Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SIAM J. COMPUT. © 2019 Society for Industrial and Applied Mathematics
Vol. 49, No. 5, pp. STOC18-94-STOC18-241

COLLUSION RESISTANT TRAITOR TRACING FROM LEARNING
WITH ERRORS*

RISHAB GOYAL', VENKATA KOPPULAT, AND BRENT WATERS'

Abstract. In this work we provide a traitor tracing construction with ciphertexts that grow
polynomially in log(n), where n is the number of users, and prove it secure under the learning with
errors (LWE) assumption. This is the first traitor tracing scheme with such parameters provably
secure from a standard assumption. In addition to achieving new traitor tracing results, we be-
lieve our techniques push forward the broader area of computing on encrypted data under standard
assumptions. Notably, traitor tracing is a substantially different problem from other cryptography
primitives that have seen recent progress in LWE solutions. We achieve our results by first conceiving
a novel approach to building traitor tracing that starts with a new form of functional encryption
that we call Mixed FE. In a Mixed FE system the encryption algorithm is bimodal and works with
either a public key or master secret key. Ciphertexts encrypted using the public key can only encrypt
one type of functionality. On the other hand, the secret key encryption can be used to encode many
different types of programs, but is only secure as long as the attacker sees a bounded number of such
ciphertexts. We first show how to combine mixed FE with attribute-based encryption to achieve
traitor tracing. Second, we build Mixed FE systems for polynomial-sized branching programs (which
corresponds to the complexity class logspace) by relying on the polynomial hardness of the LWE
assumption with superpolynomial modulus-to-noise ratio.

Key words. traitor tracing, private linear broadcast encryption, functional encryption, Mixed FE,
attribute-based encryption, lattice trapdoors, encryption, decryption, learning with errors

AMS subject classifications. 68P25, 94A60

DOI. 10.1137/18M1197825

1. Introduction. In a (traitor) tracing [CFN94] system an authority runs a
setup algorithm that takes in a security parameter A and the number, n, of users in
the system. The setup outputs a public key pk, master secret key msk, and n secret
keys (skq,ska,...,sky). The system has an encryption algorithm that uses the public
key pk to create a ciphertext for a message m that is decryptable by any of the n
secret keys, but where the message will be hidden from any user who does not have
access to the keys. Finally, suppose that some subset S of users colludes to create a
decoding box D which is capable of decrypting ciphertexts with some nonnegligible
probability. The tracing property of the system states that there exists an algorithm
Trace which, given the master secret and oracle access to D, outputs a set of users T’
where T contains at least one user from the colluding set .S and no users outside of S.

Existing approaches for achieving collusion resistant broadcast encryption can be
fit in the framework of private linear broadcast encryption (PLBE) introduced by
Boneh, Sahai, and Waters (BSW) [BSW06]. In a PLBE system the setup algorithm
takes as input a security parameter A and the number of users n. It outputs a public
key pk, master secret key msk, and n private keys skq,sks, ..., sk, where a user with
index j is given key sk;. Any of the private keys is capable of decrypting a ciphertext

*Received by the editors July 2, 2018; accepted for publication (in revised form) June 5, 2019;

published electronically November 5, 2019.

https://doi.org/10.1137/18M1197825

Funding: This research was supported by NSF CNS-1414082, by DARPA through the U.S.
Office of Naval Research under contract N00014-11-1-0382, by a Microsoft Faculty Fellowship, and
by a Packard Foundation Fellowship.

TDepartment of Computer Science, University of Texas at Austin, Austin, TX 78712 (rishab.28.
goyal@gmail.com, k.venkata.vk@gmail.com, bwaters@Qcs.utexas.edu).

STOC18-94

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/18M1197825
mailto:rishab.28.goyal@gmail.com
mailto:rishab.28.goyal@gmail.com
mailto:k.venkata.vk@gmail.com
mailto:bwaters@cs.utexas.edu

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOCI18-95

ct created using pk. However, there is an additional TrEncrypt algorithm that takes in
the master secret key, a message, and an index . This produces a ciphertext that only
users with index 7 > ¢ can decrypt. Moreover, any adversary-produced decryption
box D that was created with private keys in the set of S will not be able to distinguish
between encryptions to index ¢ — 1 or 4, where i ¢ S. In addition, encryptions of two
different messages mg, m; to index n must be indistinguishable.

The tracing system is set up by simply running the PLBE setup and distributing
each PLBE key to the corresponding user. To trace the set of colluding parties
given a decoding box D, the tracing algorithm first measures (with several samples)
the probability that D correctly decrypts a ciphertext encrypted to index i for all
i € [0,n]. If the box D originally decrypted with probability €, then there must exist
some index 7 where the probability the box decrypts on index ¢ —1 is at least ¢/n more
than the probability it decrypts on ciphertexts encrypted to index i, since by PLBE
security D cannot decrypt encryptions to index n with nonnegligible probability. At
this point the tracing algorithm marks user ¢ as a colluder.

Currently, there are three approaches to building PLBE. The most basic approach
is to simply create n public/private key pairs under a standard IND-CPA secure public
key encryption system. A PLBE ciphertext is formed by encrypting the message m to
each user’s public key individually and concatenating all of the subciphertexts to form
one long ciphertext, ct = (cty, cta,...,ct,). A user with secret key sk; in the system
will decrypt by running decryption on ct; and ignore the rest of the ciphertext com-
ponents. To TrEncrypt to index ¢ simply encrypt the all 0’s string in first ¢ ciphertexts
cty,...,ct; in place of the message. The index hiding property follows directly from
IND-CPA security of the underlying encryption scheme, since without secret key i no
attacker can determine whether ct; is an encryption of the message or all 0’s string.

The above approach works because there is a portion of the ciphertext ct; dedi-
cated to each user ¢ in the system which is not touched during the decryption process
of other users with keys sk; for j # 4. This dedicated ciphertext space strategy makes
it easy to silently kill user i’s ability to access the message in a way unnoticeable to
other users, but also inherently requires a ciphertext size that grows linearly in n. In
order to achieve PLBE with sublinear size ciphertexts, one needs to implement some
form of computing on encrypted data.

BSW [BSWO06] provided the first construction that achieved PLBE with cipher-
text growth that was sublinear in n. They leveraged composite order bilinear groups
to achieve ciphertexts that grew proportionally to v/n. While future variants [BWO06,
GKSW10, Frel0] used bilinear maps to obtain additional properties, the ciphertext
size for all bilinear map—based constructions remained stuck at the y/n mark.

Several years later Boneh and Zhandry [BZ14] showed how to utilize indistin-
guishability obfuscation and apply punctured programming techniques to achieve the
ideal case where ciphertexts grow polynomially in log(n) and A. The downside of ap-
plying indistinguishability obfuscation is that all current obfuscation candidates are
based on nonstandard multilinear map group assumptions, and several such multi-
linear candidates have been attacked (see [CLT14, CHL+15, CGH+15, BGH+15,
CLLT16, CLLT17, BWZ14, HJ16, Hall5, CFL+16, MSZ16, CJL16, ADGM16] and
the references therein). (One could also achieve similar results by using the functional
encryption scheme of Garg et al. [GGH+13], but this also relies on multilinear maps.)
This leaves open the following question:

Can we build secure traitor tracing with POLY (A, log(n))-sized ciphertexts from
standard assumptions?

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-96 R. GOYAL, V. KOPPULA, AND B. WATERS

Our results. In this work we resolve the above question by providing a traitor
tracing construction with ciphertexts that grow polynomially in log(n) and A and
prove it secure under the learning with errors (LWE) assumption. This is the first
traitor tracing scheme with such parameters that is provably secure from a standard
assumption. In addition to achieving new traitor tracing results, we believe our tech-
niques push forward the broader area of computing on encrypted data under standard
assumptions. Notably, traitor tracing is a substantially different problem from other
cryptography primitives that have seen recent progress in LWE solutions.

We achieve our result by first conceiving a novel approach to building traitor
tracing that starts with a new form of functional encryption that we call Mixed FE.
In a Mixed FE system the encryption algorithm is bimodal and works with either a
public key or master secret key. Ciphertexts encrypted using the public key can only
encrypt one type of functionality. On the other hand, the secret key encryption can
be used to encode many different types of programs, but is only secure as long as the
attacker sees a bounded number of such ciphertexts.

We first show how to combine Mixed FE with attribute-based encryption (ABE)
to achieve traitor tracing. Second, we show under the LWE assumption how to con-
struct Mixed FE systems for polynomial-sized branching programs (which corresponds
to the complexity class LOGSPACE).

1.1. Technical overview. We now give a technical overview of our work. This
overview is broken into four parts. In the first part we review the BSW notion
of private linear broadcast encryption (PLBE) and its transformation into a traitor
tracing system. Along the way we discover that the PLBE definitions as presented
in [BSWO06] do not imply traitor tracing. We then show how to repair the argument
by giving the attacker an additional oracle encryption query in the PLBE definitions.
Second, we present the notion of Mixed FE and show how an ABE and Mixed FE
system (for the right functionalities) can be used to construct a PLBE system. The
third part of our overview describes a new LWE toolkit which includes “enhanced”
versions of lattice trapdoor sampling algorithms with additional security properties.
Finally, we outline our main ideas for constructing the Mixed FE system and proving
it secure under the LWE assumption.

Part 1: Breaking and repairing the PLBE to tracing argument. First,
let us review the PLBE algorithms as defined in [BSW06]. A PLBE scheme consists of
a setup, encryption, decryption, and trace-encryption algorithm. The setup algorithm
outputs a public key, a master secret key, and n secret keys, one for each index in
[n]. The encryption/decryption algorithms are self-explanatory; the trace-encryption
algorithm is a special encryption algorithm that requires the master secret key, and
can be used to encrypt a message to any index i € [0,n]. The output ciphertext can
be decrypted only by secret keys for indices j > i. BSW defined three security prop-
erties. The first security property (public to zero-index indistinguishability) requires
that a standard encryption of message m is indistinguishable from a trace-encryption
of m to the index 0, even when the adversary has all n secret keys. The second se-
curity property (index hiding) states that a trace-encryption of m to index i — 1 is
indistinguishable from a trace-encryption of m to index i, even when the adversary
has all the secret keys except the ith one. Finally, the third security property states
that trace-encryption of mg to index n is indistinguishable from trace-encryption of
m1 to index n, even when the adversary is given all n secret keys.

BSW argued that these three properties of PLBE are sufficient for constructing
a traitor tracing (TT) scheme. In their transformation, the TT public key and n

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-97

secret keys are set to be the PLBE public key and n secret keys, respectively. The TT
encryption/decryption algorithms are identical to the PLBE encryption/decryption
algorithms. Finally, the tracing algorithm uses the PLBE trace-encryption algorithm.
Given a decoder box D, the tracing algorithm encrypts random messages to each
index and checks if D can decrypt it correctly. If the decoder box is e-successfull
in decrypting (standard) encryptions, then it is also € successful in decrypting trace-
encryptions to index 0 (via the first security property). Next, note that the decoder
box cannot decrypt trace-encryptions to index n (via the message indistinguishability
property). Therefore, there must exist an index i* € [n] where the success of the
decoder box in decrypting trace-encryptions to index ¢* — 1 is at least €/n more than
its success in decrypting trace-encryptions to ¢*. This index ¢* must be one of the
indices queried by the adversary (since if the adversary does not have a key for index
i*, then the decoder box must not be able to distinguish between trace-encryptions
to i* — 1 and i*). For each index i, the tracing algorithm computes an estimate
of the decoder box’s success probability in decrypting random trace-encryptions for
index ¢. For all indices 7 where the measured success probabilities for 4 — 1 and i are
substantially different, user 7 is declared to be a traitor.

At an intuitive level, it seems like the BSW transformation should work. How-
ever, here we argue that it is indeed possible to have a PLBE scheme secure under
the original BSW definition, but produce an insecure TT scheme in this regard. The
problem lies in the fact that there is a “semantic gap” between the TT definition and
the PLBE definition. The TT definition considers an attacker that produces a (state-
less) decoder D whose success on decrypting multiple trace-encryptions is measured,
whereas the PLBE definition considers indistinguishability on a single ciphertext (in
particular, no ciphertext queries). Diving deeper, we show a separation by adding
a feature to a PLBE scheme where the feature does not impact PLBE security, but
results in an insecure T'T scheme.

Given any secure PLBE scheme P, consider a scheme P’ defined as follows. The
setup algorithm of P’ is similar to the setup of P, except it also samples an additional
pseudorandom function (PRF) key K as part of the master secret key (we will assume
the PRF has single-bit output). The (standard) encryption algorithm computes a
ciphertext ct using the underlying scheme’s encryption algorithm, chooses a uniformly
random bit b, and outputs (ct, b). The trace-encryption of message m is the ciphertext
ct’ = (ct,y = PRFk(4)), where ct is the ciphertext obtained from the trace-encryption
algorithm of P. It is easy to see that the new scheme satisfies all three PLBE security
definitions, since there are no encryption queries allowed in the PLBE scheme beyond
the challenge ciphertext.

However, it is possible to construct a decoding box using only the secret key for
index n such that the trace algorithm falsely accuses some user ¢+ < n. The decoder
D, on input of a ciphertext ct’ = (ct,y), tests if y = 1. If so, it decrypts the ciphertext
using key sk,,; otherwise it outputs a random message. Using PRF security, we can
argue that there exists an index ¢ < n such that PRFg(i — 1) =1 and PRF (i) =0
with high probability. In this case the probability that D decrypts ciphertexts for
index ¢ — 1 will be measurably different than the case in which it decrypts ciphertext
for index ¢. Thus user ¢ will be flagged as a colluder.

We repair the BSW transformation from PLBE to TT by considering a modified
set of PLBE security definitions and prove that these do imply TT. We do so in two

LA decoder box is said to be e-successful if its probability of correctly decrypting a ciphertext is

at least €, where the probability is taken over the choice of the ciphertext and D’s random coins.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-98 R. GOYAL, V. KOPPULA, AND B. WATERS

steps. First, we consider a decoder-based version of the BSW PLBE definitions. For
concreteness, let us consider the index hiding definition. The decoder-based version
of the index hiding version states that no adversary, given all secret keys except the
ith one, can produce a decoder box D and a message m such that D can distinguish
between trace-encryptions of m to index ¢ — 1 and trace-encryptions of m to index 3.
Decoder-based versions of the other properties are defined similarly.

Now that we have decoder-based PLBE definitions that align with the decoder in
the TT definitions, it is fairly straightforward to prove that the BSW transformation
implies TT. The downside of introducing decoder-based PLBE definitions is that they
are more difficult to work with as a target for a construction. We address this issue
by circling back to the original (BSW) PLBE definitions and augmenting them by
allowing an attacker to make an a priori bounded number of queries to an encryption
oracle. We show that 1-query PLBE implies decoder-based PLBE. This gives us an
easier target (that is, 1-query PLBE).

Before describing the transformation from 1-query PLBE to decoder-based PLBE,
we would like to point out that if the BSW definitions were augmented to allow an
unbounded number of ciphertext queries, then decoder-based security follows imme-
diately. For instance, let us consider the index hiding game. The reduction algorithm
(that reduces unbounded-query PLBE to decoder-based PLBE) receives a decoder
box D from the attacker. Given the unbounded queries, the reduction algorithm can
measure (with reasonable accuracy) the success probabilities of D for indices ¢ —1 and
i, and therefore whether it can use D to distinguish between an encryption to index
i — 1 and i. However, with only 1 encryption query no such precise measurement is
possible. Therefore, showing an attacker on decoder-based PLBE security implies an
attacker on 1-query PLBE is a bit tricky. The reduction algorithm, after receiving the
decoder box and message m from the adversary, chooses a random index i* € {i—1,i},
and queries the challenger for encryption of m for index ¢*. It receives a ciphertext
ct. Next, it queries the challenger with challenge message m and receives a challenge
ciphertext ct*. The reduction algorithm checks if D(ct) = D(ct*); if so, it guesses
that m was encrypted for index i*. We would like to point out that choosing query
index ¢* uniformly at random from {i — 1,4} (as opposed to just fixing one of the two)
is important for our analysis. The idea of running the decoder twice is sometimes
referred to as the double-run trick [BDK+11, BG11, DY13]. The complete details of
our analysis can be found in section 4.1.

