices
\bigl\{ 
D

(j,\beta )
i,b ,\widetilde D(j,\beta )

i,b

\bigr\} 
i,j,\beta ,b

for i \in [\ell ], j \in [\lambda ], \beta , b \in \{ 0, 1\} as follows:

\forall i \in [\ell ], j \in [\lambda ], \beta , b \in \{ 0, 1\} ,
D

(j,\beta )
i,b =

\Biggl\{ 
C

(j,\beta )
i,b if \beta = \sanst \sansa \sansg j and b = 0,\bigl( 
\leftarrow \BbbZ n\times m

q

\bigr) 
otherwise,

\widetilde D(j,\beta )

i,b =

\Biggl\{ 
C

(j,\beta )
i,b if \beta = \sanst \sansa \sansg j and b = 1,\bigl( 
\leftarrow \BbbZ n\times m

q

\bigr) 
otherwise.

In the above cases, we use ``
\bigl( 
\leftarrow \BbbZ n\times m

q

\bigr) 
"" to denote the operation of uniformly

sampling a dimension n \times m matrix in \BbbZ q. Note that here the sampling
is performed uniformly and independently each time. Next, the algorithm
samples w matrices \{ P\ell +1,v\} v\in [w] for the top level and 2w\ell error matrices

\{ Ei,v, \widetilde Ei,v\} i\in [\ell ],v\in [w] as follows:

\forall v \in [w], P\ell +1,v =

\Biggl\{ 
0n\times m if v = \sansr \sanse \sansj ,\bigl( 
\leftarrow \BbbZ n\times m

q

\bigr) 
otherwise,

\forall i \in [\ell ], v \in [w], Ei,v \leftarrow \chi n\times m
\sansa \sansp \sansp \sansr , \widetilde Ei,v \leftarrow \chi n\times m

\sansa \sansp \sansp \sansr .

The algorithm then sets 2w\ell matrices \{ Qi,v, \widetilde Qi,v\} i\in [\ell ],v\in [w] as follows:

\forall i \in [\ell ], v \in [w],
Qi,v = Pi+1,\pi i,0(v) +Ei,v,\widetilde Qi,v = Pi+1,\pi i,1(v) +

\widetilde Ei,v.

Next, for i \in [\ell ], we use matrices Mi,Wi,\widetilde Wi to represent the following
(4\lambda + w)n\times m dimension matrices:

Mi =

\left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
j\in [\lambda ],\beta ,b\in \{ 0,1\} 

\{ Pi,v\} v\in [w]

\right]  , Wi =

\left[  \Bigl\{ D(j,\beta )
i,b

\Bigr\} 
j\in [\lambda ],\beta ,b\in \{ 0,1\} \bigl\{ 

Qi,v

\bigr\} 
v\in [w]

\right]  ,

\widetilde Wi =

\left[   
\biggl\{ \widetilde D(j,\beta )

i,b

\biggr\} 
j\in [\lambda ],\beta ,b\in \{ 0,1\} \Bigl\{ \widetilde Qi,v

\Bigr\} 
v\in [w]

\right]   .

Now, the secret key encryption algorithm runs the \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse to compute
2\ell short matrices \{ Ui,b\} i,b as

\forall i \in [\ell ],
Ui,0 \leftarrow \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (Mi, Ti, \sigma \sansp \sansr \sanse ,Wi),

Ui,1 \leftarrow \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (Mi, Ti, \sigma \sansp \sansr \sanse ,\widetilde Wi).

Finally, it outputs the ciphertext \sansc \sanst as

\sansc \sanst =
\Bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\Bigr) 
.

\bullet \sansD \sanse \sansc (\sanss \sansk , \sansc \sanst )\rightarrow \{ 0, 1\} . The decryption algorithm takes as input a secret key \sanss \sansk 
and a ciphertext \sansc \sanst . Let

\sanss \sansk =

\biggl( 
x,
\Bigl\{ 
t
(j,\beta )
i

\Bigr\} 
i\in [\ell +1],j\in [\lambda ],\beta \in \{ 0,1\} 

\biggr) 
, \sansc \sanst =

\Bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\Bigr) 
.
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We will assume the algorithm knows the LWE modulus q (i.e., for instance,
the public parameters could be included in the secret keys). Let \widetilde x = xL, i.e.,\widetilde x is a k \cdot L-bit string obtained by appending string x to itself L times. The
decryption algorithm computes the following:

z =

\lambda \sum 
j=1

\ell +1\sum 
i=1

\Biggl( 
t
(j,\sanst \sansa \sansg j)

i \cdot 
\ell \prod 

\alpha =i

U\alpha ,\widetilde x\alpha 

\Biggr) 
.

Finally, if \| z\| \leq q/8, it outputs 0; otherwise it outputs 1.

Theorem 8.1. Assuming the trapdoor scheme \sansL \sansT \sanse \sansn satisfies the (q, \sigma \sansp \sansr \sanse )-well-
sampledness of the preimage, the (q, \sigma \sansp \sansr \sanse )-row removal property, the (q, \chi \sansl \sansw \sanse , \sigma \sansp \sansr \sanse )-
target switching property, assuming that assumptions \sansL \sansW \sansE n,q,\chi \sansl \sansw \sanse 

, \sansL \sansW \sansE -\sanss \sanss n,q,\chi \sansl \sansw \sanse 
, and

\sansL \sansW \sansE -\sanss \sansp 6n log q,\sigma \sansp \sansr \sanse ,\chi \sansa \sansp \sansp \sansr 
hold (where n,m, q, \sigma \sansp \sansr \sanse , \chi \sansl \sansw \sanse , \chi \sansa \sansp \sansp \sansr are defined as in the con-

struction), for any PPT adversary \scrA that outputs (1k, 1w, 1L) such that the param-
eter constraints as provided in the construction are satisfied, then there exist neg-
ligible functions negl1(\cdot ),negl2(\cdot ) such that for every \lambda \in \BbbN , \scrA 's advantage in the
1-bounded restricted function indistinguishability security (see Definition 5.2) and 1-
bounded restricted accept indistinguishability (see Definition 5.4) is at most negl1(\lambda )
and negl2(\lambda ), respectively.

Remark 8.2 (extending to r-bounded security). We would like to point out that
the above construction can be naturally extended to achieve r-bounded security for
any a priori fixed polynomial r. To understand the modification, we will look ahead
to the security proof. Specifically, we will focus on the importance of the \lambda -bit string
\sanst \sansa \sansg chosen during encryption. During the proof, we crucially rely on the tag strings
\sanst \sansa \sansg and \sanst \sansa \sansg \ast (the first chosen for answering the encryption query, and the second used
to answer the challenge query) being distinct at at least one index. Since they are
chosen uniformly at random each time, thus we know that \sanst \sansa \sansg \not = \sanst \sansa \sansg \ast with probability
1  - 1

2\lambda 
. Now if the challenger has to answer r encryption queries instead of just

1, then the modification we consider is to increase the alphabet size of tags such
that the tag strings chosen during all encryption queries and the challenge query are
distinct at at least one index. (Note that this would also mean that we will have to
likewise increase the number of underlying matrices chosen and extend the trapdoor
sampling procedure appropriately.) More formally, we will now sample tag strings as

a uniformly random 2r2-ary string of length-\lambda (i.e., \sanst \sansa \sansg \leftarrow 
\bigl\{ 
1, . . . , 2r2

\bigr\} \lambda 
). With this

modification we can argue that, with all but negligible probability over the choice
of tag strings \sanst \sansa \sansg 1, . . . , \sanst \sansa \sansg r and \sanst \sansa \sansg \ast , there exists an index i \leq \lambda such that the ith
elements in all these tag strings are (pairwise) distinct. With this guarantee, the
current proof could be extended to argue r-bounded security.

8.3. Correctness. We will prove that the Mixed FE scheme described above
satisfies the correctness property. Our correctness proof is divided into two parts.
First, we show that if \sansc \sanst is a Mixed FE encryption of branching program \sansB \sansP , then given
any secret key \sanss \sansk x, the decryption algorithm outputs \sansB \sansP (x) with all-but-negligible
probability. Second, we show that if \sansc \sanst is a normal FE ciphertext, then given any
secret key \sanss \sansk x, the decryption algorithm outputs 1 with all-but-negligible probability.

Lemma 8.3. For every \lambda , k, w, L \in \BbbN , for every length k \cdot L and width w input-
circling branching program \sansB \sansP with input space \{ 0, 1\} k, input x \in \{ 0, 1\} k, the follow-
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ing holds:

Pr

\biggl[ 
\sansD \sanse \sansc (\sanss \sansk x, \sansc \sanst ) = \sansB \sansP (x) :

(\sansp \sansp ,\sansm \sanss \sansk )\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , (1k, 1w, 1L));
\sanss \sansk x \leftarrow \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk , x); \sansc \sanst \leftarrow \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk ,\sansB \sansP )

\biggr] 
\geq 1 - negl2(\lambda ),

where negl2(\cdot ) is a negligible function.

Proof. Here and throughout, whenever we say matrices/terms corresponding to
(j, \beta )th strands, then we mean the corresponding matrix/term with the superscript
(j, \beta ). Also, when we refer to the matrices/terms along the strands selected by some
tag string \sanst \sansa \sansg , then we mean all those matrices/terms with superscripts (j, \sanst \sansa \sansg j) for
j \in [\lambda ].

Now recall that the setup algorithm chooses matrices B
(j,\beta )
i,b ,C

(j,\beta )
i,b ,Pi,v for i \in [\ell ],

j \in [\lambda ], \beta , b \in \{ 0, 1\} , v \in [w]. Here all matrices B
(j,\beta )
i,b ,Pi,v for any particular value i

(i.e., any fixed level) are sampled along with trapdoor information. Now for any input
x \in \{ 0, 1\} k, the key generation algorithm chooses vectors y(j),\widetilde s such that \widetilde s is short

and
\sum 

j y
(j) = \widetilde s \cdot P1,1. It also samples secret vectors s

(j,\beta )
i and error vectors e

(j,\beta )
i

and computes the secret key components t
(j,\beta )
i in the special way as described in the

construction. Now the mixed FE encryption algorithm samples a \lambda -bit tag string \sanst \sansa \sansg ,

and it uses the trapdoor information to target B
(j,\beta )
i,b matrices to their corresponding

C
(j,\beta )
i,b matrices only along the strands selected by the tag string \sanst \sansa \sansg . Additionally, it

also targets the program matrices Pi,v at each level to their counterparts in the next
level per the branching program state transition function. For proving correctness we
simply show that the final program matrix reached after decryption is either short

or random depending upon outcome of the evaluation, and the B
(j,\beta )
i,b ,C

(j,\beta )
i,b matrices

get canceled at each step, and the error terms are appropriately bounded.
We start by introducing some notation useful for the correctness proof.
\bullet \sanss \sanst i: the state of \sansB \sansP after i steps when evaluated on input x.

\bullet \widetilde t(j,\beta )i
def
=

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) if i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

if i = \ell + 1:

the error-free secret key components, i.e., secret key vectors without adding

error vectors e
(j,\beta )
i .

\bullet \Delta 
(j)
i

def
=
\sum i

\gamma =1 t
(j,\sanst \sansa \sansg j)
\gamma \cdot 

\prod i - 1
\alpha =\gamma U\alpha ,\widetilde x\alpha 

: the partial sum computed during de-
cryption after using the first i components of the secret key along only the
(j, \sanst \sansa \sansg j)th strand.

\bullet \widetilde \Delta (j)

i
def
=

\Biggl\{ 
s
(j,\sanst \sansa \sansg j)

i \cdot B(j,\sanst \sansa \sansg j)

i,\widetilde xi
+ y(j) \cdot 

\prod i - 1
\alpha =1 U\alpha ,\widetilde x\alpha 

if i \leq \ell ,

y(j) \cdot 
\prod \ell 

\alpha =1 U\alpha ,\widetilde x\alpha 
if i = \ell + 1:

the expected sum during decryption in absence of errors after using the first
i components of the secret key along the (j, \sanst \sansa \sansg j)th strand.

\bullet \Delta i
def
=
\sum \lambda 

j=1 \Delta 
(j)
i and \widetilde \Delta i =

\sum \lambda 
j=1

\widetilde \Delta (j)

i .

\bullet err
(j)
i

def
= \Delta 

(j)
i  - \widetilde \Delta (j)

i and erri
def
= \Delta i  - \widetilde \Delta i.

\bullet \Gamma i
def
= P1,1 \cdot 

\prod i
\alpha =1 U\alpha ,\widetilde x\alpha 

: the matrix denoting partial branching program
evaluation after i decryption steps, i.e., equal to the \Delta i term ignoring the\sum \lambda 

j=1 s
(j,\sanst \sansa \sansg j)

i \cdot B(j,\sanst \sansa \sansg j)

i,\widetilde xi
blinding component, and short secret \widetilde s multiplied.
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Observe that the decryption algorithm computes \Delta \ell +1 and tests whether it is close

to zero or not. We start by proving that for all i, j, the error term err
(j)
i is small and

bounded. This would help us in arguing that for every i, erri is also small, thereby
giving us that matrices\Delta \ell +1 and \widetilde \Delta \ell +1 are very close to each other as well. Combining

this with the fact that \widetilde \Delta \ell +1 is either a random matrix or a short matrix, depending
upon the output \sansB \sansP (x), we get that the sum \Delta \ell +1 computed by the decryption
algorithm is close to zero if \sansB \sansP (x) = 0; otherwise it is a random vector with large
entries.

Claim 8.4. There exists a negligible function negl(\cdot ) such that

\forall i \in [\ell ], j \in [\lambda ],
\bigm\| \bigm\| \bigm\| err(j)i

\bigm\| \bigm\| \bigm\| \leq (m \cdot (\sigma \sansb \sansi \sansg + \sigma \sansp \sansr \sanse ))
i
,

\forall j \in [\lambda ],
\bigm\| \bigm\| \bigm\| err(j)\ell +1

\bigm\| \bigm\| \bigm\| \leq (m \cdot (\sigma \sansb \sansi \sansg + \sigma \sansp \sansr \sanse ))
\ell \cdot (m \cdot (\sigma \sansl \sansa \sanss \sanst + \sigma \sansp \sansr \sanse ))

with probability 1 - negl(\lambda ).

Proof. We prove the above claim by inducting on the levels i. Our proof is
insensitive to the choice of strand index j; thus for the purposes of this proof, it could
be fixed to an arbitrary value.

Base case (\bfiti = 1). Note that \Delta 
(j)
1 = t

(j,\sanst \sansa \sansg j)

1 = s
(j,\sanst \sansa \sansg j)

1 \cdot B(j,\sanst \sansa \sansg j)

1,\widetilde x1
+y(j)+e

(j,\sanst \sansa \sansg j)

1 ,

where e
(j,\sanst \sansa \sansg j)

1 is a short error vector drawn from \chi m
\sansb \sansi \sansg . Also, we have that \widetilde \Delta (j)

1 =

s
(j,\sanst \sansa \sansg j)

1 \cdot B(j,\sanst \sansa \sansg j)

1,\widetilde x1
+ y(j) by definition. Thus, we get that\bigm\| \bigm\| \bigm\| err(j)1

\bigm\| \bigm\| \bigm\| =

\bigm\| \bigm\| \bigm\| \bigm\| \Delta (j)
1  - \widetilde \Delta (j)

1

\bigm\| \bigm\| \bigm\| \bigm\| =
\bigm\| \bigm\| \bigm\| e(j,\sanst \sansa \sansg j)1

\bigm\| \bigm\| \bigm\| \leq \surd m \cdot \sigma \sansb \sansi \sansg 

with all-but-negligible probability. This completes the proof of the base case. For the
induction step, we assume that the above claim holds for i\ast and show that it holds
for i\ast + 1 as well.

Induction step. We know that \Delta 
(j)
i\ast +1 = \Delta 

(j)
i\ast \cdot Ui\ast ,\widetilde xi\ast + t

(j,\sanst \sansa \sansg j)

i\ast . Since \Delta 
(j)
i\ast =\widetilde \Delta (j)

i\ast + err
(j)
i\ast , we get that

\Delta 
(j)
i\ast +1 = ( \widetilde \Delta (j)

i\ast + err
(j)
i\ast ) \cdot Ui\ast ,\widetilde xi\ast + t

(j,\sanst \sansa \sansg j)

i\ast +1

= \widetilde \Delta (j)

i\ast \cdot Ui\ast ,\widetilde xi\ast + t
(j,\sanst \sansa \sansg j)

i\ast +1 + err
(j)
i\ast \cdot Ui\ast ,\widetilde xi\ast .

Now, from our construction we have that

s
(j,\sanst \sansa \sansg j)

i\ast \cdot B(j,\sanst \sansa \sansg j)

i\ast ,\widetilde xi\ast 
\cdot Ui\ast ,\widetilde xi\ast = s

(j,\sanst \sansa \sansg j)

i\ast \cdot C(j,\sanst \sansa \sansg j)

i\ast ,\widetilde xi\ast 

\Rightarrow s
(j,\sanst \sansa \sansg j)

i\ast \cdot B(j,\sanst \sansa \sansg j)

i\ast ,\widetilde xi\ast 
\cdot Ui\ast ,\widetilde xi\ast + \widetilde t(j,\sanst \sansa \sansg j)i\ast +1 = s

(j,\sanst \sansa \sansg j)

i\ast +1 \cdot B(j,\sanst \sansa \sansg j)

i\ast +1,\widetilde xi\ast +1

\Rightarrow \widetilde \Delta (j)

i\ast \cdot Ui\ast ,\widetilde xi\ast + \widetilde t(j,\sanst \sansa \sansg j)i\ast +1 = \widetilde \Delta (j)

i\ast +1.

Combining the fact that t
(j,\sanst \sansa \sansg j)

i\ast +1 = \widetilde t(j,\sanst \sansa \sansg j)i\ast +1 +e
(j,\sanst \sansa \sansg j)

i\ast +1 with the above equations, we get
that, with all-but-negligible probability, the following holds:

err
(j)
i\ast +1 = \Delta 

(j)
i\ast +1  - \widetilde \Delta (j)

i\ast +1 = e
(j,\sanst \sansa \sansg j)

i\ast +1 + err
(j)
i\ast \cdot Ui\ast ,\widetilde xi\ast 
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\Rightarrow 
\bigm\| \bigm\| \bigm\| err(j)i\ast +1

\bigm\| \bigm\| \bigm\| \leq \bigm\| \bigm\| \bigm\| e(j,\sanst \sansa \sansg j)i\ast +1

\bigm\| \bigm\| \bigm\| + \bigm\| \bigm\| \bigm\| err(j)i\ast 

\bigm\| \bigm\| \bigm\| \cdot \| Ui\ast ,\widetilde xi\ast \| 

\leq 
\surd 
m \cdot \sigma \ast + (m \cdot (\sigma \sansb \sansi \sansg + \sigma \sansp \sansr \sanse ))

i\ast \cdot (m \cdot \sigma \sansp \sansr \sanse )

\leq (m \cdot (\sigma \sansb \sansi \sansg + \sigma \sansp \sansr \sanse ))
i\ast \cdot (m \cdot (\sigma \ast + \sigma \sansp \sansr \sanse )) ,

where \sigma \ast = \sigma \sansb \sansi \sansg if i\ast < \ell ; otherwise \sigma \ast = \sigma \sansl \sansa \sanss \sanst . This completes the proof of the above
claim.

From the above claim, we get that for every j \in [\lambda ],
\bigm\| \bigm\| err(j)\ell +1

\bigm\| \bigm\| \leq (m \cdot (\sigma \sansb \sansi \sansg +

\sigma \sansp \sansr \sanse ))
\ell \cdot (m \cdot (\sigma \sansl \sansa \sanss \sanst + \sigma \sansp \sansr \sanse )). Thus, by the triangle inequality we can claim that (with

all-but-negligible probability)

\| err\ell +1\| \leq \lambda \cdot (m \cdot (\sigma \sansb \sansi \sansg + \sigma \sansp \sansr \sanse ))
\ell \cdot (m \cdot (\sigma \sansl \sansa \sanss \sanst + \sigma \sansp \sansr \sanse )) \leq q/16.

Next, we show that \Gamma i is close to Pi+1,\sanss \sanst i . In other words, the partial branching
program evaluation is correct.

Claim 8.5. For all i \in \{ 0, . . . , \ell \} , \| \Gamma i  - Pi+1,\sanss \sanst i\| \leq (m \cdot (\sigma \sansp \sansr \sanse + \sigma \sansa \sansp \sansp \sansr ))
i
with

probability 1 - negl(\lambda ), where negl(\cdot ) is a negligible function.

Proof. We prove the above claim by inducting on the levels i.

Base case (\bfiti = 0). Note that \Gamma 0 is simply equal to P1,1 as starting state \sanss \sanst 0 = 1.
Thus, we get that

\| \Gamma 0  - P1,\sanss \sanst 0\| = 0.

This completes the proof of the base case. For the induction step, we assume that the
above lemma holds for i\ast  - 1 and show that it holds for i\ast as well.

Induction step. We know that \Gamma i\ast = \Gamma i\ast  - 1 \cdot Ui\ast ,\widetilde xi\ast . Recall that, per our
construction, Ui\ast ,\widetilde xi\ast targets Pi\ast ,\sanss \sanst i\ast  - 1

to Pi\ast +1,\sanss \sanst i\ast + Err1, where Err1 is an n \times m
matrix sampled uniformly from \chi n\times m

\sansa \sansp \sansp \sansr . Concretely, this gives that

Pi\ast ,\sanss \sanst i\ast  - 1
\cdot Ui\ast ,\widetilde xi\ast = Pi\ast +1,\sanss \sanst i\ast +Err1, where \| Err1\| \leq m \cdot \sigma \sansa \sansp \sansp \sansr .

By our inductive hypothesis, we have that \Gamma i\ast  - 1 = Pi\ast ,\sanss \sanst i\ast  - 1
+Err2, where \| Err2\| \leq 

(m \cdot (\sigma \sansp \sansr \sanse + \sigma \sansa \sansp \sansp \sansr ))
i\ast  - 1

. Thus, we can rewrite matrix \Gamma i\ast as follows:

\Gamma i\ast =
\bigl( 
Pi\ast ,\sanss \sanst i\ast  - 1

+Err2
\bigr) 
\cdot Ui\ast ,\widetilde xi\ast 

= Pi\ast +1,\sanss \sanst i\ast + (Err1 +Err2 \cdot Ui\ast ,\widetilde xi\ast ) .

Now we have that

\| Err1 +Err2 \cdot Ui\ast ,\widetilde xi\ast \| \leq m \cdot \sigma \sansa \sansp \sansp \sansr + (m \cdot (\sigma \sansp \sansr \sanse + \sigma \sansa \sansp \sansp \sansr ))
i\ast  - 1 \cdot m \cdot \sigma \sansp \sansr \sanse 

\leq (m \cdot (\sigma \sansp \sansr \sanse + \sigma \sansa \sansp \sansp \sansr ))
i\ast 
.

Thus, the claim follows.

From the above claim, we get that (with all-but-negligible probability) \| \Gamma \ell  - 
P\ell +1,\sanss \sanst \ell \| \leq (m \cdot (\sigma \sansp \sansr \sanse + \sigma \sansa \sansp \sansp \sansr ))

\ell 
. Next, we show that \widetilde \Delta \ell +1 has low norm if the output

of branching program is 0; otherwise it is not upper-bounded with all-but-negligible
probability.
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Claim 8.6. There exists a negligible function negl(\cdot ) such that\bigm\| \bigm\| \bigm\| \widetilde \Delta \ell +1

\bigm\| \bigm\| \bigm\| =

\Biggl\{ 
\leq q/16 if \sansB \sansP (x) = 0,

\geq q/4 if \sansB \sansP (x) = 1

with probability 1 - negl(\lambda ).

Proof. We know that \widetilde \Delta \ell +1 could be written as follows:

\widetilde \Delta \ell +1 =

\left(  \lambda \sum 
j=1

y(j)

\right)  \cdot \ell \prod 
\alpha =1

U\alpha ,\widetilde x\alpha 
.

Since
\bigl( \sum \lambda 

j=1 y
(j)
\bigr) 
= \widetilde s \cdot P1,1, this gives that \widetilde \Delta \ell +1 = \widetilde s \cdot P1,1 \cdot 

\prod \ell 
\alpha =1 U\alpha ,\widetilde x\alpha 

= \widetilde s \cdot \Gamma \ell .

Using Claim 8.5, we get that \Gamma \ell = P\ell +1,\sanss \sanst \ell +Err, where \| Err\| \leq (m \cdot (\sigma \sansp \sansr \sanse + \sigma \sansa \sansp \sansp \sansr ))
\ell 
.

Also, we know that P\ell +1,\sansr \sanse \sansj = 0n\times m, and P\ell +1,\sansa \sansc \sansc is a uniformly random n\times mmatrix.
Thus, we get that with all-but-negligible probability

\sansB \sansP (x) = 0\Rightarrow 
\bigm\| \bigm\| \bigm\| \widetilde \Delta \ell +1

\bigm\| \bigm\| \bigm\| = \| \widetilde s \cdot Err\| \leq \| \widetilde s\| \cdot (m \cdot (\sigma \sansp \sansr \sanse + \sigma \sansa \sansp \sansp \sansr ))
\ell 

\leq 
\surd 
n \cdot \sigma s \cdot (m \cdot (\sigma \sansp \sansr \sanse + \sigma \sansa \sansp \sansp \sansr ))

\ell \leq q/16,

\sansB \sansP (x) = 1\Rightarrow 
\bigm\| \bigm\| \bigm\| \widetilde \Delta \ell +1

\bigm\| \bigm\| \bigm\| = \| \widetilde s \cdot P\ell +1,\sansa \sansc \sansc + \widetilde s \cdot Err\| \geq \| \widetilde s \cdot P\ell +1,\sansa \sansc \sansc \|  - q/16 \geq q/4,

where the last inequality follows from the fact that \widetilde s \cdot P\ell +1,\sansa \sansc \sansc is a uniformly random
vector. This completes the proof of the above claim.

By the triangle inequality, we know that\bigm\| \bigm\| \bigm\| \widetilde \Delta \ell +1

\bigm\| \bigm\| \bigm\|  - \| err\ell +1\| \leq \| \Delta \ell +1\| \leq 
\bigm\| \bigm\| \bigm\| \widetilde \Delta \ell +1

\bigm\| \bigm\| \bigm\| + \| err\ell +1\| .

Combining this with the above claims, we can conclude that with all-but-negligible
probability

\sansB \sansP (x) = 0\Rightarrow \| \Delta \ell +1\| \leq q/16 + q/16 \leq q/8,

\sansB \sansP (x) = 1\Rightarrow 
\bigm\| \bigm\| \bigm\| \widetilde \Delta \ell +1

\bigm\| \bigm\| \bigm\| \geq q/4 - q/16 > q/8.

Thus, for any input x and branching program \sansB \sansP , the mixed FE encryption algorithm
is correct with all-but-negligible probability. This concludes the proof of Lemma 8.3.

Lemma 8.7. For every \lambda , k, w, L \in \BbbN , for every length k \cdot L and width w input-
circling branching program \sansB \sansP with input space \{ 0, 1\} k, input x \in \{ 0, 1\} k, the follow-
ing holds:

Pr

\biggl[ 
\sansD \sanse \sansc (\sanss \sansk x, \sansc \sanst ) = 1 :

(\sansp \sansp ,\sansm \sanss \sansk )\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , (1k, 1w, 1L));
\sanss \sansk x \leftarrow \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk , x); \sansc \sanst \leftarrow \sansE \sansn \sansc (\sansp \sansp )

\biggr] 
\geq 1 - negl1(\lambda ),

where negl1(\cdot ) is a negligible function.

Proof. Recall that the output of a normal encryption algorithm is simply inde-
pendently drawn 2\ell short Gaussian matrices \{ Ui,b\} . Now the decryption algorithm
performs the computation

z =

\lambda \sum 
j=1

\ell +1\sum 
i=1

\Biggl( 
t
(j,\sanst \sansa \sansg j)

i \cdot 
\ell \prod 

\alpha =i

U\alpha ,\widetilde x\alpha 

\Biggr) 
.
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Here we could rewrite z as

z =

\lambda \sum 
j=1

\Biggl( 
\ell  - 1\sum 
i=1

\Biggl( 
t
(j,\sanst \sansa \sansg j)

i \cdot 
\ell \prod 

\alpha =i

U\alpha ,\widetilde x\alpha 

\Biggr) 
+ t

(j,\sanst \sansa \sansg j)

\ell \cdot U\ell ,\widetilde x\ell 
+ t

(j,\sanst \sansa \sansg j)

\ell +1

\Biggr) 
.

From our construction we know that for any j,

t
(j,\sanst \sansa \sansg j)

\ell \cdot U\ell ,\widetilde x\ell 
+ t

(j,\sanst \sansa \sansg j)

\ell +1 =  - s
(j,\sanst \sansa \sansg j)

\ell  - 1 \cdot C(j,\sanst \sansa \sansg j)

\ell  - 1,\widetilde x\ell  - 1
\cdot U\ell ,\widetilde x\ell 

+ e
(j,\sanst \sansa \sansg j)

\ell \cdot U\ell ,\widetilde x\ell 
+ e

(j,\sanst \sansa \sansg j)

\ell +1

+ s
(j,\sanst \sansa \sansg j)

\ell \cdot 
\Bigl( 
B

(j,\sanst \sansa \sansg j)

\ell ,\widetilde x\ell 
\cdot U\ell ,\widetilde x\ell 

 - C
(j,\sanst \sansa \sansg j)

\ell ,\widetilde x\ell 

\Bigr) 
.

Now note that since U\ell ,\widetilde x\ell 
is sampled independently from \chi m\times m

\sansp \sansr \sanse and C
(j,\sanst \sansa \sansg j)

\ell ,\widetilde x\ell 
is a

uniform n\times m matrix, thus the matrix B
(j,\sanst \sansa \sansg j)

\ell ,\widetilde x\ell 
\cdot U\ell ,\widetilde x\ell 

 - C
(j,\sanst \sansa \sansg j)

\ell ,\widetilde x\ell 
is also a uniformly

random matrix. Also, secret vector s
(j,\sanst \sansa \sansg j)

\ell is a length n random vector, and thus the

component s
(j,\sanst \sansa \sansg j)

\ell \cdot 
\bigl( 
B

(j,\sanst \sansa \sansg j)

\ell ,\widetilde x\ell 
\cdot U\ell ,\widetilde x\ell 

 - C
(j,\sanst \sansa \sansg j)

\ell ,\widetilde x\ell 

\bigr) 
is a random vector as well. Now since

this is independent of all other components as neither s
(j,\sanst \sansa \sansg j)

\ell nor C
(j,\sanst \sansa \sansg j)

\ell ,\widetilde x\ell 
appears in

any other term in sum vector z, thus the distribution of z is that of a uniformly random
vector over the choice of coins used during setup, key generation, and encryption.
Since we know that the \ell 2-norm of a random vector in \BbbZ m

q is at least q/8 with all-
but-negligible probability, therefore the claim follows.

8.4. Security proof. We now prove that the Mixed FE scheme described in
section 8.2 satisfies the 1-bounded restricted function indistinguishability as well as
the 1-bounded restricted accept indistinguishability security properties. Our proof is
divided into two components where we first prove function indistinguishability, and
later prove accept indistinguishability. Both proofs proceed via a sequence of hybrid
games.

8.4.1. 1-bounded restricted function indistinguishability. Below we pro-
vide a sequence of hybrid games that we later use to argue function indistinguishability
security.

\sansG \sansa \sansm \sanse 0 This corresponds to the original 1-bounded restricted function indistinguisha-
bility security game.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and

descriptions of two branching programs (\sansB \sansP (0),\sansB \sansP (1)) to the challenger. Then
the challenger proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall \ell =
k \cdot L and \widetilde n = (4\lambda + w)n.

2. Next, it samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in [\lambda ]\times \{ 0,1\} 2

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde n, 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for i \in [\ell ], j \in [\lambda ], \beta , b \in \{ 0, 1\} .
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
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\bullet Challenge phase. The challenger chooses a random bit \gamma \leftarrow \{ 0, 1\} and a
\lambda -bit string \sanst \sansa \sansg \ast \leftarrow \{ 0, 1\} \lambda . Let

\sansB \sansP (\gamma ) =

\biggl( \Bigl\{ 
\pi 
(\gamma )
i,b : [w]\rightarrow [w]

\Bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

, \sansa \sansc \sansc (\gamma ) \in [w], \sansr \sanse \sansj (\gamma ) \in [w]

\biggr) 
,

S\ast = [\ell ]\times [\lambda ]\times \{ 0, 1\} 2.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as

\forall \alpha \in [\ell ],
\bigl( \bigl\{ 

U\ast 
\alpha ,0,U

\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(      
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
(\gamma )

\right)      .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger chooses a \lambda -bit string \sanst \sansa \sansg \leftarrow \{ 0, 1\} \lambda and
responds as follows:
(a) Let S = [\ell ] \times [\lambda ] \times \{ 0, 1\} 2. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (de-

scribed in Figure 6) as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda  - 1]. Next, it sets vector y(\lambda ) as

y(\lambda ) = \widetilde s \cdot P1,1  - 
\sum 

j\in [\lambda  - 1]

y(j).

(b) It then chooses secret vectors \{ s(j,\beta )i \} i,j,\beta and error vectors \{ e(j,\beta )i \} i,j,\beta 
as

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst .
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\sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 
Inputs:

- Tag \sanst \sansa \sansg , Level \alpha , Set S \subseteq [\ell ] \times [\lambda ] \times \{ 0, 1\} 2, Matrices

\{ B(j,\beta )
i,b ,C

(j,\beta )
i,b \} (i,j,\beta ,b)\in S , \{ Pi,v\} (i,v)\in [\ell ]\times [w], Trapdoors \{ Ti\} i\in [\ell ];

- \sansB \sansP =
\bigl( 
\{ \pi i,b : [w]\rightarrow [w]\} (i,b)\in [\ell ]\times \{ 0,1\} , \sansa \sansc \sansc \in [w], \sansr \sanse \sansj \in [w]

\bigr) 
.

Output: Matrices \{ U0,U1\} .
Execution: Let S\alpha denote the following set:

S\alpha =
\bigl\{ 
(j, \beta , b) \in [\lambda ]\times \{ 0, 1\} 2 such that (\alpha , j, \beta , b) \in S

\bigr\} 
.

Sample matrices \{ D(j,\beta )
b , \widetilde D(j,\beta )

b \} (j,\beta ,b)\in S\alpha as

\forall (j, \beta , b) \in S\alpha ,

D
(j,\beta )
b =

\Biggl\{ 
C

(j,\beta )
\alpha ,b if \beta = \sanst \sansa \sansg j and b = 0,\bigl( 
\leftarrow \BbbZ n\times m

q

\bigr) 
otherwise,

\widetilde D(j,\beta )

b =

\Biggl\{ 
C

(j,\beta )
\alpha ,b if \beta = \sanst \sansa \sansg j and b = 1,\bigl( 
\leftarrow \BbbZ n\times m

q

\bigr) 
otherwise.

Sample 2w error matrices as Ev \leftarrow \chi n\times m
\sansa \sansp \sansp \sansr , \widetilde Ev \leftarrow \chi n\times m

\sansa \sansp \sansp \sansr for v \in [w]. Also, if \alpha = \ell ,
sample w matrices \{ P\ell +1,v\} v\in [w] for the top level as

\forall v \in [w], P\ell +1,v =

\Biggl\{ 
0n\times m if v = \sansr \sanse \sansj ,\bigl( 
\leftarrow \BbbZ n\times m

q

\bigr) 
otherwise.

Next, set 2w matrices
\Bigl\{ 
Qv,

\widetilde Qv

\Bigr\} 
v\in [w]

as

\forall v \in [w],
Qv = P\alpha +1,\pi \alpha ,0(v) +Ev,\widetilde Qv = P\alpha +1,\pi \alpha ,1(v) +

\widetilde Ev.

Let matrices M,W, \widetilde W represent the following (| S\alpha | +w)n\times m dimension matrices:

M =

\left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S\alpha 

\{ Pi,v\} v\in [w]

\right]  , W =

\left[  \Bigl\{ D(j,\beta )
b

\Bigr\} 
(j,\beta ,b)\in S\alpha \bigl\{ 

Qi,v

\bigr\} 
v\in [w]

\right]  ,

\widetilde W =

\left[   
\Bigl\{ \widetilde D(j,\beta )

b

\Bigr\} 
(j,\beta ,b)\in S\alpha \Bigl\{ \widetilde Qi,v

\Bigr\} 
v\in [w]

\right]   .

Run the \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse to compute matrices \{ U0,U1\} as

U0 \leftarrow \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (M, T\alpha , \sigma \sansp \sansr \sanse ,W),

U1 \leftarrow \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (M, T\alpha , \sigma \sansp \sansr \sanse , \widetilde W).

Fig. 6. Routine \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc .

(c) Let \widetilde x = xL. Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows:

\forall (i, j, \beta ) \in [\ell + 1]\times [\lambda ]\times \{ 0, 1\} ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 , i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i , 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 , i = \ell + 1.
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(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime , and wins if \gamma \prime = \gamma .

\sansG \sansa \sansm \sanse 1 This is identical to the previous game, except the challenger now chooses both
tags \sanst \sansa \sansg \ast and \sanst \sansa \sansg at the beginning during the setup phase, and it aborts if \sanst \sansa \sansg \ast = \sanst \sansa \sansg .

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and

descriptions of two branching programs (\sansB \sansP (0),\sansB \sansP (1)) to the challenger. Then
the challenger proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall \ell =
k \cdot L and \widetilde n = (4\lambda + w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below.

2. Next, it samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in [\lambda ]\times \{ 0,1\} 2

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde n, 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for i \in [\ell ], j \in [\lambda ], \beta , b \in \{ 0, 1\} .
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. The challenger chooses a random bit \gamma \leftarrow \{ 0, 1\} . Let

\sansB \sansP (\gamma ) =

\biggl( \Bigl\{ 
\pi 
(\gamma )
i,b : [w]\rightarrow [w]

\Bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

, \sansa \sansc \sansc (\gamma ) \in [w], \sansr \sanse \sansj (\gamma ) \in [w]

\biggr) 
,

S\ast = [\ell ]\times [\lambda ]\times \{ 0, 1\} 2.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(    
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] , \{ Ti\} i\in [\ell ] ,\sansB \sansP 
(\gamma )

\right)    .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = [\ell ] \times [\lambda ] \times \{ 0, 1\} 2. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (de-

scribed in Figure 6) as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .
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(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda  - 1]. Next, it sets vector y(\lambda ) as

y(\lambda ) = \widetilde s \cdot P1,1  - 
\sum 

j\in [\lambda  - 1]

y(j).

(b) It then chooses secret vectors \{ s(j,\beta )i \} i,j,\beta , error vectors \{ e(j,\beta )i \} i,j,\beta 
as

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst .

(c) Let \widetilde x = xL. Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows:

\forall (i, j, \beta ) \in [\ell + 1]\times [\lambda ]\times \{ 0, 1\} ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 , i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i , 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 , i = \ell + 1.

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime , and wins if \gamma \prime = \gamma .

Notation. In all the following hybrid games, let j\ast denote the smallest index in
\{ 1, . . . , \lambda \} such that \sanst \sansa \sansg \ast j\ast \not = \sanst \sansa \sansg j\ast , i.e., j

\ast = min
\bigl\{ 
j \in [\lambda ] : \sanst \sansa \sansg \ast j \not = \sanst \sansa \sansg j

\bigr\} 
. Since the

challenger aborts whenever \sanst \sansa \sansg \ast = \sanst \sansa \sansg , thus j\ast always exists whenever the challenger
does not abort. Additionally, let \beta \ast = \sanst \sansa \sansg \ast j\ast .

\sansG \sansa \sansm \sanse 2 This is identical to the previous game, except the challenger, while answering
a secret key query, now puts the \widetilde s \cdot P1,1 component in y(j\ast ) instead of y(\lambda ), and the
rest are sampled uniformly at random.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and

descriptions of two branching programs (\sansB \sansP (0),\sansB \sansP (1)) to the challenger. Then
the challenger proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below.

2. Next, it samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in [\lambda ]\times \{ 0,1\} 2

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde n, 1m, q).
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3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for i \in [\ell ], j \in [\lambda ], \beta , b \in \{ 0, 1\} .
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. The challenger chooses a random bit \gamma \leftarrow \{ 0, 1\} . Let

\sansB \sansP (\gamma ) =

\biggl( \Bigl\{ 
\pi 
(\gamma )
i,b : [w]\rightarrow [w]

\Bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

, \sansa \sansc \sansc (\gamma ) \in [w], \sansr \sanse \sansj (\gamma ) \in [w]

\biggr) 
,

S\ast = [\ell ]\times [\lambda ]\times \{ 0, 1\} 2.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as

\forall \alpha \in [\ell ],
\bigl( \bigl\{ 

U\ast 
\alpha ,0,U

\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
(\gamma )

\right)     .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = [\ell ] \times [\lambda ] \times \{ 0, 1\} 2. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (de-

scribed in Figure 6) as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} . Next, it sets vector y(j\ast ) as

y(j\ast ) = \widetilde s \cdot P1,1  - 
\sum 

j\in [\lambda ]\setminus \{ j\ast \} 

y(j).

(b) It then chooses secret vectors \{ s(j,\beta )i \} i,j,\beta , error vectors \{ e(j,\beta )i \} i,j,\beta 
as

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst .
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(c) Let \widetilde x = xL. Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows:

\forall (i, j, \beta ) \in [\ell + 1]\times [\lambda ]\times \{ 0, 1\} ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 , i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i , 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 , i = \ell + 1.

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime , and wins if \gamma \prime = \gamma .

Next, we have a sequence of 4\ell hybrid experiments, \sansG \sansa \sansm \sanse 3.i\ast . \{ 1, 2, 3, 4\} for
i\ast = 1 to \ell .

\sansG \sansa \sansm \sanse 3.i\ast .1 In hybrids \sansG \sansa \sansm \sanse 3.i\ast .1, the B
(j,\beta )
i,b ,C

(j,\beta )
i,b matrices for the j\ast th strands

and levels i < i\ast are not sampled (at all) along with other level i matrices (i.e., (j\ast , \beta \ast )
and (j\ast , 1  - \beta \ast ) strands); ciphertext components for levels i < i\ast are used to target

only the remaining matrices; i.e., the ciphertext matrices do not target B
(j,\beta )
i,b matrices

for j = j\ast and i < i\ast to some prespecified C
(j,\beta )
i,b or random matrices. Also, the first

i\ast  - 1 components in each secret key are set to be uniformly random vectors, and the
next component is hardwired such that correctness holds, and also some smudgeable
noise is introduced into these components. Below we describe it in detail.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and

descriptions of two branching programs (\sansB \sansP (0),\sansB \sansP (1)) to the challenger. Then
the challenger proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i < i\ast , S(i) = ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} 2,
\forall i \geq i\ast , S(i) = [\lambda ]\times \{ 0, 1\} 2.

Also, let

\widetilde ni =

\Biggl\{ \widetilde n - 4n for i < i\ast ,\widetilde n for i \geq i\ast .

Set \^S =
\bigl\{ 
(i, j, \beta , b) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)

\bigr\} 
.

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
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\bullet Challenge phase. The challenger chooses a random bit \gamma \leftarrow \{ 0, 1\} . Let

\sansB \sansP (\gamma ) =

\biggl( \Bigl\{ 
\pi 
(\gamma )
i,b : [w]\rightarrow [w]

\Bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

, \sansa \sansc \sansc (\gamma ) \in [w], \sansr \sanse \sansj (\gamma ) \in [w]

\biggr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(    
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] , \{ Ti\} i\in [\ell ] ,\sansB \sansP 
(\gamma )

\right)    .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)

as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows.
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, \beta ) \in [i\ast  - 1]\times \{ 0, 1\} , \widetilde t(j\ast ,\beta )i \leftarrow \BbbZ m
q ,

\forall \beta \in \{ 0, 1\} , \widetilde e(j\ast ,\beta )i\ast \leftarrow \chi m
\sansl \sansw \sanse .

(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
i\ast , \sanss \sanst 

(\beta \ast )
i\ast denote the state of branching

programs \sansB \sansP , \sansB \sansP (\gamma ) after i\ast  - 1 steps, respectively. Also, let \Gamma , \widetilde y,
and U

(\beta )
i,b denote the following:

\Gamma = [\ell + 1]\times ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} , \widetilde y =
\sum 

j\in [\lambda ]\setminus \{ j\ast \} 

y(j),

D
ow

nl
oa

de
d 

10
/0

5/
21

 to
 1

28
.8

3.
14

1.
10

0 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-163

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows. For all tuples
(i, j, \beta ) \in \Gamma ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,

\forall (i, \beta ) \in [i\ast  - 1]\times \{ 0, 1\} , t
(j\ast ,\beta )
i = \widetilde t(j\ast ,\beta )i + e

(j\ast ,\beta )
i ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
i\ast =  - 

i\ast  - 1\sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
i\ast  - 1\prod 
\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot i\ast  - 1\prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast ,\sanss \sanst 

(\beta )

i\ast 
+ s

(j\ast ,\beta )
i\ast \cdot B(j\ast ,\beta )

i\ast ,\widetilde xi\ast 
+ \widetilde e(j\ast ,\beta )i\ast + e

(j\ast ,\beta )
i\ast ,

\forall (i, \beta ) \in ([\ell + 1] \setminus [i\ast ])\times \{ 0, 1\} ,

t
(j\ast ,\beta )
i =

\Biggl\{ 
 - s(j

\ast ,\beta )
i - 1 \cdot C(j\ast ,\beta )

i - 1,\widetilde xi - 1
+ s

(j\ast ,\beta )
i \cdot B(j\ast ,\beta )

i,\widetilde xi
+ e

(j\ast ,\beta )
i if i \leq \ell ,

 - s(j
\ast ,\beta )

\ell \cdot C(j\ast ,\beta )
\ell ,\widetilde x\ell 

+ e
(j\ast ,\beta )
\ell +1 if i = \ell + 1.

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime , and wins if \gamma \prime = \gamma .

\sansG \sansa \sansm \sanse 3.i\ast .2 This is identical to the previous game, except the (i\ast +1)th key component
in the j\ast th strands is also hardwired. Below we describe it in detail.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and

descriptions of two branching programs (\sansB \sansP (0),\sansB \sansP (1)) to the challenger. Then
the challenger proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall \ell =
k \cdot L and \widetilde n = (4\lambda + w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i < i\ast , S(i) = ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} 2,
\forall i \geq i\ast , S(i) = [\lambda ]\times \{ 0, 1\} 2.

Also, let

\widetilde ni =

\Biggl\{ \widetilde n - 4n for i < i\ast ,\widetilde n for i \geq i\ast .

Set \^S =
\bigl\{ 
(i, j, \beta , b) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)

\bigr\} 
.

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).
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STOC18-164 R. GOYAL, V. KOPPULA, AND B. WATERS

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. The challenger chooses a random bit \gamma \leftarrow \{ 0, 1\} . Let

\sansB \sansP (\gamma ) =

\biggl( \Bigl\{ 
\pi 
(\gamma )
i,b : [w]\rightarrow [w]

\Bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

, \sansa \sansc \sansc (\gamma ) \in [w], \sansr \sanse \sansj (\gamma ) \in [w]

\biggr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(    
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] , \{ Ti\} i\in [\ell ] ,\sansB \sansP 
(\gamma )

\right)    .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast , \{ U\ast 

i,b\} i\in [\ell ],b\in \{ 0,1\} 
\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)

as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, \beta ) \in [i\ast  - 1]\times \{ 0, 1\} , \widetilde t(j\ast ,\beta )i \leftarrow \BbbZ m
q ,

\forall \beta \in \{ 0, 1\} , \widetilde e(j\ast ,\beta )i\ast \leftarrow \chi m
\sansl \sansw \sanse .

(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
i\ast , \sanss \sanst 

(\beta \ast )
i\ast denote the state of branching

programs \sansB \sansP , \sansB \sansP (\gamma ) after i\ast  - 1 steps, respectively. Also, let \Gamma , \widetilde y,
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and U
(\beta )
i,b denote the following:

\Gamma = [\ell + 1]\times ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} , \widetilde y =
\sum 

j\in [\lambda ]\setminus \{ j\ast \} 

y(j),

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

Also, for \beta \in \{ 0, 1\} , let B
(j\ast ,\beta )
\ell +1,\widetilde x\ell +1

= 0n\times m, and let \widetilde t(j\ast ,\beta )i\ast denote

the following vector:

\widetilde t(j\ast ,\beta )i\ast =  - 
i\ast  - 1\sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
i\ast  - 1\prod 
\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot i\ast  - 1\prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast ,\sanss \sanst 

(\beta )

i\ast 
+ s

(j\ast ,\beta )
i\ast \cdot B(j\ast ,\beta )

i\ast ,\widetilde xi\ast 
+ \widetilde e(j\ast ,\beta )i\ast .

Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows. For all tuples
(i, j, \beta ) \in \Gamma ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,

\forall (i, \beta ) \in [i\ast  - 1]\times \{ 0, 1\} , t
(j\ast ,\beta )
i = \widetilde t(j\ast ,\beta )i + e

(j\ast ,\beta )
i ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
i\ast = \widetilde t(j\ast ,\beta )i\ast + e

(j\ast ,\beta )
i\ast ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
i\ast +1 =  - 

i\ast \sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
i\ast \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot i\ast \prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast +1,\sanss \sanst 

(\beta )

i\ast +1

+ s
(j\ast ,\beta )
i\ast +1 \cdot B

(j\ast ,\beta )
i\ast +1,\widetilde xi\ast +1

+ e
(j\ast ,\beta )
i\ast +1 ,

\forall (i, \beta ) \in ([\ell + 1] \setminus [i\ast + 1])\times \{ 0, 1\} ,

t
(j\ast ,\beta )
i =

\Biggl\{ 
 - s(j

\ast ,\beta )
i - 1 \cdot C(j\ast ,\beta )

i - 1,\widetilde xi - 1
+ s

(j\ast ,\beta )
i \cdot B(j\ast ,\beta )

i,\widetilde xi
+ e

(j\ast ,\beta )
i if i \leq \ell ,

 - s(j
\ast ,\beta )

\ell \cdot C(j\ast ,\beta )
\ell ,\widetilde x\ell 

+ e
(j\ast ,\beta )
\ell +1 if i = \ell + 1.

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime , and wins if \gamma \prime = \gamma .

\sansG \sansa \sansm \sanse 3.i\ast .3 This is identical to the previous game, except B
(j,\beta )
i,b ,C

(j,\beta )
i,b for strands

j = j\ast and levels i = i\ast are not sampled along with other level i\ast matrices, but instead
they are sampled uniformly at random. Also, ciphertext components for level i\ast are
used to target only the remaining matrices. Below we describe it in detail.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and

descriptions of two branching programs (\sansB \sansP (0),\sansB \sansP (1)) to the challenger. Then
the challenger proceeds as follows:
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1. It chooses an LWE modulus q, dimensions n,m, and also distributions
\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i < i\ast + 1, S(i) = ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} 2,
\forall i \geq i\ast + 1, S(i) = [\lambda ]\times \{ 0, 1\} 2.

Also, let

\widetilde ni =

\Biggl\{ \widetilde n - 4n for i < i\ast + 1,\widetilde n for i \geq i\ast + 1.

Set \^S =
\bigl\{ 
(i, j, \beta , b) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)

\bigr\} 
.

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q),

\forall (\beta , b) \in \{ 0, 1\} 2, B
(j\ast ,\beta )
i\ast ,b \leftarrow \BbbZ n\times m

q .

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. The challenger chooses a random bit \gamma \leftarrow \{ 0, 1\} . Let

\sansB \sansP (\gamma ) =

\biggl( \Bigl\{ 
\pi 
(\gamma )
i,b : [w]\rightarrow [w]

\Bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

, \sansa \sansc \sansc (\gamma ) \in [w], \sansr \sanse \sansj (\gamma ) \in [w]

\biggr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(    
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] , \{ Ti\} i\in [\ell ] ,\sansB \sansP 
(\gamma )

\right)    .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)

as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .
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(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, \beta ) \in [i\ast  - 1]\times \{ 0, 1\} , \widetilde t(j\ast ,\beta )i \leftarrow \BbbZ m
q ,

\forall \beta \in \{ 0, 1\} , \widetilde e(j\ast ,\beta )i\ast \leftarrow \chi m
\sansl \sansw \sanse .

(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
i\ast , \sanss \sanst 

(\beta \ast )
i\ast denote the state of branching

programs \sansB \sansP , \sansB \sansP (\gamma ) after i\ast  - 1 steps, respectively. Also, let \Gamma , \widetilde y,
and U

(\beta )
i,b denote the following:

\Gamma = [\ell + 1]\times ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} , \widetilde y =
\sum 

j\in [\lambda ]\setminus \{ j\ast \} 

y(j),

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

Also, for \beta \in \{ 0, 1\} , let B
(j\ast ,\beta )
\ell +1,\widetilde x\ell +1

= 0n\times m, and let \widetilde t(j\ast ,\beta )i\ast denote

the following vector:

\widetilde t(j\ast ,\beta )i\ast =  - 
i\ast  - 1\sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
i\ast  - 1\prod 
\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot i\ast  - 1\prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast ,\sanss \sanst 

(\beta )

i\ast 
+ s

(j\ast ,\beta )
i\ast \cdot B(j\ast ,\beta )

i\ast ,\widetilde xi\ast 
+ \widetilde e(j\ast ,\beta )i\ast .

Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows. For all tuples
(i, j, \beta ) \in \Gamma ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,

\forall (i, \beta ) \in [i\ast  - 1]\times \{ 0, 1\} , t
(j\ast ,\beta )
i = \widetilde t(j\ast ,\beta )i + e

(j\ast ,\beta )
i .

For all \beta \in \{ 0, 1\} ,

t
(j\ast ,\beta )
i\ast = \widetilde t(j\ast ,\beta )i\ast + e

(j\ast ,\beta )
i\ast ,
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t
(j\ast ,\beta )
i\ast +1 =  - 

i\ast \sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
i\ast \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot i\ast \prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast +1,\sanss \sanst 

(\beta )

i\ast +1

+ s
(j\ast ,\beta )
i\ast +1 \cdot B

(j\ast ,\beta )
i\ast +1,\widetilde xi\ast +1

+ e
(j\ast ,\beta )
i\ast +1 ,

\forall (i, \beta ) \in ([\ell + 1] \setminus [i\ast + 1])\times \{ 0, 1\} ,

t
(j\ast ,\beta )
i =

\Biggl\{ 
 - s(j

\ast ,\beta )
i - 1 \cdot C(j\ast ,\beta )

i - 1,\widetilde xi - 1
+ s

(j\ast ,\beta )
i \cdot B(j\ast ,\beta )

i,\widetilde xi
+ e

(j\ast ,\beta )
i if i \leq \ell ,

 - s(j
\ast ,\beta )

\ell \cdot C(j\ast ,\beta )
\ell ,\widetilde x\ell 

+ e
(j\ast ,\beta )
\ell +1 if i = \ell + 1.

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime , and wins if \gamma \prime = \gamma .

\sansG \sansa \sansm \sanse 3.i\ast .4 This is identical to the previous game, except the i\ast th level key compo-
nent in the j\ast th strands is a uniformly random n length vector; i.e., all first i\ast level
components in the j\ast th strand are random elements. Also, we no longer sample the

matrices B
(j,\beta )
i,b ,C

(j,\beta )
i,b for strands j = j\ast and levels i = i\ast at all. Below we describe

it in detail.
\bullet Setup phase. The adversary sends the functionality index (k,w, L) and

descriptions of two branching programs (\sansB \sansP (0),\sansB \sansP (1)) to the challenger. Then
the challenger proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i < i\ast + 1, S(i) = ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} 2,
\forall i \geq i\ast + 1, S(i) = [\lambda ]\times \{ 0, 1\} 2.

Also, let

\widetilde ni =

\Biggl\{ \widetilde n - 4n for i < i\ast + 1,\widetilde n for i \geq i\ast + 1.

Set \^S =
\bigl\{ 
(i, j, \beta , b) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)

\bigr\} 
.

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. The challenger chooses a random bit \gamma \leftarrow \{ 0, 1\} . Let

\sansB \sansP (\gamma ) =

\biggl( \Bigl\{ 
\pi 
(\gamma )
i,b : [w]\rightarrow [w]

\Bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

, \sansa \sansc \sansc (\gamma ) \in [w], \sansr \sanse \sansj (\gamma ) \in [w]

\biggr) 
,

S\ast = \^S.
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The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(    
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] , \{ Ti\} i\in [\ell ] ,\sansB \sansP 
(\gamma )

\right)    .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)

as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, \beta ) \in [i\ast ]\times \{ 0, 1\} , \widetilde t(j\ast ,\beta )i \leftarrow \BbbZ m
q ,

\forall \beta \in \{ 0, 1\} , \widetilde e(j\ast ,\beta )i\ast \leftarrow \chi m
\sansl \sansw \sanse .

(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
i\ast , \sanss \sanst 

(\beta \ast )
i\ast denote the state of branching

programs \sansB \sansP , \sansB \sansP (\gamma ) after i\ast  - 1 steps, respectively. Also, let \Gamma , \widetilde y,
and U

(\beta )
i,b denote the following:

\Gamma = [\ell + 1]\times ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} , \widetilde y =
\sum 

j\in [\lambda ]\setminus \{ j\ast \} 

y(j),

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .
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Also, for \beta \in \{ 0, 1\} , let B
(j\ast ,\beta )
\ell +1,\widetilde x\ell +1

= 0n\times m. Next, it computes key

vectors \{ t(j,\beta )i \} i,j,\beta as follows. For all tuples (i, j, \beta ) \in \Gamma ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,

\forall (i, \beta ) \in [i\ast ]\times \{ 0, 1\} , t
(j\ast ,\beta )
i = \widetilde t(j\ast ,\beta )i + e

(j\ast ,\beta )
i ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
i\ast +1 =  - 

i\ast \sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
i\ast \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot i\ast \prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast +1,\sanss \sanst 

(\beta )

i\ast +1

+ s
(j\ast ,\beta )
i\ast +1 \cdot B

(j\ast ,\beta )
i\ast +1,\widetilde xi\ast +1

+ e
(j\ast ,\beta )
i\ast +1 ,

\forall (i, \beta ) \in ([\ell + 1] \setminus [i\ast + 1])\times \{ 0, 1\} ,

t
(j\ast ,\beta )
i =

\Biggl\{ 
 - s(j

\ast ,\beta )
i - 1 \cdot C(j\ast ,\beta )

i - 1,\widetilde xi - 1
+ s

(j\ast ,\beta )
i \cdot B(j\ast ,\beta )

i,\widetilde xi
+ e

(j\ast ,\beta )
i if i \leq \ell ,

 - s(j
\ast ,\beta )

\ell \cdot C(j\ast ,\beta )
\ell ,\widetilde x\ell 

+ e
(j\ast ,\beta )
\ell +1 if i = \ell + 1.

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime , and wins if \gamma \prime = \gamma .

\sansG \sansa \sansm \sanse 4 This is identical to the previous game, i.e., \sansG \sansa \sansm \sanse 3.\ell .4. For ease of exposition,
we describe it in detail below.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and

descriptions of two branching programs (\sansB \sansP (0),\sansB \sansP (1)) to the challenger. Then
the challenger proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i \in [\ell ], S(i) = ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} 2.

Also, let \widetilde ni = \widetilde n - 4n for all i \in [\ell ].
Set \^S =

\bigl\{ 
(i, j, \beta , b) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)

\bigr\} 
.

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
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\bullet Challenge phase. The challenger chooses a random bit \gamma \leftarrow \{ 0, 1\} . Let

\sansB \sansP (\gamma ) =

\biggl( \Bigl\{ 
\pi 
(\gamma )
i,b : [w]\rightarrow [w]

\Bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

, \sansa \sansc \sansc (\gamma ) \in [w], \sansr \sanse \sansj (\gamma ) \in [w]

\biggr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(    
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] , \{ Ti\} i\in [\ell ] ,\sansB \sansP 
(\gamma )

\right)    .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)

as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, \beta ) \in [\ell ]\times \{ 0, 1\} , \widetilde t(j\ast ,\beta )i \leftarrow \BbbZ m
q .

(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
\ell +1 , \sanss \sanst 

(\beta \ast )
\ell +1 denote the state of branching

programs \sansB \sansP , \sansB \sansP (\gamma ) after \ell steps, respectively. Also, let \Gamma , \widetilde y, and
U

(\beta )
i,b denote the following:

\Gamma = [\ell + 1]\times ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} , \widetilde y =
\sum 

j\in [\lambda ]\setminus \{ j\ast \} 

y(j),
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\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

For v \in [w], let P
(\beta \ast )
\ell +1,v be the top level matrices chosen while com-

puting the challenge ciphertext. Similarly, let P
(1 - \beta \ast )
\ell +1,v be the top

level matrices chosen while computing the query ciphertext. Next,

it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows. For all (i, j, \beta ) \in \Gamma ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,

\forall (i, \beta ) \in [\ell ]\times \{ 0, 1\} , t
(j\ast ,\beta )
i = \widetilde t(j\ast ,\beta )i + e

(j\ast ,\beta )
i .

For all \beta \in \{ 0, 1\} ,

t
(j\ast ,\beta )
\ell +1 =  - 

\ell \sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
\ell \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot \ell \prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P(\beta )

\ell +1,\sanss \sanst 
(\beta )
\ell +1

+ e
(j\ast ,\beta )
\ell +1 .

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime , and wins if \gamma \prime = \gamma .
Next, we have a sequence of \ell hybrid experiments, \sansG \sansa \sansm \sanse 4.i\ast for i\ast = 1 to \ell .

\sansG \sansa \sansm \sanse 4.i\ast This is identical to the previous game, except the challenger uses the routine
\sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast to generate the first i\ast components of both the challenge as well as the
query ciphertext. This routine is similar to \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc , except that \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast 

outputs ciphertext components that map the \{ Pi\ast ,v\} v\in [w] matrices to uniformly ran-

dom matrices (instead of mapping to
\bigl\{ 
Pi\ast +1,\pi (v)

\bigr\} 
v\in [w]

as in \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc ).

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and

descriptions of two branching programs (\sansB \sansP (0),\sansB \sansP (1)) to the challenger. Then
the challenger proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i \in [\ell ], S(i) = ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} 2.

Also, let \widetilde ni = \widetilde n - 4n for all i \in [\ell ].
Set \^S =

\bigl\{ 
(i, j, \beta , b) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)

\bigr\} 
.

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).
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3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. The challenger chooses a random bit \gamma \leftarrow \{ 0, 1\} . Let

\sansB \sansP (\gamma ) =

\biggl( \Bigl\{ 
\pi 
(\gamma )
i,b : [w]\rightarrow [w]

\Bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

, \sansa \sansc \sansc (\gamma ) \in [w], \sansr \sanse \sansj (\gamma ) \in [w]

\biggr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc and \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast routines (de-
scribed in Figures 6 and 7) as

\forall \alpha \in [i\ast ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast 

\left(     
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ]

\right)     ,

\forall \alpha \in [\ell ] \setminus [i\ast ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(      
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
(\gamma )

\right)      .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc and \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast routines

(described in Figures 6 and 7) as

\forall \alpha \in [i\ast ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ]

\right)     ,

\forall \alpha \in [\ell ] \setminus [i\ast ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.
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\sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast 

Inputs:
- Tag \sanst \sansa \sansg , Level \alpha , Set S \subseteq [\ell ] \times [\lambda ] \times \{ 0, 1\} 2, Matrices\bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\bigr\} 
(i,j,\beta ,b)\in S

, \{ Pi,v\} (i,v)\in [\ell ]\times [w], Trapdoors \{ Ti\} i\in [\ell ].

Output: Matrices \{ U0,U1\} .
Execution: Let S\alpha denote the following set:

S\alpha =
\bigl\{ 
(j, \beta , b) \in [\lambda ]\times \{ 0, 1\} 2 such that (\alpha , j, \beta , b) \in S

\bigr\} 
.

Sample matrices \{ D(j,\beta )
b , \widetilde D(j,\beta )

b \} (j,\beta ,b)\in S\alpha as

\forall (j, \beta , b) \in S\alpha ,

D
(j,\beta )
b =

\Biggl\{ 
C

(j,\beta )
\alpha ,b if \beta = \sanst \sansa \sansg j and b = 0,\bigl( 
\leftarrow \BbbZ n\times m

q

\bigr) 
otherwise,

\widetilde D(j,\beta )

b =

\Biggl\{ 
C

(j,\beta )
\alpha ,b if \beta = \sanst \sansa \sansg j and b = 1,\bigl( 
\leftarrow \BbbZ n\times m

q

\bigr) 
otherwise.

Sample 2w matrices matrices
\Bigl\{ 
Qv,

\widetilde Qv

\Bigr\} 
v\in [w]

as

\forall v \in [w],
Qv \leftarrow \BbbZ n\times m

q ,\widetilde Qv \leftarrow \BbbZ n\times m
q .

Let matrices M,W, \widetilde W represent the following (| S\alpha | +w)n\times m dimension matrices:

M =

\left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S\alpha 

\{ Pi,v\} v\in [w]

\right]  , W =

\left[  \Bigl\{ D(j,\beta )
b

\Bigr\} 
(j,\beta ,b)\in S\alpha \bigl\{ 

Qi,v

\bigr\} 
v\in [w]

\right]  ,

\widetilde W =

\left[   
\Bigl\{ \widetilde D(j,\beta )

b

\Bigr\} 
(j,\beta ,b)\in S\alpha \Bigl\{ \widetilde Qi,v

\Bigr\} 
v\in [w]

\right]   .

Run the \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse to compute matrices \{ U0,U1\} as

U0 \leftarrow \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (M, T\alpha , \sigma \sansp \sansr \sanse ,W),

U1 \leftarrow \sansE \sansn \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (M, T\alpha , \sigma \sansp \sansr \sanse , \widetilde W).

Fig. 7. Routine \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast .

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, \beta ) \in [\ell ]\times \{ 0, 1\} , \widetilde t(j\ast ,\beta )i \leftarrow \BbbZ m
q .
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(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
\ell +1 , \sanss \sanst 

(\beta \ast )
\ell +1 denote the state of branching

programs \sansB \sansP , \sansB \sansP (\gamma ) after \ell steps, respectively. Also, let \Gamma , \widetilde y, and
U

(\beta )
i,b denote the following:

\Gamma = [\ell + 1]\times ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} , \widetilde y =
\sum 

j\in [\lambda ]\setminus \{ j\ast \} 

y(j),

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

For v \in [w], let P
(\beta \ast )
\ell +1,v be the top level matrices chosen while

computing the challenge ciphertext. Similarly, let P
(1 - \beta \ast )
\ell +1,v be the

top level matrices chosen while computing the query ciphertext.28

Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows. For all tuples
(i, j, \beta ) \in \Gamma ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,

\forall (i, \beta ) \in [\ell ]\times \{ 0, 1\} , t
(j\ast ,\beta )
i = \widetilde t(j\ast ,\beta )i + e

(j\ast ,\beta )
i ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
\ell +1 =  - 

\ell \sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
\ell \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot \ell \prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P(\beta )

\ell +1,\sanss \sanst 
(\beta )
\ell +1

+ e
(j\ast ,\beta )
\ell +1 .

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime , and wins if \gamma \prime = \gamma .

\sansG \sansa \sansm \sanse 5 This is identical to the previous game, i.e., \sansG \sansa \sansm \sanse 4.\ell . For ease of exposition,
we describe it in detail below.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and

descriptions of two branching programs (\sansB \sansP (0),\sansB \sansP (1)) to the challenger. Then
the challenger proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i \in [\ell ], S(i) = ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} 2.