Impact on prior TT works using the PLBE framework. Traitor tracing schemes
that had secret key tracing would need a new proof under the new PLBE definitions
with 1-query allowed. We believe the bilinear map constructions [BSW06, GKSW10,
Frel0] are likely secure under this definition, but showing this is outside scope of
this paper. Note that the same problem is not present in PLBE with public trace-
encryption (e.g., [BWO06]), since the public key allows the reduction algorithm to
generate ciphertexts.

Part 2: Constructing PLBE from Mixed FE. The hardness of constructing
a PLBE scheme stems from the fact that it needs to satisfy the following two proper-
ties at the same time. First, a PLBE scheme needs to provide a predicate encryption
(PE) like functionality where each secret key is associated with an “index,” and each
ciphertext is associated with an index comparison predicate. Also, the ciphertexts
must not reveal any more information about the associated index comparison predi-
cate other than what can be learned by running decryption. Second, the scheme must
provide a broadcast encryption (BE) like compactness guarantee, which is that the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-99

size of ciphertexts must be short. In particular, the index needs to be represented in
binary, which means the index comparison must be “sufficiently complex.”

In this work, instead of directly building a PLBE scheme, we further reduce the
task to constructing a new form of functional encryption scheme called Mixed FE.
We show how Mixed FE can be combined with ABE for circuits to obtain PLBE.
At a very high level, our approach is to decouple the functionality (delivering the
message to users) and security requirements of a PLBE scheme, and to deal with
them separately.

We begin by informally introducing the notion of Mixed FE. A Mixed FE scheme
consists of setup, normal (or public key) encryption, secret key encryption, key gen-
eration, and decryption algorithms. The setup algorithm takes as input the security
parameter A and description of a function class F and outputs the public parameters
pp and the master secret key msk. The normal encryption algorithm only takes as
input the public parameters pp and outputs a (normal) ciphertext ct. The secret key
encryption algorithm takes as input the master secret key msk and a function f € F
and outputs a (secret key) ciphertext ct. The key generation algorithm takes as input
the master secret key msk and a message m and outputs a key sk,,. The decryption
algorithm takes as input a ciphertext ct and a secret key sk,, and outputs a single bit.
Now for correctness we require that decrypting a secret key encryption of any func-
tion f using a secret key sk,, outputs the evaluation of function f on message m, i.e.,
f(m), whereas the decryption algorithm (almost) always outputs 1 when given a nor-
mal ciphertext as input, irrespective of the secret key used. Thus, one could visualize
the normal encryption algorithm as always encrypting a “canonical” always-accepting
function.

Intuitively, security states that no attacker should be able to distinguish between
two ciphertexts that decrypt to the same values under all the secret keys in the at-
tacker’s possession. Now since there are two separate encryption algorithms, we have
two different security properties. The first property says that secret key encryptions
of two functions fy and f; should be indistinguishable if for every key in the attacker’s
possession the output of fy, f1 is identical. We call this function the indistinguishabil-
ity property. The second property says that it should be hard to distinguish between
a normal (public key) encryption and secret key encryption of a function f, where
f(m) must be equal to 1 for all keys sk, in the attacker’s possession. We call this the
accept indistinguishability property.

We show that we can construct a PLBE scheme from a (key-policy) ABE scheme
and a Mixed FE scheme. The idea is to encrypt a message using the ABE system
with the attribute being set to be a Mixed FE ciphertext. Each user’s secret key
will be an ABE private key. Here the ABE private key is generated for the Mixed
FE decryption circuit in which a Mixed FE secret key, corresponding to the user’s
index, is hardwired. The high level intuition is that when the attribute is a normal
functional encryption ciphertext then all Mixed FE keys decrypt it to 1; thus any user
with an appropriate ABE key could perform the decryption, whereas if the attribute
is set to be a secret key ciphertext, then we can control the users who can decrypt it.

Formally, the scheme works as follows. During setup, the algorithm samples both
ABE and Mixed FE key pairs (abe.pp, abe.msk), (Mixed.pp, Mixed.msk). To compute
the ith user’s private key, it samples a Mixed FE secret key Mixed.sk; for input ¢ and
also computes an ABE key abe.sk; for predicate Mixed.Dec(Mixed.sk;, -), i.e., Mixed
FE decryption circuit with key Mixed.sk; hardwired. And the ABE key abe.sk; is set to
be the ith user’s private key. Now to encrypt a message m, the algorithm simply runs
the ABE encryption algorithm with attributes set to be a Mixed FE ciphertext ctattr.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-100 R. GOYAL, V. KOPPULA, AND B. WATERS

For standard PLBE encryption, cta, is computed as a Mixed FE normal ciphertext,
and for PLBE index encryption to some index i, ctay, is computed as a Mixed FE
secret key encryption of function greater than i. Lastly, the PLBE decryption is the
same as the ABE decryption algorithm.

Correctness can be observed directly. For standard PLBE ciphertext, ctay, is a
normal FE ciphertext which decrypts to 1; thus the predicate Mixed.Dec(Mixed.sk;, -)
is satisfied for all . Therefore, by ABE correctness, the ABE decryption algorithm
will output the message m. For the PLBE index ¢ ciphertext, cta, is a Mixed FE
secret key encryption of function “> ¢” which decrypts to 1 for all keys Mixed.sk;
with j > i; thus the predicate is satisfied for all users with indices larger than 3.
Therefore, by ABE correctness, the ABE decryption algorithm will output the message
m whenever j > i. For proving security, we rely on the fact that Mixed FE ciphertexts
are indistinguishable to any adversary that does not have distinguishing secret keys.
For instance, suppose there exists an adversary that can distinguish between PLBE
normal encryptions and index 0 encryptions; then such an adversary can also be
used to distinguish between Mixed FE normal ciphertexts and secret key ciphertexts
encrypting function “> 0” (note that this is an always-accepting function). Thus,
such an attack can be used to break the accept indistinguishability property of the
Mixed FE scheme. Similarly, we can prove index hiding and message hiding security of
the construction by reducing to Mixed FE and ABE (selective) security, respectively.
Now if the Mixed FE scheme is 1-query secure, then so is the PLBE scheme.

Now the size of ciphertexts has only poly-log dependence on the number of users
n as required. Because each user can be uniquely identified using a bit string of
length logn, so the length of the attribute (Mixed FE ciphertext) will be polynomial
in log n, and thus the PLBE ciphertext, which is in turn an ABE ciphertext, will have
length polynomial in logn as well. Also, note that to use the above transformation
it is sufficient to construct a Mixed FE scheme that supports comparison operation
on logn bit strings. In this work, we show how to construct a Mixed FE scheme for
any class of polynomial-sized branching program from the LWE assumption.? Our
construction relies only on the polynomial hardness of LWE, although we require a
superpolynomial modulus-to-noise ratio. Since we already have circuit ABE schemes
from the LWE assumption [GVW13, BGG+14], combining that with our Mixed FE
construction gives us collusion resistant traitor tracing from the LWE assumption as
well.

Looking back, it is easy to observe that Mixed FE for branching programs that
support comparison functionality is sufficient for our application. However, as a design
choice, here we instead chose to construct Mixed FE for general polynomial length
branching programs as it is possible that this generalization leads to more applica-
tions in the future. Moreover, focusing on logarithmic length branching programs
supporting comparisons, instead of general branching programs, did not lead to any
significant simplification in the Mixed FE construction or its proof.

Part 3: An enhanced LWE toolkit. Before describing our LWE-based con-
struction for Mixed FE, we define new “enhanced” properties for lattice trapdoors
that will be useful in our work, and we believe it will find more applications in the fu-
ture. In many LWE-based works, in addition to the LWE assumption itself, a critical
tool has been the notion of lattice trapdoors [Ajt99, GPV08]. Lattice trapdoor sam-
plers consist of a pair of algorithms, TrapGen and SamplePre. The trapdoor generation

2Note that this also gives us an alternate construction for selectively secure private key functional

encryption with bounded collusions [SS10, GVW12].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-101

algorithm TrapGen outputs a matrix A (that defines the lattice) and a trapdoor Ta.
The preimage sampling algorithm SamplePre takes as input a matrix Z, a trapdoor
for matrix A, and a Gaussian parameter o and outputs a matrix U such that U maps
A to Z (that is, A- U =127).3

These algorithms satisfy the following properties. First, the matrix A output by
the trapdoor generation algorithm “looks like” a uniformly random matrix; we call
this the well-sampledness of matriz property. Second, the matrix output by SamplePre
is indistinguishable from a matrix drawn from a discrete Gaussian distribution with
parameter o over the set of all matrices V such that A -V = Z. In particular, if Z
is chosen uniformly at random, then the output of SamplePre “looks like” a matrix
U drawn from a discrete Gaussian distribution with parameter o; we call this the
preimage sampling property. Lattice trapdoors with these properties have found a
remarkable number of applications in building LWE-based cryptography.

In this work, we introduce two new enhanced properties for lattice trapdoors.
The first property is the row remowval property, which can be intuitively described as
follows. Consider a setting where an adversary specifies some “target vectors,” and
the challenger must output a matrix A and a matrix U such that U maps some of the
rows of A to the target vectors, and maps the remaining rows to uniformly random
vectors. Then these rows targeting uniformly random vectors can be removed from the
trapdoor sampling. In particular, the challenger can sample a shorter matrix B with a
trapdoor, extend B with uniformly random vectors to get A, and set U to be a matrix
that maps B to the target vectors. These two scenarios will be indistinguishable for
the PPT adversary.

The second property is called the target switching property. In this setting, con-
sider an adversary that specifies two matrices, Zg, Z1, and a set of “target” indices
such that the rows of Zy and Z; agree on these target indices. The challenger is
supposed to sample a matrix A with a trapdoor, compute a matrix U that maps
A to Zo,* and output U together with the rows of A corresponding to the target
indices and only those rows. Then the challenger can switch the U to map A to Z1,
and the target switching property requires that this change is indistinguishable to
the adversary (note that this would not be possible if the adversary receives any of
the nontarget rows of A). Moreover, the adversary is allowed to adaptively query for
different target vectors/indices in both these games.

Now that we have these enhanced properties, let us discuss how to construct
lattice trapdoors with these enhanced properties (using standard lattice trapdoors).
Our construction is similar to the SampleLeft/SampleRight algorithms of [ABBIO0,
CHKP10]. The enhanced trapdoor generation algorithm uses the standard trapdoor
sampling algorithm to sample two matrices, Aj, Ay, together with the respective
trapdoors Ta,,Ta,- It outputs A = [A;|A2] as the matrix and Ta = (Ta,,TA,)
as the trapdoor. To sample a matrix U that maps A to Z, the preimage sampling
algorithm first chooses a uniformly random matrix W (of the same dimensions as
Z). Tt then uses Ta, to compute a matrix U; that maps A; to W, and uses Ta, to
compute a matrix Uy that maps As to Z — W. The final preimage matrix is set to
be [g; } We use the matrix well-sampledness and preimage sampling properties of
the standard lattice trapdoors to prove these enhanced properties; the detailed proof
can be found in section 7.2.

3 Although the notion of preimage sampling is usually defined with respect to (w.r.t.) vectors
instead of matrices, here we stick to using matrices for technical reasons discussed later in section 7.

4Strictly speaking, we require U to map the target vectors of A to the target vectors of Zg, but
the remaining vectors of A approximately map to the corresponding vectors of Zg.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-102 R. GOYAL, V. KOPPULA, AND B. WATERS

Part 4: Constructing Mixed FE from LWE. Here we outline our Mixed
FE construction for polynomial-sized (leveled) branching programs from the LWE as-
sumption. The main ingredient of our construction is the “enhanced” lattice trapdoor
sampling procedure LT, = (EnTrapGen, EnSamplePre) discussed above.

First, let us recall the notion of leveled branching programs. A leveled branching
program of length ¢ and width w can be represented using w states per level, 2¢ state
transition functions 7, for each level j < ¢, an input-selector function inp(-) which
determines the input read at each level, and an accepting and rejecting state. The
program execution starts at state st = 1 of level 1. Suppose the branching program
reads the first input bit (say, b) at level 1 (i.e., inp(1) = 1). Then the state of the
program changes from st to 7 ;(st). Such a process is carried out (iteratively) until
the program’s final state at level ¢ is computed. Depending upon the final state, the
program either accepts or rejects.

For ease of exposition we will start with a simpler goal of constructing a 0-query
secure Mixed FE scheme for a class of width-w read-once branching programs where
each input bit is read once and in ascending order. Below we first outline a construc-
tion for such a 0-query system as it contains most of the central ideas, but is easier to
digest. Later we discuss the modifications with which we can improve it to a secure
1-query scheme (and, more generally, g-query secure for any polynomial ¢) as well as
expand the function class to arbitrary polynomial-sized branching programs.

Moving on to our 0-query Mixed FE construction, the master secret key consists
of two sets of matrices and some trapdoor information. The first set, labeled as
“randomization” matrices, consists of 4¢ matrices {B;p, Cip}, , for i € [(],b € {0,1}.
The second set, labeled as “program” matrices, consists of wf matrices {Pi’v}i,v for
i € [{],v € [w]. Here the C;; matrices are sampled uniformly at random from Zj <™,
whereas the remaining (randomization and program matrices) are sampled jointly
with common trapdoors (per level). Basically, for each level i € [¢], we sample a
(w + 2)n x m matrix M; as

(M, T;) < EnTrapGen(1(®+27 1™).

Now each M; matrix is parsed as w + 2 matrices of dimensions n x m stacked on top
of each other, where the first two matrices are the randomization matrices and the
remaining w matrices are the program matrices for the ith level. That is, for each 1,

Bio
Bi1
Pii| =M,
Pi,w
All ¢ trapdoors 11, ..., T, are stored as the trapdoor information in the master secret

key. The public parameters, on the other hand, only include the matrix dimensions,
LWE modulus, and noise parameters, but none of these matrices or trapdoor infor-
mation.

At a high level, the encryption and key generation algorithms will adhere to the
following structure. To (secret key) encrypt a branching program, the trapdoors will
be used to sample 2¢ low norm matrices {U; 5}, , (two per level) such that each matrix
U, encodes the corresponding state transition function by mapping/targeting level
i “program” matrices to level ¢ + 1 “program” matrices per the transition function

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-103

mip. Now the secret key for an input = will consist of ¢ 4 1 key vectors {t;},. The
first key component, t;, will contain the program matrix P ; (which represents the
starting state) plus some randomization component generated using the level 1 ran-
domization matrix B . The remaining ¢ key vectors will have two components—the
first component will cancel the previous randomization component, and the second
component will add new randomization terms.> The idea is that if decryption is
performed honestly, then all the randomization terms will get canceled and the final
output will reflect the output of the branching program.

So this way the program matrices will be tied in such a manner that they encode
the state transition information, and they can be used to perform the branching
program execution. And the randomization matrices are added to make sure that
(1) the computation is hidden at each step, and (2) if ciphertext matrices and key
vectors are combined in any inadmissible way, then the randomization components
do not get canceled. Let us now look at how to execute the above ideas.