Also, let \widetilde ni = \widetilde n - 4n for all i \in [\ell ].
Set \^S =

\bigl\{ 
(i, j, \beta , b) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)

\bigr\} 
.

28Technically, in \sansG \sansa \sansm \sanse 4.(\ell + 1), \bfP 
(\beta )

\ell +1,\sanss \sanst 
(\beta )
\ell +1

is not sampled during \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast . For that

experiment, we will assume these matrices are chosen for the first key query and used for all remaining
keys.
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2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. The challenger chooses a random bit \gamma \leftarrow \{ 0, 1\} . Let

\sansB \sansP (\gamma ) =

\biggl( \Bigl\{ 
\pi 
(\gamma )
i,b : [w]\rightarrow [w]

\Bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

, \sansa \sansc \sansc (\gamma ) \in [w], \sansr \sanse \sansj (\gamma ) \in [w]

\biggr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast routine (described in Figure 7)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast 

\left(   \sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 
B

(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] , \{ Ti\} i\in [\ell ]

\right)   .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast routine (described in Fig-

ure 7) as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast 

\left(   \sanst \sansa \sansg , \alpha , S,\Bigl\{ 
B

(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] , \{ Ti\} i\in [\ell ]

\right)   .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, \beta ) \in [\ell ]\times \{ 0, 1\} , \widetilde t(j\ast ,\beta )i \leftarrow \BbbZ m
q .

D
ow

nl
oa

de
d 

10
/0

5/
21

 to
 1

28
.8

3.
14

1.
10

0 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-177

(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
\ell +1 , \sanss \sanst 

(\beta \ast )
\ell +1 denote the state of branching

programs \sansB \sansP , \sansB \sansP (\gamma ) after \ell steps, respectively. Also, let \Gamma , \widetilde y, and
U

(\beta )
i,b denote the following:

\Gamma = [\ell + 1]\times ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} , \widetilde y =
\sum 

j\in [\lambda ]\setminus \{ j\ast \} 

y(j),

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

For the first key query, it samples matrices P
(\beta )
\ell +1,v for v \in [w], \beta \in 

\{ 0, 1\} as follows:29

P
(\beta )

\ell +1,\sanss \sanst 
(\beta )
\ell +1

=

\Biggl\{ 
0n\times m if v = \sansr \sanse \sansj ,\bigl( 
\leftarrow \BbbZ n\times m

q

\bigr) 
otherwise.

Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows. For all tuples
(i, j, \beta ) \in \Gamma ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,

\forall (i, \beta ) \in [\ell ]\times \{ 0, 1\} , t
(j\ast ,\beta )
i = \widetilde t(j\ast ,\beta )i + e

(j\ast ,\beta )
i ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
\ell +1 =  - 

\ell \sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
\ell \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot \ell \prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P(\beta )

\ell +1,\sanss \sanst 
(\beta )
\ell +1

+ e
(j\ast ,\beta )
\ell +1 .

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime , and wins if \gamma \prime = \gamma .

8.4.2. Indistinguishability of hybrid games in section 8.4. We will now
show that the hybrid experiments described above are computationally indistinguish-
able. For any PPT adversary \scrA , let \sansA \sansd \sansv \scrA ,x(\cdot ) denote the advantage of \scrA in \sansG \sansa \sansm \sanse x.

Lemma 8.8. There exists a negligible function negl(\cdot ) such that for any adversary
\scrA and \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,0(\lambda ) - \sansA \sansd \sansv \scrA ,1(\lambda ) \leq negl(\lambda ).

Proof. The only difference between \sansG \sansa \sansm \sanse 0 and \sansG \sansa \sansm \sanse 1 is that the challenger
aborts if \sanst \sansa \sansg \ast = \sanst \sansa \sansg . The probability of this event is 2 - \lambda , and it is independent of the
adversary's choice of (k,w, L) and \sansB \sansP (0),\sansB \sansP (1) in the setup phase. As a result, for
any adversary \scrA , \sansA \sansd \sansv \scrA ,0(\lambda ) - \sansA \sansd \sansv \scrA ,1(\lambda ) \leq 2 - \lambda .

Lemma 8.9. For any adversary \scrA and \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,1(\lambda ) = \sansA \sansd \sansv \scrA ,2(\lambda ).

29Recall, as defined in \sansG \sansa \sansm \sanse 4.(\ell +1), that these matrices are sampled only for the first key query,
and all remaining key queries use the same matrices.
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STOC18-178 R. GOYAL, V. KOPPULA, AND B. WATERS

Proof. The only difference between the two hybrids is with respect to the keys.
In \sansG \sansa \sansm \sanse 1, for each key query, the challenger chooses \lambda  - 1 uniformly random vectors
y(j) \leftarrow \BbbZ m

q for j < \lambda and sets y(\lambda ) = \widetilde s \cdot P1,1 - 
\sum 

j\in [\lambda  - 1] y
(j). In \sansG \sansa \sansm \sanse 2, the challenger

chooses y(j) \leftarrow \BbbZ m
q for j \in [\lambda ] \setminus \{ j\ast \} and sets y(j\ast ) = \widetilde s \cdot P1,1  - 

\sum 
j\in [\lambda ]\setminus \{ j\ast \} y

(j). Fix

all y(j) for j /\in \{ j\ast , \lambda \} and \widetilde s \cdot P1,1. Then the following two distributions are identical:\biggl\{ \Bigl( 
y(j\ast ),y(\lambda )

\Bigr) 
:

y(j\ast ) \leftarrow \BbbZ m
q ;

y(\lambda ) = \widetilde s \cdot P1,1  - 
\sum 

j\in [\lambda  - 1] y
(j)

\biggr\} 
,

\biggl\{ \Bigl( 
y(j\ast ),y(\lambda )

\Bigr) 
:

y(\lambda ) \leftarrow \BbbZ m
q ;

y(j\ast ) = \widetilde s \cdot P1,1  - 
\sum 

j\in [\lambda ]\setminus \{ j\ast \} y
(j)

\biggr\} 
.

This implies that the distributions in \sansG \sansa \sansm \sanse 1 and \sansG \sansa \sansm \sanse 2 are identical.

Lemma 8.10. For any PPT adversary \scrA , there exists a negligible function negl(\cdot )
such that for all \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,2(\lambda ) - \sansA \sansd \sansv \scrA ,3.1.1(\lambda ) \leq negl(\lambda ).

Proof. Let us first consider the differences between \sansG \sansa \sansm \sanse 2 and \sansG \sansa \sansm \sanse 3.1.1. The
setup and challenge phases are identical in both games. The post-challenge ciphertext
query is also handled identically in both games. The only difference in the two games
is with respect to the key queries. In particular, for each key query x, the key com-

ponents \{ t(j
\ast ,\beta )

1 \} \beta \in \{ 0,1\} are computed differently in the two games. In \sansG \sansa \sansm \sanse 2, the

challenger sets t
(j\ast ,\beta )
1 =  - \widetilde y+\widetilde s \cdot P1,1 + s

(j\ast ,\beta )
1 \cdot B(j\ast ,\beta )

1,\widetilde x1
+ e

(j\ast ,\beta )
1 , while in \sansG \sansa \sansm \sanse 3.1.1,

it sets t
(j\ast ,\beta )
1 =  - \widetilde y+\widetilde s \cdot P1,1 + s

(j\ast ,\beta )
1 \cdot B(j\ast ,\beta )

1,\widetilde x1
+ \widetilde e(j\ast ,\beta )1 + e

(j\ast ,\beta )
1 . Using the smudging

lemma (Lemma 2.1), since \sigma \sansb \sansi \sansg /\sigma \sansl \sansw \sanse \geq 2\lambda , we can argue that there exists a negligible
function negl\sanss \sansm \sansu \sansd (\cdot ) such that for all \lambda \in \BbbN , m \in \BbbN , \sansS \sansD (\scrD 1,\scrD 2) \leq 2m \cdot negl\sanss \sansm \sansu \sansd (\lambda ),
where

\scrD 1 \equiv 
\Bigl\{ \Bigl( 

e
(j\ast ,0)
1 , e

(j\ast ,1)
1

\Bigr) 
: e

(j\ast ,\beta )
1 \leftarrow \chi m

\sansb \sansi \sansg for \beta \in \{ 0, 1\} 
\Bigr\} 
,

\scrD 2 \equiv 

\Biggl\{ \Bigl( \widetilde e(j\ast ,0)1 + e
(j\ast ,0)
1 ,\widetilde e(j\ast ,0)1 + e

(j\ast ,0)
1

\Bigr) 
:

e
(j\ast ,\beta )
1 \leftarrow \chi m

\sansb \sansi \sansg for \beta \in \{ 0, 1\} ;\widetilde e(j\ast ,\beta )1 \leftarrow \chi m
\sansl \sansw \sanse for \beta \in \{ 0, 1\} 

\Biggr\} 
.

As a result, if an adversary \scrA makes q\sansk \sanse \sansy \sanss (\lambda ) key queries, then for any \lambda \in \BbbN ,
\sansA \sansd \sansv \scrA ,2(\lambda ) - \sansA \sansd \sansv \scrA ,3.1.1(\lambda ) \leq q\sansk \sanse \sansy \sanss (\lambda ) \cdot (2m \cdot negl\sanss \sansm \sansu \sansd (\lambda )).

Lemma 8.11. For any PPT adversary \scrA , there exists a negligible function negl(\cdot )
such that for all \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,3.i\ast .1(\lambda ) - \sansA \sansd \sansv \scrA ,3.i\ast .2(\lambda ) \leq negl(\lambda ).

Proof. The main difference in these two games is in the key generation phase. In

particular, for each key, the terms
\bigl( 
t
(j\ast ,0)
i\ast +1 , t

(j\ast ,1)
i\ast +1

\bigr) 
are computed differently in both

games. In \sansG \sansa \sansm \sanse 3.i\ast .1, t
(j\ast ,\beta )
i\ast +1 =  - s(j

\ast ,\beta )
i\ast \cdot C(j\ast ,\beta )

i\ast ,\widetilde xi\ast 
+ s

(j\ast ,\beta )
i\ast +1 \cdot B

(j\ast ,\beta )
i\ast ,\widetilde xi\ast +1

+e
(j\ast ,\beta )
i\ast +1 , while in

\sansG \sansa \sansm \sanse 3.i\ast .2, the challenger sets t
(j\ast ,\beta )
i\ast +1 as  - 

\sum i\ast 

\alpha =1

\bigl( \widetilde t(j\ast ,\beta )\alpha \cdot 
\prod i\ast 

\delta =\alpha U
(\beta )
\delta ,\widetilde x\delta 

\bigr) 
 - \widetilde y\cdot \prod i\ast 

\delta =1 U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast +1,\sanss \sanst 

(\beta )

i\ast +1

+ s
(j\ast ,\beta )
i\ast +1 \cdot B

(j\ast ,\beta )
i\ast +1,\widetilde xi\ast +1

+ e
(j\ast ,\beta )
i\ast +1 , which is equal to  - s(j

\ast ,\beta )
i\ast \cdot C(j\ast ,\beta )

i\ast ,\widetilde xi\ast 
+

s
(j\ast ,\beta )
i\ast +1 \cdot B

(j\ast ,\beta )
i\ast ,\widetilde xi\ast +1

+ e
(j\ast ,\beta )
i\ast +1 + \widetilde e(j\ast ,\beta )i\ast +1 \cdot U

(\beta )
i\ast ,\widetilde xi\ast 

+\widetilde s\cdot E. In the second equality, \widetilde e(j\ast ,\beta )i\ast +1 \leftarrow \chi \sansl \sansw \sanse ,\widetilde s \leftarrow \chi n
s , E is sampled by \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc from \chi n\times m

\sansa \sansp \sansp \sansr . The second equality follows by

substituting the value of \widetilde t(j\ast ,\beta )i\ast =  - 
\sum i\ast  - 1

\alpha =1

\bigl( \widetilde t(j\ast ,\beta )\alpha \cdot 
\prod i\ast  - 1

\delta =\alpha U
(\beta )
\delta ,\widetilde x\delta 

\bigr) 
 - \widetilde y \cdot \prod i\ast  - 1

\delta =1 U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s\cdot 
P

i\ast ,\sanss \sanst 
(\beta )

i\ast 
+s

(j\ast ,\beta )
i\ast \cdot B(j\ast ,\beta )

i\ast ,\widetilde xi\ast 
+\widetilde e(j\ast ,\beta )i\ast (note that this is how \widetilde t(j\ast ,\beta )i\ast is defined in \sansG \sansa \sansm \sanse 3.i\ast .2).
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COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-179

To prove this lemma, we will use the following fact, which follows from the smudg-
ing lemma (Lemma 2.1). Here, we use the fact that if e and U have entries bounded
by \sigma \sansp \sansr \sanse \cdot \sansp \sanso \sansl \sansy (\lambda ), then e \cdot U can be ``drowned"" by a noise vector e\prime drawn from a noise
distribution with parameter \sigma \sansp \sansr \sanse \cdot 2\lambda .

Fact 8.1. Let \chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansl \sansw \sanse be families of distributions over \BbbZ as defined in
the construction. For any polynomials n(\cdot ),m(\cdot ), there exists a negligible function
negl8.1(\cdot ) such that for all \lambda \in \BbbN , n = n(\lambda ), m = m(\lambda ), \chi \sansb \sansi \sansg = \chi \sansb \sansi \sansg (\lambda ), \chi s = \chi s(\lambda ),
\chi \sansa \sansp \sansp \sansr = \chi \sansa \sansp \sansp \sansr (\lambda ), \chi \sansl \sansw \sanse = \chi \sansl \sansw \sanse (\lambda ), and matrix U \in \BbbZ m\times m

q such that \| U\| \infty \leq \sigma \sansp \sansr \sanse \cdot n,
\sansS \sansD (\scrD 1,\scrD 2) \leq negl8.1(\lambda ), where

\scrD 1 =
\bigl\{ 
e : e\leftarrow \chi m

\sansb \sansi \sansg 

\bigr\} 
; \scrD 2 =

\left\{   e1 + e2 + e\bfthree :
e1 \leftarrow \chi m

\sansb \sansi \sansg ; s\leftarrow \chi n
s ;E\leftarrow \chi n\times m

\sansa \sansp \sansp \sansr ;

e2 = s \cdot E; e\prime 3 \leftarrow \chi m
\sansl \sansw \sanse ;

e3 = e\prime 3 \cdot U

\right\}   .

As a result, if an adversary \scrA makes q\sansk \sanse \sansy \sanss (\lambda ) key queries, then for any \lambda \in \BbbN ,
\sansA \sansd \sansv \scrA ,3.i\ast .1(\lambda ) - \sansA \sansd \sansv \scrA ,3.i\ast .2(\lambda ) \leq q\sansk \sanse \sansy \sanss (\lambda ) \cdot (2 \cdot negl8.1(\lambda )).

Lemma 8.12. Assuming the trapdoor generation algorithms \sansL \sansT \sanse \sansn satisfy the
(q, \sigma \sansp \sansr \sanse )-row removal property, for any PPT adversary \scrA , there exists a negligible func-
tion negl(\cdot ) such that for all \lambda \in \BbbN , i\ast \in [\ell ], \sansA \sansd \sansv \scrA ,3.i\ast .2(\lambda ) - \sansA \sansd \sansv \scrA ,3.i\ast .3(\lambda ) \leq negl(\lambda ).

Proof. First, let us consider the differences between \sansG \sansa \sansm \sanse 3.i\ast .2 and \sansG \sansa \sansm \sanse 3.i\ast .3.
1. Set S(i\ast ): In \sansG \sansa \sansm \sanse 3.i\ast .2, the challenger sets S(i\ast ) = [\lambda ] \times \{ 0, 1\} 2, while in

\sansG \sansa \sansm \sanse 3.i\ast .3, S(i\ast ) = ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} 2 (\sanst \sansa \sansg \ast , \sanst \sansa \sansg are chosen at the start of
the security game, so j\ast is well defined here). Also, \widetilde ni\ast = \widetilde n = (4\lambda + w)n in
\sansG \sansa \sansm \sanse 3.i\ast .2, while \widetilde ni\ast = \widetilde n - 4n in \sansG \sansa \sansm \sanse 3.i\ast .3.

2. \{ B(j,\beta )
i,b \} i=i\ast matrices: In \sansG \sansa \sansm \sanse 3.i\ast .2, the challenger chooses (Mi\ast , Ti\ast ) \leftarrow 

\sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde n, 1m, q), while in \sansG \sansa \sansm \sanse 3.i\ast .3, the challenger chooses (Mi\ast , Ti\ast )
\leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde n - 4n, 1m, q). As a result, in \sansG \sansa \sansm \sanse 3.i\ast .2, it derives all matrices

\{ B(j,\beta )
i\ast ,b \} (j,\beta ,b)\in [\lambda ]\times \{ 0,1\} 2 from Mi\ast . In \sansG \sansa \sansm \sanse 3.i\ast .3, the challenger chooses

\{ B(j\ast ,\beta )
i\ast ,b \} b,\beta \in \{ 0,1\} uniformly at random, while the remaining are derived from

Mi\ast .
3. Ciphertexts: Since the set S(i\ast ) is different in both games, the challenge and

query ciphertexts are constructed differently in both games.
Let us now discuss why the row removal property is applicable here. In particular,

we will focus on
\bigl( 
U\ast 

i\ast ,0,U
\ast 
i\ast ,1,Ui\ast ,0,Ui\ast ,1

\bigr) 
. In \sansG \sansa \sansm \sanse 3.i\ast .2, each of these four matrices

maps
\bigl[ 
B

(j\ast ,0)
i\ast ,0 | B(j\ast ,0)

i\ast ,1 | B(j\ast ,1)
i\ast ,0 | B(j\ast ,1)

i\ast ,1

\bigr] 
to a uniformly random matrix. To see why,

let us suppose \sanst \sansa \sansg \ast j\ast = \beta \ast and \sanst \sansa \sansg j\ast = 1 - \beta \ast . Then

\bullet B
(j\ast ,\beta \ast )
i\ast ,0 \cdot U\ast 

i\ast ,0 = C
(j\ast ,\beta \ast )
i\ast ,0 , the rest are mapped to random matrices;

\bullet B
(j\ast ,\beta \ast )
i\ast ,1 \cdot U\ast 

i\ast ,1 = C
(j\ast ,\beta \ast )
i\ast ,1 , the rest are mapped to random matrices;

\bullet B
(j\ast ,1 - \beta \ast )
i\ast ,0 \cdot Ui\ast ,0 = C

(j\ast ,1 - \beta \ast )
i\ast ,0 , the rest are mapped to random matrices;

\bullet B
(j\ast ,1 - \beta \ast )
i\ast ,1 \cdot Ui\ast ,1 = C

(j\ast ,1 - \beta \ast )
i\ast ,1 , the rest are mapped to random matrices.

Also, it is important to note that the \{ C(j\ast ,\beta )
i\ast ,b \} b,\beta \in \{ 0,1\} are not used for responding

to key generation queries. Therefore, we can use the row removal property to remove

the rows corresponding to B
(j\ast ,b)
i\ast ,\beta from the level i\ast matrices.

Suppose, on the contrary, that there exist an adversary \scrA and a nonnegligible
function \eta (\cdot ) such that for all \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,3.i\ast .2(\lambda )  - \sansA \sansd \sansv \scrA ,3.i\ast .3(\lambda ) \geq \eta (\lambda ). We
will use this adversary to build a reduction algorithm \scrB that breaks the (q, \sigma \sansp \sansr \sanse )-row
removal property of \sansL \sansT \sanse \sansn .
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The reduction algorithm first receives functionality index (k,w, L) from \scrA . De-
pending on the functionality index, the reduction algorithm sets \ell = k \cdot L, n, m,\widetilde n = (4\lambda +w)n as in \sansG \sansa \sansm \sanse 3.i\ast .2 (and \sansG \sansa \sansm \sanse 3.i\ast .3) and sends these parameters to \scrA .

The reduction algorithm chooses \sanst \sansa \sansg \ast , \sanst \sansa \sansg and defines j\ast as the first index where
the two tags differ. For all i \not = i\ast , \scrB defines sets S(i) and samples matrices (with trap-

doors) \{ \{ B(j,b)
i,\beta \} (j,\beta ,b)\in S(i) , \{ Pi,v\} v\in [w] , Ti\} i \not =i\ast as in \sansG \sansa \sansm \sanse 3.i\ast .2 (and \sansG \sansa \sansm \sanse 3.i\ast .3).

The reduction algorithm defines a set S\scrB which represents the set of rows that are
removed in the transition between the two games. Formally, the reduction algorithm
defines the sets

\sansp \sanso \sanss = \{ j : b, \beta \in \{ 0, 1\} , (i\ast , j\ast , b, \beta ) is at position j in the set \{ i\ast \} \times [\lambda ]\times \{ 0, 1\} 2\} ,

S\scrB =
\bigcup 

j\in \sansp \sanso \sanss 

\{ n(j  - 1) + 1, n(j  - 1) + 2, . . . , nj\} .

It sends 1\widetilde n, 1m, S\scrB to the row removal property challenger. It receives A from the
challenger, which it parses as

A =

\left[  \Bigl\{ B(j,\beta )
i\ast ,b

\Bigr\} 
(j,\beta ,b)\in [\lambda ]\times \{ 0,1\} 2

\{ Pi\ast ,v\} v\in [w]

\right]  .

The reduction algorithm also chooses (4\lambda + w  - 4) matrices \{ C(j,\beta )
i,b \} i \not =i\ast ,j \not =j\ast 

uniformly at random from \BbbZ n\times m
q .

Next, it receives the challenge programs \sansB \sansP (0),\sansB \sansP (1). It chooses \gamma \leftarrow \{ 0, 1\} . For
all i \not = i\ast , it computes (U\ast 

i,0,U
\ast 
i,1) components by itself (this step is identical in both

games). For i = i\ast , it uses the row removal property challenger. It sets matrices

D
(j,\beta )
b and \widetilde D(j,\beta )

b as follows:

\forall (j, \beta , b) \in ([\lambda ] \setminus \{ j\ast \} )\times \{ 0, 1\} 2,
D

(j,\beta )
b =

\Biggl\{ 
C

(j,\beta )
i,b if \beta = \sanst \sansa \sansg j and b = 0,\bigl( 
\leftarrow \BbbZ n\times m

q

\bigr) 
otherwise,

\widetilde D(j,\beta )

b =

\Biggl\{ 
C

(j,\beta )
i,b if \beta = \sanst \sansa \sansg j and b = 1,\bigl( 
\leftarrow \BbbZ n\times m

q

\bigr) 
otherwise.

Next, it sets matrices
\bigl\{ 
Qi,v

\bigr\} 
v\in [w]

, \{ \widetilde Qi,v\} v\in [w] as in Figure 6 and sets matrices W

and \widetilde W as

W =

\left[  \Bigl\{ D(j,\beta )
b

\Bigr\} 
(j,\beta ,b)\in S\alpha \bigl\{ 

Qi,v

\bigr\} 
v\in [w]

\right]  , \widetilde W =

\left[   
\biggl\{ \widetilde D(j,\beta )

b

\biggr\} 
(j,\beta ,b)\in S\alpha \Bigl\{ \widetilde Qi,v

\Bigr\} 
v\in [w]

\right]   .

It sends them as queries to the row removal challenger (note that C
(j\ast ,\beta )
i\ast ,b is not

required for defining W and \widetilde W). The challenger responds by sending U\ast 
i\ast ,0 and

U\ast 
i\ast ,1, respectively. The reduction algorithm forwards

\bigl\{ \bigl( 
U\ast 

i,0,U
\ast 
i,1

\bigr) \bigr\} 
i\in [\ell ]

to the adver-

sary. The ciphertext query is handled similarly, and the reduction algorithm receives
\{ (Ui,0,Ui,1)\} i\in [\ell ], which it forwards to \scrA (the remaining ciphertext components can

be computed by the reduction algorithm).
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COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-181

Next, the adversary sends polynomially many key queries. Note that the keys
are generated in an identical manner in both games. Moreover, these keys can be

generated without having \{ C(j\ast ,\beta )
i\ast ,b \} b,\beta and the trapdoor for Mi\ast .

Finally, the adversary sends its guess, which the reduction algorithm forwards to
the row removal property challenger. Clearly, if the row removal challenger chooses
b = 0, then the reduction algorithm perfectly simulates \sansG \sansa \sansm \sanse 3.i\ast .3. If the challenger
chooses b = 1, then the reduction algorithm perfectly simulates \sansG \sansa \sansm \sanse 3.i\ast .2 (here we
use the fact that in \sansG \sansa \sansm \sanse 3.i\ast .2, each of the matrices

\bigl\{ 
U\ast 

i\ast ,0,U
\ast 
i\ast ,1,Ui\ast ,0,Ui\ast ,1

\bigr\} 
maps\bigl[ 

B
(j\ast ,0)
i\ast ,0 | B(j\ast ,0)

i\ast ,1 | B(j\ast ,1)
i\ast ,0 | B(j\ast ,1)

i\ast ,1

\bigr] 
to a uniformly random matrix).

Therefore, the reduction algorithm has advantage at least \eta (\cdot ).

Lemma 8.13. Assuming the (n, q, \sigma \sansl \sansw \sanse )-\sansL \sansW \sansE assumption holds, for any PPT ad-
versary \scrA , there exists a negligible function negl(\cdot ) such that for all \lambda \in \BbbN , i\ast \in [\ell ],
\sansA \sansd \sansv \scrA ,3.i\ast .3(\lambda ) - \sansA \sansd \sansv \scrA ,3.i\ast .4(\lambda ) \leq negl(\lambda ).

Proof. In \sansG \sansa \sansm \sanse 3.i\ast .3, for each key query x, for each \beta \in \{ 0, 1\} , the component\widetilde t(j\ast ,\beta )i\ast =  - 
\sum i\ast  - 1

\alpha =1

\bigl( \widetilde t(j\ast ,\beta )\alpha \cdot 
\prod i\ast  - 1

\delta =\alpha U
(\beta )
\delta ,\widetilde x\delta 

\bigr) 
 - \widetilde y \cdot \prod i\ast  - 1

\delta =1 U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast ,\sanss \sanst 

(\beta )

i\ast 
+ s

(j\ast ,\beta )
i\ast \cdot 

B
(j\ast ,\beta )
i\ast ,\widetilde xi\ast 

+ \widetilde e(j\ast ,\beta )i\ast . In \sansG \sansa \sansm \sanse 3.i\ast .4, \widetilde t(j\ast ,\beta )i\ast \leftarrow \BbbZ m
q . Let q\sansk \sanse \sansy \sanss = q\sansk \sanse \sansy \sanss (\lambda ) denote the

number of keys queried by \scrA (1\lambda ). To prove that these two games are computationally
indistinguishable, we will define q\sansk \sanse \sansy \sanss hybrid experiments.

Hybrid \bfitH \bfito ,\bfzero for \bfito \in \{ 0, 1, . . . , \bfitq \bfsansk \bfsanse \bfsansy \bfsanss \} . In this hybrid, for the first o keys, the\widetilde t(j\ast ,0)i\ast components are sampled uniformly at random in the first o queries, while the\widetilde t(j\ast ,1)i\ast components are sampled as in \sansG \sansa \sansm \sanse 3.i\ast .3. For the remaining q\sansk \sanse \sansy \sanss  - o key
queries, the keys are generated as in \sansG \sansa \sansm \sanse 3.i\ast .3 in the remaining queries.

Hybrid \bfitH \bfito ,\bfone for \bfito \in \{ 0, 1, . . . , \bfitq \bfsansk \bfsanse \bfsansy \bfsanss \} . In this hybrid, for all keys, the \widetilde t(j\ast ,0)i\ast 

components are sampled uniformly at random. For the first o queries, the \widetilde t(j\ast ,1)i\ast 

components are sampled uniformly at random, while the remaining are sampled as in
\sansG \sansa \sansm \sanse 3.i\ast .3.

Clearly, H0,0 corresponds to \sansG \sansa \sansm \sanse 3.i\ast .3, Hq\sansk \sanse \sansy \sanss ,1 is identical to \sansG \sansa \sansm \sanse 3.i\ast .4, and
Hq\sansk \sanse \sansy \sanss ,0 \equiv H0,1. Let a\scrA ,i,b(\lambda ) denote the advantage of \scrA in Hi,b.

Claim 8.14. Assuming the (n, q, \sigma \sansl \sansw \sanse )-\sansL \sansW \sansE assumption, for any PPT adversary
\scrA making q\sansk \sanse \sansy \sanss (\cdot ) key queries, there exists a negligible function \sansn o,0(\cdot ) such that for
all \lambda \in \BbbN , q\sansk \sanse \sansy \sanss = q\sansk \sanse \sansy \sanss (\lambda ) and all indices o \in [q\sansk \sanse \sansy \sanss ], a\scrA ,o - 1,0  - a\scrA ,o,0 \leq \sansn o,0(\lambda ).

Proof. Suppose there exist an adversary making q\sansk \sanse \sansy \sanss key queries, and a non-
negligible function \eta (\cdot ) such that for all \lambda \in \BbbN , there exists an index o \in [q\sansk \sanse \sansy \sanss ] such
that a\scrA ,o - 1,0  - a\scrA ,o,0 \geq \eta (\lambda ). We will use \scrA to build a reduction algorithm \scrB that
breaks the (n, q, \sigma \sansl \sansw \sanse )-\sansL \sansW \sansE assumption.

The reduction algorithm first receives (1k, 1w, 1L) from \scrA . It sets \widetilde n = (4\lambda +
w) \cdot n. The reduction algorithm queries the LWE challenger m times and receives
\{ (ai, ui)\} i\leq m. It sets a matrix A = [aT1 aT2 . . .aTm] (that is, A \in \BbbZ n\times m

q ) and u =
[u1u2 . . . um] (that is, u \in \BbbZ m

q ).

The reduction algorithm then chooses two tags, \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow \{ 0, 1\} \lambda , and let j\ast be
the first index where they differ. Next, the reduction algorithm defines set S(i) for each

i, set \^S, matrices \{ B(j,\beta )
i,b \} (i,j,\beta ,b)\in \^S , \{ Pi,v\} i\in [\ell ],v\in [w] and \{ Ti\} i\in [\ell ] as in \sansG \sansa \sansm \sanse 3.i\ast .3

(and \sansG \sansa \sansm \sanse 3.i\ast .4). Note that (i\ast , j\ast , \beta , b) /\in \^S for b, \beta \in \{ 0, 1\} . The reduction algo-
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rithm chooses B
(j\ast ,1)
i\ast ,b \leftarrow \BbbZ n\times m

q for b \in \{ 0, 1\} . It sends the public parameters to \scrA .
The adversary sends two challenge functions, \sansB \sansP (0),\sansB \sansP (1), and a ciphertext query

\sansB \sansP . Note that in \sansG \sansa \sansm \sanse 3.i\ast .3 (and \sansG \sansa \sansm \sanse 3.i\ast .4), the challenge and query ciphertext
are computed identically, and the reduction algorithm has all the matrices/trapdoors
required for computing the ciphertext components.

Next, after receiving the challenge ciphertext and the query ciphertext, the ad-
versary queries for secret keys. For the first o - 1 secret keys, the reduction algorithm
responds as in Ho - 1,0 (which is identical to the response in Ho,0). In particular,

to handle these key queries, the reduction algorithm does not require B
(j\ast ,b)
i\ast ,\beta , since

in both hybrids \widetilde t(j\ast ,\beta )i\ast \leftarrow \BbbZ m
q . For the oth query, the reduction algorithm receives

x \in \{ 0, 1\} k. It sets \widetilde x by repeating the input L times, and sets B
(j\ast ,0)
i\ast ,\widetilde xi\ast 

= A (the LWE

public matrix) and chooses B
(j\ast ,0)
i\ast ,1 - \widetilde xi\ast 

\leftarrow \BbbZ n\times m
q (this might be used for the later key

queries). The reduction algorithm sets

\widetilde t(j\ast ,0)i\ast =  - 
i\ast  - 1\sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,0)\alpha \cdot 
i\ast  - 1\prod 
\delta =\alpha 

U
(0)
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot i\ast  - 1\prod 

\delta =1

U
(0)
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast ,\sanss \sanst 

(0)

i\ast 
+ u.

It computes \widetilde t(j\ast ,1)i\ast as in Ho - 1,0 (and Ho,0). All the remaining key queries are han-
dled identically in Ho - 1,0 and Ho,0, and the reduction algorithm has all the matri-
ces required to compute them (in particular, after responding to the oth query, all

\{ B(j\ast ,\beta )
i\ast ,b \} (b,\beta )\in \{ 0,1\} 2 are well defined).
Finally, the adversary sends its guess, and the reduction algorithm forwards it

to the LWE challenger. Clearly, if u is a uniformly random vector, then so is the\widetilde t(j\ast ,0)i\ast component for the oth query, and therefore \scrB perfectly simulates Ho,0. If\widetilde t(j\ast ,0)i\ast = s \cdot B(j\ast ,0)
i\ast ,\widetilde xi

+ \widetilde e(j\ast ,0)i\ast , then the reduction algorithm implicitly sets s
(j\ast ,0)
i\ast = s.

Also, note that s
(j\ast ,0)
i\ast is chosen afresh for each key query, and hence s will not be

required anywhere else in simulating Ho - 1,0. Therefore the reduction algorithm per-
fectly simulates Ho - 1,0. As a result, it breaks the LWE assumption with advantage \eta .

Claim 8.15. Assuming the (n, q, \sigma \sansl \sansw \sanse )-\sansL \sansW \sansE assumption holds, for any PPT ad-
versary \scrA making q\sansk \sanse \sansy \sanss (\cdot ) key queries, there exists a negligible function \sansn o,1(\cdot ) such that
for all \lambda \in \BbbN , q\sansk \sanse \sansy \sanss = q\sansk \sanse \sansy \sanss (\lambda ) and all indices o \in [q\sansk \sanse \sansy \sanss ], a\scrA ,o - 1,1  - a\scrA ,o,1 \leq \sansn o,1(\lambda ).

This proof is identical to the proof of Claim 8.14.
Using the above claims, it follows that for any PPT adversary, there exists a

negligible function negl3.i\ast .4 such that for all \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,3.i\ast .3(\lambda ) - \sansA \sansd \sansv \scrA ,3.i\ast .4(\lambda ) \leq 
negl3.i\ast .4(\lambda ).

Lemma 8.16. For any PPT adversary \scrA , there exists a negligible function
negl3.(i\ast +1).1(\cdot ) such that for all \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,3.i\ast .4(\lambda )  - \sansA \sansd \sansv \scrA ,3.(i\ast +1).1(\lambda ) \leq 
negl3.(i\ast +1).1(\lambda ).

Proof. The only difference between \sansG \sansa \sansm \sanse 3.i\ast .4 and \sansG \sansa \sansm \sanse 3.(i\ast + 1).1 is that for

each key query, the components
\bigl( 
t
(j\ast ,0)
i\ast +1 , t

(j\ast ,1)
i\ast +1

\bigr) 
are computed differently. In particu-

lar, in \sansG \sansa \sansm \sanse 3.(i\ast +1).1, the term \widetilde t(j\ast ,\beta )i\ast +1 has an additional term \widetilde e(j\ast ,\beta )i\ast +1 which is drawn
from the \chi m

\sansl \sansw \sanse distribution.
The proof of this lemma is identical to the proof of Lemma 8.10 by setting

negl3.(i\ast +1).1(\cdot ) = q\sansk \sanse \sansy \sanss (\cdot ) \cdot (2m \cdot negl\sanss \sansm \sansu \sansd (\cdot )) (recall that negl\sanss \sansm \sansu \sansd (\cdot ) is the negligible
function given by Lemma 2.1).
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Next, we will look at \sansG \sansa \sansm \sanse 4.i for i \in [\ell ]. For notational convenience, we refer to
\sansG \sansa \sansm \sanse 4 as \sansG \sansa \sansm \sanse 4.0. First, recall that \sansG \sansa \sansm \sanse 4.0 is identical to \sansG \sansa \sansm \sanse 3.\ell .4. Note that
in \sansG \sansa \sansm \sanse 4.0, the challenger uses \{ P1,v\} v\in [w] only for computing

\bigl( 
U\ast 

1,0,U
\ast 
1,1

\bigr) 
(for the

challenge ciphertext) and (U1,0,U1,1) (for the ciphertext query). In particular, it is
not used in the key generation phase. More generally, for all i \in [\ell ], \{ Pi,v\} v\in [w] is used

in \sansG \sansa \sansm \sanse 4.(i  - 1) only for computing
\bigl( 
U\ast 

i,0,U
\ast 
i,1

\bigr) 
and (Ui,0,Ui,1). This observation

is useful for the following lemma.

Lemma 8.17. Assuming \sansL \sansT \sanse \sansn satisfies the (q, \chi \sansa \sansp \sansp \sansr , \sigma \sansp \sansr \sanse )-target switching property,
then for any PPT adversary \scrA there exists a negligible function negl4.i\ast (\cdot ) such that
for all \lambda \in \BbbN and i\ast \in [\ell ], \sansA \sansd \sansv \scrA ,4.(i\ast  - 1)  - \sansA \sansd \sansv \scrA ,4.i\ast \leq negl4.i\ast (\lambda ).

Proof. The only difference between \sansG \sansa \sansm \sanse 4.(i\ast  - 1) and \sansG \sansa \sansm \sanse 4.i\ast is with re-
spect to the matrices

\bigl( 
U\ast 

i\ast ,0,U
\ast 
i\ast ,1

\bigr) 
(in the challenge ciphertext) and (Ui\ast ,0,Ui\ast ,1)

(in the ciphertext query). In \sansG \sansa \sansm \sanse 4.(i\ast  - 1), these matrices are computed using
\sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc , while they are computed using \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast in \sansG \sansa \sansm \sanse 4.i\ast . Recall
that the only difference between the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc and \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast ciphertext
components is that the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast outputs map the \{ Pi\ast ,v\} v\in [w] matrices to uni-

formly randommatrices (instead of mapping to
\bigl\{ 
Pi\ast +1,\pi (v)

\bigr\} 
v\in [w]

as in\sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc ).

An important point to note is that the \{ Pi\ast ,v\} v\in [w] matrices are not used anywhere

else in both games. In particular, note that \{ Pi\ast ,v\} v\in [w] are not used for computing\bigl\{ 
U\ast 

i\ast  - 1,b,Ui\ast  - 1,b

\bigr\} 
b\in \{ 0,1\} .

Suppose there exist an adversary \scrA and a nonnegligible function \eta (\cdot ) such that
\sansA \sansd \sansv 4.i\ast  - 1(\lambda ) - \sansA \sansd \sansv 4.i\ast (\lambda ) \geq \eta (\lambda ). We will construct a reduction algorithm that breaks
the target switching property with advantage \eta (\cdot ).

Setup phase. The reduction algorithm first performs the following steps from
the setup phase, which are common for both \sansG \sansa \sansm \sanse 4.(i\ast  - 1) and \sansG \sansa \sansm \sanse 4.i\ast . It defines\widetilde ni, S

(i) for all i \in [\ell ], chooses \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow \{ 0, 1\} \lambda , and defines j\ast as the first index

where \sanst \sansa \sansg \ast and \sanst \sansa \sansg differ. Next, it defines \{ \{ B(j,\beta )
i,b \} (j,\beta ,b)\in S(i) , \{ Pi,v\} v\in [w] , Ti\} i \not =i\ast as

in \sansG \sansa \sansm \sanse 4.(i\ast  - 1). It also defines \^S and chooses \{ C(j,\beta )
i,b \} (i,j,\beta ,b)\in \^S as in \sansG \sansa \sansm \sanse 4.(i\ast  - 1).

The reduction algorithm sets \widetilde k = \widetilde ni  - w \cdot n and queries the target switching
property challenger by sending 1\widetilde ni , 1m and setting S\scrB = [\widetilde k]. It receives a matrix

A \in \BbbZ \widetilde k\times m
q and parses A as follows:

A =

\biggl[ \Bigl\{ 
B

(1,\beta )
j,b

\Bigr\} 
(j,\beta ,b)\in S(i\ast )

\biggr] 
.

Challenge phase. The reduction algorithm receives \sansB \sansP (1), \sansB \sansP (2). It chooses
\gamma \leftarrow \{ 0, 1\} , and for all \alpha < i\ast it computes

\bigl( 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr) 
using \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast (as in

\sansG \sansa \sansm \sanse 4.(i\ast  - 1) and \sansG \sansa \sansm \sanse 4.i\ast ). Note in particular that \{ Pi\ast ,v\} v\in [w] are not used for
computing these matrices. It then sends its target switching property query matrices
Z\ast 

0,b,Z
\ast 
1,b of dimensions \widetilde ni \times m defined below.

Z\ast 
0,b =

\left[   
\Bigl\{ 
C

(j,\beta )
i\ast ,b

\Bigr\} 
(j,\beta ,b)\in S(i\ast )\Bigl\{ 

Pi\ast ,\pi \gamma 
i\ast ,b

(v)

\Bigr\} 
v\in [w]

\right]   Z\ast 
1,b =

\Biggl[ \Bigl\{ 
C

(j,\beta )
i\ast ,b

\Bigr\} 
(j,\beta ,b)\in S(i\ast )

\leftarrow \BbbZ w\cdot n\times m
q

\Biggr] 
.

It receives U\ast 
i\ast ,b from the challenger.
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Query phase. The ciphertext query is handled similarly to the challenge cipher-
text. The key queries are handled identically in both \sansG \sansa \sansm \sanse 4.(i\ast  - 1) and \sansG \sansa \sansm \sanse 4.i\ast .

Lemma 8.18. For any adversary \scrA , \sansA \sansd \sansv \scrA ,5 = 0.

Proof. We will argue that any adversary \scrA has advantage 0 in \sansG \sansa \sansm \sanse 5. First,
note that the challenge phase uses \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc \ast . As a result, it does not have any
information about the choice \gamma \leftarrow \{ 0, 1\} . Next, in the key query phase, for each

key query, the challenger chooses P
(\beta )

\ell +1,\sanss \sanst 
(\beta )
\ell +1

, which might depend on \gamma . However,

the important point here is that for each key query x, both challenge programs have

identical output. Therefore, the P
(\beta )

\ell +1,\sanss \sanst 
(\beta )
\ell +1

matrices are independent of \gamma . As a result,

the adversary has zero advantage in \sansG \sansa \sansm \sanse 5.

8.4.3. 1-bounded restricted accept indistinguishability. In order to prove
restricted accept indistinguishability security, we take a slightly different approach.
First, we show that our construction achieves complete accept indistinguishability
security, which is defined as follows.

Definition 8.19 (q-bounded complete accept indistinguishability). Let q(\cdot ) be
any fixed polynomial. A Mixed FE scheme \sansM \sansi \sansx \sanse \sansd -\sansF \sansE = (\sansS \sanse \sanst \sansu \sansp , \sansE \sansn \sansc , \sansS \sansK -\sansE \sansn \sansc , \sansK \sanse \sansy \sansG \sanse \sansn ,
\sansD \sanse \sansc ) is said to satisfy q-bounded complete accept indistinguishability security if there
exist algorithms \sansS \sansK -\sansE \sansn \sansc \ast ,\sansK \sanse \sansy \sansG \sanse \sansn \ast such that for every stateful PPT adversary \scrA there
exists a negligible function negl(\cdot ), such that for every \lambda \in \BbbN the following holds:

Pr

\left[    \scrA Ob
1(\cdot ),O

b
2(\cdot )(\sansp \sansp , \sansc \sanst b) = b :

(1\kappa , f\ast )\leftarrow \scrA (1\lambda );
(\sansp \sansp ,\sansm \sanss \sansk )\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa );

b\leftarrow \{ 0, 1\} ; \sansc \sanst 1 \leftarrow \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk , f\ast );
\sansc \sanst 0 \leftarrow \sansE \sansn \sansc (\sansp \sansp )

\right]    \leq 1

2
+ negl(\lambda ),

where
\bullet oracle O0

1(\cdot ) = \sansK \sanse \sansy \sansG \sanse \sansn \ast (\sansp \sansp , \cdot ), O1
1(\cdot ) = \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk , \cdot ),

O0
2(\cdot ) = \sansS \sansK -\sansE \sansn \sansc \ast (\sansp \sansp , \cdot ), O1

2(\cdot ) = \sansS \sansK -\sansE \sansn \sansc (\sansm \sanss \sansk , \cdot );
\bullet \scrA can make at most q(\lambda ) queries to the Ob

2(\cdot ) oracle;
\bullet every secret key query m made by adversary \scrA to the Ob

1(\cdot ) oracle must satisfy
the condition that f\ast (m) = 1 as well as f(m) = 1 for every ciphertext query
f made by \scrA to the Ob

2(\cdot ) oracle; and
\bullet \scrA must make all (at most q(\lambda )) Ob

2(\cdot ) oracle queries before making any query
to the Ob

1(\cdot ) oracle.
At a high level, this states that if the adversary only queries for keys for inputs

m and ciphertexts for functions f such that f(m) = 1 on all combinations, then there
exist special encryption and key generation algorithms (\sansS \sansK -\sansE \sansn \sansc \ast ,\sansK \sanse \sansy \sansG \sanse \sansn \ast ) such that
they only take public parameters as inputs, and the adversary cannot distinguish
between correctly computed keys and ciphertexts from these (simulated) special keys
and ciphertexts.

Below we provide a sequence of hybrid games that we later use to argue complete
accept indistinguishability security. To complete the argument, later (in section 8.4.5)
we simply argue that complete accept indistinguishability implies restricted accept
indistinguishability.

\sansG \sansa \sansm \sanse 0 This corresponds to the original 1-bounded restricted accept indistinguisha-
bility security game in which the challenger encrypts the challenge branching program
\sansB \sansP \ast sent by the adversary.
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COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-185

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda + w)n.

2. Next, it samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in [\lambda ]\times \{ 0,1\} 2

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde n, 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for i \in [\ell ], j \in [\lambda ], \beta , b \in \{ 0, 1\} .
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. The challenger chooses a random \lambda -bit string \sanst \sansa \sansg \ast \leftarrow 
\{ 0, 1\} \lambda . Let

\sansB \sansP \ast =
\Bigl( \bigl\{ 

\pi \ast 
i,b : [w]\rightarrow [w]

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} , \sansa \sansc \sansc 

\ast \in [w], \sansr \sanse \sansj \ast \in [w]
\Bigr) 
,

S\ast = [\ell ]\times [\lambda ]\times \{ 0, 1\} 2.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(   \sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 
B

(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] , \{ Ti\} i\in [\ell ] ,\sansB \sansP 
\ast 

\right)   .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger chooses a \lambda -bit string \sanst \sansa \sansg \leftarrow \{ 0, 1\} \lambda and
responds as follows:
(a) Let S = [\ell ] \times [\lambda ] \times \{ 0, 1\} 2. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (de-

scribed in Figure 6) as follows. For all \alpha \in [\ell ],

\{ U\alpha ,0,U\alpha ,1\} \leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
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STOC18-186 R. GOYAL, V. KOPPULA, AND B. WATERS

(a) It chooses a secret vector as \widetilde s \leftarrow \chi n
s and \lambda  - 1 random vectors as

y(j) \leftarrow \BbbZ m
q for j \in [\lambda  - 1]. Next, it sets vector y(\lambda ) as

y(\lambda ) = \widetilde s \cdot P1,1  - 
\sum 

j\in [\lambda  - 1]

y(j).

(b) It then chooses secret vectors \{ s(j,\beta )i \} i,j,\beta , error vectors \{ e(j,\beta )i \} i,j,\beta 
as

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst .

(c) Let \widetilde x = xL. Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows:

\forall (i, j, \beta ) \in [\ell + 1]\times [\lambda ]\times \{ 0, 1\} ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i B

(j,\beta )
i,\widetilde xi

+ e
(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1.

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .

\sansG \sansa \sansm \sanse 1 This is identical to the previous game, except the challenger now chooses both
tags \sanst \sansa \sansg \ast and \sanst \sansa \sansg at the beginning during the setup phase, and it aborts if \sanst \sansa \sansg \ast = \sanst \sansa \sansg .

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below.

2. Next, it samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in [\lambda ]\times \{ 0,1\} 2

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde n, 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for i \in [\ell ], j \in [\lambda ], \beta , b \in \{ 0, 1\} .
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. Let

\sansB \sansP \ast =
\Bigl( \bigl\{ 

\pi \ast 
i,b : [w]\rightarrow [w]

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} , \sansa \sansc \sansc 

\ast \in [w], \sansr \sanse \sansj \ast \in [w]
\Bigr) 
,

S\ast = [\ell ]\times [\lambda ]\times \{ 0, 1\} 2.
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COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-187

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
\ast 

\right)     .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = [\ell ] \times [\lambda ] \times \{ 0, 1\} 2. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (de-

scribed in Figure 6) as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda  - 1]. Next, it sets vector y(\lambda ) as

y(\lambda ) = \widetilde s \cdot P1,1  - 
\sum 

j\in [\lambda  - 1]

y(j).

(b) It then chooses secret vectors \{ s(j,\beta )i \} i,j,\beta , error vectors \{ e(j,\beta )i \} i,j,\beta 
as

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst .

(c) Let \widetilde x = xL. Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows:

\forall (i, j, \beta ) \in [\ell + 1]\times [\lambda ]\times \{ 0, 1\} ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1.

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .
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Notation. In all the following hybrid games, let \sansd \sansi ff denote the set of indices
j such that \sanst \sansa \sansg \ast j \not = \sanst \sansa \sansg j . Similarly, let \sansc \sanso \sansm \sansm denote the set of indices j such that
\sanst \sansa \sansg \ast j = \sanst \sansa \sansg j . Concretely, in all the following hybrids, sets \sansd \sansi ff and \sansc \sanso \sansm \sansm are defined
as follows:

\sansd \sansi ff
def
=
\bigl\{ 
j \in [\lambda ] : \sanst \sansa \sansg \ast j \not = \sanst \sansa \sansg j

\bigr\} 
, \sansc \sanso \sansm \sansm 

def
= \sansc \sanso \sansm \sansm .

Additionally, let j\ast denote the smallest index in \sansd \sansi ff (i.e., j\ast = minj\in \sansd \sansi ff j), and let
\beta \ast = \sanst \sansa \sansg \ast j\ast . Note that since the challenger aborts whenever \sanst \sansa \sansg \ast = \sanst \sansa \sansg , thus j\ast , \beta \ast 

always exist whenever the challenger does not abort. Also, we will use \widehat \sansd \sansi ff to denote

the set \sansd \sansi ff excluding index j\ast , i.e., \widehat \sansd \sansi ff = \sansd \sansi ff \setminus \{ j\ast \} .

\sansG \sansa \sansm \sanse 2 This is identical to the previous game, except the challenger, while answering
a secret key query, now puts the \widetilde s \cdot P1,1 component in y(j\ast ) instead of y(\lambda ), and the
rest are sampled uniformly at random.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below.

2. Next, it samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in [\lambda ]\times \{ 0,1\} 2

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde n, 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for i \in [\ell ], j \in [\lambda ], \beta , b \in \{ 0, 1\} .
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. Let

\sansB \sansP \ast =
\Bigl( \bigl\{ 

\pi \ast 
i,b : [w]\rightarrow [w]

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} , \sansa \sansc \sansc 

\ast \in [w], \sansr \sanse \sansj \ast \in [w]
\Bigr) 
,

S\ast = [\ell ]\times [\lambda ]\times \{ 0, 1\} 2.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
\ast 

\right)     .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
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COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-189

(a) Let S = [\ell ] \times [\lambda ] \times \{ 0, 1\} 2. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (de-
scribed in Figure 6) as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} . Next, it sets vector y(j\ast ) as

y(j\ast ) = \widetilde s \cdot P1,1  - 
\sum 

j\in [\lambda ]\setminus \{ j\ast \} 

y(j).

(b) It then chooses secret vectors \{ s(j,\beta )i \} i,j,\beta , error vectors \{ e(j,\beta )i \} i,j,\beta 
as

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst .

(c) Let \widetilde x = xL. Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows:

\forall (i, j, \beta ) \in [\ell + 1]\times [\lambda ]\times \{ 0, 1\} ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i B

(j,\beta )
i,\widetilde xi

+ e
(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1.

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .
Next, we have a sequence of 4\ell hybrid experiments, \sansG \sansa \sansm \sanse 3.i\ast . \{ 1, 2, 3, 4\} for

i\ast = 1 to \ell .

\sansG \sansa \sansm \sanse 3.i\ast .1 In hybrids \sansG \sansa \sansm \sanse 3.i\ast .1, the B
(j,\beta )
i,b ,C

(j,\beta )
i,b matrices for all \sansd \sansi ff strands and

levels i < i\ast are not sampled (at all) along with other level i matrices; ciphertext
components for levels i < i\ast are used to target only the remaining matrices; i.e., the

ciphertext matrices do not target B
(j,\beta )
i,b matrices for j \in \sansd \sansi ff and i < i\ast to some pre-

specified C
(j,\beta )
i,b or random matrices. Also, the first i\ast  - 1 components in each secret

key are set to be uniformly random vectors, and the next component is hardwired
such that correctness holds, and some smudgeable noise is also introduced in these
components. Below we describe it in detail.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
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1. It chooses an LWE modulus q, dimensions n,m, and also distributions
\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i < i\ast , S(i) = \sansc \sanso \sansm \sansm \times \{ 0, 1\} 2,
\forall i \geq i\ast , S(i) = [\lambda ]\times \{ 0, 1\} 2.

Also, let

\widetilde ni =

\Biggl\{ \widetilde n - | \sansd \sansi ff| \cdot 4n for i < i\ast ,\widetilde n for i \geq i\ast .

Set \^S =
\bigl\{ 
(i, j, \beta , b) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)

\bigr\} 
.

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. Let

\sansB \sansP \ast =
\Bigl( \bigl\{ 

\pi \ast 
i,b : [w]\rightarrow [w]

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} , \sansa \sansc \sansc 

\ast \in [w], \sansr \sanse \sansj \ast \in [w]
\Bigr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
\ast 

\right)     .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)

as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .
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(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, j, \beta ) \in [i\ast  - 1]\times \sansd \sansi ff \times \{ 0, 1\} , \widetilde t(j,\beta )i \leftarrow \BbbZ m
q ,

\forall (j, \beta ) \in \sansd \sansi ff \times \{ 0, 1\} , \widetilde e(j,\beta )i\ast \leftarrow \chi m
\sansl \sansw \sanse .

(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
i\ast , \sanss \sanst 

(\beta \ast )
i\ast denote the state of branching

programs \sansB \sansP , \sansB \sansP \ast after i\ast  - 1 steps, respectively. Also, let \Gamma , \widetilde y,
and U

(\beta )
i,b denote the following:

\Gamma = [\ell + 1]\times \sansc \sanso \sansm \sansm \times \{ 0, 1\} , \widetilde y =
\sum 

j\in [\lambda ]\setminus \{ j\ast \} 

y(j),

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows. For all (i, j, \beta ) \in 
\Gamma ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i B

(j,\beta )
i,\widetilde xi

+ e
(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,

\forall (i, j, \beta ) \in [i\ast  - 1]\times \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i ,

\forall (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} ,
t
(j,\beta )
i\ast =  - 

i\ast  - 1\sum 
\alpha =1

\Biggl( \widetilde t(j,\beta )\alpha \cdot 
i\ast  - 1\prod 
\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
+ y(j) \cdot 

i\ast  - 1\prod 
\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ s
(j,\beta )
i\ast \cdot B(j,\beta )

i\ast ,\widetilde xi\ast 
+ \widetilde e(j,\beta )i\ast + e

(j,\beta )
i\ast ,

\forall \beta \in \{ 0, 1\} ,

t
(j\ast ,\beta )
i\ast =  - 

i\ast  - 1\sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
i\ast  - 1\prod 
\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot i\ast  - 1\prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast ,\sanss \sanst 

(\beta )

i\ast 
+ s

(j\ast ,\beta )
i\ast \cdot B(j\ast ,\beta )

i\ast ,\widetilde xi\ast 
+ \widetilde e(j\ast ,\beta )i\ast + e

(j\ast ,\beta )
i\ast ,
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\forall (i, j, \beta ) \in ([\ell + 1] \setminus [i\ast ])\times \sansd \sansi ff \times \{ 0, 1\} ,

t
(j,\beta )
i =

\Biggl\{ 
 - s(j,\beta )i - 1 \cdot C

(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1.

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .

\sansG \sansa \sansm \sanse 3.i\ast .2 This is identical to the previous game, except the (i\ast +1)th key component
in all \sansd \sansi ff strands is also hardwired. Below we describe it in detail.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i < i\ast , S(i) = \sansc \sanso \sansm \sansm \times \{ 0, 1\} 2,
\forall i \geq i\ast , S(i) = [\lambda ]\times \{ 0, 1\} 2.

Also, let

\widetilde ni =

\Biggl\{ \widetilde n - | \sansd \sansi ff| \cdot 4n for i < i\ast ,\widetilde n for i \geq i\ast .

Set \^S =
\bigl\{ 
(i, j, \beta , b) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)

\bigr\} 
.

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. Let

\sansB \sansP \ast =
\Bigl( \bigl\{ 

\pi \ast 
i,b : [w]\rightarrow [w]

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} , \sansa \sansc \sansc 

\ast \in [w], \sansr \sanse \sansj \ast \in [w]
\Bigr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
\ast 

\right)     .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.
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\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)

as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, j, \beta ) \in [i\ast  - 1]\times \sansd \sansi ff \times \{ 0, 1\} , \widetilde t(j,\beta )i \leftarrow \BbbZ m
q ,

\forall (j, \beta ) \in \sansd \sansi ff \times \{ 0, 1\} , \widetilde e(j,\beta )i\ast \leftarrow \chi m
\sansl \sansw \sanse .

(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
i\ast , \sanss \sanst 

(\beta \ast )
i\ast denote the state of branching

programs \sansB \sansP , \sansB \sansP \ast after i\ast  - 1 steps, respectively. Also, let \Gamma , \widetilde y,
and U

(\beta )
i,b denote the following:

\Gamma = [\ell + 1]\times \sansc \sanso \sansm \sansm \times \{ 0, 1\} , \widetilde y =
\sum 

j\in [\lambda ]\setminus \{ j\ast \} 

y(j),

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

Also, for (j, \beta ) \in \sansd \sansi ff \times \{ 0, 1\} , let B
(j,\beta )
\ell +1,\widetilde x\ell +1

= 0n\times m, and let \widetilde t(j,\beta )i\ast 

denote the following vector. For all j \in \widehat \sansd \sansi ff,
\widetilde t(j,\beta )i\ast =  - 

i\ast  - 1\sum 
\alpha =1

\Biggl( \widetilde t(j,\beta )\alpha \cdot 
i\ast  - 1\prod 
\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - y(j) \cdot 

i\ast  - 1\prod 
\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ s
(j,\beta )
i\ast \cdot B(j,\beta )

i\ast ,\widetilde xi\ast 
+ \widetilde e(j,\beta )i\ast ,

\widetilde t(j\ast ,\beta )i\ast =  - 
i\ast  - 1\sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
i\ast  - 1\prod 
\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot i\ast  - 1\prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast ,\sanss \sanst 

(\beta )

i\ast 
+ s

(j\ast ,\beta )
i\ast \cdot B(j\ast ,\beta )

i\ast ,\widetilde xi\ast 
+ \widetilde e(j\ast ,\beta )i\ast .
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Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows. For all tuples
(i, j, \beta ) \in \Gamma ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i B

(j,\beta )
i,\widetilde xi

+ e
(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,

\forall (i, j, \beta ) \in [i\ast  - 1]\times \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i ,

\forall (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i\ast = \widetilde t(j,\beta )i\ast + e

(j,\beta )
i\ast ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
i\ast = \widetilde t(j\ast ,\beta )i\ast + e

(j\ast ,\beta )
i\ast ,

\forall (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i\ast +1 = - 

i\ast \sum 
\alpha =1

\Biggl( \widetilde t(j,\beta )\alpha \cdot 
i\ast \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 

+ y(j) \cdot 
i\ast \prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ s
(j,\beta )
i\ast +1 \cdot B

(j,\beta )
i\ast +1,\widetilde xi\ast +1 + e

(j,\beta )
i\ast +1,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
i\ast +1 =  - 

i\ast \sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
i\ast \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot i\ast \prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast +1,\sanss \sanst 

(\beta )

i\ast +1

+ s
(j\ast ,\beta )
i\ast +1 \cdot B

(j\ast ,\beta )
i\ast +1,\widetilde xi\ast +1 + e

(j\ast ,\beta )
i\ast +1 ,

\forall (i, j, \beta ) \in ([\ell + 1] \setminus [i\ast + 1])\times \sansd \sansi ff \times \{ 0, 1\} ,

t
(j,\beta )
i =

\Biggl\{ 
 - s(j,\beta )i - 1 \cdot C

(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1.

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .

\sansG \sansa \sansm \sanse 3.i\ast .3 This is identical to the previous game, except B
(j,\beta )
i,b ,C

(j,\beta )
i,b for \sansd \sansi ff strands

and levels i = i\ast are not sampled along with other level i\ast matrices, but instead they
are sampled uniformly at random. Also, ciphertext components for level i\ast are used
to target only the remaining matrices. Below we describe it in detail.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall \ell =
k \cdot L and \widetilde n = (4\lambda + w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 

D
ow

nl
oa

de
d 

10
/0

5/
21

 to
 1

28
.8

3.
14

1.
10

0 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i < i\ast + 1, S(i) = \sansc \sanso \sansm \sansm \times \{ 0, 1\} 2,
\forall i \geq i\ast + 1, S(i) = [\lambda ]\times \{ 0, 1\} 2.

Also, let

\widetilde ni =

\Biggl\{ \widetilde n - | \sansd \sansi ff| \cdot 4n for i < i\ast + 1,\widetilde n for i \geq i\ast + 1.

Set \^S =
\bigl\{ 
(i, j, \beta , b) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)

\bigr\} 
.

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q),

\forall (j, \beta , b) \in \sansd \sansi ff \times \{ 0, 1\} 2, B
(j,\beta )
i\ast ,b \leftarrow \BbbZ n\times m

q .

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. Let

\sansB \sansP \ast =
\Bigl( \bigl\{ 

\pi \ast 
i,b : [w]\rightarrow [w]

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} , \sansa \sansc \sansc 

\ast \in [w], \sansr \sanse \sansj \ast \in [w]
\Bigr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
\ast 

\right)     .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)

as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .
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(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, j, \beta ) \in [i\ast  - 1]\times \sansd \sansi ff \times \{ 0, 1\} , \widetilde t(j,\beta )i \leftarrow \BbbZ m
q ,

\forall (j, \beta ) \in \sansd \sansi ff \times \{ 0, 1\} , \widetilde e(j,\beta )i\ast \leftarrow \chi m
\sansl \sansw \sanse .

(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
i\ast , \sanss \sanst 

(\beta \ast )
i\ast denote the state of branching

programs \sansB \sansP , \sansB \sansP \ast after i\ast  - 1 steps, respectively. Also, let \Gamma , \widetilde y,
and U

(\beta )
i,b denote the following:

\Gamma = [\ell + 1]\times \sansc \sanso \sansm \sansm \times \{ 0, 1\} , \widetilde y =
\sum 

j\in [\lambda ]\setminus \{ j\ast \} 

y(j),

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

Also, for (j, \beta ) \in \sansd \sansi ff \times \{ 0, 1\} , let B
(j,\beta )
\ell +1,\widetilde x\ell +1

= 0n\times m, and let \widetilde t(j,\beta )i\ast 

denote the following vector. For all j \in \widehat \sansd \sansi ff,
\widetilde t(j,\beta )i\ast = - 

i\ast  - 1\sum 
\alpha =1

\Biggl( \widetilde t(j,\beta )\alpha \cdot 
i\ast  - 1\prod 
\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - y(j) \cdot 

i\ast  - 1\prod 
\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ s
(j,\beta )
i\ast \cdot B(j,\beta )

i\ast ,\widetilde xi\ast 
+ \widetilde e(j,\beta )i\ast ,

\widetilde t(j\ast ,\beta )i\ast = - 
i\ast  - 1\sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
i\ast  - 1\prod 
\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot i\ast  - 1\prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast ,\sanss \sanst 

(\beta )

i\ast 
+ s

(j\ast ,\beta )
i\ast \cdot B(j\ast ,\beta )

i\ast ,\widetilde xi\ast 
+ \widetilde e(j\ast ,\beta )i\ast .

Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows. For all tuples
(i, j, \beta ) \in \Gamma ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,

\forall (i, j, \beta ) \in [i\ast  - 1]\times \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i ,
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\forall (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i\ast = \widetilde t(j,\beta )i\ast + e

(j,\beta )
i\ast ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
i\ast = \widetilde t(j\ast ,\beta )i\ast + e

(j\ast ,\beta )
i\ast .

For all (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} ,
t
(j,\beta )
i\ast +1 = - 

i\ast \sum 
\alpha =1

\Biggl( \widetilde t(j,\beta )\alpha \cdot 
i\ast \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
+ y(j) \cdot 

i\ast \prod 
\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ s
(j,\beta )
i\ast +1 \cdot B

(j,\beta )
i\ast +1,\widetilde xi\ast +1 + e

(j,\beta )
i\ast +1.

For all \beta \in \{ 0, 1\} ,

t
(j\ast ,\beta )
i\ast +1 = - 

i\ast \sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
i\ast \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot i\ast \prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast +1,\sanss \sanst 

(\beta )

i\ast +1

+ s
(j\ast ,\beta )
i\ast +1 \cdot B

(j\ast ,\beta )
i\ast +1,\widetilde xi\ast +1 + e

(j\ast ,\beta )
i\ast +1 ,

\forall (i, j, \beta ) \in ([\ell + 1] \setminus [i\ast + 1])\times \sansd \sansi ff \times \{ 0, 1\} ,

t
(j,\beta )
i =

\Biggl\{ 
 - s(j,\beta )i - 1 \cdot C

(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1.

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .

\sansG \sansa \sansm \sanse 3.i\ast .4 This is identical to the previous game, except the i\ast th level key com-
ponent in \sansd \sansi ff strands is a uniformly random n length vector, i.e., all first i\ast level
components in \sansd \sansi ff strands are random elements. Also, we no longer sample the ma-

trices B
(j,\beta )
i,b ,C

(j,\beta )
i,b for \sansd \sansi ff strands and levels i = i\ast at all. Below we describe it in

detail.
\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i < i\ast + 1, S(i) = \sansc \sanso \sansm \sansm \times \{ 0, 1\} 2,
\forall i \geq i\ast + 1, S(i) = [\lambda ]\times \{ 0, 1\} 2.

Also, let

\widetilde ni =

\Biggl\{ \widetilde n - | \sansd \sansi ff| \cdot 4n for i < i\ast + 1,\widetilde n for i \geq i\ast + 1.

Set \^S =
\bigl\{ 
(i, j, \beta , b) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)

\bigr\} 
.
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2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. Let

\sansB \sansP \ast =
\Bigl( \bigl\{ 

\pi \ast 
i,b : [w]\rightarrow [w]

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} , \sansa \sansc \sansc 

\ast \in [w], \sansr \sanse \sansj \ast \in [w]
\Bigr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
\ast 

\right)     .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)

as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,
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COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-199

\forall (i, j, \beta ) \in [i\ast ]\times \sansd \sansi ff \times \{ 0, 1\} , \widetilde t(j,\beta )i \leftarrow \BbbZ m
q ,

\forall (j, \beta ) \in \sansd \sansi ff \times \{ 0, 1\} , \widetilde e(j,\beta )i\ast \leftarrow \chi m
\sansl \sansw \sanse .