Key generation. The key generation algorithm takes as input a string z and
generates key vectors {t;}, as follows. It chooses ¢ uniform secret vectors s; € Zj for
i € [¢] and ¢ + 1 noise vectors e; € Zg* for i € [+ 1]. It also chooses a short secret
vector s € Zq and sets key vectors as follows:

Sl'B1,11+§'P1,1+91 le:].,
Vie[l+1], ti=4¢-s,.1-Ci_14, , +8;-Biy +e ifl<i<l{,
—Sy - Cg@.z +epy1 ifi =4¢+1.

In words, the randomization component (likewise, cancellation component) added in
the ith key vector ((i + 1)th key vector) is an LWE sample where the public matrix
used depends on the ith bit of input x. Looking ahead, choosing the “randomization”
matrices depending on the string would assert that the ciphertext matrices cannot
be arbitrarily combined to learn meaningful terms.

Normal encryption. The normal (public key) encryption algorithm simply samples
2¢ random short matrices {U; 3}, , as Uy p <= X ™, where x is the noise distribution
chosen during setup.

Secret key encryption. Moving on to the secret key encryption algorithm, on input
the master secret key and a branching program BP = ({m’b}i,b ,acc, rej), it samples
low norm matrices {Uj, ;} as follows. It first chooses two “program” matrices for the
last level £+ 1 as Pyj1,rej = 0™ and Pryq acc Zg*™. That is, for the accepting
state, it chooses a random program matrix, and for the rejecting state it sets the
matrix to be all zeros. Next, using the ith trapdoor T; (included in the master secret
key) it runs the EnSamplePre algorithm to sample the ciphertext (transition) matrices
U0, U, 1 such that they map/target matrix M; as follows:

Bio Cio Bio 3

B U $ B u Ci
Pia| 220 1 Pitir o) | | Pii| 2808 [P
Pi,w Pi—&-l,m,o(w) Pi,w Pi—&-l,m,l(w)

5Technically, the last key vector will only remove the previous randomization component. It

doesn’t add a new randomization term.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-104 R. GOYAL, V. KOPPULA, AND B. WATERS

Here we use “$” to denote a uniformly random n x m matrix of appropriate dimension.
In words, the structure we enforce here is that the matrix U, targets the B;; ran-
domization matrix to its C;; counterpart, and the B; ;_; randomization matrix to a
random matrix. Additionally, U;; encodes the information about transition function
m; » by targeting the level ¢ program matrices to their level 41 counterparts per 7; p.
Thus, from the perspective of both correctness and security, this guarantees that a
key vector t; for some input x must be combined with ciphertext component U; ,,, as
otherwise the randomization matrix would be mapped to a random matrix, thereby
destroying the underlying structure.

Decryption. First, let us focus on decrypting a secret key encryption of branch-
ing program BP using a secret key {t;}, corresponding to an input z. Intuitively,
one could visualize the matrices {Ui,O,Ui,l}i in the ciphertext as “encodings” of
the branching program state transition functions ; ¢, m; 1, respectively. Therefore,
decrypting the ciphertext using a secret key for some input z will be analogous to
evaluating the branching programs BP on input x directly. Recall that we assumed
(for ease of exposition) that the branching programs are read-once, and input bits
are read sequentially in ascending order. Thus, the first input bit z; is read at level
1. Then evaluation of BP at level 1 would map the state st; = 1 at level 1 to state
sty = 15, (1) at level 2. Analogously, the decryptor can compute

t1-Uip +to = (s51-Big +5-Pi1) Uiy +to
~ 51-Cig +5 Pog, +t2

~ 5 -C15, +5-Pog, + (=51-C15, +52-Baa,)

~ 89-Bog, +5-Pog,.

In general, if the program state at level ¢ during execution is st;, then the decryptor
will accumulate the term of the form s; - B, 5, +5- P; &, by successively summing and
multiplying secret key and ciphertext components as

(. .. ((tl . ULI1 + tz) . U2,x2 + ts) St ti) .

This can be verified as follows. We know that the bit read at level 7 is x;, and thus the
new state at level 4 + 1 will be st;11 = m; 5, (st;). Now the accumulated sum-product
during decryption will be

(i Big, +5 - Pigt;,) - Ujg, +tipg

%+ S - Pi+175ti+1 + (_/S@/el,{z—’— Si+1 - Bi+1,zz‘+1)

X Sji1 Bi+1,Ii+1 +s- Pi+1,sti+1~

Q

Therefore, the invariant is maintained. Continuing in this way, the decryptor can
iteratively compute the sum-product combining all key and ciphertext components.
Note that (by definition) adding in the (¢4 1)th key component ¢, does not introduce
a term like sg11-Byy1,4,,, to the sum-product; thus the accumulated term at the top
will be & 5-Pyy1 s, ,, Where sty is either acc or rej depending on BP(xz). Finally, the
decryptor simply checks whether the norm of the final sum-product term is small or
not. Recall that the program matrix for the last level corresponding to the rejecting
state is set to be all zeros, i.e., Pyiq rej = 0"*™. Therefore, if BP(z) = 0, then the
norm of the final sum-product term will be small, which the decryptor can test and
output 0. Otherwise, with high probability the final sum-product term will be large
and it outputs 1.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-105

By the above analysis, correctness follows in the case where ciphertext is a secret
key encryption. The correctness of decryption when the ciphertext is a normal (public
key) ciphertext follows from the fact that the ciphertext matrices {U; o, U; 1}, are
independently sampled random short matrices.

0-query security. To prove O-query security of our construction, we need to argue
that it satisfies both function indistinguishability as well as accept indistinguishability
properties. We start by proving the function indistinguishability security. Recall that
in the 0-query function indistinguishability security game, an adversary submits two
branching programs, BP(O), BP(l)7 and is allowed to make a polynomial number of key
queries such that for each queried input z, BP”) (z) = BP()(z) (i.e., every secret key
given out has same output on both the challenge programs). The adversary receives
secret key encryption of either BP(® or BP(I), and its goal is to distinguish between
them.

Although the full security proof is technically involved, the main ideas behind our
proof are very intuitive. Before diving into the proof structure, we point out that the
construction described above has to be slightly modified for proving security. Below
we describe our proof ideas as well as discuss the modifications required along the
way.

At a high level, our idea is to “hardwire” the output of the challenge branching
programs in every secret key given to the adversary. Note that the security definition
states that both challenge programs must evaluate to the same value on all queried
inputs, and thus we only need to hardwire a single value in each key. For ease of
exposition, assume that the adversary makes exactly one secret key query. (In the
general case of polynomially many key queries, the proof proceeds by hardwiring the
level 1 components in all secret keys, followed by level 2 hardwiring, and so on.) Let
{Uiu},, be the challenge ciphertext, and let {t;}; be the secret key computed by
the challenger. Our hardwiring strategy works as follows. We start by rewriting the
second secret key vector to in terms of t; as follows:

to=—51-Ciz, +52-Bag, +e

=—51-Big, Uiz +52:-Bag, +€

=—51-Big Uiz —5 - Pog, +5-Pog, +52-Bo,, + e

=—(51"B1y, +5-P11) U1y, +5-Pog, +52-Boy, + €2

=—(t1—e1) Uy +5 -Pog, +52-Boy, +eo.
Here sty is the state of the challenge branching program encrypted (after one step is
executed). Now in the above term, we can smudge the term e; - U ,, by appropriately
choosing the noise distributions, i.e., ex > e; - U1,m1.6 (Note that since we require
smudging here, thus the LWE modulus ¢ needs to be superpolynomial in the lattice
dimension.) Thus, the second key component can be indistinguishably computed as
follows without requiring any explicit knowledge of the C; ,, matrix:

t1 =s1-Bi,, +5 P11 +ey,

—(t1 —e1) Uy, +5-Paog, Smudging ty = —t1-Uig +5-Paog,
_ omudeing -

to =
2 +52-Bog, + €2 +82-Bag, +ea.

Next, we use the row removal property of our enhanced trapdoor sampling algo-
rithms to remove the By g, Bq,; rows from the first matrix M; and instead sample

SIf we keep on smudging this way, our noise distributions will have to grow by an exponential

factor at each step. In the main body, we show how to avoid this by a better smudging argument.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-106 R. GOYAL, V. KOPPULA, AND B. WATERS

these randomly. To understand why this can be done, recall that in the actual con-
struction the encryptor needs the ability to create a ciphertext for any branching
program that could be chosen even after all the keys have been distributed. That is,
the encryptor must be able to sample matrices Uy 9, U1 such that they map level
1 program matrices {P1 .}, to level 2 program matrices {Ps ,}, per some transition
functions {71 4},, as well as ensure that By ;- Uy, = Cy . Now since the keys contain
the matrices Cq 9, Cq,1 and they could be given out even before matrices U; g, Uy 1
are sampled, thus matrices B g, B1,; must be sampled together with {PM}U such
that they share a common trapdoor.

However, at this stage in the proof the challenge branching program is (selectively)
fixed ahead of any secret key queries. Therefore, in this context we can sample
matrices Uy g, Uy 1 to only map level 1 program matrices to their level 2 counterparts,
and simply set the matrices C1p as Cip = By - U and use these to compute the
secret keys. We would like to point out that in order to perform this row removal
securely, it is important that By ;- Uy 1-5 = $, that is, matrices Uy g, U1 1 map both
matrices By o, B1,; to random and uncorrelated matrices.

Now once we have removed the By o, B ; rows from the first matrix, we use the
LWE assumption to switch the first key component t; to a random vector. Note
that at this point since matrices By o, B1 1 are sampled uniformly (i.e., are no longer
sampled with trapdoor information) and secret vector sy is not used in computing the
second key component to, thus we can apply LWE to switch t; to random, where the
LWE secret is s; and the LWE public matrix will be By ;,.” Concretely, using LWE
we can perform the following switch, which essentially erases the information about
the level 1 program matrix P; ; from the secret keys, thereby rendering the program
evaluation to start from level 2 and state sty instead:

- LWE
ti=s1-Big +5-Pi1+eg ——— t1 =98,
to=—t1- Uiy +5-Pog, +52-Bog, +eo.

Now iteratively performing this hardwiring strategy (¢ times), we end up switching
all but the last key components to be random vectors. Also, the last key component
will contain the final program matrix, which is either a random matrix or a zero ma-
trix, depending on the program output. Thus, the key vectors contain no information
about the “program” matrices chosen during setup. At this point, the challenge ma-
trices {Ui’b}z}b still contain the information about the branching program encrypted
in the form of mapping between level i and ¢ + 1 “program” matrices, i.e., the state
transition functions {771'717}1'1;' Finally, to argue indistinguishability here (i.e., between
the challenge matrices) we use the target switching property of our enhanced trap-
doors. We apply a bottom-up approach to execute this change. First, note that the
level 1 program matrices do not explicitly appear anywhere, except that they are
used to sample the level 1 ciphertext matrices Uy 9, Uy 1. Thus, we can use the target
switching property to switch the targets of matrices U; o, U; ;. Observe that this
now removes the information about level 2 program matrices as well as the level 1
transition functions of challenge branching programs. Next, by the same principle, we
can perform the same target switching step for Uy o, U2 ;1 and continue so on. If we
keep on performing the target switching step this way until the top, then the challenge

“In the general case of multiple key queries the LWE public matrices will be both B1,0,B1,1 and

the LWE secret will consist of all the secret key vectors s; that are chosen independently and per
key.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-107

ciphertext will contain no information about the challenge programs (i.e., their state
transition functions), thereby completing our claim of function indistinguishability.®
This completes the first proof.

The proof of the 0-query accept indistinguishability security of our construction
is similar, but more technical due to the fact that we need to argue that the challenge
ciphertext is indistinguishable from random short matrices.

However, for our PLBE construction, the Mixed FE scheme must handle one
ciphertext query as well, and it is not clear how to prove the above construction
to be l-query secure directly. The bottleneck is the fact that in the above proof
strategy we hardwire all secret key components to match the output of the challenge
program. Now if the adversary is allowed to make a secret key encryption query,
then it is not clear how the challenger would still program the secret key vectors. To
get around this problem, we expand our system such that it consists of A pairs of
0-query subsystems. Very briefly, during encryption, the algorithm now also samples
a A-bit string tag randomly and depending on each bit of tag, it chooses one sub-
system in each pair and runs the O-query encryption for that subsystem. Now during
key generation, it (linearly) secret shares the starting program across these A pairs of
subsystems such that the same secret share is used for both subsystems in each pair.
Then it runs the 0-query key generation algorithm for all these 2\ subsystems with
their corresponding secret shares as the starting program matrices. For decryption,
the subsystems chosen during encryption are combined with their counterparts in the
secret keys, and 0-query decryption is performed in these subsystems along with a
(linear) reconstruction on top of the output. More details are provided in the main
body.?

This completes the technical overview of our construction.

Relation to recent LWE-based schemes. There have been several recent works that
have advanced the state of the art in computing branching programs on encrypted
data with the goal of reducing security to LWE or LWE-like assumptions [GGH15,
BVWW16, BV15, GKW17b, CC17, GKW17a, WZ17]. While our construction above
benefits from that lineage, we wish to briefly call out a few important distinctions.

First, from a purely mechanical perspective, the construction of our Mixed FE
scheme is structurally very different from the constructions of the aforementioned
primitives. Very briefly, in all previous constructions the evaluator multiplies a set of
matrices and sums them up to get the final output, whereas in our construction, we
do not use this “one-shot” approach for evaluation. Instead, we multiply a component
from the ciphertext with a secret key component, then add in another secret key com-
ponent, multiply this sum with another ciphertext component, and so on. Thus, our
mechanism of combining the secret key and ciphertext components is much different
than what was used in prior works.'®

8Technically, we cannot apply the target switching property here, because the target switching

property only guarantees that targets being switched are approximately mapped, whereas here we
target exactly. Therefore, we also need to add some noise in the targeted “program” matrices before
running EnSamplePre algorithm. For simplicity, we avoid this modification.

9We would like to point out that the above idea could also be used to improve the Mixed FE
construction to be g-query secure for any polynomial q. The idea will be to sample tag strings tag
from a larger alphabet instead of {0,1}. However, we only focus on 1-query security, as it is sufficient
for our result.

10 Although one can always express such a nested matrix multiplication and addition mechanism
using only a sequence of matrix multiplications with much larger (and repetitive) matrices, we point
out that the underlying structure of such matrices as well as the modified evaluation algorithm will
still be much different from those used in previous works.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-108 R. GOYAL, V. KOPPULA, AND B. WATERS

Second, we structure our proof of security to hardwire the outputs for keys one
level at a time until we hit the final output level in which we have the final outputs
hardwired but lost information about the program that got us there. In this sense at a
high level this leveled programming proof structure much more closely resembles that
of garbled circuit proofs. Thus, we need to develop new lower LW E-specific techniques
to match these goals. In contrast, works such as [BVWW16, GKW17b, GKW17a,
WZ17] have a different aim of losing all meaningful information when a secret is not
known.