(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
i\ast , \sanss \sanst 

(\beta \ast )
i\ast denote the state of branching

programs \sansB \sansP , \sansB \sansP \ast after i\ast  - 1 steps, respectively. Also, let \Gamma , \widetilde y,
and U

(\beta )
i,b denote the following:

\Gamma = [\ell + 1]\times \sansc \sanso \sansm \sansm \times \{ 0, 1\} , \widetilde y =
\sum 

j\in [\lambda ]\setminus \{ j\ast \} 

y(j),

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

Also, for (j, \beta ) \in \sansd \sansi ff \times \{ 0, 1\} , let B(j,\beta )
\ell +1,\widetilde x\ell +1

= 0n\times m. Next, it com-

putes key vectors \{ t(j,\beta )i \} i,j,\beta as follows. For all tuples (i, j, \beta ) \in \Gamma ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i B

(j,\beta )
i,\widetilde xi

+ e
(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,

\forall (i, j, \beta ) \in [i\ast ]\times \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i ,

\forall (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i\ast +1 =  - 

i\ast \sum 
\alpha =1

\Biggl( \widetilde t(j,\beta )\alpha \cdot 
i\ast \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 

+ y(j) \cdot 
i\ast \prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ s
(j,\beta )
i\ast +1 \cdot B

(j,\beta )
i\ast +1,\widetilde xi\ast +1 + e

(j,\beta )
i\ast +1,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
i\ast +1 =  - 

i\ast \sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
i\ast \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot i\ast \prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast +1,\sanss \sanst 

(\beta )

i\ast +1

+ s
(j\ast ,\beta )
i\ast +1 \cdot B

(j\ast ,\beta )
i\ast +1,\widetilde xi\ast +1 + e

(j\ast ,\beta )
i\ast +1 ,

\forall (i, j, \beta ) \in ([\ell + 1] \setminus [i\ast + 1])\times \sansd \sansi ff \times \{ 0, 1\} ,

t
(j,\beta )
i =

\Biggl\{ 
 - s(j,\beta )i - 1 \cdot C

(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1.

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .

\sansG \sansa \sansm \sanse 4 This is similar to \sansG \sansa \sansm \sanse 3.\ell .4, except that the terms t
(j\ast ,\beta )
\ell +1 have an additional

small error \widetilde e(j\ast ,\beta )\ell +1 , which is smudged by the main error term e
(j\ast ,\beta )
\ell +1 .
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\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i \in [\ell ], S(i) = \sansc \sanso \sansm \sansm \times \{ 0, 1\} 2.

Also, let \widetilde ni = \widetilde n - | \sansd \sansi ff| \cdot 4n for all i \in [\ell ].
Set \^S =

\bigl\{ 
(i, j, \beta , b) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)

\bigr\} 
.

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. Let

\sansB \sansP \ast =
\Bigl( \bigl\{ 

\pi \ast 
i,b : [w]\rightarrow [w]

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} , \sansa \sansc \sansc 

\ast \in [w], \sansr \sanse \sansj \ast \in [w]
\Bigr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
\ast 

\right)     .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)

as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .
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(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, j, \beta ) \in [\ell ]\times \sansd \sansi ff \times \{ 0, 1\} , \widetilde t(j,\beta )i \leftarrow \BbbZ m
q ,

\forall \beta \in \{ 0, 1\} , \widetilde e(j\ast ,\beta )\ell +1 \leftarrow \chi m
\sansl \sansw \sanse .

(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
\ell +1 , \sanss \sanst 

(\beta \ast )
\ell +1 denote the state of branching

programs \sansB \sansP , \sansB \sansP \ast after \ell steps, respectively. Also, let \Gamma , \widetilde y, and
U

(\beta )
i,b denote the following:

\Gamma = [\ell + 1]\times \sansc \sanso \sansm \sansm \times \{ 0, 1\} , \widetilde y =
\sum 

j\in [\lambda ]\setminus \{ j\ast \} 

y(j),

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

For v \in [w], let P
(\beta \ast )
\ell +1,v be the top level matrices chosen while

computing the challenge ciphertext. Similarly, let P
(1 - \beta \ast )
\ell +1,v be the

top level matrices chosen while computing the query ciphertext.

Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows. For all tu-
ples (i, j, \beta ) \in \Gamma ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i B

(j,\beta )
i,\widetilde xi

+ e
(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,

\forall (i, j, \beta ) \in [\ell ]\times \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i ,

\forall (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
\ell +1 =  - 

\ell \sum 
\alpha =1

\Biggl( \widetilde t(j,\beta )\alpha \cdot 
\ell \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 

+ y(j) \cdot 
\ell \prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+e
(j,\beta )
\ell +1 ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
\ell +1 =  - 

\ell \sum 
\alpha =1

\Biggl( \widetilde t(j\ast ,\beta )\alpha \cdot 
\ell \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
 - \widetilde y \cdot \ell \prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P(\beta \ast )

\ell +1,\sanss \sanst 
(\beta )
\ell +1

+ e
(j\ast ,\beta )
\ell +1 + \widetilde e(j\ast ,\beta )\ell +1 .
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(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .

\sansG \sansa \sansm \sanse 5 This is identical to the previous game, except the (\ell +1)th key components in
the special strand (i.e., j\ast th strand) are random elements. We describe this in detail
below.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i \in [\ell ], S(i) = \sansc \sanso \sansm \sansm \times \{ 0, 1\} 2.

Also, let \widetilde ni = \widetilde n - | \sansd \sansi ff| \cdot 4n for all i \in [\ell ].
Set \^S =

\bigl\{ 
(i, j, \beta , b) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)

\bigr\} 
.

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. Let

\sansB \sansP \ast =
\Bigl( \bigl\{ 

\pi \ast 
i,b : [w]\rightarrow [w]

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} , \sansa \sansc \sansc 

\ast \in [w], \sansr \sanse \sansj \ast \in [w]
\Bigr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
\ast 

\right)     .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
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COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-203

(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, j, \beta ) \in [\ell ]\times \sansd \sansi ff \times \{ 0, 1\} , \widetilde t(j,\beta )i \leftarrow \BbbZ m
q ,

\forall \beta \in \{ 0, 1\} , \widetilde t(j\ast ,\beta )\ell +1 \leftarrow \BbbZ m
q .

(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
\ell +1 , \sanss \sanst 

(\beta \ast )
\ell +1 denote the state of branching

programs \sansB \sansP , \sansB \sansP \ast after \ell steps, respectively. Also, let \Gamma and U
(\beta )
i,b

denote the following:

\Gamma = [\ell + 1]\times \sansc \sanso \sansm \sansm \times \{ 0, 1\} ,

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

For v \in [w], let P
(\beta \ast )
\ell +1,v be the top level matrices chosen while

computing the challenge ciphertext. Similarly, let P
(1 - \beta \ast )
\ell +1,v be the

top level matrices chosen while computing the query ciphertext.

Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows. For all tu-
ples (i, j, \beta ) \in \Gamma ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i B

(j,\beta )
i,\widetilde xi

+ e
(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,

\forall (i, j, \beta ) \in [\ell ]\times \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i .

For all (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} ,
t
(j,\beta )
\ell +1 =  - 

\ell \sum 
\alpha =1

\Biggl( \widetilde t(j,\beta )\alpha \cdot 
\ell \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
+ y(j) \cdot 

\ell \prod 
\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ e
(j,\beta )
\ell +1 ,
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\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
\ell +1 = \widetilde t(j\ast ,\beta )\ell +1 + e

(j\ast ,\beta )
\ell +1 .

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .
Next, we have a sequence of \ell hybrid experiments, \sansG \sansa \sansm \sanse 5.i\ast for i\ast = 1 to \ell .

\sansG \sansa \sansm \sanse 5.i\ast This is identical to the previous game, except matrices B
(j,\beta )
i,b ,C

(j,\beta )
i,b for

j \in \sansc \sanso \sansm \sansm , \beta = 1  - \sanst \sansa \sansg j strands (i.e., strands in which B
(j,\beta )
i,b were targeting random

matrices themselves) and levels i \leq i\ast are not sampled along with other level i \leq 
i\ast matrices, but instead they are sampled uniformly at random. Also, ciphertext
components for levels i \leq i\ast are used to target only the remaining matrices. Below
we describe it in detail.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i \leq i\ast , S(i) =
\bigl\{ 
(j, \beta , b) \in [\lambda ]\times \{ 0, 1\} 2 : j \in \sansc \sanso \sansm \sansm \wedge \beta = \sanst \sansa \sansg j

\bigr\} 
,

\forall i > i\ast , S(i) = \sansc \sanso \sansm \sansm \times \{ 0, 1\} 2.

Also, let

\widetilde ni =

\Biggl\{ 
(2 \cdot | \sansc \sanso \sansm \sansm | + w)n for i \leq i\ast ,\widetilde n - | \sansd \sansi ff| \cdot 4n for i > i\ast .

Set \^S = \{ (i, j, \beta , b) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)\} .
2. It samples \{ B(j,\beta )

i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q),

\forall (i, j, \beta , b) \in ([i\ast ]\times \sansc \sanso \sansm \sansm \times \{ 0, 1\} 2) \setminus \^S, B
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q .

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. Let

\sansB \sansP \ast =
\Bigl( \bigl\{ 

\pi \ast 
i,b : [w]\rightarrow [w]

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} , \sansa \sansc \sansc 

\ast \in [w], \sansr \sanse \sansj \ast \in [w]
\Bigr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
\ast 

\right)     .
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COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-205

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast , \{ U\ast 

i,b\} i\in [\ell ],b\in \{ 0,1\} 
\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)

as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, j, \beta ) \in [\ell ]\times \sansd \sansi ff \times \{ 0, 1\} , \widetilde t(j,\beta )i \leftarrow \BbbZ m
q ,

\forall \beta \in \{ 0, 1\} , \widetilde t(j\ast ,\beta )\ell +1 \leftarrow \BbbZ m
q .

(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
\ell +1 , \sanss \sanst 

(\beta \ast )
\ell +1 denote the state of branching

programs \sansB \sansP , \sansB \sansP \ast after \ell steps, respectively. Also, let \Gamma and U
(\beta )
i,b

denote the following:

\Gamma = [\ell + 1]\times \sansc \sanso \sansm \sansm \times \{ 0, 1\} ,

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

For v \in [w], let P
(\beta \ast )
\ell +1,v be the top level matrices chosen while com-

puting the challenge ciphertext. Similarly, let P
(1 - \beta \ast )
\ell +1,v be the top

level matrices chosen while computing the query ciphertext. Next,

it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows. For all (i, j, \beta ) \in \Gamma ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,
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\forall (i, j, \beta ) \in [\ell ]\times \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i .

For all (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} ,
t
(j,\beta )
\ell +1 =  - 

\ell \sum 
\alpha =1

\Biggl( \widetilde t(j,\beta )\alpha 

\ell \prod 
\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
+ y(j)

\ell \prod 
\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ e
(j,\beta )
\ell +1 ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
\ell +1 = \widetilde t(j\ast ,\beta )\ell +1 + e

(j\ast ,\beta )
\ell +1 .

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .
Next, we have a sequence of \ell hybrid experiments, \sansG \sansa \sansm \sanse 6.i\ast for i\ast = 2 to \ell + 1.

\sansG \sansa \sansm \sanse 6.i\ast This is identical to the previous game (i.e., \sansG \sansa \sansm \sanse 5.\ell ), except in the \sansc \sanso \sansm \sansm 

strands, for which we sample B
(j,\beta )
i,b ,C

(j,\beta )
i,b matrices uniformly at random, the key

components for levels i \leq i\ast are random elements. Below we describe it in detail.
\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i \in [\ell ], S(i) =
\bigl\{ 
(j, \beta , b) \in [\lambda ]\times \{ 0, 1\} 2 : j \in \sansc \sanso \sansm \sansm \wedge \beta = \sanst \sansa \sansg j

\bigr\} 
.

Also, let \widetilde ni = (2 \cdot | \sansc \sanso \sansm \sansm | + w)n for all i \in [\ell ], and set \^S = \{ (i, j, \beta , b) \in 
[\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)\} .

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q),

\forall (i, j, \beta , b) \in ([\ell ]\times \sansc \sanso \sansm \sansm \times \{ 0, 1\} 2) \setminus \^S, B
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q .

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. Let

\sansB \sansP \ast =
\Bigl( \bigl\{ 

\pi \ast 
i,b : [w]\rightarrow [w]

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} , \sansa \sansc \sansc 

\ast \in [w], \sansr \sanse \sansj \ast \in [w]
\Bigr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
\ast 

\right)     .
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COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-207

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)

as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, j, \beta ) \in [\ell ]\times \sansd \sansi ff \times \{ 0, 1\} , \widetilde t(j,\beta )i \leftarrow \BbbZ m
q ,

\forall (i, j) \in [i\ast ]\times \sansc \sanso \sansm \sansm , \widetilde t(j,1 - \sanst \sansa \sansg j)

i \leftarrow \BbbZ m
q ,

\forall \beta \in \{ 0, 1\} , \widetilde t(j\ast ,\beta )\ell +1 \leftarrow \BbbZ m
q .

(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
\ell +1 , \sanss \sanst 

(\beta \ast )
\ell +1 denote the state of branching

programs \sansB \sansP , \sansB \sansP \ast after \ell steps, respectively. Also, let \Gamma and U
(\beta )
i,b

denote the following:

\Gamma = ([\ell + 1] \setminus [i\ast ])\times \sansc \sanso \sansm \sansm \times \{ 0, 1\} \cup 
\bigl\{ 
(i\ast , j, \beta ) : j \in \sansc \sanso \sansm \sansm , \beta = \sanst \sansa \sansg j

\bigr\} 
,

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

For v \in [w], let P
(\beta \ast )
\ell +1,v be the top level matrices chosen while com-

puting the challenge ciphertext. Similarly, let P
(1 - \beta \ast )
\ell +1,v be the top

level matrices chosen while computing the query ciphertext. Next,

it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows. For all (i, j, \beta ) \in \Gamma ,

t
(j,\beta )
i =

\left\{     
s
(j,\beta )
1 \cdot B(j,\beta )

1,\widetilde x1
+ y(j) + e

(j,\beta )
1 if i = 1,

 - s(j,\beta )i - 1 \cdot C
(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i \cdot B(j,\beta )

i,\widetilde xi
+ e

(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,
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STOC18-208 R. GOYAL, V. KOPPULA, AND B. WATERS

\forall (i, j) \in [i\ast ]\times \sansc \sanso \sansm \sansm , t
(j,1 - \sanst \sansa \sansg j)

i = \widetilde t(j,1 - \sanst \sansa \sansg j)

i + e
(j,1 - \sanst \sansa \sansg j)

i ,

\forall (i, j, \beta ) \in [\ell ]\times \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i .

For all (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} ,
t
(j,\beta )
\ell +1 =  - 

\ell \sum 
\alpha =1

\Biggl( \widetilde t(j,\beta )\alpha \cdot 
\ell \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
+ y(j) \cdot 

\ell \prod 
\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ e
(j,\beta )
\ell +1 ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
\ell +1 = \widetilde t(j\ast ,\beta )\ell +1 + e

(j\ast ,\beta )
\ell +1 .

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .
Next, we have a sequence of \ell + 1 hybrid experiments, \sansG \sansa \sansm \sanse 7.i\ast for i\ast = 1 to

\ell + 1.

\sansG \sansa \sansm \sanse 7.i\ast This is identical to the previous game (i.e., \sansG \sansa \sansm \sanse 6.(\ell + 1)), except in the

\sansc \sanso \sansm \sansm strands, for which we still sample B
(j,\beta )
i,b ,C

(j,\beta )
i,b matrices using \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn , the

key components for levels i \leq i\ast are random elements. Also, we no longer sample the

matrices B
(j,\beta )
i,b ,C

(j,\beta )
i,b at all, which were sampled uniformly at random in the previous

game. Below we describe it in detail.
\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i \in [\ell ], S(i) =
\bigl\{ 
(j, \beta , b) \in [\lambda ]\times \{ 0, 1\} 2 : j \in \sansc \sanso \sansm \sansm \wedge \beta = \sanst \sansa \sansg j

\bigr\} 
.

Also, let \widetilde ni = (2 \cdot | \sansc \sanso \sansm \sansm | + w)n for all i \in [\ell ], and set \^S = \{ (i, j, \beta , b) \in 
[\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)\} .

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. Let

\sansB \sansP \ast =
\Bigl( \bigl\{ 

\pi \ast 
i,b : [w]\rightarrow [w]

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} , \sansa \sansc \sansc 

\ast \in [w], \sansr \sanse \sansj \ast \in [w]
\Bigr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
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COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-209

as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
\ast 

\right)     .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)

as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:
(a) It chooses a secret vector as \widetilde s \leftarrow \chi n

s and \lambda  - 1 random vectors as
y(j) \leftarrow \BbbZ m

q for j \in [\lambda ] \setminus \{ j\ast \} .
(b) It then chooses vectors s

(j,\beta )
i , e

(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , s
(j,\beta )
i \leftarrow \BbbZ n

q ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, j, \beta ) \in [\ell ]\times \sansd \sansi ff \times \{ 0, 1\} , \widetilde t(j,\beta )i \leftarrow \BbbZ m
q ,

\forall (i, j) \in [\ell + 1]\times \sansc \sanso \sansm \sansm , \widetilde t(j,1 - \sanst \sansa \sansg j)

i \leftarrow \BbbZ m
q ,

\forall (i, j) \in [i\ast ]\times \sansc \sanso \sansm \sansm , \widetilde t(j,\sanst \sansa \sansg j)i \leftarrow \BbbZ m
q ,

\forall \beta \in \{ 0, 1\} , \widetilde t(j\ast ,\beta )\ell +1 \leftarrow \BbbZ m
q .

(c) Let \widetilde x = xL, and let \sanss \sanst 
(1 - \beta \ast )
\ell +1 , \sanss \sanst 

(\beta \ast )
\ell +1 denote the state of branching

programs \sansB \sansP , \sansB \sansP \ast after \ell steps, respectively. Also, let \Gamma and U
(\beta )
i,b

denote the following:

\Gamma =
\bigl\{ 
(i, j, \beta ) \in ([\ell + 1] \setminus [i\ast ])\times \sansc \sanso \sansm \sansm \times \{ 0, 1\} : \beta = \sanst \sansa \sansg j

\bigr\} 
,

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .
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For v \in [w], let P
(\beta \ast )
\ell +1,v be the top level matrices chosen while com-

puting the challenge ciphertext. Similarly, let P
(1 - \beta \ast )
\ell +1,v be the top

level matrices chosen while computing the query ciphertext. Next,

it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows:

\forall (i, j) \in [i\ast ]\times \sansc \sanso \sansm \sansm , t
(j,\sanst \sansa \sansg j)

i = \widetilde t(j,\sanst \sansa \sansg j)i + e
(j,\sanst \sansa \sansg j)

i .

For all (i, j, \beta ) \in \Gamma ,

t
(j,\beta )
i =

\Biggl\{ 
 - s(j,\beta )i - 1 C

(j,\beta )
i - 1,\widetilde xi - 1

+ s
(j,\beta )
i B

(j,\beta )
i,\widetilde xi

+ e
(j,\beta )
i if 1 < i \leq \ell ,

 - s(j,\beta )\ell \cdot C(j,\beta )
\ell ,\widetilde x\ell 

+ e
(j,\beta )
\ell +1 if i = \ell + 1,

\forall (i, j) \in [\ell + 1]\times \sansc \sanso \sansm \sansm , t
(j,1 - \sanst \sansa \sansg j)

i = \widetilde t(j,1 - \sanst \sansa \sansg j)

i + e
(j,1 - \sanst \sansa \sansg j)

i ,

\forall (i, j, \beta ) \in [\ell ]\times \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i .

For all (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} ,
t
(j,\beta )
\ell +1 =  - 

\ell \sum 
\alpha =1

\Biggl( \widetilde t(j,\beta )\alpha \cdot 
\ell \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
+ y(j) \cdot 

\ell \prod 
\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ e
(j,\beta )
\ell +1 ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
\ell +1 = \widetilde t(j\ast ,\beta )\ell +1 + e

(j\ast ,\beta )
\ell +1 .

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .

\sansG \sansa \sansm \sanse 8 This is identical to the previous game (i.e., \sansG \sansa \sansm \sanse 7.(\ell + 1)). For ease of
exposition, we describe it in detail below.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i \in [\ell ], S(i) =
\bigl\{ 
(j, \beta , b) \in [\lambda ]\times \{ 0, 1\} 2 : j \in \sansc \sanso \sansm \sansm \wedge \beta = \sanst \sansa \sansg j

\bigr\} 
.

Also, let \widetilde ni = (2 \cdot | \sansc \sanso \sansm \sansm | + w)n for all i \in [\ell ], and set \^S = \{ (i, j, \beta , b) \in 
[\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)\} .

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
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4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to
the adversary.

\bullet Challenge phase. Let

\sansB \sansP \ast =
\Bigl( \bigl\{ 

\pi \ast 
i,b : [w]\rightarrow [w]

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} , \sansa \sansc \sansc 

\ast \in [w], \sansr \sanse \sansj \ast \in [w]
\Bigr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as follows. For all \alpha \in [\ell ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
\ast 

\right)     .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)

as follows. For all \alpha \in [\ell ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows.

(a) It chooses | \sansd \sansi ff|  - 1 random vectors as y(j) \leftarrow \BbbZ m
q for j \in \widehat \sansd \sansi ff.

(b) It then chooses vectors e
(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , \widetilde t(j,\beta )i \leftarrow \BbbZ m
q ,

\forall (j, \beta ) \in \sansc \sanso \sansm \sansm \times \{ 0, 1\} , \widetilde t(j,\beta )\ell +1 \leftarrow \BbbZ m
q ,

\forall \beta \in \{ 0, 1\} , \widetilde t(j\ast ,\beta )\ell +1 \leftarrow \BbbZ m
q .

(c) Let \widetilde x = xL, and let U
(\beta )
i,b denote the following:

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .
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Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows:

\forall (i, j, \beta ) \in [\ell + 1]\times \sansc \sanso \sansm \sansm \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i ,

\forall (i, j, \beta ) \in [\ell ]\times \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i .

For all (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} ,
t
(j,\beta )
\ell +1 =  - 

\ell \sum 
\alpha =1

\Biggl( \widetilde t(j,\beta )\alpha 

\ell \prod 
\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
+ y(j)

\ell \prod 
\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ e
(j,\beta )
\ell +1 ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
\ell +1 = \widetilde t(j\ast ,\beta )\ell +1 + e

(j\ast ,\beta )
\ell +1 .

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .
Next, we have a sequence of \ell hybrid experiments, \sansG \sansa \sansm \sanse 8.i\ast for i\ast = 1 to \ell .

\sansG \sansa \sansm \sanse 8.i\ast This is identical to the previous game, except now the challenger samples
the first i\ast ciphertext components (both challenge and queried) as random Gaussian
matrices. Below we describe it in detail.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i \in [\ell ], S(i) =
\bigl\{ 
(j, \beta , b) \in [\lambda ]\times \{ 0, 1\} 2 : j \in \sansc \sanso \sansm \sansm \wedge \beta = \sanst \sansa \sansg j

\bigr\} 
.

Also, let \widetilde ni = (2 \cdot | \sansc \sanso \sansm \sansm | + w)n for all i \in [\ell ], and set \^S = \{ (i, j, \beta , b) \in 
[\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)\} .

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. Let

\sansB \sansP \ast =
\Bigl( \bigl\{ 

\pi \ast 
i,b : [w]\rightarrow [w]

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} , \sansa \sansc \sansc 

\ast \in [w], \sansr \sanse \sansj \ast \in [w]
\Bigr) 
,

S\ast = \^S.

The challenger then runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)
as

\forall (\alpha , b) \in [i\ast ]\times \{ 0, 1\} , U\ast 
\alpha ,b \leftarrow \chi m\times m

\sansp \sansr \sanse .
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For all \alpha \in [\ell ] \setminus [i\ast ],

\bigl( \bigl\{ 
U\ast 

\alpha ,0,U
\ast 
\alpha ,1

\bigr\} \bigr) 
\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg \ast , \alpha , S\ast ,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S\ast 

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 
\ast 

\right)     .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) Let S = \^S. It runs the \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc routine (described in Figure 6)

as

\forall (\alpha , b) \in [i\ast ]\times \{ 0, 1\} , U\alpha ,b \leftarrow \chi m\times m
\sansp \sansr \sanse .

For all \alpha \in [\ell ] \setminus [i\ast ],

(\{ U\alpha ,0,U\alpha ,1\} )\leftarrow \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc 

\left(     
\sanst \sansa \sansg , \alpha , S,\Bigl\{ 

B
(j,\beta )
i,b ,C

(j,\beta )
i,b

\Bigr\} 
(i,j,\beta ,b)\in S

,

\{ Pi,v\} (i,v)\in [\ell ]\times [w] ,

\{ Ti\} i\in [\ell ] ,\sansB \sansP 

\right)     .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses | \sansd \sansi ff|  - 1 random vectors as y(j) \leftarrow \BbbZ m
q for j \in \widehat \sansd \sansi ff.

(b) It then chooses vectors e
(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , \widetilde t(j,\beta )i \leftarrow \BbbZ m
q ,

\forall (j, \beta ) \in \sansc \sanso \sansm \sansm \times \{ 0, 1\} , \widetilde t(j,\beta )\ell +1 \leftarrow \BbbZ m
q ,

\forall \beta \in \{ 0, 1\} , \widetilde t(j\ast ,\beta )\ell +1 \leftarrow \BbbZ m
q .

(c) Let \widetilde x = xL, and let U
(\beta )
i,b denote the following:

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows:

\forall (i, j, \beta ) \in [\ell + 1]\times \sansc \sanso \sansm \sansm \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i ,
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\forall (i, j, \beta ) \in [\ell ]\times \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i .

For all (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} ,
t
(j,\beta )
\ell +1 =  - 

\ell \sum 
\alpha =1

\Biggl( \widetilde t(j,\beta )\alpha \cdot 
\ell \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 
+ y(j) \cdot 

\ell \prod 
\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ e
(j,\beta )
\ell +1 ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
\ell +1 = \widetilde t(j\ast ,\beta )\ell +1 + e

(j\ast ,\beta )
\ell +1 .

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .

\sansG \sansa \sansm \sanse 9 This is identical to the previous game (i.e., \sansG \sansa \sansm \sanse 8.\ell ), except the last secret

key components in all \widehat \sansd \sansi ff strands also include an additional noise term which is much
smaller than the overall noise added in those components. Below we describe it in
detail.

\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i \in [\ell ], S(i) =
\bigl\{ 
(j, \beta , b) \in [\lambda ]\times \{ 0, 1\} 2 : j \in \sansc \sanso \sansm \sansm \wedge \beta = \sanst \sansa \sansg j

\bigr\} 
.

Also, let \widetilde ni = (2 \cdot | \sansc \sanso \sansm \sansm | + w)n for all i \in [\ell ], and set \^S = \{ (i, j, \beta , b) \in 
[\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)\} .

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. The challenger generates ciphertext components as

\forall (i, b) \in [\ell ]\times \{ 0, 1\} , U\ast 
i,b \leftarrow \chi m\times m

\sansp \sansr \sanse .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
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(a) It generates ciphertext components as

\forall (i, b) \in [\ell ]\times \{ 0, 1\} , Ui,b \leftarrow \chi m\times m
\sansp \sansr \sanse .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses | \sansd \sansi ff|  - 1 random vectors as y(j) \leftarrow \BbbZ m
q for j \in \widehat \sansd \sansi ff.

(b) It then chooses vectors e
(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , \widetilde t(j,\beta )i \leftarrow \BbbZ m
q ,

\forall (j, \beta ) \in \sansc \sanso \sansm \sansm \times \{ 0, 1\} , \widetilde t(j,\beta )\ell +1 \leftarrow \BbbZ m
q ,

\forall \beta \in \{ 0, 1\} , \widetilde t(j\ast ,\beta )\ell +1 \leftarrow \BbbZ m
q ,

\forall (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} , \widetilde e(j,\beta )\ell +1 \leftarrow \chi m
\sansl \sansw \sanse .

(c) Let \widetilde x = xL, and let U
(\beta )
i,b denote the following:

\forall (i, \beta , b) \in [\ell ]\times \{ 0, 1\} 2, U
(\beta )
i,b =

\Biggl\{ 
U\ast 

i,b if \beta = \beta \ast ,

Ui,b if \beta = 1 - \beta \ast .

Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows:

\forall (i, j, \beta ) \in [\ell + 1]\times \sansc \sanso \sansm \sansm \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i ,

\forall (i, j, \beta ) \in [\ell ]\times \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i ,

\forall (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
\ell +1 =  - 

\ell \sum 
\alpha =1

\Biggl( \widetilde t(j,\beta )\alpha \cdot 
\ell \prod 

\delta =\alpha 

U
(\beta )
\delta ,\widetilde x\delta 

\Biggr) 

+ y(j) \cdot 
\ell \prod 

\delta =1

U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde e(j,\beta )\ell +1 \cdot 
\ell \prod 

\delta =2

U
(\beta )
\delta ,\widetilde x\delta 

+ e
(j,\beta )
\ell +1 ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
\ell +1 = \widetilde t(j\ast ,\beta )\ell +1 + e

(j\ast ,\beta )
\ell +1 .

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .

\sansG \sansa \sansm \sanse 10 This is identical to the previous game, except the last secret key components

in all \widehat \sansd \sansi ff strands are random vectors as well. Below we describe it in detail.
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\bullet Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program \sansB \sansP \ast to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus q, dimensions n,m, and also distributions

\chi \sansb \sansi \sansg , \chi s, \chi \sansa \sansp \sansp \sansr , \chi \sansp \sansr \sanse , \chi \sansl \sansa \sanss \sanst , \chi \sansl \sansw \sanse as described in the construction. Recall that
\ell = k \cdot L and \widetilde n = (4\lambda +w)n. It also chooses two \lambda -bit strings \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow 
\{ 0, 1\} \lambda . If \sanst \sansa \sansg \ast = \sanst \sansa \sansg , then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(i) denote the following sets:

\forall i \in [\ell ], S(i) =
\bigl\{ 
(j, \beta , b) \in [\lambda ]\times \{ 0, 1\} 2 : j \in \sansc \sanso \sansm \sansm \wedge \beta = \sanst \sansa \sansg j

\bigr\} 
.

Also, let \widetilde ni = (2 \cdot | \sansc \sanso \sansm \sansm | + w)n for all i \in [\ell ], and set \^S = \{ (i, j, \beta , b) \in 
[\ell ]\times [\lambda ]\times \{ 0, 1\} 2 : (j, \beta , b) \in S(i)\} .

2. It samples \{ B(j,\beta )
i,b \} i,j,\beta ,b, \{ Pi,v\} i,v matrices as

\forall i \in [\ell ],

\left(  \left[  \Bigl\{ B(j,\beta )
i,b

\Bigr\} 
(j,\beta ,b)\in S(i)

\{ Pi,v\} v\in [w]

\right]  , Ti

\right)  \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).

3. It then samples matrices C
(j,\beta )
i,b \leftarrow \BbbZ n\times m

q for (i, j, \beta , b) \in \^S.
4. Finally, it sends the public parameters \sansp \sansp = (\lambda , n,m, q, k, w, L, \chi \sansp \sansr \sanse ) to

the adversary.
\bullet Challenge phase. The challenger generates ciphertext components as

\forall (i, b) \in [\ell ]\times \{ 0, 1\} , U\ast 
i,b \leftarrow \chi m\times m

\sansp \sansr \sanse .

Finally, it sends the challenge ciphertext as
\bigl( 
\sanst \sansa \sansg \ast ,

\bigl\{ 
U\ast 

i,b

\bigr\} 
i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

\bullet Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.
1. Ciphertext query. The adversary sends a branching program \sansB \sansP for

encryption. The challenger responds as follows:
(a) It generates ciphertext components as

\forall (i, b) \in [\ell ]\times \{ 0, 1\} , Ui,b \leftarrow \chi m\times m
\sansp \sansr \sanse .

(b) Finally, it sends the ciphertext as
\bigl( 
\sanst \sansa \sansg , \{ Ui,b\} i\in [\ell ],b\in \{ 0,1\} 

\bigr) 
.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses | \sansd \sansi ff|  - 1 random vectors as y(j) \leftarrow \BbbZ m
q for j \in \widehat \sansd \sansi ff.

(b) It then chooses vectors e
(j,\beta )
i ,\widetilde t(j,\beta )i ,\widetilde e(j,\beta )i as follows:

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
i \leftarrow \chi m

\sansb \sansi \sansg ,

\forall (j, \beta ) \in [\lambda ]\times \{ 0, 1\} , e
(j,\beta )
\ell +1 \leftarrow \chi m

\sansl \sansa \sanss \sanst ,

\forall (i, j, \beta ) \in [\ell ]\times [\lambda ]\times \{ 0, 1\} , \widetilde t(j,\beta )i \leftarrow \BbbZ m
q ,

\forall (j, \beta ) \in \sansc \sanso \sansm \sansm \times \{ 0, 1\} , \widetilde t(j,\beta )\ell +1 \leftarrow \BbbZ m
q ,

\forall \beta \in \{ 0, 1\} , \widetilde t(j\ast ,\beta )\ell +1 \leftarrow \BbbZ m
q ,

\forall (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} , \widetilde t(j,\beta )\ell +1 \leftarrow \BbbZ m
q .
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(c) Let \widetilde x = xL. Next, it computes key vectors \{ t(j,\beta )i \} i,j,\beta as follows:

\forall (i, j, \beta ) \in [\ell + 1]\times \sansc \sanso \sansm \sansm \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i ,

\forall (i, j, \beta ) \in [\ell ]\times \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
i = \widetilde t(j,\beta )i + e

(j,\beta )
i ,

\forall (j, \beta ) \in \widehat \sansd \sansi ff \times \{ 0, 1\} , t
(j,\beta )
\ell +1 = \widetilde t(j,\beta )\ell +1 + e

(j,\beta )
\ell +1 ,

\forall \beta \in \{ 0, 1\} , t
(j\ast ,\beta )
\ell +1 = \widetilde t(j\ast ,\beta )\ell +1 + e

(j\ast ,\beta )
\ell +1 .

(d) Finally, it sends the secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
.

\bullet Guess. The adversary finally sends the guess \gamma \prime .

8.4.4. Indistinguishability of hybrid games in section 8.4.3. Now we show
that the hybrid experiments described in section 8.4.3 are computationally indistin-
guishable. For any PPT adversary \scrA , let p\scrA ,x(\cdot ) denote the probability that adversary
\scrA outputs \gamma \prime = 1 in \sansG \sansa \sansm \sanse x.

Lemma 8.20. There exists a negligible function negl(\cdot ) such that for any adversary
\scrA and \lambda \in \BbbN , p\scrA ,0(\lambda ) - p\scrA ,1(\lambda ) \leq negl(\lambda ).

Proof. The proof of this lemma is identical to that of Lemma 8.8.

Lemma 8.21. For any adversary \scrA and \lambda \in \BbbN , p\scrA ,1(\lambda ) = p\scrA ,2(\lambda ).

Proof. The proof of this lemma is identical to that of Lemma 8.9.

Lemma 8.22. For any PPT adversary \scrA , there exists a negligible function negl(\cdot )
such that for all \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,2(\lambda ) - \sansA \sansd \sansv \scrA ,3.1.1(\lambda ) \leq negl(\lambda ).

Proof. First, let us list the differences between \sansG \sansa \sansm \sanse 2 and \sansG \sansa \sansm \sanse 3.1.1. The setup,
challenge phase, and ciphertext query are handled in an identical manner. The key
queries, however, are handled differently. For each key query x, the challenger outputs

\{ t(j,\beta )i \} (i,j,\beta )\in [\ell ]\times [\lambda ]\times \{ 0,1\} as the secret key. The components \{ t(j,\beta )1 \} j\in \sansd \sansi ff,\beta \in \{ 0,1\} are
computed differently in \sansG \sansa \sansm \sanse 2 and \sansG \sansa \sansm \sanse 3.1.1. In particular, in \sansG \sansa \sansm \sanse 3.1.1, the

challenger adds an additional error term \widetilde e(j,\beta )1 \leftarrow \chi m
\sansl \sansw \sanse in t

(j,\beta )
1 .

The proof of this lemma is similar to the proof of Lemma 8.10, (and uses the
smudging lemma, Lemma 2.1). Therefore, \sansA \sansd \sansv \scrA ,2(\lambda )  - \sansA \sansd \sansv \scrA ,3.1.1(\lambda ) \leq q\sansk \sanse \sansy \sanss (\lambda ) \cdot (2 \cdot 
| \sansd \sansi ff| \cdot negl\sanss \sansm \sansu \sansd (\lambda )) \leq q\sansk \sanse \sansy \sanss (\lambda ) \cdot (2\lambda \cdot negl\sanss \sansm \sansu \sansd (\lambda )), and the lemma follows by setting
negl3.1.1 = (2\lambda \cdot negl\sanss \sansm \sansu \sansd ).

Lemma 8.23. For any PPT adversary \scrA , there exists a negligible function negl(\cdot )
such that for all \lambda \in \BbbN and i\ast \in [\ell ], \sansA \sansd \sansv \scrA ,3.i\ast .1(\lambda ) - \sansA \sansd \sansv \scrA ,3.i\ast .2(\lambda ) \leq negl(\lambda ).

Proof. Let us first consider the differences between \sansG \sansa \sansm \sanse 3.i\ast .1 and \sansG \sansa \sansm \sanse 3.i\ast .2.
The setup, challenge phase, and ciphertext query are handled in an identical manner
in both games. The key generation queries are computed differently (in particular the

components \{ t(j,\beta )i\ast +1\} j\in \sansd \sansi ff,\beta \in \{ 0,1\} in each secret key).
The proof of this lemma is similar to the proof of Lemma 8.11, and the main idea

is to use Fact 8.1 to argue that e
(j,\beta )
i\ast +1 drowns \widetilde e(j,\beta )i\ast +1 \cdot U

(\beta )
i\ast ,\widetilde xi\ast 

and \widetilde e(j,\beta )i\ast +1.

Lemma 8.24. Assuming the trapdoor generation algorithms \sansL \sansT \sanse \sansn satisfy the
(q, \sigma \sansp \sansr \sanse )-row removal property, for any PPT adversary \scrA and i\ast \in [\ell ], there exists
a negligible function negl(\cdot ) such that for all \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,3.i\ast .2(\lambda ) - \sansA \sansd \sansv \scrA ,3.i\ast .3(\lambda ) \leq 
negl(\lambda ).

Proof. This proof is similar to the proof of Lemma 8.12, and we will be using the
row removal property to prove it. We will first present the differences between the
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two games and then discuss why the row removal property is applicable here. The
exact reduction from the row removal property to indistinguishability of \sansG \sansa \sansm \sanse 3.i\ast .2
and \sansG \sansa \sansm \sanse 3.i\ast .3 can be found in the proof of Lemma 8.12.

Differences between \sansG \sansa \sansm \sanse 3.i\ast .2 and \sansG \sansa \sansm \sanse 3.i\ast .3:
1. Set S(i\ast ): In \sansG \sansa \sansm \sanse 3.i\ast .2, the challenger sets S(i\ast ) = [\lambda ] \times \{ 0, 1\} 2, while in

\sansG \sansa \sansm \sanse 3.i\ast .3, S(i\ast ) = \sansc \sanso \sansm \sansm \times \{ 0, 1\} 2 (\sanst \sansa \sansg \ast , \sanst \sansa \sansg are chosen at the start of the
security game, so the set \sansd \sansi ff is well defined here). Also, \widetilde ni\ast = \widetilde n = (4\lambda +w)n
in \sansG \sansa \sansm \sanse 3.i\ast .2, while \widetilde ni\ast = \widetilde n - | \sansd \sansi ff| \cdot 4n in \sansG \sansa \sansm \sanse 3.i\ast .3.

2. \{ B(j,\beta )
i,b \} i=i\ast matrices: In \sansG \sansa \sansm \sanse 3.i\ast .2, the challenger chooses (Mi\ast , Ti\ast ) \leftarrow 

\sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde n, 1m, q), while in \sansG \sansa \sansm \sanse 3.i\ast .3, it chooses matrices (Mi\ast , Ti\ast )\leftarrow 
\sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde n - | \sansd \sansi ff| \cdot 4n, 1m, q). As a result, in \sansG \sansa \sansm \sanse 3.i\ast .2, it derives all matri-

ces \{ B(j,\beta )
i\ast ,b \} (j,\beta ,b)\in [\lambda ]\times \{ 0,1\} 2 from Mi\ast . In \sansG \sansa \sansm \sanse 3.i\ast .3, the challenger chooses

\{ B(j,\beta )
i\ast ,b \} j\in \sansd \sansi ff,b,\beta \in \{ 0,1\} uniformly at random, while the remaining are derived

from Mi\ast .
3. Ciphertexts: Since the set S(i\ast ) is different in both games, the challenge and

query ciphertexts are constructed differently in both games. In particular, the
challenge ciphertext components (U\ast 

i\ast ,0,U
\ast 
i\ast ,1) and the ciphertext query com-

ponents (Ui\ast ,0,Ui\ast ,1) are computed using Mi\ast and Ti\ast , which are computed
differently in \sansG \sansa \sansm \sanse 3.i\ast .2 and \sansG \sansa \sansm \sanse 3.i\ast .3.

Let us now discuss why the row removal property suffices for proving this lemma.
\bullet Consider the four matrices

\bigl( 
U\ast 

i\ast ,0,U
\ast 
i\ast ,1,Ui\ast ,0,Ui\ast ,1

\bigr) 
. Fix any j \in \sansd \sansi ff, and

let \sanst \sansa \sansg \ast j = \beta and \sanst \sansa \sansg j = 1 - \beta . Then, from the definitions of D
(j,\beta )
b and \widetilde D(j,\beta )

b

in \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc , it follows that

-- B
(j,\beta )
i\ast ,0 \cdot U

\ast 
i\ast ,0 = C

(j,\beta )
i\ast ,0 , and the rest are mapped to random matrices;

-- B
(j,\beta )
i\ast ,1 \cdot U

\ast 
i\ast ,1 = C

(j,\beta )
i\ast ,1 , and the rest are mapped to random matrices;

-- B
(j,1 - \beta )
i\ast ,0 \cdot Ui\ast ,0 = C

(j,1 - \beta )
i\ast ,0 , and the rest are mapped to random matrices;

-- B
(j,1 - \beta )
i\ast ,1 \cdot Ui\ast ,1 = C

(j,1 - \beta )
i\ast ,1 , and the rest are mapped to random matrices.

\bullet Next, note that the \{ C(j,\beta )
i\ast ,b \} j\in \sansd \sansi ff,b,\beta \in \{ 0,1\} are not used for responding to key

generation queries.
\bullet Using the above points, we can conclude that in \sansG \sansa \sansm \sanse 3.i\ast .2, for each j \in \sansd \sansi ff,

each of
\bigl( 
U\ast 

i\ast ,0,U
\ast 
i\ast ,1,Ui\ast ,0,Ui\ast ,1

\bigr) 
maps

\bigl[ 
B

(j,0)
i\ast ,0 | B

(j,0)
i\ast ,1 | B

(j,1)
i\ast ,0 | B

(j,1)
i\ast ,1

\bigr] 
to a

uniformly random matrix.
The proof of this lemma therefore follows using the row removal property.

Lemma 8.25. Assuming the \sansL \sansW \sansE n,q,\sigma \sansl \sansw \sanse 
assumption holds, for any PPT adversary

\scrA and i\ast \in [\ell ] there exists a negligible function negl3.i\ast .4(\cdot ) such that for all \lambda \in \BbbN ,
\sansA \sansd \sansv \scrA ,3.i\ast .3(\lambda ) - \sansA \sansd \sansv \scrA ,3.i\ast .4(\lambda ) \leq negl3.i\ast .4(\lambda ).

Proof. The proof of this lemma is similar to the proof of Lemma 8.13, except that
it involves more hybrid experiments.

In \sansG \sansa \sansm \sanse 3.i\ast .3, for each key query x, for each \beta \in \{ 0, 1\} and j \in \sansd \sansi ff, the

component \widetilde t(j,\beta )i\ast =  - 
\sum i\ast  - 1

\alpha =1

\bigl( \widetilde t(j,\beta )\alpha \cdot 
\prod i\ast  - 1

\delta =\alpha U
(\beta )
\delta ,\widetilde x\delta 

\bigr) 
 - \widetilde y \cdot \prod i\ast  - 1

\delta =1 U
(\beta )
\delta ,\widetilde x\delta 

+ \widetilde s \cdot P
i\ast ,\sanss \sanst 

(\beta )

i\ast 
+

s
(j,\beta )
i\ast \cdot B(j,\beta )

i\ast ,\widetilde xi\ast 
+ \widetilde e(j,\beta )i\ast . In \sansG \sansa \sansm \sanse 3.i\ast .4, \widetilde t(j,\beta )i\ast \leftarrow \BbbZ m

q . Let q\sansk \sanse \sansy \sanss = q\sansk \sanse \sansy \sanss (\lambda ) denote the

number of keys queried by \scrA (1\lambda ). To prove that these two games are computationally
indistinguishable, we will define q\sansk \sanse \sansy \sanss \cdot \lambda hybrid experiments.
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Hybrid \bfitH \bfito ,\^\bfitj ,\bfzero for \bfito \in \{ 0, 1, . . . , \bfitq \bfsansk \bfsanse \bfsansy \bfsanss \} , \^\bfitj \in [\bfitlambda ]. In this hybrid, for the first o

keys, for j \in \sansd \sansi ff \cap [\^j], the \widetilde t(j,0)i\ast components are sampled uniformly at random, while
the remaining components are sampled as in \sansG \sansa \sansm \sanse 3.i\ast .3.

Hybrid \bfitH \bfito ,\^\bfitj ,\bfone for \bfito \in \{ 0, 1, . . . , \bfitq \bfsansk \bfsanse \bfsansy \bfsanss \} ,\^\bfitj \in [\bfitlambda ]. In this hybrid, for all keys

and j \in \sansd \sansi ff, the \widetilde t(j,0)i\ast components are sampled uniformly at random. For the first

o queries and j \in \sansd \sansi ff \cap [\^j], the \widetilde t(j,1)i\ast components are sampled uniformly at random,
while the remaining are sampled as in \sansG \sansa \sansm \sanse 3.i\ast .3.

Clearly, H0,0,0 corresponds to \sansG \sansa \sansm \sanse 3.i\ast .3, Hq\sansk \sanse \sansy \sanss ,\lambda ,1 is identical to \sansG \sansa \sansm \sanse 3.i\ast .4,
Ho - 1,\lambda ,b \equiv Ho,0,b, and Hq\sansk \sanse \sansy \sanss ,\lambda ,0 \equiv H0,0,1. Let a\scrA ,i,\^j,b(\lambda ) denote the advantage of \scrA 
in Hi,\^j,b.

Claim 8.26. Assuming the \sansL \sansW \sansE n,q,\sigma \sansl \sansw \sanse 
assumption holds, for any PPT adversary

\scrA making q\sansk \sanse \sansy \sanss (\cdot ) key queries there exists a negligible function \sansn o,\^j,0(\cdot ) such that for

all \lambda \in \BbbN , q\sansk \sanse \sansy \sanss = q\sansk \sanse \sansy \sanss (\lambda ) and all indices o \in [q\sansk \sanse \sansy \sanss ] and \^j \in [\lambda ], a\scrA ,o,j - 1,0 - a\scrA ,o,j,0 \leq 
\sansn o,\^j,0(\lambda ).

Claim 8.27. Assuming the \sansL \sansW \sansE n,q,\sigma \sansl \sansw \sanse 
assumption holds, for any PPT adversary

\scrA making q\sansk \sanse \sansy \sanss (\cdot ) key queries there exists a negligible function \sansn o,0,0(\cdot ) such that for

all \lambda \in \BbbN , q\sansk \sanse \sansy \sanss = q\sansk \sanse \sansy \sanss (\lambda ) and all indices o \in [q\sansk \sanse \sansy \sanss ] and \^j \in [\lambda ], a\scrA ,o,\^j - 1,1 - a\scrA ,o,\^j,1 \leq 
\sansn o,\^j,1(\lambda ).

The proofs of these claims are similar to the proof of Claim 8.14. If \^j /\in \sansd \sansi ff, then
Ho,\^j - 1,b \equiv Ho,\^j,b. Otherwise, we can reduce LWE to the indistinguishability of these
two hybrids.

Lemma 8.28. For any PPT adversary \scrA and i\ast \in [\ell  - 1] there exists a negligible
function negl(\cdot ) such that for all \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,3.i\ast .4(\lambda ) - \sansA \sansd \sansv \scrA ,3.(i\ast +1).1(\lambda ) \leq negl(\lambda ).

This proof is identical to the proof of Lemma 8.22.

Lemma 8.29. For any PPT adversary \scrA there exists a negligible function negl(\cdot )
such that for all \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,3.\ell .4(\lambda ) - \sansA \sansd \sansv \scrA ,4(\lambda ) \leq negl(\lambda ).

Proof. The only difference between \sansG \sansa \sansm \sanse 3.\ell .4 and \sansG \sansa \sansm \sanse 4 is that the t
(j\ast ,\beta )
\ell +1

terms contain an additional noise term, \widetilde e(j\ast ,\beta )\ell +1 . The proof of this lemma is identical
to the proof of Lemma 8.22 and follows via the smudging lemma (Lemma 2.1).

Lemma 8.30. Let \sigma : \BbbN \rightarrow \BbbR + and q : \BbbN \rightarrow \BbbN be functions, and \chi s(\lambda ) \equiv \scrD \surd 
2\sigma (\lambda )

and \chi \sansl \sansw \sanse (\lambda ) \equiv \scrD \sigma (\lambda ) for each \lambda \in \BbbN . Assuming the \sansL \sansW \sansE -\sanss \sanss (n,q,\sigma \sansl \sansw \sanse ) assumption holds,
for any PPT adversary \scrA there exists a negligible function negl(\cdot ) such that for all
\lambda \in \BbbN , \sansA \sansd \sansv \scrA ,4(\lambda ) - \sansA \sansd \sansv \scrA ,5(\lambda ) \leq negl(\lambda ).

Proof. The only difference between \sansG \sansa \sansm \sanse 4 and \sansG \sansa \sansm \sanse 5 is in the key generation

phase. In \sansG \sansa \sansm \sanse 4, for each query, the term t
(j\ast ,\beta \ast )
\ell +1 =  - 

\sum \ell 
\alpha =1

\bigl( \widetilde t(j\ast ,\beta \ast )

\alpha \cdot 
\prod \ell 

\delta =\alpha U
(\beta \ast )
\delta ,\widetilde x\delta 

\bigr) 
+\widetilde y \cdot \prod \ell 

\delta =1 U
(\beta )
\delta ,\widetilde x\delta 

+\widetilde s \cdot P(\beta \ast )

\ell +1,\sanss \sanst 
(\beta \ast )
\ell +1

+\widetilde e(j\ast ,\beta \ast )
\ell +1 +e

(j\ast ,\beta \ast )
\ell +1 , and similarly the term t

(j\ast ,1 - \beta \ast )
\ell +1 =

\widetilde s \cdot P(1 - \beta \ast )

\ell +1,\sanss \sanst 
(1 - \beta \ast )
\ell +1

+\widetilde e(j\ast ,1 - \beta \ast )
\ell +1 + other terms . In \sansG \sansa \sansm \sanse 5, for each key query, both t

(j\ast ,0)
\ell +1

and t
(j\ast ,1)
\ell +1 are set to be uniformly random. Using the short secrets version of LWE,

we can switch both \widetilde s \cdot P(\beta \ast )

\ell +1,\sanss \sanst 
(\beta \ast )
\ell +1

+\widetilde e(j\ast ,\beta \ast )
\ell +1 and \widetilde s \cdot P(1 - \beta \ast )

\ell +1,\sanss \sanst 
(1 - \beta \ast )
\ell +1

+\widetilde e(j\ast ,1 - \beta \ast )
\ell +1 to uniformly

random vectors. This switch is possible because

\bullet \widetilde s is chosen from \chi n
s , and \widetilde e(j\ast ,\beta \ast )

\ell +1 ,\widetilde e(j\ast ,1 - \beta \ast )
\ell +1 are chosen from \chi m

\sansl \sansw \sanse ;
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\bullet \widetilde s, \widetilde e(j\ast ,\beta \ast )
\ell +1 , and \widetilde e(j\ast ,1 - \beta \ast )

\ell +1 are not required anywhere else in \sansG \sansa \sansm \sanse 4 or \sansG \sansa \sansm \sanse 5;
each of these three terms is chosen afresh for each key query;

\bullet P
(\beta \ast )

\ell +1,\sanss \sanst 
(\beta \ast )
\ell +1

and P
(1 - \beta \ast )

\ell +1,\sanss \sanst 
(1 - \beta \ast )
\ell +1

are uniformly random matrices.

Formally, we will show that \sansG \sansa \sansm \sanse 4 and \sansG \sansa \sansm \sanse 5 are computationally indistin-
guishable via a sequence of hybrid experiments. Let q\sansk \sanse \sansy \sanss = q\sansk \sanse \sansy \sanss (\lambda ) denote the num-
ber of keys queried by \scrA (1\lambda ). To prove that these two games are computationally
indistinguishable, we will define q\sansk \sanse \sansy \sanss hybrid experiments.

Hybrid \bfitH \bfito for \bfito \in \{ 0, 1, . . . , \bfitq \bfsansk \bfsanse \bfsansy \bfsanss \} . In this hybrid, for the first o keys, the

t
(j\ast ,0)
i\ast +1 , t

(j\ast ,1)
lvl+1 components are sampled uniformly at random in the first o queries.

For the remaining q\sansk \sanse \sansy \sanss  - o key queries, the keys are generated as in \sansG \sansa \sansm \sanse 4 in the
remaining queries.

Clearly, H0 corresponds to \sansG \sansa \sansm \sanse 4, while Hq\sansk \sanse \sansy \sanss is identical to \sansG \sansa \sansm \sanse 5. Let a\scrA ,i(\lambda )
denote the advantage of \scrA in Hi.

Claim 8.31. Let \sigma : \BbbN \rightarrow \BbbR + and q : \BbbN \rightarrow \BbbN be functions, and \chi s(\lambda ) \equiv \scrD \surd 
2\sigma (\lambda )

and \chi \sansl \sansw \sanse (\lambda ) \equiv \scrD \sigma (\lambda ) for each \lambda \in \BbbN . Assuming the \sansL \sansW \sansE -\sanss \sanss (n,q,\sigma \sansl \sansw \sanse ) assumption holds,
for any PPT adversary \scrA making q\sansk \sanse \sansy \sanss (\cdot ) key queries there exists a negligible function
negl(\cdot ) such that for all \lambda \in \BbbN , q\sansk \sanse \sansy \sanss = q\sansk \sanse \sansy \sanss (\lambda ) and all indices o \in [q\sansk \sanse \sansy \sanss ], a\scrA ,o - 1  - 
a\scrA ,o \leq negl(\lambda ).

Proof. Suppose there exist an adversary making q\sansk \sanse \sansy \sanss key queries, and a nonneg-
ligible function \eta (\cdot ) such that for all \lambda \in \BbbN , there exists an index o \in [q\sansk \sanse \sansy \sanss ] such that
a\scrA ,o - 1  - a\scrA ,o \geq \eta (\lambda ). We will use \scrA to build a reduction algorithm \scrB that breaks
the \sansL \sansW \sansE -\sanss \sanss (n,q,\sigma \sansl \sansw \sanse ) assumption.

The reduction algorithm receives (k,w, L) from the adversary and sets the pa-
rameters as in Ho - 1/Ho. It makes 2m queries to the \sansL \sansW \sansE -\sanss \sanss challenger and re-
ceives \{ (aj , uj)\} j\leq 2m. It chooses \sanst \sansa \sansg \ast , \sanst \sansa \sansg \leftarrow \{ 0, 1\} \lambda , and j\ast is the first position

where \sanst \sansa \sansg \ast and \sanst \sansa \sansg differ. Next, it sets \widetilde ni as in Ho - 1/Ho and chooses (Mi, Ti) \leftarrow 
\sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q).

Challenge phase. The reduction algorithm receives challenge ciphertext \sansB \sansP \ast ,
which specifies the reject state \sansr \sanse \sansj \ast , and uses \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc for computing the chal-
lenge ciphertext. Note that \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc chooses P\ell +1,v uniformly at random. The
reduction algorithm sets P\ell +1,\sansr \sanse \sansj \ast to be a matrix whose jth column is aTj . All other
P\ell +1,v are chosen uniformly at random.

Ciphertext query. The reduction algorithm receives ciphertext query \sansB \sansP and
uses \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc for computing the ciphertext query. Let \sansr \sanse \sansj denote the reject state
of \sansB \sansP . It sets P\ell +1,\sansr \sanse \sansj to be a matrix whose jth column is aTm+j . The remaining
P\ell +1,v matrices are chosen uniformly at random.

Key queries. The reduction algorithm first sets u\beta \ast 
= [u1 . . . um] and u1 - \beta \ast 

=

[um+1 . . . u2m]. For the first o  - 1 key queries, the t
(j\ast ,\beta )
\ell +1 components are chosen

uniformly at random. For the oth key query, the reduction algorithm sets t
(j\ast ,\beta \ast )
\ell +1 =

 - 
\sum \ell 

\alpha =1

\bigl( \widetilde t(j\ast ,\beta \ast )

\alpha \cdot 
\prod \ell 

\delta =\alpha U
(\beta \ast )
\delta ,\widetilde x\delta 

\bigr) 
+ \widetilde y \cdot \prod \ell 

\delta =1 U
(\beta \ast )
\delta ,\widetilde x\delta 

+ e
(j\ast ,\beta \ast )
\ell +1 + u\beta \ast 

and t
(j\ast ,1 - \beta \ast )
\ell +1 =

 - 
\sum \ell 

\alpha =1

\bigl( \widetilde t(j\ast ,1 - \beta \ast )

\alpha \cdot 
\prod \ell 

\delta =\alpha U
(1 - \beta \ast )
\delta ,\widetilde x\delta 

\bigr) 
+ \widetilde y \cdot \prod \ell 

\delta =1 U
(1 - \beta \ast )
\delta ,\widetilde x\delta 

+ e
(j\ast ,1 - \beta \ast )
\ell +1 + u1 - \beta \ast 

. The

remaining key queries are handled as in Ho - 1/Ho.
Now, if all the uj terms output by the LWE challenger are uniformly random,

then t
(j\ast ,\beta \ast )
\ell +1 and t

(j\ast ,1 - \beta \ast )
\ell +1 are uniformly random, and hence the reduction algorithm

simulates Ho. If each uj = \widetilde s\cdot aTj +\widetilde ej , then the reduction algorithm simulates Ho - 1.
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Lemma 8.32. Assuming the trapdoor system \sansL \sansT \sanse \sansn satisfies the (q, \sigma \sansp \sansr \sanse )-row re-
moval property, for any PPT adversary \scrA , there exists a negligible function negl(\cdot )
such that for all \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,5(\lambda ) - \sansA \sansd \sansv \scrA ,5.1(\lambda ) \leq negl(\lambda ).

Proof. Let us first consider the differences between \sansG \sansa \sansm \sanse 5 and \sansG \sansa \sansm \sanse 5.1.
\bullet Set S(1): In \sansG \sansa \sansm \sanse 5, the challenger sets S(1) = \sansc \sanso \sansm \sansm \times \{ 0, 1\} 2, while in
\sansG \sansa \sansm \sanse 5.1, S(1) = \{ (j, \beta , b) : j \in \sansc \sanso \sansm \sansm \wedge \beta = \sanst \sansa \sansg j\} (\sanst \sansa \sansg \ast , \sanst \sansa \sansg are chosen at
the start of the security game, so these sets are well defined here). Also,\widetilde n1 = (4| \sansc \sanso \sansm \sansm | + w)n in \sansG \sansa \sansm \sanse 5, while \widetilde n1 = (2| \sansc \sanso \sansm \sansm | + w)n in \sansG \sansa \sansm \sanse 5.1.

\bullet \{ B(j,\beta )
i,b \} i=1 matrices: In \sansG \sansa \sansm \sanse 5, the challenger chooses matrices (M1, T1)\leftarrow 

\sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1(4| \sansc \sanso \sansm \sansm | +w)n, 1m, q), while in \sansG \sansa \sansm \sanse 3.i\ast .3, it chooses the matrices
(M1, T1)\leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1(2| \sansc \sanso \sansm \sansm | +w)n, 1m, q). As a result, in \sansG \sansa \sansm \sanse 5, it derives

all \{ B(j,\beta )
1,b \} (j,\beta ,b)\in \sansc \sanso \sansm \sansm \times \{ 0,1\} 2 from M1. In \sansG \sansa \sansm \sanse 5.1, the challenger chooses

\{ B(j,\beta )
1,b \} j\in \sansc \sanso \sansm \sansm ,\beta \not =\sanst \sansa \sansg j ,b\in \{ 0,1\} uniformly at random, while the remaining are

derived from M1.
\bullet Ciphertexts: Since the set S(1) is different in both games, the challenge

ciphertext components (U\ast 
1,0,U

\ast 
1,1) and the ciphertext query components

(U1,0,U1,1) are computed using M1 and T1, which are computed differently
in \sansG \sansa \sansm \sanse 5 and \sansG \sansa \sansm \sanse 5.1.

Let us now discuss why the row removal property suffices for proving this lemma.
Consider any matrix U \in 

\bigl\{ 
U\ast 

1,0,U
\ast 
1,1,U1,0,U1,1

\bigr\} 
, fix any j \in \sansc \sanso \sansm \sansm , and let \beta =

\sanst \sansa \sansg j . Then, from the definitions of D
(j,\beta )
b and \widetilde D(j,\beta )

b in \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc , it follows that

B
(j,1 - \beta )
1,b \cdot U is a random matrix for both b \in \{ 0, 1\} (because \sanst \sansa \sansg \ast j = \beta ).
The proof of this lemma therefore follows using the row removal property (the

reduction algorithm is similar to the one described in the proof of Lemma 8.12).

Lemma 8.33. Assuming the trapdoor system \sansL \sansT \sanse \sansn satisfies the (q, \sigma \sansp \sansr \sanse )-row re-
moval property, for any PPT adversary \scrA , there exists a negligible function negl(\cdot )
such that for all \lambda \in \BbbN and i\ast \in [\ell ] , \sansA \sansd \sansv \scrA ,5.(i\ast  - 1)(\lambda ) - \sansA \sansd \sansv \scrA ,5.\ell (\lambda ) \leq negl(\lambda ).

The proof of this lemma is identical to the proof of Lemma 8.32.

Lemma 8.34. Assuming the \sansL \sansW \sansE n,q,\sigma \sansl \sansw \sanse 
assumption holds, for any PPT adversary

\scrA there exists a negligible function negl(\cdot ) such that for all \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,5.\ell (\lambda )  - 
\sansA \sansd \sansv \scrA ,6.2(\lambda ) \leq negl(\lambda ).

Proof. The proof of this lemma is similar to the proof of Lemma 8.13.

In \sansG \sansa \sansm \sanse 5.\ell , for each key query x, for each j \in \sansc \sanso \sansm \sansm , the components t
(j,\beta )
1 =

s
(j,\beta )
1 B

(j,\beta )
1,\widetilde x1

+ y(j) + e
(j,\beta )
1 and t

(j,\beta )
2 =  - s(j,\beta )1 \cdot C(j,\beta )

1,\widetilde x1
+ s

(j,\beta )
2 \cdot B(j,\beta )

2,\widetilde x2
+ e

(j,\beta )
2 . In

\sansG \sansa \sansm \sanse 6.1, then t
(j,1 - \sanst \sansa \sansg j)

1 , t
(j,1 - \sanst \sansa \sansg j)

2 \leftarrow \BbbZ m
q . Let q\sansk \sanse \sansy \sanss = q\sansk \sanse \sansy \sanss (\lambda ) denote the num-

ber of keys queried by \scrA (1\lambda ). To prove that these two games are computationally
indistinguishable, we will define q\sansk \sanse \sansy \sanss \cdot \lambda hybrid experiments.

Hybrid \bfitH \bfito ,\^\bfitj ,\bfzero for \bfito \in \{ 0, 1, . . . , \bfitq \bfsansk \bfsanse \bfsansy \bfsanss \} , \^\bfitj \in [\bfitlambda ]. In this hybrid, for the first o

keys, for j \in \sansc \sanso \sansm \sansm \cap [\^j], the t
(j,1 - \sanst \sansa \sansg j)

1 , t
(j,1 - \sanst \sansa \sansg j)

2 components are sampled uniformly
at random, while the remaining components are sampled as in \sansG \sansa \sansm \sanse 5.\ell .

Hybrid \bfitH \bfito ,\^\bfitj ,\bfone for \bfito \in \{ 0, 1, . . . , \bfitq \bfsansk \bfsanse \bfsansy \bfsanss \} ,\^\bfitj \in [\bfitlambda ]. This hybrid is similar to the

previous one, except that for j = \^j + 1 it adds an additional \chi \sansl \sansw \sanse noise to t
(j,1 - \sanst \sansa \sansg j)

1

and t
(j,1 - \sanst \sansa \sansg j)

2 .
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Clearly, H0,0,0 corresponds to \sansG \sansa \sansm \sanse 5.\ell , Hq\sansk \sanse \sansy \sanss ,\lambda ,1 is identical to \sansG \sansa \sansm \sanse 6.2, and
Ho - 1,\lambda ,0 \equiv Ho,0,0. Let a\scrA ,o,\^j,b(\lambda ) denote the advantage of \scrA in Ho,\^j,b.

Claim 8.35. For every PPT adversary \scrA making q\sansk \sanse \sansy \sanss queries, there exists a
negl(\cdot ) such that for all \lambda \in \BbbN , o \in [q\sansk \sanse \sansy \sanss ], and j \in [\lambda ], a\scrA ,o,\^j,0  - a\scrA ,o,\^j,1 \leq negl(\lambda ).

The proof of this claim follows via the smudging lemma (Lemma 2.1).

Claim 8.36. Assuming the \sansL \sansW \sansE n,q,\sigma \sansl \sansw \sanse 
assumption holds, for any PPT adversary

\scrA making q\sansk \sanse \sansy \sanss (\cdot ) key queries there exists a negligible function negl(\cdot ) such that for all

\lambda \in \BbbN , q\sansk \sanse \sansy \sanss = q\sansk \sanse \sansy \sanss (\lambda ), and all indices o \in [q\sansk \sanse \sansy \sanss ] and \^j \in [\lambda ], a\scrA ,o,\^j - 1,1  - a\scrA ,o,\^j,0 \leq 
negl(\lambda ).

Proof. The proof of this claim follows from the LWE assumption. The reduction
algorithm makes 4m queries to the LWE challenger and receives \{ aj , uj\} j\in 4m. It sets

B
(\^j,1 - \sanst \sansa \sansg \^j)

1,0 = [aT1 . . .aTm], C
(\^j,1 - \sanst \sansa \sansg \^j)

1,0 = [aTm+1 . . .a
T
2m], B

(\^j,1 - \sanst \sansa \sansg \^j)

1,1 = [aT2m+1 . . .a
T
3m],

C
(\^j,1 - \sanst \sansa \sansg \^j)

1,1 = [aT3m+1 . . .a
T
4m]. It also sets u1,0 = [u1 . . . um], u2,0 = [um+1 . . . u2m],

u1,1 = [u2m+1 . . . u3m], u2,1 = [u3m+1 . . . u4m].

For the oth key query x, the reduction algorithm sets t
(\^j,1 - \sanst \sansa \sansg \^j)

1 = u1,\widetilde x1
+ y(\^j) +

e
(\^j,1 - \sanst \sansa \sansg \^j)

1 and t
(\^j,1 - \sanst \sansa \sansg \^j)

2 = u2,\widetilde x1
+ e

(\^j,1 - \sanst \sansa \sansg \^j)

2 . The rest of the key components can be
handled without the LWE challenge terms.