1.2. Some future directions. Our construction of Mixed FE relied on the LWE
assumption and leveraged certain algebraic properties in that setting. An intriguing
question is whether there are other avenues for achieving Mixed FE. A natural path
is to build Mixed FE with a garbled circuits [Yao86] backbone. If one starts with the
bounded key functional encryption scheme of Gorbunov, Vaikuntanathan and Wee
(GVW) [GVW12] and flips [AGVW13, BS15, KMUW17] the semantics of message
and function, one can get a secret key functional encryption scheme that is secure for
an unbounded number of private keys and bounded number of ciphertexts. To make it
a Mixed FE system we would somehow connect a public key mode of encryption to the
scheme. One possible path is to use a “blinded” [BLSV17] form of garbled circuits as
the underlying 1-bounded scheme in the GVW transformation. (Building on [DG17a,
DG17b], blinded garbled circuits were recently used to give anonymous identity-based
encryption (IBE) from new assumptions). It seems possible that this approach could
lead to a scheme with the accept indistinguishability property if no encryption oracle
queries are allowed. However, there appears to be technical difficulties in making a
public key—generated ciphertext indistinguishable from a master secret key—generated
ciphertext when the attacker gets oracle queries. That being said, we believe that a
garbled circuit approach remains a plausible future direction.

We remark that even if a garbled circuit approach becomes possible, the require-
ment for an ABE scheme supporting circuits will still indirectly require the LWE
assumption given the state of the art. In addition, we expect that our LWE toolkit
and underlying construction ideas will have future value in any case.

A second interesting direction is whether there are other applications that can
leverage a functional encryption system that has a bimodal encryption where the
public key and master secret key support different spaces of messages or functions. In
our Mixed FE system the public key only supported the always accept function, but
there could conceivably be other variants of interest.

Finally, a natural open question is to construct traitor tracing schemes with public
traceability from LWE. Currently, it is unclear if achieving public tracing is an easier
task than building general public key functional encryption.

1.3. Additional related work. Our transformation from Mixed FE to PLBE
using ABE has some high-level similarities to the predicate encryption scheme of Gor-
bunov, Vaikuntanathan, and Wee [GVW15] and the single-key functional encryption
scheme of Goldwasser et al. [GKP+13]. In both these cases, we have specialized
encryption schemes whose ciphertext serves as an attribute for the ABE scheme.

Concurrent /follow-up works. Concurrent to our work, Chen, Vaikuntanathan,
and Wee [CVW18D] also proposed a simplified variant of our row-removal and target
switching properties. They used these properties for constructing lockable obfusca-
tion schemes for nonpermutation branching programs. However, their properties are
weaker than the ones we define/construct in this work. In particular, their construc-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-109

tions do not allow the adversary to make any preimage queries. Following our work,
Chen et al. [CVW+18a] presented simpler constructions of Mixed FE.

Connections to differential privacy. Dwork et al. [DNR+09] showed that
existence of collusion resistant traitor tracing schemes implies hardness results for
efficient differentially private [DMNS06] data sanitization. In particular, they showed
that if there exists a traitor tracing scheme with ciphertexts of size s(A, n), then there
exist a database of size n and a query class Q of size 2°(*™ such that it is hard to
sanitize the database D for query class Q in a differentially private manner. Com-
bining our LWE-based construction with the result of Dwork et al., we get an LWE-
based hardness result for differentially private sanitization with query space of size
2poly(Mlogn) We note that Goyal et al. [GKRW17] and Kowalczyk et al. [KMUW17]
recently achieved better differential privacy impossibility results from the security of
bilinear map assumptions and one-way functions, respectively.

Weaker notions of traitor tracing. Since the notion of traitor tracing (TT)
was first proposed [CFN94], several relaxed variants have been studied in order to
achieve short ciphertexts. The first natural relaxation is the bounded collusion setting,
where we have an a priori bound k that is fixed during setup, and security is guaranteed
only if the adversary gets at most k secret keys. Collusion bounded systems can either
be constructed via combinatorial tools [CFN94, SW98, CFNP00, SSW01, PST06,
BPO08] or be algebraic and constructed under different cryptographic assumptions such
as DDH [KD98, BF99, KY02a, KY02b], bilinear DDH [CPP05, ADM+07, FNP07],
and LWE [LPSS14]. Recently, Agrawal et al. [ABP+17] showed a transformation from
inner product functional encryption to collusion-bounded TT, resulting in algebraic
constructions based on various assumptions such as DCR, DDH, and LWE. In all the
above works, the size of the ciphertext grows with the collusion bound.

The second relaxation is called threshold TT, introduced by [NP98, CFNPO0O].
In a threshold TT scheme, a threshold § € [0,1] is chosen during setup, and the
traceability guarantee only holds if the decoder box works with probability at least
d. Boneh and Naor [BNO8] showed a threshold TT scheme where the ciphertexts
have size O()\) and the secret keys have size O(n?)/§?). While this scheme achieves
collusion resistance, the system must be configured with a specific 6 value, and once
it is set, one will not necessarily be able to identify a traitor from a box D that works
with smaller probability. In practice, it can be tricky to ascertain what threshold will
actually be okay. This is because the encrypted messages could have redundancy, so
even a decoder box with a small fraction of success might allow an attacker to learn
the underlying message.

Finally, in a recent work, Goyal et al. [GKRW17] introduced a new relaxation
called risky traitor tracing. In this notion, the scheme is fully collusion resistant (and
does not have the threshold restriction as above). Instead, the probability of tracing
a traitor, given a successful decoding box, can be substantially smaller than 1. For
instance, [GKRW17] showed a bilinear maps—based construction where the ciphertext
size grows as A - k, but the trace algorithm has only a k/n chance of catching a
traitor. The authors show that this weaker notion is actually enough to achieve
strong hardness results for differential privacy [DMNS06, DNR+09] and also argue
that in a certain “continuous use” setting, the probability of tracing can be amplified
back up to one. However, in general settings, the Goyal et al. tradeoff between the
probability of catching a traitor and the size of ciphertexts might be undesirable.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-110 R. GOYAL, V. KOPPULA, AND B. WATERS

1.4. Organization. In section 2, we present the preliminaries required for this
work. Next, in section 3, we have the traitor tracing and PLBE definitions. This
includes the new decoder-based and ¢-query PLBE definitions. In section 4, we show
how 1-query PLBE implies decoder-based PLBE, and how decoder-based PLBE suf-
fices for constructing TT schemes. Therefore, the problem of constructing a TT
scheme reduces to the problem of constructing a 1-query PLBE scheme. For this,
we introduce a new primitive called Mixed FE in section 5. In section 6, we show
how to construct 1-query PLBE using Mixed FE and ABE (the syntax and security
definitions of ABE can be found in Appendix A). Finally, in section 8, we present our
Mixed FE construction (before presenting the Mixed FE construction, in section 7 we
present new lattice tools which are required for our construction).

2. Preliminaries.

Notation. Let PPT denote probabilistic polynomial time. We will use lowercase
bold letters for vectors (e.g., v) and uppercase bold letters for matrices (e.g., A), and
we assume all vectors are row vectors. The jth row of a matrix A is denoted by A[j].
For any integer ¢ > 2, we let Z, denote the ring of integers modulo q. We represent
Zq as integers in the range (—¢/2,¢q/2]. For a vector v, we let ||v|| denote its £, norm
and ||v||, denote its infinity norm. Similarly, for matrices, ||-|| and ||-||,, denote their
{5 and infinity norms, respectively.

We denote the set of all positive integers up to n as [n] := {1,...,n}. Throughout
this paper, unless specified, all polynomials we consider are positive polynomials. Also,
we represent each finite set on integers S C N as an ordered set S = {iy,ia,...,ip},
ie., i; < i for every 1 < j < k < n. For any finite set S, < S denotes a
uniformly random element x from the set S. Similarly, for any distribution D, x < D
denotes an element & drawn from distribution D. The distribution D" is used to
represent a distribution over vectors of n components, where each component is drawn
independently from the distribution D.

For two distributions X, Y, over a finite domain 2, the statistical distance between
X and Y is defined as SD(X,Y) = 1Y en | X(w) = Y(w)]. A family of distributions
D, = {Di(N)}, and Dy = {D3(\)},, parameterized by security parameter A, are
said to be statistically indistinguishable, represented by D; =~ Ds, if there exists
a negligible function negl(-) such that, for all A € N, SD(D1(A), D2(A)) < negl(N).
For a family of distributions D = {D(M)}, over the integers, and integer bounds
B = {B(\)},, we say that D is B-bounded if Pr[jz| < B(\) : < D(\)] = 1. In
words, a B-bounded distribution is supported only on the range [—B, B]. Below we
state the “smudging” lemma as it appears in prior works.

LEMMA 2.1 (Smudging Lemma [AJW11, Lemma 2.1, paraphrased]). Let By, By
be two polynomials over the integers, and let D = {D(\)}, be any Bi-bounded dis-
tribution family. Let U = {U(M\)}, and U(N) denote the uniform distribution over
integers [—Ba(\), B2(A\)]. The family of distributions D and U is statistically indis-
tinguishable, D + U = U, if there exists a negligible function negl(-) such that for all
A €N, B1(A\)/Bz(A) < negl()\).

2.1. Lattice preliminaries. An m-dimensional lattice £ is a discrete additive
subgroup of R™. Given positive integers n,m,q and a matrix A € Zy*™, we let
AJF(A) denote the lattice {x € Z™ : A-x" = 0" mod q}. For u € Z7, we let
A2(A) denote the coset {x € Z™ : A-xT =u” mod ¢}.

Discrete Gaussians. Let o be any positive real number. The Gaussian dis-
tribution D, with parameter ¢ is defined by the probability distribution function

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-111

po(x) = exp(—m ||x||* /o). For any set £ C R™, define p, (L) = 3., po(x). The
discrete Gaussian distribution D, , over £ with parameter o is defined by the prob-
ability distribution function pz »(x) = po(x)/ps(L) for all x € L.

The following lemma (Lemma 4.4 of [MR07], [GPV08]) shows that if the param-
eter o of a discrete Gaussian distribution is small, then any vector drawn from this
distribution will be short (with high probability).

LEMMA 2.2. Let m,n,q be positive integers with m > n, ¢ > 2, and 0 = Q(n)
Then

Pr(x|| > Vm -0 :x < Dro: A Z7*™ L = A;‘(A)] < negl(n).

Truncated discrete Gaussians. TNhe truncated discrete Gaussian distribution

over Z'™ with parameter o, denoted by Dzm ., is the same as the discrete Gaussian
distribution Dzm , except it outputs 0 whenever the /. norm exceeds /m - 0. Note

that, by definition, 2527“, is v/m - o-bounded. Also, by the above lemma we get that
DZmp' g Dzm’g.

2.1.1. Learning with errors. The learning with errors (LWE) problem was
introduced by Regev [Reg05], who showed that solving LWE on average is as hard
as quantumly solving several standard lattice-based problems in the worst case. The
LWE assumption states that no polynomial time adversary can distinguish between
the following oracles. In one case, the oracle chooses a uniformly random secret s,
and for each query, it chooses a vector a uniformly at random, scalar e from a noise
distribution, and outputs (a,s-a” +e¢). In the second case, the oracle simply outputs a
uniformly random vector a together with a uniformly random scalar u. Regev showed
that if there exists a polynomial time adversary that can break the LWE assumption,
then there exists a polynomial time quantum algorithm that can solve some hard
lattice problems in the worst case.

Several works also explored different variants of the LWE assumption, where the
secret vector s, public vectors a, and noise are drawn from different distributions.
In this work, we will be using two of these variants. First, we will be using the
LWE version with short secrets (also known as the normal form), introduced by
Applebaum et al. [ACPS09]. In this variant, the secret vector s is also drawn from
the noise distribution. Applebaum et al. showed that this version is as hard as the
LWE problem if the modulus is p® for some prime p and integer e. This was later
generalized to all moduli by Brakerski et al. [BLP+13]. The second variant, which
was proposed by Boneh et al. [BLMR13], allows the public vectors a to be chosen
from the noise distribution as well. Boneh et al. showed that this version of LWE is
as hard as standard LWE.

We will first present the LWE assumption in a general framework,!! which cap-
tures the standard LWE, LWE with short secrets, and LWE with short public vectors.
In this framework, we will have an explicit security parameter A\, and the other pa-
rameters are allowed to grow as a function of the security parameter.

DEFINITION 2.3 (generalized learning with errors). Fiz any polynomial n(-), func-
tion q(-), secret distribution n(-), public vector distribution ¢(-), and noise distribution

1 Canetti and Chen [CC17] proposed the general LWE problem. However, their version requires

the public vectors to be sampled from a uniform distribution, whereas we require the public vectors
to be sampled from nonuniform distributions. Also, it is possible to generalize our version further.
Here, we present the minimal generalization that suffices for our work.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-112 R. GOYAL, V. KOPPULA, AND B. WATERS

x(+), where n : N = N, ¢ : N = N and for each A € N, n(\) and ¢(\) are distribu-
tions over ZZ(())\‘)) and x(\) is a distribution over Z. We say that the generalized LWE
assumption GLWE,, 4, 4. holds if for any PPT adversary A, there exists a negligible
function negl(-) such that for all X\ € N, ¢ = q(X), n =n(\), n =n(N), ¢ = ¢(N), and

x = x(\), Advgi_‘{,@i"x(}\) < negl()), where
Advgi_‘\z,(,%f"lx()\) =Pr [A%0(1) =1:s n} —Pr {AO"‘()(V‘ = 1)})

and oracles OF(), O2() are defined as follows: oracle OF() has s € Zi hardwired, and
on each query it chooses a <— ¢, e < x and outputs (a, s-al + e mod q), and oracle
O2() (on each query) chooses a < ¢, u < Z, and outputs (a,u).

We now present different variants of the LWE assumption and discuss the param-
eters for which they are believed to be secure.

ASSUMPTION 1 (learning with errors). Let n : N — N be a polynomial, and let q :
N— N, 0:N = R" be functions. The LWE,, , , assumption states that GLWE,, 4., 6.y

holds, where n(X\), ¢(A) are uniform distributions over ZZ((:)), and X(A) = Dz (-

The following theorem shows that breaking LWE is as hard as solving hard lattice
problems. In particular, given the current state of the art of lattice problems, the LWE
assumption is believed to be true for any polynomial n(-) and functions ¢(-), o(-) such
that for all A € N, n = n(}\), ¢ = g(\), 0 = o(A), the following constraints are
satisfied: 0 < 0 < ¢ < 2", n-q/o < 2" (for any constant € < 1), and o > 2,/n.

THEOREM 2.4 (LWE to worst-case lattice problem [Reg05, Pei09, BLP+13]). Fiz
any polynomial n(-) and functions q(-),o(-) such that for all A\ € N, n = n(\), ¢ =
qgA), c=0(N),0<0<qg<2" and o > 2\/n. For every A € N, let n = n(\) and
¢ = ¢()) denote the uniform distributions over Zy and x = x(\) = Dz,. If there
exist a PPT algorithm A and a nonnegligible function e 4(-) such that for all A € N,
AdvTGL;_(\J,Q,"E’f"lX()\) > ea(N), then there exist a PPT algorithm B and a nonnegligible
function eg(-) such that for all X € N and all instances X of GapSVP B can
solve X with probability at least eg(N).

n,n-q/o’

AssuMPTION 2 (LWE with short secrets). Let n : N — N be a polynomial,
and let ¢ : N = N, 0 : N — R" be functions. The LWE-ss,, , , assumption states

that GLWE,, 4.4, holds, where ¢(X) is the uniform distributions over ZZ((;\‘)), n(A\) =
Dynir) /3o (n): and X(A) = Dzo(n)-

The next theorem shows that breaking LWE with short secrets is as hard as
breaking (standard) LWE, provided 0 < a(\) < ¢(\) < 2" and ()\) > \.

THEOREM 2.5 (LWE with short secrets [ACPS09, Lemma 2], [BLP+13, Lemma
2.12)). Fiz any polynomial n(-) and functions q(-),o(-) such that for all X € N, n =
n(\), ¢ = q\), 0 = c(\), 0 <0 < q< 2" and 0 > \'2 For every X\ € N, let
n(A\) = DZEL"/%’ let p(A) be the uniform distribution over Zy, and let X(\) = Dz . If
there exist a PPT algorithm A and a nonnegligible function € o(-) such that for all X €
N, Advgi_'{',(,%fglx()\) > e4(A), then there exist a PPT algorithm B and a nonnegligible

function eg(-) such that for all A € N, Advgl’f{,ﬂ’%x()\) > ep(N).

128trictly speaking, it is only required that o > /Inn + w(1) In \.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-113

AssuMPTION 3 (LWE with short public vectors). Let n: N — N be a polynomial,
let g : N — N, 0:N—= R be functions, and let {x(\)}ren be the family of distri-
butions over Z. The LWE-sp,, , , \ assumption states that GLWE,, 4 45 holds, where

n(A) is the uniform distributions over ZZ((;‘)), P(A) = Dznon) o0 -

The last theorem in this sequence shows a reduction from LWE with short public
vectors to (standard) LWE with a lower dimension.

THEOREM 2.6 (LWE with short public vectors [BLMR13, Corollary 4.6]). Fiz
any polynomials n(-),k(-) and functions q(-),o(:) such that for all A € N, n = n(\),
qg=qN), k=k\),c=0),0<0<qg<2" k>6nlogq, and o > y/nlogg.
For every A € N, let ¢(\) = DZ;;J, and let n(A\), @' (A) denote the uniform distribu-
tions over Z’; and Zy, respectively. Now for any distribution xX(A\) over Z, if there
exist a PPT algorithm A and a nonnegligible function e 4(-) such that for all A € N,
Adv’éf\,’v"éfgtx()\) > e4(N), then there exist a PPT algorithm B and a nonnegligible func-

tion ep(-) such that for all X € N, Advgi_%{,g’g,’x()\) > ep(N).

2.1.2. Lattice trapdoors. Lattices with trapdoors are lattices that are indis-
tinguishable from randomly chosen lattices, but have certain “trapdoors” that allow
efficient solutions to hard lattice problems.

A trapdoor lattice sampler [Ajt99, GPV08] consists of algorithms TrapGen and
SamplePre with the following syntax and properties:

e TrapGen(1™,1™,q) — (A, Ta): The lattice generation algorithm is a random-
ized algorithm that takes as input the matrix dimensions n,m, modulus g,
and outputs a matrix A € Zy*™ together with a trapdoor Th.

e SamplePre(A,Ta,0,u) — s: The presampling algorithm takes as input a
matrix A, trapdoor Ta, a vector u € Zg, and a parameter o € R (which
determines the length of the output vectors).'® It outputs a vector s € Ly
such that A -s” = u” and [|s]| < /m - 0.

We require these algorithms to satisfy the following well-sampledness properties.
While these properties are similar in spirit to the ones in previous works on lattice
trapdoors [Ajt99, GPV08, MP12], there are a couple of differences. First, we pres-
ent these properties as a security game between a challenger and a computationally
bounded adversary.'* Second, we separate out the dimensions of the matrix and the
security parameter.

The first property (well-sampledness of matrix) states that the matrix output by
TrapGen should look like a uniformly random matrix.

DEFINITION 2.7 (well-sampledness of matrix). Fiz any function ¢ : N — N. A
pair of trapdoor generation algorithms T = (TrapGen,SamplePre) is said to satisfy
the g-well-sampledness of matrix property if for any stateful PPT adversary A, there

exists a negligible function negl(-) such that for all X € N, q = ¢q()), pr?f’fix’q()\) =

Pr[l « Expt?iﬂx’q(k)] < 1/2 + negl(A), where Expt?i&rix’q(/\) is defined in Figure 1.

The next property states that the preimage of a uniformly random vector/matrix
is indistinguishable from a matrix with entries drawn from Gaussian distribution.

13Note that the preimage sampling algorithm could be easily generalized to generate preimages

of matrices in Zng (for any k) by independently running SamplePre algorithm on each column of
the matrix. Throughout this work, we overload the notation by directly giving matrices U € ZZLXk
as inputs to the SamplePre algorithm.

14Tn some cases, we can consider computationally unbounded adversaries if the inputs of the
adversary are polynomially bounded.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-114 R. GOYAL, V. KOPPULA, AND B. WATERS

Expt?iﬁfix’q(/\)
1. Adversary A receives input 1* and sends 1™, 1™ such that m > nlog g(\)+
A
2. Challenger chooses b + {0,1} and (Ag,Ta) + TrapGen(1™,1™,¢q) and
Ay < Zg*™. Tt sends Ay to the adversary.
3. A outputs its guess b’. The experiment outputs 1 iff b =b.

matrix,q

F1c. 1. Ezperiment Expty 4

DEFINITION 2.8 (preimage sampling). Fiz any functions ¢ : N — N and o : N —
N. A pair of trapdoor generation algorithms T = (TrapGen,SamplePre) is said to
satisfy the (q,o)-preimage sampling property if for any stateful PPT adversary A,
there exists a negligible function negl(-) such that for all X € N, ¢ = q(\), 0 = o(N),
prlﬁﬂﬂmg’q’g()\) = Pr[l «+ Expt%’f’img’q’o()\)] < 1/2 + negl(\), where Expt?img’q’a()\) is
defined in Figure 2.

Exptg’f’img’q’” N

1. Adversary A receives input 1* and sends 17,1™,1% such that o(\) >
vn-logq-logm+ XA and m > nlogq(\) + A.

2. Challenger chooses b < {0,1} and (A,Ta) « TrapGen(1™,1™,q); Z <+
ZL’;X’“, Uqy « SamplePre(A,Ta,0,Z) and U; + DZL;’“. It sends (A, Uy)
to the adversary.

3. A outputs its guess b’. The experiment outputs 1 iff b =b'.

. reimg,q,o
F1G. 2. Ezperiment Expty S %7,

These properties are satisfied by the trapdoor-based preimage samplers of [GPV08,
MP12].

2.2. Branching programs. Branching programs are a model of computation
used to capture space-bounded computations [BDFP86, Bar86]. In this work, we will
be working with leveled branching programs.

DEFINITION 2.9 (leveled branching program). A leveled branching program of
length L, width w, and input space {0,1}" consists of a sequence of 2L functions
b [w] = [w] for 1 <i < L,be{0,1}, an input selection function inp : [L] — [n],
an accepting state acc € [w], and a rejection state rej € [w]. The starting state sto
is set to be 1 without loss of generality. The branching program evaluation on input
x € {0,1}™ proceeds as follows:

e Fori=1to L,
— Let pos = inp(i) and b = xpos. Compute st; = m; p(st;_1).
e [fst; = acc, output 1. If sty = rej, output 0, else output L.

Additionally, we also define a notion of “input-circling” (leveled) branching pro-
grams. In an input-circling branching program, the input bits are read sequentially
in ascending order (i.e., 1,...,n,1,...). Thus, the input-selector function inp is fixed.

Additionally, each bit must be read the same number of times. Formally, we describe
this as follows.

DEFINITION 2.10. A branching program BP = ({m: [w] — [w]}ie[L] be{0,1}
acc € [w],rej € [w]) with input space {0,1}" is said to be a input-circling branch-
ing program if for all i < L, inp(i) = ((¢ — 1) mod n) + 1, and L mod n = 0.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-115

Any leveled branching program of length L and input space {0, 1}" can be easily
transformed to an input-circling branching program of length n - L. Here, we work
with classes of branching programs that all share the same input selector function
inp(-) which is known during setup. The input selector as described above is just
one possibility, and we stick with it for simplicity. Note that we do not require the
transition functions m;; to be permutations.

3. Traitor tracing. In this section, we will first present the syntax and security
definitions for traitor tracing schemes. Next, we will introduce the notion of pri-
vate linear broadcast encryption (PLBE), and finally show that PLBE implies traitor
tracing.

The notion of traitor tracing was introduced by Chor, Fiat, and Naor [CFN94]. In
a T'T scheme for n parties, the setup algorithm chooses a master secret key, a public
key, and n secret keys for the users. Encryption can be performed using the public key,
and each user can decrypt the ciphertext using his/her secret key. There is also a trace
algorithm that, given black box access to a successful pirate decoding box, can catch
the traitors who colluded to create the pirate decoding box. Traditional definitions of
traitor tracing [CFN94, BSW06] required that the trace algorithm must catch a traitor
if a pirate decoding box can decrypt an encryption of a random ciphertext. In this
work, we will be using the indistinguishability-based definition introduced by Goyal
et al. [GKRW17], which is itself based on the definition introduced by Nishimaki,
Wichs, and Zhandry [NWZ16]. In this definition, the trace algorithm must catch a
traitor even if the pirate decoder box can only distinguish between encryptions of two
adversarially chosen messages.

3.1. Public key traitor tracing. A traitor tracing scheme 7 with message
space M = { M}, consists of four PPT algorithms, Setup, Enc, Dec, and Trace, with
the following syntax:

e Setup(1*,1™) — (msk, pk, (ski, . ..,sky)) . The setup algorithm takes as input
the security parameter A and number of users n and outputs a master secret
key msk, a public key pk, and n secret keys sky, sko, . .., sky,.

e Enc(pk,m € M) — ct. The encryption algorithm takes as input a public key
pk and message m € M, and outputs a ciphertext ct.

e Dec(sk, ct) — y. The decryption algorithm takes as input a secret key sk and
ciphertext ct and outputs y € M, U{L}.

) TraceD(msk7 1Y, mg,m1) — T. The trace algorithm has oracle access to a
program D; it takes as input a master secret key msk, parameter y (in unary),
and two messages mg, my. It outputs a set T C {1,2,...,n}.

Correctness. Informally, a correctness requirement states that decrypting an
encryption of message m using any one of the valid secret keys must output m.
Formally, a T'T scheme is said to be correct if there exists a negligible function negl(-)
such that for all A € N, n € N, m € M, and i € {1,2,...,n}, the following holds:

(msk, pk, {ski}ic[n)) = Setup(1*,17)

Pr | Dec(sk;,ct) =m : ct < Enc(pk, m)

> 1 —negl(A).

3.1.1. Security. There are two security requirements for a T'T scheme. First, it
is required that it satisfy IND-CPA security. Second, it is required that the tracing
algorithm must (almost always) correctly trace at least one key used to create a
pirate decoding box (whenever the pirate box successfully decrypts with noticeable
probability) and also should not falsely accuse any user of cheating. The formal
definitions are provided below.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-116 R. GOYAL, V. KOPPULA, AND B. WATERS

DEFINITION 3.1 (IND-CPA security). A TT scheme T = (Setup, Enc, Dec, Trace)
is IND-CPA secure if for every stateful PPT adversary A, there exists a megligible
function negl(+) such that for all A € N, the following holds:

1" < A(1M);b « {0,1};
Pr |A(ct) =b : (msk,pk, (ski,...,sky)) < Setup(1*,17); | <
(mg, my) < A(pk); ct < Enc(pk,my)

+ negl(\).

N | =

DEFINITION 3.2 (ind-secure traitor tracing). Let T = (Setup, Enc, Dec, Trace) be
a TT scheme. For any nonnegligible function €(-) and PPT adversary A, consider
the experiment Expt—TTLE()\) defined in Figure 3.

Experiment Expt-TTRE()\)
1"« A(1Y).
(msk, pk, (ski, ... ,sks)) < Setup(1*,1™).
(D, mo, m1) < A (pk).
o T Trace®? (msk, 1Y/ mg,my).
Here, O(-) is an oracle that has {ski},., hardwired, takes as input an index
1 € [n], and outputs sk;. Let S be the set of indices queried by .A.

Fic. 3. Ezperiment Expt-TT.

Based on the above experiment, we now define the following (probabilistic) events
and the corresponding probabilities (which are functions of A, parameterized by A, €):
e Good-Decoder: Pr[D(ct) =b : b+« {0,1},ct < Enc(pk,mp)] > 1/2 + €(A).
Pr-G-D 4,(\) = Pr[Good-Decoder].
o Cor-Tr: TAOAT CS.
Pr-Cor-Tr 4 (A) = Pr[Cor-Tr].
o Fal-Tr: T'¢ S.
Pr-Fal-Tr 4 () = Pr[Fal-Tr].
A TT scheme T is said to be ind-secure if for every PPT adversary A, polynomial
q(+), and nonnegligible function €(-), there exist negligible functions negl;(-), negl,(-)
such that for all X € N satisfying e(A) > 1/q(\) the following hold:

Pr-Fal-Tr 4 (A\) < mnegly (), Pr-Cor-Tra(A) > Pr-G-D4 () — negly(N).

3.2. Private linear broadcast encryption. Next, we present the notion of
private linear broadcast encryption (PLBE). PLBE was introduced by Boneh, Sahai,
and Waters [BSWO06] as a framework for constructing TT schemes. There are four
algorithms in a PLBE scheme: Setup, Enc, Enc-index, Dec. The setup algorithm out-
puts a master secret key, public parameters, and n secret keys, one for each user in
the system. The public key encryption algorithm can be used to encrypt messages,
and ciphertexts can be decrypted using one of the n secret keys via the decryption
algorithm. In addition to these algorithms, there is also a special trace-encryption
algorithm. This algorithm, which uses the master secret key, can be used to en-
crypt messages to any index ¢ € {0,1,...,n}. A secret key for user j can decrypt a
ciphertext for index i only if j > 1.

Boneh, Sahai, and Waters [BSWO06] proposed three security definitions for PLBE
schemes. The first one requires that special encryptions to index 0 must be indistin-
guishable from public key encryptions, even if the adversary has all the secret keys.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-117

The next security requirement is that special encryptions to index ¢ — 1 must be in-
distinguishable from special encryptions to index ¢ if the adversary does not have a
secret key for user i. Finally, the third security property is that special encryption of
message mg to index n must be indistinguishable from special encryption of message
m1 to index n, even if the adversary has all secret keys. However, as discussed in
section 1.1, the BSW definitions of PLBE do not suffice for constructing T'T schemes.
Here, we first provide the PLBE syntax, and then present the decoder-based and
query-based security definitions of PLBE.

Syntax. A PLBE scheme PLBE = (Setup, Enc, Enc-index, Dec) for message space
M = {M,}, has the following syntax:

e Setup(1*,1™) — (msk, pp, (ski, . ..,sky,)). The setup algorithm takes as input
the security parameter A and number of users n and outputs public parame-
ters pp, master secret key msk, and n secret keys (sky,ska, ..., sky,).

e Enc(pp,m) — ct. The encryption algorithm takes as input public parameters
pp and message m € M, and outputs a ciphertext ct.

e Enc-index(msk,m,i € {0,1,2,...,n}) — ct. The index-encryption algorithm
takes as input the master secret key msk, message m € My, and index
i€{0,1,2,...,n} and outputs a ciphertext ct.

e Dec(sk, ct) — y. The decryption algorithm takes as input a secret key sk and
ciphertext ct and outputs y € M, U {L}.

Correctness. A PLBE scheme is said to be correct if there exist negligible func-
tions p1(+), pa(-), pa(-) such that forall A e Nyn € N;m € My, and i € {0,1,...,n},
j€{1,2,...,n}, the following hold:

v . (msk,pp, {ski}repn)) < Setup(1*,1™) _

Pr [Dec(sk],ct) =m: ct < Enc(pp,m) >1—p(N),
o ' . (msk, pp, {ski}repn]) + Setup(1*,1™) B
i<j=Pr [Dec(skyct) =m: ct < Enc-index(msk, m, 1) > 1 — pa(A),
. . _ . (msk,pp, {ski}reln)) < Setup(1*,1™) B
i>7j=Pr [Dec(skj,ct) =1: ct < Enc-index(msk, m, 1) >1— pus(N).