Lemma 8.37. Assuming the \sansL \sansW \sansE n,q,\sigma \sansl \sansw \sanse 
assumption holds, for any PPT adversary

\scrA there exists a negligible function negl(\cdot ) such that for all \lambda \in \BbbN and i\ast \in \{ 3, . . . , \ell \} ,
\sansA \sansd \sansv \scrA ,6.i\ast  - 1(\lambda ) - \sansA \sansd \sansv \scrA ,6.i\ast (\lambda ) \leq negl(\lambda ).

Proof. The only difference between \sansG \sansa \sansm \sanse 6.(i\ast  - 1) and \sansG \sansa \sansm \sanse 6.i\ast is with re-
spect to the key queries. In \sansG \sansa \sansm \sanse 6.(i\ast  - 1), for each j \in \sansc \sanso \sansm \sansm , the challenger

sets t
(j,1 - \sanst \sansa \sansg j)

i\ast =  - s(j,1 - \sanst \sansa \sansg j)

i\ast  - 1 \cdot C(j,1 - \sanst \sansa \sansg j)

i\ast  - 1,\widetilde xi - 1
+ s

(j,1 - \sanst \sansa \sansg j)

i\ast \cdot B(j,1 - \sanst \sansa \sansg j)

i\ast ,\widetilde xi
+ e

(j,1 - \sanst \sansa \sansg j)

i\ast , while it
switches these terms to random in \sansG \sansa \sansm \sanse 6.i\ast .

The proof of this lemma uses (standard) LWE, similar to the proof of Lemma 8.34.
One minor difference between this lemma and Lemma 8.34 is that in the previous

lemma, the challenger switches both t
(j,1 - \sanst \sansa \sansg j)

1 and t
(j,1 - \sanst \sansa \sansg j)

2 (this is because the

vector s
(j,1 - \sanst \sansa \sansg j)

1 is used for computing both of these components). However, in this
lemma, the reduction algorithm sets the LWE challenge's public vectors as the rows

of C
(j,1 - \sanst \sansa \sansg j)

i\ast ,0 and C
(j,1 - \sanst \sansa \sansg j)

i\ast ,1 , and the LWE challenge is used for setting t
(j,1 - \sanst \sansa \sansg j)

i\ast .

Lemma 8.38. For any adversary \scrA and \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,6.(\ell +1)(\lambda ) = \sansA \sansd \sansv \scrA ,7.1(\lambda ).

Proof. The only difference between \sansG \sansa \sansm \sanse 6.(\ell + 1) and \sansG \sansa \sansm \sanse 7.1 is with respect

to the \{ t(j,\sanst \sansa \sansg j)1 \} j\in \sansc \sanso \sansm \sansm components in key queries. In \sansG \sansa \sansm \sanse 6, for each key query x,

the challenger chooses
\bigl\{ 
y(j)

\bigr\} 
j \not =j\ast 

and sets t
(j,\sanst \sansa \sansg j)

1 = s
(j,\sanst \sansa \sansg j)

1 \cdot B(j,\sanst \sansa \sansg j)

1,\widetilde x1
+y(j)+e

(j,\sanst \sansa \sansg j)

1

for each j \in \sansc \sanso \sansm \sansm . In \sansG \sansa \sansm \sanse 7.1, the \{ t(j,\sanst \sansa \sansg j)1 \} j\in \sansc \sanso \sansm \sansm vectors are set to be uniformly
random vectors.

Note that in \sansG \sansa \sansm \sanse 6.(\ell + 1), the y(j) terms are chosen afresh for each key, and

y(j) is only used in constructing t
(j,\sanst \sansa \sansg j)

1 (recall t
(j,1 - \sanst \sansa \sansg j)

1 is uniformly random). As a

result, the components \{ t(j,\sanst \sansa \sansg j)1 \} j\in \sansc \sanso \sansm \sansm are uniformly random vectors, and therefore
the secret keys in the two games are identically distributed.

Lemma 8.39. Assuming the \sansL \sansW \sansE n,q,\sigma \sansl \sansw \sanse 
assumption holds, for any PPT adversary

\scrA there exists a negligible function negl(\cdot ) such that for all \lambda \in \BbbN and i\ast \in \{ 2, . . . , \ell \} ,
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\sansA \sansd \sansv \scrA ,7.i\ast  - 1(\lambda ) - \sansA \sansd \sansv \scrA ,7.i\ast (\lambda ) \leq negl(\lambda ).

Proof. The only difference between \sansG \sansa \sansm \sanse 7.(i\ast  - 1) and \sansG \sansa \sansm \sanse 7.i\ast is with respect

to the \{ t(j,\sanst \sansa \sansg j)i\ast \} j\in \sansc \sanso \sansm \sansm components in key queries. In \sansG \sansa \sansm \sanse 7.(i\ast  - 1), for each key

query x, the challenger sets t
(j,\sanst \sansa \sansg j)

i\ast =  - s(j,\sanst \sansa \sansg j)i\ast  - 1 \cdot C(j,\sanst \sansa \sansg j)

i\ast ,\widetilde xi\ast  - 1
+s

(j,\sanst \sansa \sansg j)

i\ast \cdot B(j,\sanst \sansa \sansg j)

i\ast ,\widetilde xi\ast 
+e

(j,\sanst \sansa \sansg j)

i\ast 

for each j \in \sansc \sanso \sansm \sansm . In \sansG \sansa \sansm \sanse 7.i\ast , the \{ t(j,\sanst \sansa \sansg j)i\ast \} j\in \sansc \sanso \sansm \sansm vectors are set to be uniformly
random vectors. We will show that these two games are computationally indistin-
guishable via a hybrid argument. First, we will define q\sansk \sanse \sansy \sanss \cdot \lambda hybrid experiments.

Hybrid \bfitH \bfito ,\^\bfitj ,\bfzero for \bfito \in \{ 0, 1, . . . , \bfitq \bfsansk \bfsanse \bfsansy \bfsanss \} , \^\bfitj \in [\bfitlambda ]. In this hybrid, for the first

o keys, for j \in \sansc \sanso \sansm \sansm \cap [\^j], the t
(j,\sanst \sansa \sansg j)

i\ast components are sampled uniformly at random,
while the remaining components are sampled as in \sansG \sansa \sansm \sanse 7.i\ast .

Hybrid \bfitH \bfito ,\^\bfitj ,\bfone for \bfito \in \{ 0, 1, . . . , \bfitq \bfsansk \bfsanse \bfsansy \bfsanss \} ,\^\bfitj \in [\bfitlambda ]. This hybrid is similar to the

previous one, except that for j = \^j + 1 it adds an additional \chi \sansl \sansw \sanse noise to t
(j,\sanst \sansa \sansg j)

i\ast .
Clearly, H0,0,0 corresponds to \sansG \sansa \sansm \sanse 7.(i\ast  - 1), Hq\sansk \sanse \sansy \sanss ,\lambda ,1 is identical to \sansG \sansa \sansm \sanse 7.i\ast ,

and Ho - 1,\lambda ,0 \equiv Ho,0,0. Let a\scrA ,o,\^j,b(\lambda ) denote the advantage of \scrA in Ho,\^j,b.

Claim 8.40. For every PPT adversary \scrA making q\sansk \sanse \sansy \sanss queries, there exists a
negl(\cdot ) such that for all \lambda \in \BbbN , o \in [q\sansk \sanse \sansy \sanss ] and j \in [\lambda ], a\scrA ,o,\^j,0  - a\scrA ,o,\^j,1 \leq negl(\lambda ).

The proof of this claim follows via the smudging lemma (Lemma 2.1).

Claim 8.41. Assuming the \sansL \sansW \sansE n,q,\sigma \sansl \sansw \sanse 
assumption holds, for any PPT adversary

\scrA making q\sansk \sanse \sansy \sanss (\cdot ) key queries there exists a negligible function negl(\cdot ) such that for all

\lambda \in \BbbN , q\sansk \sanse \sansy \sanss = q\sansk \sanse \sansy \sanss (\lambda ) and all indices o \in [q\sansk \sanse \sansy \sanss ] and \^j \in [\lambda ], a\scrA ,o,\^j - 1,1  - a\scrA ,o,\^j,0 \leq 
negl(\lambda ).

Proof. The proof of this claim follows from the LWE assumption, where the re-

duction algorithm sets the LWE public vectors to be columns of C
(\^j,\sanst \sansa \sansg \^j)

i\ast ,0 ,C
(\^j,\sanst \sansa \sansg \^j)

i\ast ,1 ,

and the LWE challenge is used to set t
(\^j,\sanst \sansa \sansg \^j)

i\ast . Note that the vector s
(\^j,\sanst \sansa \sansg \^j)

i\ast  - 1 is used only

for defining t
(\^j,\sanst \sansa \sansg \^j)

i\ast . This is because this vector is chosen afresh for each key query,

and in hybrids Ho,\^j - 1,1/Ho,\^j,0, the key component t
(\^j,\sanst \sansa \sansg \^j)

i\ast  - 1 is already random.30

Recall that \sansG \sansa \sansm \sanse 8 is identical to \sansG \sansa \sansm \sanse 7.(\ell + 1).

Lemma 8.42. Assuming \sansL \sansT \sanse \sansn satisfies the (q, \chi \sansa \sansp \sansp \sansr , \sigma \sansp \sansr \sanse )-target switching property
and (q, \sigma \sansp \sansr \sanse )-well-sampledness of preimage, for any PPT adversary \scrA there exists a
negligible function negl(\cdot ) such that for all \lambda \in \BbbN and i\ast \in [\ell ], \sansA \sansd \sansv \scrA ,8.(i\ast  - 1)(\lambda )  - 
\sansA \sansd \sansv \scrA ,8.i\ast (\lambda ) \leq negl(\lambda ).

Proof. First, let us discuss the differences between \sansG \sansa \sansm \sanse 8.(i\ast  - 1) and \sansG \sansa \sansm \sanse 8.i\ast .
In \sansG \sansa \sansm \sanse 8.(i\ast  - 1), the challenge ciphertext components \{ U\ast 

i,b\} i\geq i\ast ,b\in \{ 0,1\} and query
ciphertext components \{ Ui,b\} i\geq i\ast ,b\in \{ 0,1\} are computed using \sansM \sansi \sansx \sanse \sansd -\sansS \sansu \sansb \sansE \sansn \sansc , while
the remaining are chosen from Gaussian with parameter \chi \sansp \sansr \sanse . \sansG \sansa \sansm \sanse 8.i\ast is similar to
\sansG \sansa \sansm \sanse 8.(i\ast  - 1), except for the challenge ciphertext components U\ast 

i\ast ,0,U
\ast 
1,1 and the

query ciphertext components U1,0,U1,1 are chosen from the Gaussian distribution
with parameter \sigma \sansp \sansr \sanse . To show that these games are indistinguishable, we will define
a hybrid experiment H.

30If \bft 
(\^j,\sanst \sansa \sansg \^j)

i\ast  - 1 was not already switched to random, then \bfs 
(\^j,\sanst \sansa \sansg \^j)

i\ast  - 1 would have been used to define it.
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Hybrid \bfitH . This hybrid is similar to \sansG \sansa \sansm \sanse 8.(i\ast  - 1), except that the challenger
computes \{ U\ast 

i\ast ,b,Ui\ast ,b\} b\in \{ 0,1\} such that they mapMi\ast to uniformly random matrices.
Let \sansA \sansd \sansv \scrA ,H denote the advantage of adversary \scrA in hybrid H.

Claim 8.43. Assuming \sansL \sansT \sanse \sansn satisfies the (q, \chi \sansa \sansp \sansp \sansr , \sigma \sansp \sansr \sanse )-target switching property,
for any PPT adversary \scrA , there exists a negligible function negl(\cdot ) such that for all
\lambda \in \BbbN and i\ast \in [\ell ], \sansA \sansd \sansv \scrA ,8.(i\ast  - 1)(\lambda ) - \sansA \sansd \sansv \scrA ,H(\lambda ) \leq negl(\lambda ).

Proof. The proof of this claim is similar to the proof of Lemma 8.17. First,
let us discuss the reasons why the target switching property is applicable here. Let
S(i\ast ) be defined as in \sansG \sansa \sansm \sanse 8.(i\ast  - 1)/\sansG \sansa \sansm \sanse 8.i\ast , with \sansB \sansP \ast = \{ \pi \ast 

i,b\} (i,b)\in [\ell ]\times \{ 0,1\} and
\sansB \sansP = \{ \pi i,b\} (i,b)\in [\ell ]\times \{ 0,1\} the challenge/query programs.

1. In both \sansG \sansa \sansm \sanse 8.(i\ast  - 1) and hybridH, the components
\bigl\{ 
U\ast 

i,b,Ui,b

\bigr\} 
are chosen

from a Gaussian distribution, and therefore these terms do not contain any

information about the \{ Pi\ast ,v\} v\in [w] or \{ B
(j,\beta )
i\ast ,b \} (j,\beta ,b)\in S(i\ast ) matrices.

2. The components
\bigl\{ 
U\ast 

i,b,Ui,b

\bigr\} 
i>i\ast ,b\in \{ 0,1\} do not contain any information about

the \{ Pi\ast ,v\} v\in [w] or \{ B
(j,\beta )
i\ast ,b \} (j,\beta ,b)\in S(i\ast ) matrices (this follows from the con-

struction).
3. The keys are all either random vectors or computed in terms of the chal-

lenge/query ciphertext components, and therefore do not explicitly require

\{ Pi\ast ,v\} v\in [w] or \{ B
(j,\beta )
i\ast ,b \} (j,\beta ,b)\in S(i\ast ) matrices.

Consider matrices \{ Z\ast 
0,b,Z

\ast 
1,b,Z0,b,Z1,b\} b\in \{ 0,1\} defined as follows:

Z\ast 
0,b =

\left[   
\Bigl\{ 
C

(j,\beta )
i\ast ,b

\Bigr\} 
(j,\beta ,b)\in S(i\ast )\Bigl\{ 

Pi\ast ,\pi \ast 
i\ast ,b

(v)

\Bigr\} 
v\in [w]

\right]   Z\ast 
1,b =

\bigl[ 
\leftarrow \BbbZ \widetilde ni\times m

q

\bigr] 
,

Z0,b =

\left[   
\Bigl\{ 
C

(j,\beta )
i\ast ,b

\Bigr\} 
(j,\beta ,b)\in S(i\ast )\Bigl\{ 

Pi\ast ,\pi i\ast ,b(v)

\Bigr\} 
v\in [w]

\right]   Z1,b =
\bigl[ 
\leftarrow \BbbZ \widetilde ni\times m

q

\bigr] 
.

The reduction algorithm sends
\bigl( 
1\widetilde ni , 1m, \emptyset 

\bigr) 
to the target switching property chal-

lenger.31 It does not receive any matrix from the challenger (since the challenge set is
empty). Next, it chooses (Mi, Ti) \leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q) for all i > i\ast , and parses

Mi as in \sansG \sansa \sansm \sanse 8.(i\ast  - 1)/\sansG \sansa \sansm \sanse 8.i\ast to obtain \{ B(j,\beta )
i,b \} (j,\beta ,b)\in S(i) and \{ Pi,v\} v\in [w] for all

i > i\ast . It receives \sansB \sansP \ast as the challenge query from the adversary. The reduction algo-
rithm sends Z\ast 

0,b,Z
\ast 
1,b to the target switching property challenger and receives Ui\ast ,b

in response. It chooses the remaining components as in \sansG \sansa \sansm \sanse 8.(i\ast  - 1)/\sansG \sansa \sansm \sanse 8.i\ast 

and sends the challenge ciphertext to the adversary.
Next, it receives the ciphertext query \sansB \sansP . It sends Z0,b,Z1,b to the target switch-

ing property challenger and receives Ui\ast ,b. The remaining ciphertext components
are chosen as in \sansG \sansa \sansm \sanse 8.(i\ast  - 1)/\sansG \sansa \sansm \sanse 8.i\ast , and the reduction algorithm sends the
challenge ciphertext to the adversary. Finally, the adversary makes key queries.

For each key query, the reduction algorithm sets \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} as in
\sansG \sansa \sansm \sanse 8.(i\ast  - 1)/\sansG \sansa \sansm \sanse 8.i\ast and sends them to the adversary. The adversary sends its
guess, which the reduction algorithm forwards to the challenger.

31Note that the set specified by the adversary in the target switching property game can be empty.
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Therefore, if there exist a PPT adversary \scrA and a nonnegligible function \eta such
that \sansA \sansd \sansv \scrA ,8.(i\ast  - 1)(\lambda ) - \sansA \sansd \sansv \scrA ,H(\lambda ) \geq \eta (\lambda ) for all \lambda , then there exists a PPT algorithm
\scrB that breaks the target switching property.

Claim 8.44. Assuming \sansL \sansT \sanse \sansn satisfies the (q, \sigma \sansp \sansr \sanse )-well-sampledness of the pre-
image, for any PPT adversary \scrA there exists a negligible function negl(\cdot ) such that
for all \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,H(\lambda ) - \sansA \sansd \sansv \scrA ,8.i\ast (\lambda ) \leq negl(\lambda ).

Proof. This proof follows directly from the (q, \sigma )-well-sampledness of the pre-
image property. Suppose there exist a PPT adversary \scrA and a reduction algorithm
\eta (\cdot ) such that \sansA \sansd \sansv \scrA ,H(\lambda )  - \sansA \sansd \sansv \scrA ,8.i\ast (\lambda ) \geq \eta (\lambda ) for all \lambda \in \BbbN . Then there exists a
reduction algorithm that breaks the (q, \sigma )-well-sampledness of the preimage property.

The reduction algorithm sends 1\widetilde ni , 1m, 14m to the challenger. Note that m >\widetilde ni log q+\lambda and \sigma >
\surd 
n \cdot log q \cdot logm+\lambda , as required. It receives a matrixU \in Zm\times 4m

q ,

which it parses as U =
\bigl[ 
U\ast 

i\ast ,0 | U
\ast 
i\ast ,1 | Ui\ast ,0 | Ui\ast ,1

\bigr] 
. The reduction algorithm also

chooses (Mi, Ti)\leftarrow \sansE \sansn \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1\widetilde ni , 1m, q) for all i \not = i\ast .
On receiving the challenge ciphertext, it chooses the remaining ciphertext com-

ponents as in \sansG \sansa \sansm \sanse 8.(i\ast  - 1)/\sansG \sansa \sansm \sanse 8.i\ast and sends them to the adversary. Similarly,
it handles the ciphertext query. Finally, for the key queries, the reduction algorithm
handles them as in \sansG \sansa \sansm \sanse 8.(i\ast  - 1)/\sansG \sansa \sansm \sanse 8.i\ast .

Using these two claims, it follows that \sansA \sansd \sansv \scrA ,8.(i\ast  - 1)(\lambda ) - \sansA \sansd \sansv \scrA ,8.i\ast (\lambda ) is bounded
by a negligible function.

Lemma 8.45. For any PPT adversary \scrA there exists a negligible function negl(\cdot )
such that for all \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,8.\ell (\lambda ) - \sansA \sansd \sansv \scrA ,9(\lambda ) \leq negl(\lambda ).

Proof. The only difference between these two hybrids is with respect to the

key components \{ t(j,\beta )\ell \} 
j\in \widehat \sansd \sansi ff,\beta \in \{ 0,1\} . In \sansG \sansa \sansm \sanse 8.\ell , these vectors are computed as\sum \ell 

\alpha =1

\bigl( \widetilde t(j,\beta )\alpha \cdot 
\prod \ell 

\delta =\alpha U
(\beta )
\delta ,\widetilde x\delta 

\bigr) 
+y(j) \cdot 

\prod \ell 
\delta =1 U

(\beta )
\delta ,\widetilde x\delta 

+ e
(j,\beta )
\ell +1 , while in \sansG \sansa \sansm \sanse 9, this vector is

set to be
\sum \ell 

\alpha =1

\bigl( \widetilde t(j,\beta )\alpha \cdot 
\prod \ell 

\delta =\alpha U
(\beta )
\delta ,\widetilde x\delta 

\bigr) 
+ y(j) \cdot 

\prod \ell 
\delta =1 U

(\beta )
\delta ,\widetilde x\delta 

+ \widetilde e(j,\beta )\ell +1 \cdot 
\prod \ell 

\delta =2 U
(\beta )
\delta ,\widetilde x\delta 

+ e
(j,\beta )
\ell +1 ,

where \widetilde e(j,\beta )\ell +1 \leftarrow \chi m
\sansl \sansw \sanse . Note that the Ui,b matrices are all drawn from the Gaussian

distribution with parameter \sigma \sansp \sansr \sanse , and therefore, with all but negligible probability,\bigm\| \bigm\| \widetilde e(j,\beta )\ell +1 \cdot 
\prod \ell 

\delta =2 U
(\beta )
\delta ,\widetilde x\delta 

\bigm\| \bigm\| \leq m\sigma \sansl \sansw \sanse \cdot (m\sigma \sansp \sansr \sanse )
\ell  - 1. Since \sigma \sansl \sansa \sanss \sanst /m\sigma \sansl \sansw \sanse \cdot (m\sigma \sansp \sansr \sanse )

\ell  - 1 \geq 2\lambda , we
can use the smudging lemma to argue that the statistical distance between these two
games is at most m \cdot q\sansk \sanse \sansy \sanss \cdot negl\sanss \sansm \sansu \sansd (\lambda ).

Lemma 8.46. Assuming the \sansL \sansW \sansE -\sanss \sansp d,q,\sigma \sansp \sansr \sanse ,\chi \sansl \sansw \sanse 
assumption (Assumption 3) holds

(where d(\lambda ) = 6n \cdot log q), for any PPT adversary \scrA , there exists a negligible function
negl(\cdot ) such that for all \lambda \in \BbbN , \sansA \sansd \sansv \scrA ,9(\lambda ) - \sansA \sansd \sansv \scrA ,10(\lambda ) \leq negl(\lambda ).

Proof. The only difference between \sansG \sansa \sansm \sanse 9 and \sansG \sansa \sansm \sanse 10 is with respect to the

key components \{ t(j,\beta )\ell +1 \} j\in \widehat \sansd \sansi ff,\beta \in \{ 0,1\} . In \sansG \sansa \sansm \sanse 9, for each key, these are computed

as t
(j,\beta )
\ell +1 =

\sum \ell 
\alpha =1

\bigl( \widetilde t(j,\beta )\alpha \cdot 
\prod \ell 

\delta =\alpha U
(\beta )
\delta ,\widetilde x\delta 

\bigr) 
+
\bigl( 
y(j) \cdot U(\beta )

1,\widetilde x1
+ \widetilde e(j,\beta )\ell +1

\bigr) \prod \ell 
\delta =2 U

(\beta )
\delta ,\widetilde x\delta 

+ e
(j,\beta )
\ell +1 ,

while in \sansG \sansa \sansm \sanse 10, these vectors are uniformly random. To prove this claim, it suffices

to switch
\bigl( 
y(j) \cdot U(\beta )

1,\widetilde x1
+ \widetilde e(j,\beta )\ell +1

\bigr) 
to a uniformly random vector. Since y(j) \leftarrow \BbbZ m

q ,

U
(\beta )
1,\widetilde x1
\leftarrow \scrD m\times m

\BbbZ ,\sigma \sansp \sansr \sanse 
, and \widetilde e(j,\beta )\ell +1 \leftarrow \chi m

\sansl \sansw \sanse , we can use the \sansL \sansW \sansE -\sanss \sansp assumption as in the proof
of Theorem 7.19.

8.4.5. Proving 1-bounded restricted accept indistinguishability. First,
note that by using the lemmas provided in section 8.4.4, we can conclude that our
construction satisfies 1-bounded complete accept indistinguishability security. Con-
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cretely, algorithms \sansS \sansK -\sansE \sansn \sansc \ast and \sansK \sanse \sansy \sansG \sanse \sansn \ast , which take as input the public parameters,
are defined as follows: \sansS \sansK -\sansE \sansn \sansc \ast is the same as the standard encryption algorithm \sansE \sansn \sansc 
(that is, it outputs random Gaussian matrices), and \sansK \sanse \sansy \sansG \sanse \sansn \ast on input x outputs the

secret key as
\bigl( 
x, \{ t(j,\beta )i \} (i,j,\beta )\in [\ell +1]\times [\lambda ]\times \{ 0,1\} 

\bigr) 
, where all t

(j,\beta )
i are sampled uniformly

at random from \BbbZ m
q . Since in \sansG \sansa \sansm \sanse 10 the challenger is already using \sansS \sansK -\sansE \sansn \sansc \ast and

\sansK \sanse \sansy \sansG \sanse \sansn \ast to answer corresponding queries, therefore, using lemmas in section 8.4.4,
we can argue 1-bounded complete accept indistinguishability security.

Lastly, to finish the proof we only need to argue that the probability adversary
outputs 1 in the 1-bounded restricted accept indistinguishability security game---
when the challenger computes challenge ciphertext as a normal functional encryption
ciphertext instead of encrypting \sansB \sansP \ast ---is negligibly close to the probability adversary
outputs 1 in \sansG \sansa \sansm \sanse 10. Note that this again follows from the lemmas in section 8.4.4,
or, in other words, it follows from the fact that our construction satisfies 1-bounded
complete accept indistinguishability security. This is because if an adversary can
distinguish \sansG \sansa \sansm \sanse 10 from the scenario described above, then we could come up with
a reduction algorithm that breaks the 1-bounded complete accept indistinguishability
security of our construction.

The idea is straightforward. The reduction algorithm will simply forward mes-
sages (back and forth) between the attacker and the complete accept indistinguisha-
bility challenger, except with the following changes:

\bullet The reduction algorithm does not forward the adversary's challenge program
\sansB \sansP \ast as its challenge query to the challenger of the complete accept indistin-
guishability game. Instead it runs the normal encryption algorithm \sansE \sansn \sansc and
sends the output back to the adversary as its challenge ciphertext.

\bullet In addition, the reduction algorithm sends the adversary's post-challenge en-
cryption query (if any) to the challenger as its challenge query and forwards
the challenger's response to the adversary.

\bullet Also, the reduction algorithm does not make any post-challenge encryption
query. (Note that key queries are answered as before.)

\bullet Finally, it outputs whatever the adversary outputs.
Clearly the reduction algorithm perfectly simulates the indistinguishability experi-
ment (between \sansG \sansa \sansm \sanse 10 and the scenario described above); thus if the adversary's ad-
vantage is nonnegligible, then the reduction algorithm also breaks 1-bounded complete
accept indistinguishability security with nonnegligible probability. This completes the
proof.

Appendix A. Background: Attribute-based encryption.

A.1. Key-policy attribute-based encryption. A key-policy attribute-based
encryption (KP-ABE) scheme \scrA \scrB \scrE , for a set of attribute spaces \scrX = \{ \scrX \kappa \} \kappa , predi-
cate classes \scrC = \{ \scrC \kappa \} \kappa , and message spaces \scrM = \{ \scrM \kappa \} \kappa , consists of four polytime
algorithms (\sansS \sanse \sanst \sansu \sansp ,\sansE \sansn \sansc ,\sansK \sanse \sansy \sansG \sanse \sansn ,\sansD \sanse \sansc ) with the following syntax:

\bullet \sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa ) \rightarrow (\sansp \sansp ,\sansm \sanss \sansk ). The setup algorithm takes as input the security
parameter \lambda and a functionality index \kappa . It outputs the public parameters
\sansp \sansp and the master secret key \sansm \sanss \sansk .

\bullet \sansE \sansn \sansc (\sansp \sansp , x,m)\rightarrow \sansc \sanst . The encryption algorithm takes as input public parame-
ters \sansp \sansp , an attribute x \in \scrX \kappa , and a message m \in \scrM \kappa . It outputs a ciphertext
\sansc \sanst .

\bullet \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk , C)\rightarrow \sanss \sansk C . The key generation algorithm takes as input master
secret key \sansm \sanss \sansk and a predicate C \in \scrC \kappa . It outputs a secret key \sanss \sansk C .

\bullet \sansD \sanse \sansc (\sanss \sansk C , \sansc \sanst )\rightarrow m or \bot . The decryption algorithm takes as input a secret key
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\sanss \sansk C and a ciphertext \sansc \sanst . It outputs either a message m \in \scrM \kappa or a special
symbol \bot .

Correctness. A KP-ABE scheme is said to be correct if there exist negligible
functions negl1(\cdot ),negl2(\cdot ) such that for all \lambda , \kappa \in \BbbN , for all x \in \scrX \kappa , C \in \scrC \kappa , m \in \scrM \kappa ,
the following holds:

C(x) = 1\Rightarrow Pr

\left[  \sansD \sanse \sansc (\sanss \sansk C , \sansc \sanst ) = m :
(\sansp \sansp ,\sansm \sanss \sansk )\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa );
\sanss \sansk C \leftarrow \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk , C);

\sansc \sanst \leftarrow \sansE \sansn \sansc (\sansp \sansp , x,m)

\right]  \geq 1 - negl1(\lambda ),

C(x) = 0\Rightarrow Pr

\left[  \sansD \sanse \sansc (\sanss \sansk C , \sansc \sanst ) = \bot (\sansp \sansp ,\sansm \sanss \sansk )\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa );
\sanss \sansk C \leftarrow \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk , C);

\sansc \sanst \leftarrow \sansE \sansn \sansc (\sansp \sansp , x,m)

\right]  \geq 1 - negl2(\lambda ).

Security. The standard notion of security for a KP-ABE scheme is that of full
or adaptive security. It is formally defined as follows.

Definition A.1. A KP-ABE scheme \scrA \scrB \scrE = (\sansS \sanse \sanst \sansu \sansp , \sansE \sansn \sansc , \sansK \sanse \sansy \sansG \sanse \sansn , \sansD \sanse \sansc ) is said
to be fully secure if for every stateful PPT adversary \scrA there exists a negligible function
negl(\cdot ), such that for every \lambda \in \BbbN the following holds:

Pr

\left[  \scrA \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk ,\cdot )(\sansc \sanst ) = b :
1\kappa \leftarrow \scrA (1\lambda ); (\sansp \sansp ,\sansm \sanss \sansk )\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa );

((m0,m1), x)\leftarrow \scrA \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk ,\cdot )(\sansp \sansp );
b\leftarrow \{ 0, 1\} ; \sansc \sanst \leftarrow \sansE \sansn \sansc (\sansp \sansp , x,mb)

\right]  
\leq 1

2
+ negl(\lambda ),

where every predicate query C, made by adversary \scrA to the \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk , \cdot ) oracle,
must satisfy the condition that C(x) = 0.

In this work, we only require the scheme to achieve selective security, which is
formally defined as follows.

Definition A.2. A KP-ABE scheme \scrA \scrB \scrE = (\sansS \sanse \sanst \sansu \sansp , \sansE \sansn \sansc , \sansK \sanse \sansy \sansG \sanse \sansn , \sansD \sanse \sansc ) is said
to be selectively secure if for every stateful PPT adversary \scrA , there exists a negligible
function negl(\cdot ), such that for every \lambda \in \BbbN the following holds:

Pr

\left[  \scrA \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk ,\cdot )(\sansc \sanst ) = b :
(1\kappa , x)\leftarrow \scrA (1\lambda ); (\sansp \sansp ,\sansm \sanss \sansk )\leftarrow \sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa );

(m0,m1)\leftarrow \scrA \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk ,\cdot )(\sansp \sansp );
b\leftarrow \{ 0, 1\} ; \sansc \sanst \leftarrow \sansE \sansn \sansc (\sansp \sansp , x,mb)

\right]  
\leq 1

2
+ negl(\lambda ),

where every predicate query C, made by adversary \scrA to the \sansK \sanse \sansy \sansG \sanse \sansn (\sansm \sanss \sansk , \cdot ) oracle,
must satisfy the condition that C(x) = 0.

Appendix B. ABE and Mixed FE to PLBE: Preserving perfect cor-
rectness. In this section, we give an alternate construction for constructing PLBE
such that if the underlying ABE scheme achieves perfect correctness, then so does the
PLBE scheme, even if the Mixed FE scheme is not perfectly correct. Since existing
ABE schemes [GVW13, BGG+14] can be made perfectly correct by appropriately
truncating noise distributions used, this gives a pathway to get perfect correctness
under LWE. Note that the construction described in section 6.1 only achieves perfect
correctness when both underlying ABE and Mixed FE schemes are perfectly correct.
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This is because the policy circuit is the Mixed FE decryption circuit, and thus in
order to guarantee perfect correctness, we need the minimum requirement that the
Mixed FE normal ciphertexts always decrypt to 1. Below we give the main idea to
obtain perfect correctness.

Outline. At a very high level, the idea is to encrypt the message m under two
independent ABE systems such that at least one of the ciphertext components can
always be decrypted to obtain the underlying message. To this end, during setup we
sample two ABE key pairs (\sansa \sansb \sanse .\sansp \sansp b, \sansa \sansb \sanse .\sansm \sanss \sansk b) (for b \in \{ 0, 1\} ) and a Mixed FE key
pair (\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ,\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk ). To generate the secret key for the ith user, we generate
a Mixed FE secret key \sansM \sansi \sansx \sanse \sansd .\sanss \sansk i for message i, and later compute two ABE keys
\sansa \sansb \sanse .\sanss \sansk i,0, \sansa \sansb \sanse .\sanss \sansk i,1 for predicates \sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc (\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i, \cdot ) and \sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc (\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i, \cdot )
using \sansa \sansb \sanse .\sansm \sanss \sansk 0, \sansa \sansb \sanse .\sansm \sanss \sansk 1, respectively. Here \sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc (\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i, \cdot ) denotes the cir-
cuit that first decrypts the input using key \sansM \sansi \sansx \sanse \sansd .\sanss \sansk i and later applies a ``not"" gate
(i.e., outputs the complement). Now the PLBE ciphertexts will consist of two parts,
one for each ABE subsystem. For PLBE normal encryption, one computes two cipher-
texts \sansc \sanst b (for b \in \{ 0, 1\} ) as encryptions of message m under attributes \sansc \sanst \sansa \sanst \sanst \sansr using
parameters \sansa \sansb \sanse .\sansp \sansp b, where \sansc \sanst \sansa \sanst \sanst \sansr is computed as before. Now for encrypting a message
to index i, the encryption algorithm behaves differently in that it computes \sansc \sanst 0 as
before, but \sansc \sanst 1 will now be an encryption of message 0 under the same attributes.
The reason for not encrypting the message m in the second component of the index
ciphertext becomes clear while proving security.