3.2.1. g-bounded PLBE security. In this section we extend the existing
PLBE security definitions by allowing the adversary to make a bounded number of
index-encryption queries. Below we describe them in detail.

DEFINITION 3.3 (¢-bounded normal hiding security). Let g(-) be any fized poly-
nomial. A PLBE scheme is said to satisfy q-bounded normal hiding security if for
every stateful PPT adversary A, there exists a negligible function negl(-) such that for
every A € N, pi{mml()\) < 1+ negl(N), where p?é(nrml()\) is defined as follows:

1" A(1Y);
(pp7 mSkv {skZ}WG[n]) « Setup(l/\7]_n)7
Pr AEnc—index(msk,~,0) (Ctb) =b : me AEnc—index(msk,~,0) (pp, {Skz}ze[n]) : ,
b+ {0,1}; ctg < Enc(pp,m);
cty; < Enc-index(msk, m, 0)

where A can make at most q(\) queries to the Enc-index(msk,-,0) oracle. Note that
here A is only allowed to query for ciphertexts corresponding to index 0.

DEFINITION 3.4 (g-bounded index hiding security). Let q(-) be any fized polyno-
mial. A PLBE scheme is said to satisfy q-bounded index hiding security if for every

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-118 R. GOYAL, V. KOPPULA, AND B. WATERS

stateful PPT adversary A, there exists a negligible function negl(-) such that for ev-
ery A € N and every index i* € {0,...,n—1}, p:ﬁ'"d()\,i*) < 1 + negl()), where
pL" (N,) is defined as follows:

1" A(1Y);
Pr AEnc—index(msk,~,~) (Ct) —p - (ppa mSka {Skz}ze[n}) — Setup(l)\7 1n)7

m <« AEnc—index(msk,'.g) (pp7 {Ski}ie{l,...,n}\{i*+1});
b+ {0,1}; ct «+ Enc-index(msk, m,i* + b)

where A can make at most q(\) queries to the Enc-index(msk, -, -) oracle. Note that
here A can query the encryption oracle on arbitrary message-index pairs.

DEFINITION 3.5 (g-bounded message hiding security). Let q(-) be any fized poly-
nomial. A PLBE scheme is said to satisfy q-bounded message hiding security if for
every stateful PPT adversary A, there exists a negligible function negl(-) such that for
every A € N, p%™E(X) < 1 + negl(X), where p%™E(N) is defined as follows:

1"+ A(1M);
A 1n
Enc-index(msk,-,-) _ . (ppa mSkv {Skz}ze[n}) — Setup(l) 1)7
PriA (ct)=b (mo,m1) < ABne-index(msk,-,) (PP, {Ski}ie[n]);
b+ {0,1}; ct < Enc-index(msk, my, n)

where A can make at most q(\) queries to the Enc-index(msk, -, -) oracle. Note that
here A can query the encryption oracle on arbitrary message-index pairs.

3.2.2. Decoder-based PLBE security. In this section we introduce new de-
coder-based security definitions for PLBE schemes. We start by formally defining the
notion of good distinguishers for PLBE schemes w.r.t. different encryption modes.

PLBE distinguishers. For any v € [—1/2,1/2], PPT algorithm D, A\,n € N,
params = (pp, msk, (ski,...,sky,)) ¢+ Setup(1*,1™), and message m € M, we say D

is 'y—Dist;;r;';,?s for m if

b+ {0,1}; ctg < Enc(pp,m);

—_p - > -
Pr {D(Ctb) b ct; < Enc-index(msk, m, 0) } =317

where the probability is taken over the random coins used during encryption, the
random coins of D, and the choice of b.

Similarly, for any ¢ € {0,...,n — 1} we can define D to be 'y—Disté",fgi‘S for m if
b+ {0,1}; 1
_p . > _
Pr {D(Ctb) b ct < Enc-index(msk, m, i + b)]) T
Finally, we also define D to be y-Dist,,,ms for messages mg, my if
. b {0,1}; 1
Pr {D(Ctb) =b: ct + Enc-index(msk, my, n) } 2 2 T

DEFINITION 3.6 (decoder-based normal hiding security). A PLBE scheme is said
to satisfy decoder-based mnormal hiding security if for any PPT adversary A, non-
negligible function v(-), and polynomial q(-), there exists a negligible function negl(-)
such that for all X € N satisfying v(A) > 1/q(N), p:jf’cv’?;ml()\) < negl(\), where

pf:;":;ml()\) is defined as follows:

1™ A(1Y);
Pr | D is y(\)-Distyoni. for m : params = (pp, msk, {sk;};c[n)) < Setup(1*,17);

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-119

DEFINITION 3.7 (decoder-based index hiding security). A PLBE scheme is said to
satisfy decoder-based index hiding security if for any PPT adversary A, nonnegligible
function ~(-), and polynomial q(-) there exists a negligible function negl(-) such that
for all X € N satisfying v(\) > 1/q()\) and i* € {0,...,n—1}, p%<"(X,i*) < negl(\),

A,q
where pf:’i’/"';d()\, i*) is defined as follows:

L 17+ A(1M);
Pr | D is y(\)-Distyiik' form : params = (pp, msk, {sk;}ic[n]) < Setup(1*,17);
(D,m) + A (pp, {ski}ic(1, .np\{i-+1})

DEFINITION 3.8 (decoder-based message hiding security). A PLBE scheme is said
to satisfy decoder-based message hiding security if for any PPT adversary A, non-
negligible function (), and polynomial q(-) there exists a negligible function negl(-)
such that for all X € N satisfying v(A) > 1/q(N), pffi’/rzsg()\) < negl(\), where

P(j:fv’tzsg(A) is defined as follows:

1"+ A(1M);
params < Setup(1*,17);
params = (pp, msk, {sk; }icn)) ;
(D, mg,m1) < A (pp, {ski}icn])

4. Traitor tracing from 1-bounded secure PLBE. In this section, we show
how to construct TT schemes from PLBE schemes that achieve 1-bounded security.
Our construction is divided into two components. First, we show that PLBE schemes
that achieve 1-bounded security also satisfy decoder-based security. Later, we show
how to construct a TT scheme from PLBE schemes that achieves decoder-based se-
curity.

4.1. Decoder-based PLBE from 1-bounded secure PLBE. Let PLBE =
(Setup, Enc, Enc-index, Dec) be a PLBE scheme that satisfies 1-bounded security. We
will show that the same scheme also satisfies decoder-based security.

LEMMA 4.1. If PLBE satisfies 1-bounded normal hiding security (Definition 3.3),
then it also satisfies decoder-based normal hiding security (Definition 3.6).

Pr | D is y(\)-Distparams for mo,m; :

Proof. Suppose, on the contrary, there exists a PPT adversary A, nonnegligible
function ~(-), polynomials ¢(),r(-), and an infinite sequence of security parameters
A = {\i},cn such that for all A € A, v(A) > 1/¢(\) and pif;’/?;ml(/\) > 1/r(N\). We
will use A that plays the 1-bounded normal hiding security game to build a PPT
reduction algorithm B that plays the decoder-based normal hiding security game as
follows.

For any A € N, the reduction algorithm first receives 1" from A, which it forwards
to the challenger. It then receives pp and n secret keys sk, . .., sk, from the challenger,
which it forwards to A. The adversary A outputs D and m. The reduction algorithm
then queries the challenger for an encryption of m for index 0 (recall that the reduction
algorithm is allowed one query). Let the challenger’s response be cty. It then computes
cty < Enc(pp,m). Next, it sends challenge message m and receives ct*, which is either
a normal encryption of m or an encryption of m for index 0. The reduction algorithm
chooses a random bit 8 < {0,1} and checks if D(ctg) = D(ct*). If so, it outputs
b’ = B3; otherwise it outputs b’ = 1 — 8 as its guess.

Let us now analyze B’s advantage. We need to show that there exist polynomials
g5(-) and an infinite sequence Az = {\;}; such that for all A\ € Ag, pg"™ > 1/2 +

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-120 R. GOYAL, V. KOPPULA, AND B. WATERS

1/qs(\). Let Agp = A and g5(+) = ¢*(*) - r(+)/2. Fix any XA € A, and let v = y()\), ¢ =
q(A), r = r(X). Let b denote the 1-bounded challenger’s choice (recall the challenger
chooses b + {0,1}; if b = 0, it sends a normal encryption, else it sends an encryption
to index 0). First, let us fix params = (pp, msk, {sk;},.,) < Setup(1*,1") and
(D,m) < A(pp, {ski} <,) such that

b+ {0,1}; ctg < Enc(pp,m); 1

PriD(cty) =0 : ct; + Enc-index(msk, m, 0) ~2 + Otparams, D,m

for some params,D,m € [—1/2,1/2]. Next, consider the following probability:

b {0,1}; 8« {0, 1}

ctfy < Enc(pp, m); ct} < Enc-index(msk, m, 0);
cty < Enc(pp, m); ct; + Enc-index(msk, m, 0);
b = B if D(ct)) = D(ctg), else b’ =1—f

/.
Pparams,D,m = Prib=10b":

Since the decoder D is run on ciphertexts ct}, ctg independently, we could rewrite the
above probability as follows:

" b+ {0,1};ctt « Enc(pp,m);
Pparams,D,m =Pr |:D(Ctb) =b: { } 0 (pp m) :|

cty + Enc-index(msk, m,0)

_ 5. B+ {0,1};cto Enc(pp,m);
x Pr [D(Ctﬁ) =B ct; < Enc-index(msk, m, 0)
" . b« {0,1};ctg < Enc(pp, m);
+Pr {D(Ctb) 7 b ct} < Enc-index(msk, m, 0)
B« {0,1};cto < Enc(pp, m);
cty + Enc-index(msk, m,0)

x Pr [D(ctﬂ) # 3

b+ {0,1}; cty < Enc(pp, m); 2
ct; + Enc-index(msk, m, 0)

b+ {0,1}; cty + Enc(pp, m); 2
cty < Enc-index(msk, m,0)

1 > /1 2
(2 + aparams,D,m) + (2 - aparams,D,m)

1
7+2.a2

2 params,D,m*

=Pr {D(ctb) =b:

+Pr {D(ctb) #b:

: . onrml,0
Thus, we get that for any decoder D that is 0-Disty e for message m,

Pparams,D,m — 1/2 +2- agarams,D,m Z 1/2 +2- (52.

Also, since aﬁarams’D’m > 0, we get that for every decoder D, pparams,p,m > 1/2.

nrml,0
params

Therefore, since the adversary A outputs a 1/¢-Dist box with probability at

1,nrml

least 1/r, we get that the reduction algorithm B’s winning probability DB (as
defined in Definition 3.3) is

st (10 2)+ (1-2) (3),
Bn =, \2 " ¢ T 2
L,
2 r.¢
This concludes our proof. 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-121

LEMMA 4.2. If PLBE satisfies 1-bounded index hiding security (Definition 3.4),
then it also satisfies decoder-based index hiding security (Definition 3.7).

The proof of this lemma is identical to the proof of Lemma 4.1, except that the
reduction algorithm queries for either a special encryption of m for index ¢ or a special
encryption of m for index i + 1 (depending on 8 < {0,1}).

LEMMA 4.3. If PLBE satisfies 1-bounded message hiding security (Definition 3.5),
then it also satisfies decoder-based message hiding security (Definition 3.8).

The proof of this lemma is identical to the proof of Lemma 4.1, except that the
reduction algorithm queries for either a special encryption of mg for index n or a
special encryption of m; for index n (depending on 8 «+ {0,1}).

4.2. Traitor tracing from decoder-based PLBE. Consider a PLBE scheme
PLBE = (PLBE.Setup, PLBE.Enc, PLBE.Enc-index, PLBE.Dec) with decoder-based se-
curity. We will use PLBE to construct a TT scheme T = (Setup, Enc, Dec, Trace) as
follows. The construction is identical to the transformation in [BSWO06]; however, the
security proof provided in [BSWO06] was not correct. Concretely, to argue correctness
of tracing they incorrectly leveraged the indistinguishability-based security of the un-
derlying PLBE scheme. We show that the same transformation could be proven to
satisfy correct tracing if one starts with a PLBE scheme that achieves decoder-based
security.

Setup(1*,1™): The setup algorithm samples parameters as (pp, msk, (ski, ..., sky))
< PLBE.Setup(1*,17). The public parameters are pp, the master secret key
is msk, and the n secret keys are (sky,...,sky).

Enc(pp,m): The encryption algorithm outputs ct « PLBE.Enc(pp, m).

Dec(sk, ct): The decryption algorithm outputs PLBE.Dec(sk, ct).

TraceD(msk, 1Y, mg,m1): Let e =1/y and W = X\ (n-y)2. For i = 0 to n, the trace
algorithm does the following;:

1. It first sets count; = 0. For j =1 to W, it does the following:
(a) It chooses a bit b; ; «— {0,1} and sets ct; ; - Enc-index(msk, my, 7).
If D(ct; ;) = b; j, it sets count; = count; + 1.
2. Tt sets p; = count;/W.
The trace algorithm outputs every index i € {1,2,...,n} such that p;_; —p; >
€/4n.

Correctness. This follows directly from the first correctness property of the
PLBE scheme.

4.2.1. IND-CPA security. We would like to point out that the scheme is IND-
CPA secure even if PLBE only satisfies 0-bounded security. In other words, we do not
need PLBE to achieve stronger decoder-based security. Thus, the proof of IND-CPA
security is identical to that provided in [BSWO06]. Below we provide a high level
sketch.

THEOREM 4.4. Assuming the PLBE scheme PLBE = (Setup, Enc, Enc-index, Dec)
satisfies the security properties in Definitions 3.6, 3.7, and 3.8, the traitor tracing
scheme described above is IND-CPA secure (Definition 3.1).

Proof. We will construct a sequence of 2n + 2 hybrid experiments to prove IND-
CPA security. The first experiment, Hybrid Hy, is exactly the IND-CPA game.

Hybrid Hy. In this experiment, the challenger sends public parameters pp, re-
ceives mg, my from A, and sends ct < Enc(pp,mg) to A.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-122 R. GOYAL, V. KOPPULA, AND B. WATERS

Hybrid H, (for ¢ < n,b € {0,1}). This experiment is identical to the IND-
CPA experiment, except that the adversary, after sending challenge messages mg, m1,
receives ct <— Enc-index(msk, 7, my).

Hybrid H;. In this experiment, the challenger sends public parameters pp, re-
ceives mg, my from A, and sends ct < Enc(pp,m1) to A.

For any PPT adversary A, let pa ,(-) be a function of A that denotes the prob-
ability of A outputting 0 in H,. Note that p4,o — pa,:1 is the advantage of A in the
IND-CPA security game.

Cram 4.5. Assuming PLBE satisfies Definition 3.6, for any PPT adversary A,
there exists a negligible function such that for all A € N andb € {0,1}, [paps—paop| <
negl(\).

This follows from decoder-based indistinguishability of normal and 0-index en-
cryptions (Definition 3.6) of PLBE.

CLAM 4.6. Assuming PLBE satisfies Definition 3.7, for any PPT adversary A,
there exists a negligible function such that for all A € N, b € {0,1}, and i € [n],
PAi-1,6 — PAib < negl(A).

This follows from the decoder-based index hiding security notion (Definition 3.7)
of PLBE.

CLAIM 4.7. Assuming PLBE satisfies Definition 3.8, for any PPT adversary A,
there exists a negligible function such that for all A € N, pano —Dan1 < negl(A).