Now for arguing perfect correctness, we observe that it should be the case that
\sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc (\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i, \sansc \sanst \sansa \sanst \sanst \sansr ) equals either 0 or 1. Thus, at least one of the PLBE
normal ciphertext components could be correctly decrypted. Note that for such an
argument we only require that ABE be perfectly correct. Next, the security proof is
similar to that in section 6.3, except that when arguing normal hiding security of our
construction we need to rely on both the ABE security as well as the weak accept
indistinguishability property of the Mixed FE scheme. The main idea is that by
correctness of the functional encryption scheme, we can say that with all but negligible
probability the attribute used in the second component of the challenge ciphertext is
not satisfied by any of the ABE keys queried. Thus, as our first hybrid argument, we
could use ABE security to switch the second challenge ciphertext component to an
encryption of 0 instead of message m. The remaining proof is identical to as before,
with the only modification being that the reduction algorithm needs to generate the
ABE keys for the second component on its own during the entire reduction. Below
we describe our construction \sansP \sansL \sansB \sansE = (\sansS \sanse \sanst \sansu \sansp ,\sansE \sansn \sansc ,\sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx ,\sansD \sanse \sansc ) for messages spaces
\{ \scrM \kappa \} \kappa in detail.

B.1. Construction. Let \scrA \scrB \scrE = (\sansA \sansB \sansE .\sansS \sanse \sanst \sansu \sansp ,\sansA \sansB \sansE .\sansE \sansn \sansc ,\sansA \sansB \sansE .\sansK \sanse \sansy \sansG \sanse \sansn ,\sansA \sansB \sansE .\sansD \sanse \sansc )
be a KP-ABE scheme for a set of attribute spaces \{ \scrX \kappa \} \kappa , predicate classes \{ \scrC \kappa \} \kappa , and
message spaces \{ \scrM \kappa \} \kappa , and let \sansM \sansi \sansx \sanse \sansd -\sansF \sansE = (\sansM \sansi \sansx \sanse \sansd .\sansS \sanse \sanst \sansu \sansp , \sansM \sansi \sansx \sanse \sansd .\sansE \sansn \sansc ,\sansM \sansi \sansx \sanse \sansd .\sansS \sansK -\sansE \sansn \sansc ,
\sansM \sansi \sansx \sanse \sansd .\sansK \sanse \sansy \sansG \sanse \sansn ,\sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc ) be a Mixed FE scheme, for function classes \{ \scrF \kappa \} \kappa and
message space \{ \scrI \kappa \} \kappa , with ciphertexts of length \ell (\lambda , \kappa ). For every n, let \kappa = \kappa (n)
be the lexicographically smallest functionality index such that every string of length
log(n) can be uniquely represented in message space \scrI \kappa (i.e., \{ 0, 1\} log(n) \subseteq \scrI \kappa ), and
function class \scrF \kappa contains the ``comparison"" (>) operator. Also, let \widetilde \kappa = \widetilde \kappa (\lambda , \kappa ) be the
lexicographically smallest functionality index such that every string of length \ell (\lambda , \kappa )
can be uniquely represented in attribute class \scrX \widetilde \kappa (i.e., \{ 0, 1\} \ell (\lambda ,\kappa ) \subseteq \scrX \widetilde \kappa ), and \scrC \widetilde \kappa 
contains a Mixed FE decryption circuit (as well its complement circuit) corresponding
to functionality index \kappa . Below we describe our construction.
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\bullet \sansS \sanse \sanst \sansu \sansp (1\lambda , 1n) \rightarrow 
\bigl( 
\sansp \sansp ,\sansm \sanss \sansk , \{ \sanss \sansk i\} i\leq n

\bigr) 
. The setup algorithm runs \sansA \sansB \sansE .\sansS \sanse \sanst \sansu \sansp 

and \sansM \sansi \sansx \sanse \sansd .\sansS \sanse \sanst \sansu \sansp to generate ABE and Mixed FE public parameters and
master secret key as (\sansa \sansb \sanse .\sansp \sansp , \sansa \sansb \sanse .\sansm \sanss \sansk ) \leftarrow \sansA \sansB \sansE .\sansS \sanse \sanst \sansu \sansp (1\lambda , 1\widetilde \kappa ) and (\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ,
\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk ) \leftarrow \sansM \sansi \sansx \sanse \sansd .\sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa ). Next, it runs \sansM \sansi \sansx \sanse \sansd .\sansK \sanse \sansy \sansG \sanse \sansn to generate
n mixed FE secret keys \sansM \sansi \sansx \sanse \sansd .\sanss \sansk i as

\forall i \leq n, \sansM \sansi \sansx \sanse \sansd .\sanss \sansk i \leftarrow \sansM \sansi \sansx \sanse \sansd .\sansK \sanse \sansy \sansG \sanse \sansn (\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk , i).

Let C0
\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i

denote the circuit \sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc (\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i, \cdot ), and let C1
\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i

de-

note the circuit \sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc (\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i, \cdot ); i.e., C1
\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i

is the \sansM \sansi \sansx \sanse \sansd -\sansF \sansE de-
cryption circuit with key \sansM \sansi \sansx \sanse \sansd .\sanss \sansk i hardwired and a ``not"" gate applied on
the output of decryption. Next, it computes 2n ABE secret keys \sansa \sansb \sanse .\sanss \sansk i,b as

\forall i \leq n, b \in \{ 0, 1\} , \sansa \sansb \sanse .\sanss \sansk i,b \leftarrow \sansA \sansB \sansE .\sansK \sanse \sansy \sansG \sanse \sansn (\sansa \sansb \sanse .\sansm \sanss \sansk b, C
b
\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i).

Finally, it sets \sansp \sansp = (\sansa \sansb \sanse .\sansp \sansp 0, \sansa \sansb \sanse .\sansp \sansp 1,\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ), \sansm \sanss \sansk = (\sansa \sansb \sanse .\sansm \sanss \sansk 0, \sansa \sansb \sanse .\sansm \sanss \sansk 1,
\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk ), and \sanss \sansk i = (\sansa \sansb \sanse .\sanss \sansk i,0, \sansa \sansb \sanse .\sanss \sansk i,1) for i \leq n.

\bullet \sansE \sansn \sansc (\sansp \sansp ,m) \rightarrow \sansc \sanst . Let \sansp \sansp = (\sansa \sansb \sanse .\sansp \sansp 0, \sansa \sansb \sanse .\sansp \sansp 1,\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ). The encryption
algorithm first computes \sansc \sanst \sansa \sanst \sanst \sansr \leftarrow \sansM \sansi \sansx \sanse \sansd .\sansE \sansn \sansc (\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ). Next, it encrypts
message m as \sansc \sanst b \leftarrow \sansA \sansB \sansE .\sansE \sansn \sansc (\sansa \sansb \sanse .\sansp \sansp b, \sansc \sanst \sansa \sanst \sanst \sansr ,m) for b \in \{ 0, 1\} and outputs
ciphertext \sansc \sanst = (\sansc \sanst 0, \sansc \sanst 1).

\bullet \sansE \sansn \sansc -\sansi \sansn \sansd \sanse \sansx (\sansm \sanss \sansk ,m, i) \rightarrow \sansc \sanst . Let \sansm \sanss \sansk = (\sansa \sansb \sanse .\sansm \sanss \sansk 0, \sansa \sansb \sanse .\sansm \sanss \sansk 1,\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk ) and

\sansc \sanso \sansm \sansp i denote the comparison function
?
> i, i.e., \sansc \sanso \sansm \sansp i(x) = 1 iff x > i.

The encryption algorithm first computes \sansc \sanst \sansa \sanst \sanst \sansr \leftarrow \sansM \sansi \sansx \sanse \sansd .\sansS \sansK -\sansE \sansn \sansc (\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk ,
\sansc \sanso \sansm \sansp i). Next, it encrypts message m as \sansc \sanst 0 \leftarrow \sansA \sansB \sansE .\sansE \sansn \sansc (\sansa \sansb \sanse .\sansp \sansp 0, \sansc \sanst \sansa \sanst \sanst \sansr ,m)
and \sansc \sanst 1 \leftarrow \sansA \sansB \sansE .\sansE \sansn \sansc (\sansa \sansb \sanse .\sansp \sansp 1, \sansc \sanst \sansa \sanst \sanst \sansr , 0) and outputs ciphertext \sansc \sanst = (\sansc \sanst 0, \sansc \sanst 1).

\bullet \sansD \sanse \sansc (\sanss \sansk , \sansc \sanst ) \rightarrow m or \bot . Let \sanss \sansk = (\sanss \sansk 0, \sanss \sansk 1) and \sansc \sanst = (\sansc \sanst 0, \sansc \sanst 1). The de-
cryption algorithm runs \sansA \sansB \sansE .\sansD \sanse \sansc on ciphertexts \sansc \sanst b using key \sanss \sansk b as yb =
\sansA \sansB \sansE .\sansD \sanse \sansc (\sanss \sansk b, \sansc \sanst b) for b \in \{ 0, 1\} . If y0 \not = \bot , it outputs y0. Otherwise, it sets
y1 as the output of decryption.

B.2. Correctness. For all \lambda , n \in \BbbN , message m \in \scrM \lambda , public parameters
and master secret keys (\sansa \sansb \sanse .\sansp \sansp b, \sansa \sansb \sanse .\sansm \sanss \sansk b) \leftarrow \sansA \sansB \sansE .\sansS \sanse \sanst \sansu \sansp (1\lambda , 1\widetilde \kappa ) (for b \in \{ 0, 1\} ),
(\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ,\sansM \sansi \sansx \sanse \sansd .\sansm \sanss \sansk )\leftarrow \sansM \sansi \sansx \sanse \sansd .\sansS \sanse \sanst \sansu \sansp (1\lambda , 1\kappa ), the secret keys \sanss \sansk i,b for i \leq n, b \in \{ 0, 1\} 
are simply the ABE keys \sansa \sansb \sanse .\sanss \sansk i,b \leftarrow \sansA \sansB \sansE .\sansK \sanse \sansy \sansG \sanse \sansn (\sansa \sansb \sanse .\sansm \sanss \sansk b, C

b
\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i

). For any index
i \leq n, consider the following two cases:

1. Normal encryption. For any ciphertext \sansc \sanst = (\sansc \sanst 0, \sansc \sanst 1) computed as \sansc \sanst b \leftarrow 
\sansA \sansB \sansE .\sansE \sansn \sansc (\sansa \sansb \sanse .\sansp \sansp b, \sansc \sanst \sansa \sanst \sanst \sansr ,m) for b \in \{ 0, 1\} , where \sansc \sanst \sansa \sanst \sanst \sansr \leftarrow \sansM \sansi \sansx \sanse \sansd .\sansE \sansn \sansc (\sansM \sansi \sansx \sanse \sansd .\sansp \sansp ),
we know that either \sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc (\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i, \sansc \sanst \sansa \sanst \sanst \sansr ) = 1 or \sansM \sansi \sansx \sanse \sansd .\sansD \sanse \sansc (\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i,
\sansc \sanst \sansa \sanst \sanst \sansr ) = 0. In other words, Cb

\sansM \sansi \sansx \sanse \sansd .\sanss \sansk i
(\sansc \sanst \sansa \sanst \sanst \sansr ) = 1 for some bit b \in \{ 0, 1\} .

Therefore, by perfect correctness of ABE scheme, we have that for some bit
b \in \{ 0, 1\} , \sansA \sansB \sansE .\sansD \sanse \sansc (\sansa \sansb \sanse .\sanss \sansk i,b, \sansc \sanst b) = m. Therefore, the PLBE decryption
algorithm always decrypts the normal ciphertexts correctly.

2. Index encryption. This is identical to the argument provided in section 6.2.
Note that perfect correctness for PLBE only requires perfect decryption in the
case of normal encryption. Thus, it is sufficient to prove statistical correctness
in the case of index encryption.

Therefore, the \sansP \sansL \sansB \sansE scheme is perfectly correct.

B.3. Security. The proof of security is almost identical to that provided in
section 6.3, except that to argue normal hiding security of our construction, we first
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need to use ABE security of the auxiliary subsystem (for b = 1) and the statistical
correctness property of the underlying Mixed FE scheme simultaneously to switch the
encryption of challenge message m\ast to 0. The rest of the proof is identical.

Appendix C. Hybrids.

C.1. Detailed hybrid experiments for Theorem 7.4.

Hybrid \bfitH \bfzero . This corresponds to the original game (per Definition 7.1, with the
single row removal restriction) with b = 0.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (B1, T\bfB 1

) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n - 1, 1\lceil m/2\rceil , q), (B2,
T\bfB 2

) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n - 1, 1\lfloor m/2\rfloor , q). It sets B = [B1 | B2].
(b) It also chooses a vector p \leftarrow \BbbZ m

q and sets matrix A \in \BbbZ n\times m
q as A =

\sansA \sansr \sansr \sansa \sansn \sansg \sanse (B,p, [n] \setminus \{ i\} ).
(c) Finally, it sends A to \scrA .

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:

(a) It chooses W\leftarrow \BbbZ (n - 1)\times t
q and samples U1 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (B1, T\bfB 1 , \sigma ,W).

(b) Next, it sets Y = C - B1 \cdot U1 (which is equal to C - W) and computes
U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (B2, T\bfB 2

, \sigma ,Y).
(c) Finally, it sends U =

\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. The adversary outputs a bit b\prime .

Hybrid \bfitH \bfone . In this experiment, the challenger chooses U1 to be a random
Gaussian matrix with parameter \sigma for each query.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (B1, T\bfB 1) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n - 1, 1\lceil m/2\rceil , q), (B2,

T\bfB 2
) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n - 1, 1\lfloor m/2\rfloor , q). It sets B = [B1 | B2].

(b) It also chooses a vector p \leftarrow \BbbZ m
q and sets matrix A \in \BbbZ n\times m

q as A =
\sansA \sansr \sansr \sansa \sansn \sansg \sanse (B,p, [n] \setminus \{ i\} ).

(c) Finally, it sends A to \scrA .
2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:

(a) It samples U1 \leftarrow \scrD \lceil m/2\rceil \times t
\BbbZ ,\sigma .

(b) Next, it sets Y = C - B1 \cdot U1 and computes U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (B2, T\bfB 2 ,
\sigma , Y).

(c) Finally, it sends U =
\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. The adversary outputs a bit b\prime .

Hybrid \bfitH \bftwo . In this hybrid, the challenger chooses B1 uniformly at random,
instead of choosing it using \sansT \sansr \sansa \sansp \sansG \sanse \sansn . At this point, note that the left half of A is a
uniformly random matrix.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:

(a) It first chooses B1 \leftarrow \BbbZ (n - 1)\times \lceil m/2\rceil 
q , (B2, T\bfB 2

)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n - 1, 1\lfloor m/2\rfloor ,
q). It sets B = [B1 | B2].
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(b) It also chooses a vector p \leftarrow \BbbZ m
q and sets matrix A \in \BbbZ n\times m

q as A =
\sansA \sansr \sansr \sansa \sansn \sansg \sanse (B,p, [n] \setminus \{ i\} ).

(c) Finally, it sends A to \scrA .
2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:

(a) It samples U1 \leftarrow \scrD \lceil m/2\rceil \times t
\BbbZ ,\sigma .

(b) Next, it sets Y = C - B1 \cdot U1 and computes U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (B2, T\bfB 2 ,
\sigma , Y).

(c) Finally, it sends U =
\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. The adversary outputs a bit b\prime .

Hybrid \bfitH \bfthree . This hybrid involves syntactic changes. The challenger chooses

A1 \leftarrow \BbbZ n\times \lceil m/2\rceil 
q and derives B1 by removing the ith row of A1.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:

(a) It first chooses A1 \leftarrow \BbbZ n\times \lceil m/2\rceil 
q , (B2, T\bfB 2

) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n - 1, 1\lfloor m/2\rfloor , q).
It sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n] \setminus \{ i\} ) and B = [B1 | B2].

(b) It also chooses a vector p2 \leftarrow \BbbZ \lfloor m/2\rfloor 
q and sets A2 = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (B2,p2,

[n] \setminus \{ i\} ), A = [A1 | A2].
(c) Finally, it sends A to \scrA .

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:

(a) It samples U1 \leftarrow \scrD \lceil m/2\rceil \times t
\BbbZ ,\sigma .

(b) Next, it sets Y = C - B1 \cdot U1 and computes U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (B2, T\bfB 2
,

\sigma , Y).
(c) Finally, it sends U =

\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. The adversary outputs a bit b\prime .

Hybrid \bfitH \bffour . In this hybrid, the challenger chooses the left half of A using
\sansT \sansr \sansa \sansp \sansG \sanse \sansn .

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (A1, T\bfA 1)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn 

\bigl( 
1n, 1\lceil m/2\rceil , q

\bigr) 
, (B2, T\bfB 2)

\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n - 1, 1\lfloor m/2\rfloor , q). It sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n] \setminus \{ i\} ) and
B = [B1 | B2].

(b) It also chooses a vector p2 \leftarrow \BbbZ \lfloor m/2\rfloor 
q and sets A2 = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (B2,p2,

[n] \setminus \{ i\} ), A = [A1 | A2].
(c) Finally, it sends A to \scrA .

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:

(a) It samples U1 \leftarrow \scrD \lceil m/2\rceil \times t
\BbbZ ,\sigma .

(b) Next, it sets Y = C - B1 \cdot U1 and computes U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (B2, T\bfB 2 ,
\sigma , Y).

(c) Finally, it sends U =
\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. The adversary outputs a bit b\prime .
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Hybrid \bfitH \bffive . In this hybrid, the challenger chooses U1 using \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse for each
query.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (A1, T\bfA 1)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn 

\bigl( 
1n, 1\lceil m/2\rceil , q

\bigr) 
, (B2, T\bfB 2)

\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n - 1, 1\lfloor m/2\rfloor , q). It sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n] \setminus \{ i\} ) and
B = [B1 | B2].

(b) It also chooses a vector p2 \leftarrow \BbbZ \lfloor m/2\rfloor 
q and sets A2 = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (B2,p2,

[n] \setminus \{ i\} ), A = [A1 | A2].
(c) Finally, it sends A to \scrA .

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:
(a) It chooses W\prime \leftarrow \BbbZ n\times t

q , sets W = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (W\prime , [n] \setminus \{ i\} ), and samples
U1 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A1, T\bfA 1

, \sigma ,W\prime ).
(b) Next, it sets Y = C - B1 \cdot U1 and computes U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (B2, T\bfB 2

,
\sigma , Y).

(c) Finally, it sends U =
\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. The adversary outputs a bit b\prime .

Hybrid \bfitH \bfsix . This hybrid represents a syntactic change, in which the challenger,
for each query, chooses Y as a uniformly random matrix, and sets W = C  - Y =
C - B2 \cdot U2.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (A1, T\bfA 1

)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn 
\bigl( 
1n, 1\lceil m/2\rceil , q

\bigr) 
, (B2, T\bfB 2

)

\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n - 1, 1\lfloor m/2\rfloor , q). It sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n] \setminus \{ i\} ) and
B = [B1 | B2].

(b) It also chooses a vector p2 \leftarrow \BbbZ \lfloor m/2\rfloor 
q and sets A2 = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (B2,p2,

[n] \setminus \{ i\} ), A = [A1 | A2].
(c) Finally, it sends A to \scrA .

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:

(a) It chooses Y \leftarrow \BbbZ (n - 1)\times t
q and samples U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (B2, T\bfB 2

, \sigma ,Y).
(b) Next, it sets W = C  - B2 \cdot U2 (which is equal to C  - Y), chooses a

uniformly random vector w \leftarrow \BbbZ t
q, sets W\prime = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (W,w, [n] \setminus \{ i\} ),

and computes U1 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A1, T\bfA 1 , \sigma ,W
\prime ).

(c) Finally, it sends U =
\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. The adversary outputs a bit b\prime .

Hybrid \bfitH \bfseven . In this hybrid experiment, the challenger chooses U2 from a Gauss-
ian distribution with parameter \sigma .

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (A1, T\bfA 1

)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn 
\bigl( 
1n, 1\lceil m/2\rceil , q

\bigr) 
, (B2, T\bfB 2

)

\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n - 1, 1\lfloor m/2\rfloor , q). It sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n] \setminus \{ i\} ) and
B = [B1 | B2].

(b) It also chooses a vector p2 \leftarrow \BbbZ \lfloor m/2\rfloor 
q and sets A2 = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (B2,p2,

[n] \setminus \{ i\} ), A = [A1 | A2].
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(c) Finally, it sends A to \scrA .
2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:

(a) It samples U2 \leftarrow \scrD \lfloor m/2\rfloor \times t
\BbbZ ,\sigma .

(b) Next, it sets W = C  - B2 \cdot U2, chooses a uniformly random vector
w \leftarrow \BbbZ t

q, sets W\prime = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (W,w, [n] \setminus \{ i\} ), and computes U1 \leftarrow 
\sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A1, T\bfA 1 , \sigma ,W

\prime ).
(c) Finally, it sends U =

\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. The adversary outputs a bit b\prime .

Hybrid \bfitH \bfeight . In this hybrid, the challenger chooses matrix B2 uniformly at ran-
dom. Note that this means A2 is uniformly random in this hybrid.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:

(a) It first chooses A1 \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn 
\bigl( 
1n, 1\lceil m/2\rceil , q

\bigr) 
, B2 \leftarrow \BbbZ (n - 1)\times \lfloor m/2\rfloor 

q . It
sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n] \setminus \{ i\} ) and B = [B1 | B2].

(b) It also chooses a vector p2 \leftarrow \BbbZ \lfloor m/2\rfloor 
q and sets A2 = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (B2,p2,

[n] \setminus \{ i\} ), A = [A1 | A2].
(c) Finally, it sends A to \scrA .

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:

(a) It samples U2 \leftarrow \scrD \lfloor m/2\rfloor \times t
\BbbZ ,\sigma .

(b) Next, it sets W = C  - B2 \cdot U2, chooses a uniformly random vector
w \leftarrow \BbbZ t

q, sets W\prime = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (W,w, [n] \setminus \{ i\} ), and computes U1 \leftarrow 
\sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A1, T\bfA 1 , \sigma ,W

\prime ).
(c) Finally, it sends U =

\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. The adversary outputs a bit b\prime .

Hybrid \bfitH \bfnine . In this hybrid, the matrix A2 is chosen using \sansT \sansr \sansa \sansp \sansG \sanse \sansn .
1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger

proceeds as follows:
(a) It first chooses matrices (A1, T\bfA 1)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn 

\bigl( 
1n, 1\lceil m/2\rceil , q

\bigr) 
, (A2, T\bfA 2)

\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lfloor m/2\rfloor , q). It sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n] \setminus \{ i\} ), B2 =
\sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A2, [n]\setminus \{ i\} ), and B = [B1 | B2].

(b) It sets A = [A1 | A2].
(c) Finally, it sends A to \scrA .

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:

(a) It samples U2 \leftarrow \scrD \lfloor m/2\rfloor \times t
\BbbZ ,\sigma .

(b) Next, it sets W = C  - B2 \cdot U2, chooses a uniformly random vector
w \leftarrow \BbbZ t

q, sets W\prime = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (W,w, [n] \setminus \{ i\} ), and computes U1 \leftarrow 
\sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A1, T\bfA 1 , \sigma ,W

\prime ).
(c) Finally, it sends U =

\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. The adversary outputs a bit b\prime .

Hybrid \bfitH \bfone \bfzero . In this hybrid, the challenger chooses U2 using \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse for each
query.
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1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (A1, T\bfA 1

)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn 
\bigl( 
1n, 1\lceil m/2\rceil , q

\bigr) 
, (A2, T\bfA 2

)

\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lfloor m/2\rfloor , q). It sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n] \setminus \{ i\} ), B2 =
\sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A2, [n]\setminus \{ i\} ), and B = [B1 | B2].

(b) It sets A = [A1 | A2].
(c) Finally, it sends A to \scrA .

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:
(a) It chooses Y\prime \leftarrow \BbbZ n\times t

q and samples U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A2, T\bfA 2
, \sigma ,Y\prime ).

(b) Next, it sets W = C  - B2 \cdot U2, chooses a uniformly random vector
w \leftarrow \BbbZ t

q, sets W\prime = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (W,w, [n] \setminus \{ i\} ), and computes U1 \leftarrow 
\sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A1, T\bfA 1 , \sigma ,W

\prime ).
(c) Finally, it sends U =

\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. The adversary outputs a bit b\prime .

Hybrid \bfitH \bfone \bfone . This hybrid represents a syntactic change in which the ith row of
matrix W\prime is set as a difference of random vector c and the ith row of A2 \cdot U2 instead
of being sampled uniformly at random directly.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (A1, T\bfA 1

)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn 
\bigl( 
1n, 1\lceil m/2\rceil , q

\bigr) 
, (A2, T\bfA 2

)

\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lfloor m/2\rfloor , q). It sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n] \setminus \{ i\} ), B2 =
\sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A2, [n]\setminus \{ i\} ), and B = [B1 | B2].

(b) It sets A = [A1 | A2].
(c) Finally, it sends A to \scrA .

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:
(a) It chooses Y\prime \leftarrow \BbbZ n\times t

q and samples U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A2, T\bfA 2
, \sigma ,Y\prime ).

(b) Next, it chooses a random vector c \leftarrow \BbbZ t
q, sets C\prime = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (C, c,

[n] \setminus \{ i\} ), sets W\prime = C\prime  - A2 \cdot U2, and computes U1 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A1,
T\bfA 1 , \sigma , W

\prime ).
(c) Finally, it sends U =

\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. The adversary outputs a bit b\prime .

Hybrid \bfitH \bfone \bftwo . This hybrid represents a syntactic change. It corresponds to the
security game in Definition 7.1 with b = 1.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (A1, T\bfA 1)\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn 

\bigl( 
1n, 1\lceil m/2\rceil , q

\bigr) 
, (A2, T\bfA 2)

\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lfloor m/2\rfloor , q). It sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n] \setminus \{ i\} ), B2 =
\sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A2, [n]\setminus \{ i\} ), and B = [B1 | B2].

(b) It sets A = [A1 | A2].
(c) Finally, it sends A to \scrA .

2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,C), where C \in \BbbZ (n - 1)\times t
q . The challenger responds

to each query as follows:
(a) It chooses W\prime \leftarrow \BbbZ n\times t

q and computes U1 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A1, T\bfA 1 , \sigma ,W).
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(b) Next, it chooses a random vector c \leftarrow \BbbZ t
q, sets C\prime = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (C, c,

[n] \setminus \{ i\} ), sets Y\prime = C\prime  - A1 \cdot U1 (which is equal to C\prime  - W\prime ), and
computes U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A2, T\bfA 2

, \sigma , Y\prime ).
(c) Finally, it sends U =

\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. The adversary outputs a bit b\prime .

C.2. Detailed hybrid experiments for Theorem 7.19.

Hybrid \bfitH \bfzero . This corresponds to the single target switching security game.
1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger

proceeds as follows:
(a) It chooses matrices (A1, T\bfA 1) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lceil m/2\rceil , q) and (A2, T\bfA 2)
\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lfloor m/2\rfloor , q). It also chooses a random bit b\leftarrow \{ 0, 1\} .

(b) Next, it sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n] \setminus \{ i\} ), B2 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A2, [n] \setminus \{ i\} ),
and sends [B1 | B2] to \scrA .

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1t,Z0,Z1), where Z0,Z1 \in \BbbZ n\times t

q such that \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z0,
[n] \setminus \{ i\} ) = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z1, [n] \setminus \{ i\} ). The challenger responds to each query as
follows:
(a) It chooses W\leftarrow \BbbZ n\times t

q and computes U1 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A1, T\bfA 1
, \sigma ,W).

(b) It also samples vector e\leftarrow \chi t and sets E = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (0(n - 1)\times t, e, [n]\setminus \{ i\} ).
(c) Next, it sets Y = Zb - A1 \cdot U1 +E (which is equal to Zb - W+E) and

computes U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A2, T\bfA 2 , \sigma ,Y).
(d) Finally, it sends U =

\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. \scrA outputs its guess b\prime .

Hybrid \bfitH \bfone . In this hybrid experiment, the challenger sets U1 to be a Gaussian
matrix for each query.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:
(a) It chooses matrices (A1, T\bfA 1

) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lceil m/2\rceil , q) and (A2, T\bfA 2
)

\leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lfloor m/2\rfloor , q). It also chooses a random bit b\leftarrow \{ 0, 1\} .
(b) Next, it sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n]\setminus \{ i\} ), B2 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A2, [n]\setminus \{ i\} ) and

sends [B1 | B2] to \scrA .
2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,Z0,Z1), where Z0,Z1 \in \BbbZ n\times t
q such that \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z0,

[n] \setminus \{ i\} ) = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z1, [n] \setminus \{ i\} ). The challenger responds to each query as
follows:
(a) It computes U1 \leftarrow \scrD \lceil m/2\rceil \times t

\BbbZ ,\sigma .

(b) It also samples vector e\leftarrow \chi t and sets E = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (0(n - 1)\times t, e, [n]\setminus \{ i\} ).
(c) Next, it sets Y = Zb - A1 \cdot U1 +E and computes U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A2,

T\bfA 2
, \sigma , Y).

(d) Finally, it sends U =
\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. \scrA outputs its guess b\prime .

Hybrid \bfitH \bftwo . In this hybrid experiment, the challenger sets A1 to be a uniformly
random matrix (that is, sampled without a trapdoor).

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:

(a) It chooses A1 \leftarrow \BbbZ n\times \lceil m/2\rceil 
q and (A2, T\bfA 2

) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lfloor m/2\rfloor , q). It
also chooses a random bit b\leftarrow \{ 0, 1\} .
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(b) Next, it sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n]\setminus \{ i\} ), B2 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A2, [n]\setminus \{ i\} ) and
sends [B1 | B2] to \scrA .

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1t,Z0,Z1), where Z0,Z1 \in \BbbZ n\times t

q such that \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z0,
[n] \setminus \{ i\} ) = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z1, [n] \setminus \{ i\} ). The challenger responds to each query as
follows:
(a) It computes U1 \leftarrow \scrD \lceil m/2\rceil \times t

\BbbZ ,\sigma .

(b) It also samples vector e\leftarrow \chi t and sets E = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (0(n - 1)\times t, e, [n]\setminus \{ i\} ).
(c) Next, it sets Y = Zb - A1 \cdot U1 +E and computes U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A2,

T\bfA 2
, \sigma , Y).

(d) Finally, it sends U =
\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. \scrA outputs its guess b\prime .

Hybrid \bfitH \bfthree . This hybrid is a syntactic change. Here, we express Y in terms of
B1 and the ith row of A1. Note that the ith row of A1 is used only for computing
the ith row of Y.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:

(a) It chooses A1 \leftarrow \BbbZ n\times \lceil m/2\rceil 
q and (A2, T\bfA 2) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lfloor m/2\rfloor , q). It

also chooses a random bit b\leftarrow \{ 0, 1\} .
(b) Next, it sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n]\setminus \{ i\} ), B2 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A2, [n]\setminus \{ i\} ) and

sends [B1 | B2] to \scrA .
2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,Z0,Z1), where Z0,Z1 \in \BbbZ n\times t
q such that \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z0,

[n] \setminus \{ i\} ) = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z1, [n] \setminus \{ i\} ). The challenger responds to each query as
follows:
(a) It computes U1 \leftarrow \scrD \lceil m/2\rceil \times t

\BbbZ ,\sigma .

(b) It also samples vector e\leftarrow \chi t and sets Z\prime 
b = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Zb, [n] \setminus \{ i\} ).

(c) Next, it sets Y\prime = Z\prime 
b  - B1 \cdot U1, y = Zb[i]  - A1[i] \cdot U1 + e, and Y =

\sansA \sansr \sansr \sansa \sansn \sansg \sanse (Y\prime ,y, [n] \setminus \{ i\} ). It then computes U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A2, T\bfA 2
, \sigma ,

Y).
(d) Finally, it sends U =

\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. \scrA outputs its guess b\prime .

Hybrid \bfitH \bffour . In this hybrid experiment, the challenger sets the ith row of Y to
be a uniformly random vector.

1. Setup phase. The adversary \scrA sends 1n, 1m, index i \in [n]. The challenger
proceeds as follows:

(a) It chooses A1 \leftarrow \BbbZ n\times \lceil m/2\rceil 
q and (A2, T\bfA 2) \leftarrow \sansT \sansr \sansa \sansp \sansG \sanse \sansn (1n, 1\lfloor m/2\rfloor , q). It

also chooses a random bit b\leftarrow \{ 0, 1\} .
(b) Next, it sets B1 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A1, [n]\setminus \{ i\} ), B2 = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (A2, [n]\setminus \{ i\} ) and

sends [B1 | B2] to \scrA .
2. Query phase. The adversary makes a polynomial number of preimage

queries of the form (1t,Z0,Z1), where Z0,Z1 \in \BbbZ n\times t
q such that \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z0,

[n] \setminus \{ i\} ) = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Z1, [n] \setminus \{ i\} ). The challenger responds to each query as
follows:
(a) It computes U1 \leftarrow \scrD \lceil m/2\rceil \times t

\BbbZ ,\sigma .
(b) It sets Z\prime 

b = \sansR \sanse \sanss \sanst \sansr \sansi \sansc \sanst (Zb, [n] \setminus \{ i\} ).
(c) Next, it setsY\prime = Z\prime 

b - B1\cdot U1, y\leftarrow \BbbZ t
q, andY = \sansA \sansr \sansr \sansa \sansn \sansg \sanse (Y\prime ,y, [n]\setminus \{ i\} ).

It then computes U2 \leftarrow \sansS \sansa \sansm \sansp \sansl \sanse \sansP \sansr \sanse (A2, T\bfA 2 , \sigma ,Y).
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(d) Finally, it sends U =
\bigl[ 
\bfU 1

\bfU 2

\bigr] 
to \scrA .

3. \scrA outputs its guess b\prime .
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