This follows from the decoder-based message hiding security notion (Definition 3.8)
of PLBE.

From the above claims, it follows that p40 — pa,1 is bounded by a negligible
function. O

4.2.2. Correctness of tracing. Next, we will show that the false trace proba-
bility is bounded by a negligible function, and the correct trace probability is close to
the probability of A outputting an e-successful decoding box.

First, we will introduce some notation. Given any pirate decoder box D and
messages mg, mp, for any ¢ € {0,1,...,n}, let

p? =Pr[D(ct) =b : b+ {0,1},ct + Enc-index(msk, i, m;)],

where the probability is taken over random coins of decoder D as well as the random-
ness used during encryption. Similarly, let p? = = Pr[D(ct) =b : b+ {0,1},ct «
Enc(msk, my)].

False trace probability. First, we show that the tracing algorithm never falsely
accuses any user. Formally, we prove the following.

THEOREM 4.8. For every PPT adversary A, polynomial q(-), and nonnegligible
function €(+), there exists a negligible function negl(-) such that for all A € N satisfying

e(A) > 1/q(N),
Pr-Fal-Tr 4. .(A\) < negl()),

where Pr-Fal-Tr 4 ((-) is as defined in Definition 3.2.

Proof. We will skip the dependence of €(-) on A for simplicity of notation. Let S
be the set of keys queried and D the decoder output by A. For i € {1,2,...,n}, we
define events Diff-Adv;” : p? ,—pP > ¢/8n and Diff-Adv” : V/,c(y .y g Diff-Advy.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-123

First, note that the probability of the event false trace can be rewritten as follows
by conditioning on the events defined above:

Pr[Fal-Tr] < Pr[Fal-Tr | Diff-Adv”] + Y~ Prli ¢ S A Diff-Adv;’].
ie{l,...,n}

We will show that each of these terms is bounded by a negligible function.

LEMMA 4.9. For every PPT adversary A there exists a negligible function negly (-)
such that for all A € N,

Pr[Fal-Tr | Diff-Adv”] < negl, (\).

Proof. The proof of this lemma follows from Chernoff bounds. Let n be the
number of users chosen by the adversary A. Fix any ¢ € {1,...,n} \ S and decode
box D. Let us consider the probability that the output of Trace algorithm includes
i, given that DifF—Adsz does not occur. Note that the tracing algorithm includes ¢ in
the traitor set if the estimates p;_; and p; differ by at least e/4n.

Let X ; denote the random variable that is 1 if D(cty ;) = by ; for k € {i — 1,1}
and j € {1,2,..., W} (here the randomness is over the choice of by ; and the random-
ness used by Enc-index and D) and Z; ; = X;_1,; — X; ;. Then (EJV‘; X)W = py
and p; = E[Z; ;] = pP | —pP.

Since the Z;’s are independent samples, using Chernoff bounds, we get that
Pr>>; Z;/W > 2p,] < 2-0W) . Using this, we can write that for every i € {1,...,n}\

S, Pr[Fal-Tr A € T'| Diff-Adv”] < 279 where T denotes the set of indices output
by Trace. Finally, using a union bound, we get that

Pr[Fal-Tr | Diff-Adv”] < n- 279 = negl, (A).

LEMMA 4.10. Assuming PLBE is a secure PLBE scheme satisfying the decoder-
based indez hiding security property (Definition 3.7), for every PPT adversary A, poly-
nomial q(-), and nonnegligible function €(-), there exists a negligible function negly(+)
such that for all A € N satisfying e(A) > 1/q(\) and i € {1,2,...,n},

Pr[i ¢ S A Diff-Adv”] < negl,()),

where n is the number of users, S is the set of key queries, and D is the decoder box
sent by A.

Proof. Suppose, on the contrary, there exists a PPT adversary A, polynomial ¢(-),
and nonnegligible functions €(-), d(-) such that for all A € N satisfying e(A) > 1/qg(N),
there exists an i* € {1,2,...,n} such that Pr[i* ¢ S A Diff-AdvZ] > §(\). Then we
can use A to build a PPT reduction algorithm B that breaks the index hiding security
property of PLBE.

The reduction algorithm B first receives 1™ from the adversary, which it forwards
to the challenger. It then receives the PLBE public parameters pp from the chal-
lenger, which it sends to A. Next, it chooses an index i « {1,2,...,n} and sends it
to the PLBE challenger.'® It receives secret keys ski,...,skj_1,5Kit1,...,5k,. The
adversary A queries for secret keys. If A queries for i, B sends an empty decoding

15Tn other words, the reduction algorithm randomly guesses the index hiding challenger with

which it interacts.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-124 R. GOYAL, V. KOPPULA, AND B. WATERS

box to the PLBE challenger. Otherwise, on receiving query j # ¢ from A, it sends sk;
to A. After all queries, the adversary sends a decoding box D and messages mg, mq
to B. The reduction algorithm chooses a uniformly random bit &’ < {0,1} and sends
D, my to the PLBE challenger.

Let pfb = Pr[D(ct) = b : ct < Enc-index(msk, j, ms)], where the probability is
taken over the coins of decoder D and the encryption algorithm. Recall that we have
Pr[i* ¢ S A Diff-Adv;«] > §(A). Therefore, we can write that

Pr(i* ¢ SA((pP_10+pR_11)/2— 0P +p21)/2) > €/8n] > 6(N)
= Pr [1 =" Ni" ¢ SN ((P£1,0 +p£111)/2 - (Pif,)o +p51)/2) > 6/8”] > d(A)/n.
Thus, we can also write that there exists a bit b such that
Pri =" Ai* ¢S/\(p£1}b—pfb) > ¢/8n] > 6(N\)/n. 0

Now since the reduction algorithm B simply randomly guesses this bit b, thus we have
that with probability at least §/2n, B outputs a decoding box D and a message my
such that D can distinguish between encryptions of m; to indices i — 1 and ¢ with
advantage at least €¢/8n. Thus, the lemma follows.

From the above lemmas, it follows that the probability of false trace is at most
negl; (A) + n - negly(N), and thus the theorem follows.

Correct trace probability. Now we show that whenever the adversary outputs
a good decoder, then with all but negligible probability the tracing algorithm outputs a
nonempty set 7. Combining this with Theorem 4.8, we get that the tracing algorithm
correctly traces. Formally, we show the following.

THEOREM 4.11. For every PPT adversary A, polynomial q(-), and nonnegligible
function €(+), there exists a negligible function negl() such that for all A € N satisfying
e(A) > 1/q(N),

Pr-Cor-Tr . (A) > Pr-G-D 4.(A\) — negl(A),

where Pr-Cor-Tr 4 () and Pr-G-D 4 () are as defined in Definition 3.2.

Proof. Let us start by analyzing the probability that the tracing algorithm out-
puts a nonempty set 1. First, we know that if event Good-Decoder occurs, then
pP > 1/2+ €. Next, let S be the set of indices i € {1,...,n} such that p? , —pP >
¢/2n. Using Chernoff bounds, we get that

(4.1) VieS, Pr[pP, —pP <e/dn] <27°W =negl; (V).

Note that by message hiding security of the underlying PLBE scheme, we have that
pP < 1/2+4negly()) for some negligible function negly(+). Also, by indistinguishability
of normal and index 0 ciphertexts, we have that pP — pl’ < negly(\) for some
negligible function negly(-). Thus, p¥ — p2 > € — negly(A\) — negly(A) > €/2. Given
this, we can conclude that the set S as defined above (i.e., fori € S, p? | —pP > ¢/2n)
must be nonempty whenever event Good-Decoder occurs. Combining this with (4.1),
we get that

Pr[T # 0] > (1 —negl; (X)) - Pr-G-D g (A) > Pr-G-D 4 ¢(A) — negl(\).
Finally, combining with Theorem 4.8, we get that
Pr-Cor-Tr4,c(A) > Pr-G-D 4 ((A) — negl()).
This concludes the proof. 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-125

5. Mixed functional encryption. A functional encryption scheme consists
of a setup, an encryption, a key generation, and a decryption algorithm. The setup
algorithm takes the security parameter and functionality index as inputs, and outputs
public parameters and a master secret key. The encryption algorithm uses the public
parameters to encrypt a message, while the key generation algorithm uses the master
secret key to compute a secret key corresponding to a function. The decryption
algorithm takes as input a ciphertext and a secret key, and outputs the function
evaluation on the message.

In this work, we introduce the notion of Mixed Functional Encryption (Mixed
FE). A Mixed FE scheme is defined as a dual of the standard functional encryption
(i.e., ciphertext-policy) in which the secrets keys are associated with a message, and
ciphertexts are associated with (boolean) functions. Additionally, in a Mixed FE
system, there are two encryption algorithms: Enc and SK-Enc. The normal encryption
algorithm Enc takes as input only the public parameters and outputs an encryption of
a “canonical” always-accepting function. The “secret key” encryption algorithm, on
the other hand, takes as input the master secret key and a function f and encrypts f.
The decryption algorithm in a Mixed FE system works similarly to that in standard
functional encryption; that is, it outputs the evaluation of encrypted function f on
the message m associated with the secret key. Below we provide a formal definition.

Consider function classes F = {F,}, and message spaces M = { M}, where f :
M, — {0,1} for each f € F,.'® A Mixed FE scheme Mixed-FE, for function classes
F and message spaces M, consists of five polytime algorithms (Setup, Enc, SK-Enc,
KeyGen, Dec) with the following syntax:

e Setup(1*,1%) — (pp, msk). The setup algorithm takes as input the security
parameter A and functionality index x and outputs the public parameters pp
and the master secret key msk.

e Enc(pp) — ct. The normal encryption algorithm takes as input public pa-
rameters pp and outputs a ciphertext ct.

e SK-Enc(msk, f) — ct. The secret key encryption algorithm takes as input
master secret key msk and a function f € F,. It outputs a ciphertext ct.

e KeyGen(msk, m) — sk,,. The key generation algorithm takes as input master
secret key msk and a message/input m € M. It outputs a secret key skyy,.

e Dec(sky,,ct) — {0,1}. The decryption algorithm takes as input a secret key
sk, and a ciphertext ct, and it outputs a single bit.

Correctness. A Mixed FE scheme is said to be correct if there exist negligible
functions negl, (+), negly(+) such that for all A\, x € N and for every f € F,, m € M,,
the following hold:

(pp, msk) < Setup(1*,1%);
sk, < KeyGen(msk, m); ct < Enc(pp)
(pp, msk) « Setup(1*,1%);
Pr | Dec(sko,ct) = f(m) : sky, < KeyGen(msk, m); >1—negly(N).
ct < SK-Enc(msk, f)

Pr | Dec(sky,,ct) =1: > 1 —negl, (),

Security. Informally, for security we require that no PPT adversary should be
able to distinguish between secret key encryptions of two functions fy and f7 if for
every key in its possession, the output of fy, f1 is identical. Additionally, we also

16The following definition could be easily generalized for multibit function classes, but for sim-

plicity we stick to boolean functions.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-126 R. GOYAL, V. KOPPULA, AND B. WATERS

require that it should be hard to distinguish between normal encryptions and secret
key encryptions of the special always-accepting function. In this work, we are only
interested in Mixed FE schemes that guarantee security against adversaries which
make a bounded number of secret key encryption queries. Below we formally define
it.

DEFINITION 5.1 (g-bounded function indistinguishability). Let q(-) be any fized
polynomial. A Mized FE scheme Mixed-FE = (Setup, Enc, SK-Enc, KeyGen, Dec)
is said to satisfy q-bounded function indistinguishability security if for every stateful

PPT adversary A there exists a negligible function negl(-), such that for every A € N
the following holds:

1% A(1%); (pp, msk) < Setup(1*,17);
Pr AKeyGen(msk,~),SK—Enc(msk,~)(Ct) —p- (J('(O)7 f(l)) « AKeyGen(msk,'),SK—Enc(msk,')(pp)

b+ {0,1}; ct « SK-Enc(msk, f(®)

)

< 2 4 neg(n),

N =

where
o A can make at most q(\) queries to SK-Enc(msk,) oracle; and
o cvery secret key query m made by adversary A to the KeyGen(msk,-) oracle
must satisfy the condition that O (m) = f)(m).

We also define a restricted version of the function indistinguishability game in
which the adversary must declare its challenge functions (f(©), f(1)) at the beginning,
and it must make all its ¢ encryption queries before any of its key generation queries.

DEFINITION 5.2 (g-bounded restricted function indistinguishability). Let ¢(-) be
any fized polynomial. A Mized FE scheme Mixed-FE = (Setup, Enc, SK-Enc, KeyGen,
Dec) is said to satisfy g-bounded selective function indistinguishability security if for
every stateful PPT adversary A there exists a negligible function negl(-), such that for
every A € N the following holds:

(1%, O, F) = A1)
Pr AKeyGen(msk,‘),SK—Enc(msk,‘)(pp7Ct) —b-: (pp7 msk) — Setup(l)‘, 1/@);
b+ {0,1}; ct + SK-Enc(msk, o)

< 5 +negl(N),

DO =

where
o A can make at most q(\) queries to the SK-Enc(msk, -) oracle;
o cvery secret key query m made by adversary A to the KeyGen(msk,) oracle
must satisfy the condition that f©©(m) = £ (m); and
o A must make all (at most g(\)) SK-Enc(msk, -) oracle queries before making
any query to the KeyGen(msk, -) oracle.

DEFINITION 5.3 (¢-bounded accept indistinguishability). Let ¢(-) be any fixed
polynomial. A Mized FE scheme Mixed-FE = (Setup, Enc, SK-Enc, KeyGen, Dec)
is said to satisfy q-bounded accept indistinguishability security if for every stateful
PPT adversary A there exists a negligible function negl(-), such that for every A € N

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-127

the following holds:

1% < A(1*); (pp, msk) < Setup(1*,1%);
f* (_AKeyGen(msk,~),SK—Enc(msk,~)(pp);
b« {0,1}; cty + SK-Enc(msk, f*);

cto < Enc(pp)

Pr AKeyGen(msk,'),SK—Enc(msk,~)(Ctb) —b-

< = + negl()),

M| —

where
o A can make at most q queries to SK-Enc(msk, -) oracle; and
o cvery secret key query m made by adversary A to the KeyGen(msk,-) oracle
must satisfy the condition that f*(m) = 1.

Additionally, we also define a restricted notion of the accept indistinguishability
property for Mixed FE schemes, in which the adversary must declare its challenge
function f* at the beginning, and it must make all its ¢ encryption queries before any
of its key generation queries, and it is restricted to only making ciphertext queries for
functions f such that all queried f’s evaluate to 1 on all (secret key) queried messages
m. Below we formally describe it.

DEFINITION 5.4 (g-bounded restricted accept indistinguishability). Let g(-) be
any fized polynomial. A Mized FE scheme Mixed-FE = (Setup, Enc, SK-Enc, KeyGen,
Dec) is said to satisfy q-bounded restricted accept indistinguishability security if for
every stateful PPT adversary A there exists a negligible function negl(-), such that for
every A € N the following holds:

(1%, f*) < A(1Y);
. (pp, msk) < Setup(1*,1%);
PPocto) =02y {0,1}; cty < SK-Enc(msk, f*);
ctg < Enc(pp)

Pr AKeyGen(msk,~),SK—Enc(msk,~)(

< 5 +negl(N),

DO =

where

o A can make at most q(\) queries to SK-Enc(msk, -) oracle;

e cvery secret key query m made by adversary A to the KeyGen(msk,) oracle
must satisfy the condition that f*(m) = 1 as well as f(m) = 1 for every
ciphertext query f made by A to the SK-Enc(msk, -) oracle; and

o A must make all (at most g(\)) SK-Enc(msk, -) oracle queries before making
any query to the KeyGen(msk, -) oracle.

6. Construction of PLBE from Mixed FE and ABE. In this section, we
construct a private linear broadcast encryption (PLBE) scheme from any key-policy
attribute-based encryption (KP-ABE) scheme and a Mixed FE scheme. Our con-
struction inherits the message space of the underlying KP-ABE scheme. Also, we
show that if the underlying ABE scheme is selectively secure, and the Mixed FE
scheme satisfies 1-bounded restricted function and accept indistinguishability proper-
ties, then our PLBE scheme satisfies 1-bounded normal, index, and message hiding
security properties.

Outline. The idea is to use the ABE system to encrypt a message with attributes
being set to either the “normal” ciphertext (i.e., encryption of the canonical always-
accepting function) or a special (secret key) ciphertext which encrypts the comparison

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-128 R. GOYAL, V. KOPPULA, AND B. WATERS

function depending on the type of PLBE encryption operation being performed. Each
user’s secret key will be an ABE private key. Here the ABE private key is generated
for the Mixed FE decryption circuit in which a Mixed FE secret key, corresponding
to the user’s index, is hardwired. The high level intuition is that when the attribute
is a normal functional encryption ciphertext, then all keys decrypt it to 1; thus any
user with an appropriate ABE key could perform the decryption. Also, when the
attribute is set to be a special ciphertext (that encrypts comparison with some index
1), then only those users whose indices are larger than the threshold i set can perform
the decryption. For proving security, we rely on the fact that special ciphertexts
are indistinguishable to any adversary that does not have distinguishing secret keys.
Below we provide a detailed overview.

The PLBE setup algorithm starts by sampling an ABE key pair (abe.pp, abe.msk)
and a Mixed FE key pair (Mixed.pp, Mixed.msk). To generate the private key for the
ith user, it first generates a Mixed FE secret key Mixed.sk; for message i, and later
computes an ABE key abe.sk; for predicate Mixed.Dec(Mixed.sk;,-), i.e., Mixed-FE
decryption circuit with key Mixed.sk; hardwired. For PLBE normal encryption, one
simply computes ciphertext ct as an encryption of message m under attributes ctatr,
where ct,y, is a Mixed FE normal ciphertext. For encrypting a message to index ¢, the
encryption algorithm works identically, except now the attribute is set to be a special
ciphertext corresponding to function greater than i. Finally, the PLBE decryption is
simply the ABE decryption algorithm.

Now correctness follows directly from the correctness of ABE and functional en-
cryption schemes. For proving security, the main idea is as follows: Suppose there
exists an adversary that can distinguish between PLBE normal ciphertexts and index
0 ciphertexts; then it can be used to distinguish between Mixed FE normal cipher-
texts and secret key ciphertexts encrypting function greater than 0 (note that this is
an always-accepting function). In other words, such an attack can be used to break
the restricted accept indistinguishability property of the Mixed FE scheme. Similarly,
we can also reduce a successful attack on the index hiding, or message hiding security
to an attacker on restricted function indistinguishability of Mixed FE or ABE security,
respectively. Below we describe our construction PLBE = (Setup, Enc, Enc-index, Dec)
for message spaces {M,}, in detail.

The following construction only achieves the statistical notion of correctness. In
Appendix B, we provide an alternate construction that achieves perfect correctness
from the same assumptions.

6.1. Construction. Let ABE = (ABE.Setup, ABE.Enc, ABE.KeyGen, ABE.Dec)
be a KP-ABE scheme for a set of attribute spaces {X;}, , predicate classes {C,},., and
message spaces {M,},, and let Mixed-FE = (Mixed.Setup, Mixed.Enc, Mixed.SK-Enc,
Mixed.KeyGen, Mixed.Dec) be a Mixed FE scheme for function classes {F,}, and
message space {Z.},, with ciphertexts of length ¢(\, k). For every n, let k = k(n)
be the lexicographically smallest functionality index such that every string of length
log(n) can be uniquely represented in message space Z, (i.e., {0,1}1°¢(") C 7)), and
function class F,; contains the “comparison” (>) operator. Also, let K = K(\, k) be the
lexicographically smallest functionality index such that every string of length £(\, k)
can be uniquely represented in attribute class Xz (i.e., {0, 1}4(’\”‘) C X;), and Ci
contains Mixed FE decryption circuit corresponding to functionality index x. Below
we describe our construction.

e Setup(1*,17) — (pp, msk, {Ski}i<n)' The setup algorithm runs ABE.Setup
and Mixed.Setup to generate ABE and Mixed FE public parameters and

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-129

master secret key as (abe.pp, abe.msk) < ABE.Setup(1*,1%) and (Mixed.pp,
Mixed.msk) < Mixed.Setup(1*,1%). Next, it runs Mixed.KeyGen to generate
n mixed FE secret keys Mixed.sk; as

Vi<n, Mixed.sk; + Mixed.KeyGen(Mixed.msk, 7).

Let Chixed.sk; denote the circuit Mixed.Dec(Mixed.sk;, -), i.e., Mixed-FE decryp-
tion circuit with key Mixed.sk; hardwired. Next, it computes n ABE secret
keys abe.sk; as

Vi<mn, abesk; <+ ABE.KeyGen(abe.msk, Chmixed.sk;)-

Finally, it sets pp = (abe.pp, Mixed.pp), msk = (abe.msk, Mixed.msk) and
sk; = abe.sk; for i < n.

e Enc(pp,m) — ct. Let pp = (abe.pp, Mixed.pp). The encryption algorithm
first computes cta, < Mixed.Enc(Mixed.pp). Next, it encrypts message m as
ct + ABE.Enc(abe.pp, ctatr, m), and outputs ciphertext ct.

e Enc-index(msk,m,i) — ct. Let msk = (abe.msk, Mixed.msk) and let comp;

denote the comparison function ; i, i.e., comp;(z) = 1 iff z > i. The en-
cryption algorithm first computes ctay, +— Mixed.SK-Enc(Mixed.msk, comp;).
Next, it encrypts message m as ct + ABE.Enc(abe.pp, ctawr,) and outputs
ciphertext ct.

e Dec(sk,ct) — m or L . The decryption algorithm runs ABE.Dec on ct using
key sk as y = ABE.Dec(sk, ct) and sets y as the output of decryption.

6.2. Correctness. For all \,n € N, message m € M, public parameters and
master secret keys (abe.pp,abe.msk) + ABE.Setup(1*, 1%), (Mixed.pp, Mixed.msk) <
Mixed.Setup(1*, 1%), the secret keys sk; for i < n are simply the ABE keys abe.sk; <
ABE.KeyGen(abe.msk, Cuixed.sk;). For any index ¢ < n, consider the following two
cases:

1. Normal encryption. For any ciphertext computed as ct < ABE.Enc(abe.pp,
Ctattr, M), Where Ctay, < Mixed.Enc(Mixed.pp), we know that with all but
negligible probability Mixed.Dec(Mixed.sk;, ctary) = 1 by correctness of the
Mixed FE scheme. In other words, Cwmixed.sk; (Ctatrr) = 1. Therefore, by cor-
rectness of the ABE scheme, we get that with all but negligible probability
ABE.Dec(abe.sk;, ct) = m.

2. Index encryption. For any index 0 < j < n and ciphertext ct computed
as ct «+ ABE.Enc(abe.pp, ctar,m), where ctay, < Mixed.SK-Enc(Mixed.msk,
comp;), we know that with all but negligible probability

Lifi> 7,

Mixed.Dec(Mixed.sk;, Ctater) = .
0 otherwise

by correctness of the Mixed FE scheme. In other words, Cwmixed.sk; (Ctattr) =
comp; (i) = (i > j). Therefore, by correctness of the ABE scheme, we have
that with all but negligible probability ABE.Dec(abe.sk;,ct) = m for i > j
and | otherwise.

Therefore, PLBE satisfies the PLBE correctness condition.

6.3. Security. We will now show that the scheme described above is 1-bounded
secure per Definitions 3.3, 3.4, and 3.5. In other words, it satisfies normal hiding, index
hiding, and message hiding security properties. Formally, we prove the following.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-130 R. GOYAL, V. KOPPULA, AND B. WATERS

THEOREM 6.1. If ABE = (ABE.Setup, ABE.Enc, ABE.KeyGen, ABE.Dec) is a se-
lectively secure ABE scheme for a set of attribute spaces {X},, predicate classes

{Cx},., and message spaces { M.} satisfying Definition A.2, and Mixed-FE = (Mixed.Setup,

Mixed.Enc, Mixed.SK-Enc, Mixed.KeyGen, Mixed.Dec) is a Mized FE scheme, for func-
tion classes {F.. },. and message spaces {L,},., satisfying 1-bounded restricted function
indistinguishability (Definition 5.2) and 1-bounded restricted accept indistinguishabil-
ity (Definition 5.4) properties, then PLBE = (Setup, Enc, Enc-index, Dec) is a secure
PLBE scheme, for messages spaces { M.}, , satisfying 1-bounded normal, index, and
message hiding security properties per Definitions 3.3, 3.4, and 3.5, respectively.

Our proof is divided into three components/lemmas, one for each PLBE security
property. Let A be any PPT adversary that wins the normal/index/message hiding
game with nonnegligible advantage. We argue that such an adversary must break the
security of at least one underlying primitive.

6.3.1. Normal hiding security.

LEMMA 6.2. If Mixed-FE = (Mixed.Setup, Mixed.Enc, Mixed.SK-Enc, Mixed.Dec,
Mixed.KeyGen) is a Mized FE scheme satisfying the 1-bounded restricted accept indis-
tinguishability (Definition 5.4) property, then PLBE = (Setup, Enc, Dec, Enc-index) is
a PLBE scheme satisfying the 1-bounded normal hiding security property per Defini-
tion 3.3.

Proof. Suppose there exists an adversary A such that A’s advantage in a 1-
bounded normal hiding security game is nonnegligible. We construct an algorithm B
that can distinguish normal encryptions from secret key encryptions, therefore break-
ing the 1-bounded restricted accept indistinguishability security of the Mixed FE
scheme.

The reduction algorithm B receives 1" from A. It sets k, % as in the construction
and sends s as the functionality index and comp, (i.e., comparison with 0) as its
challenge function to the Mixed FE challenger. The challenger generates a key pair
(Mixed.pp, Mixed.msk) and sends Mixed.pp as the public parameters and challenge
ciphertext ctZ,, to B. Next, B makes an encryption query for function comp,. Let the
challenger’s response be ciphertext ctyy,. B then queries the challenger on n messages
i (< n) for corresponding mixed FE secret keys and receives back keys Mixed.sk;
for 4 < n. It then chooses an ABE key pair (abe.pp,abe.msk) < ABE.Setup(1*,1%)
and computes n ABE keys as abe.sk; < ABE.KeyGen(abe.msk, Cimixed.sk;). Next, it
sends (abe.pp, Mixed.pp) and {abe.sk;},.,, as the PLBE public parameters and secret
keys to A. After receiving all the keys, A sends its challenge message m* to B, and
it can also make a single encryption query for message m on index 0. Here A is
allowed to make the encryption query either before or after challenge query. The
reduction algorithm B responds to each query as follows: B encrypts message m as
ct < ABE.Enc(abe.pp, ctattr,m) and sends ct to A as its response to the encryption
query. Also, it computes ciphertext ct* as ct* + ABE.Enc(abe.pp, ctf,,,m*) and
sends ct* as the challenge ciphertext to A. Note that A could instead have sent its
challenge query before sending the index encryption query. Also, B does not need to
query the Mixed FE challenger for answering any query at this point as it already has
ciphertexts ctattr, Cth,,. Finally, A sends its guess b to B, and B forwards b as its own
guess.

First, note that both A and B are allowed to make at most 1 index encryption
and polynomially many secret key encryption queries, respectively. Also, note that
B sends its secret key encryption query as well as its challenge query before making

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-131

making key generation queries; thus B is an admissible adversary in the 1-bounded re-
stricted accept indistinguishability game. Since A is only allowed to make encryption
queries to index 0 (in the 1-bounded normal hiding security game), thus B queries
the Mixed FE challenger on functions comp, which are always accepting functions
and therefore admissible queries per the restricted accept indistinguishability game.
Next, for each query made by A, B queries the Mixed FE challenger exactly once,
and thus all the queries are honestly and exactly answered. Finally, note that if the
Mixed FE challenger computed ct¥,, as a normal functional encryption ciphertext,
then B computes ct* as a normal PLBE ciphertext; otherwise it computes ct* as a
PLBE ciphertext for index 0. Thus, B perfectly simulates the 1-bounded normal hid-
ing security game for A. As a result, if A’s advantage is nonnegligible, then B breaks
the 1-bounded restricted accept indistinguishability security with nonnegligible ad-
vantage. This completes the proof. 0

6.3.2. Index hiding security.

LEMMA 6.3. If Mixed-FE = (Mixed.Setup, Mixed.Enc, Mixed.SK-Enc, Mixed.Dec,
Mixed.KeyGen) is a Mized FE scheme satisfying the 1-bounded restricted function in-
distinguishability (Definition 5.2) property, then PLBE = (Setup, Enc, Dec, Enc-index)
is a PLBE scheme satisfying the 1-bounded index hiding security property per Defini-
tion 3.4.

Proof. The proof of this lemma is similar to that of Lemma 6.2, with the addi-
tional modification that the reduction algorithm now guesses the indices ¢,¢* on which
the PLBE adversary makes its encryption query and challenge query, respectively, and
the reduction algorithm aborts if its guess is incorrect. This leads to a polynomial
loss (=~ 1/n?) in the reduction algorithm’s advantage.'”

Suppose there exists an adversary A such that A’s advantage in the 1-bounded
index hiding security game is nonnegligible. We construct an algorithm B that can
distinguish between two secret key encryptions, therefore breaking the 1-bounded
restricted function indistinguishability security of the Mixed FE scheme.

The reduction algorithm B receives 1" from A. It sets k,k as in the construc-
tion. Next, it guesses the challenge index i* € {0,...,n—1} and query index
i € {0,...,n}."® It sends x as the functionality index and (comp;.,comp;.) (i.e.,
comparison with ¢* and i* 4+ 1) as its challenge functions to the Mixed FE challenger.
The challenger generates a key pair (Mixed.pp, Mixed.msk) and sends Mixed.pp as the
public parameters and challenge ciphertext ctk,, to B. Next, B makes an encryp-
tion query for function comp,. Let the challenger’s response be ciphertext cta,. B
then queries the challenger on n — 1 messages j(€ [n] \ {i* + 1}) for corresponding
mixed FE secret keys and receives back keys Mixed.sk; for each j. It then chooses
an ABE key pair (abe.pp,abe.msk) - ABE.Setup(1*,1%) and computes n — 1 ABE
keys as abe.sk; <— ABE.KeyGen(abe.msk, CMixed.sk;). Next, it sends (abe.pp, Mixed.pp)
and {abe.sk; }je[n]\{i*_ﬂ} as the PLBE public parameters and secret keys to A. After

receiving all the keys, A sends its challenge message m* to B, and it can also make an

1"Due to the fact that the reduction algorithm has to guess the index, we can only extend the

current analysis to prove g-bounded PLBE (adaptive) security assuming g-bounded Mixed FE (re-
stricted) security for constant g. However, we would like to point out that one could prove g-bounded
PLBE selective security directly from g-bounded Mixed FE (restricted) security without any security
loss.

18Basically, the reduction algorithm guesses two things: First, it guesses the index hiding chal-
lenger with which A interacts and wins with nonnegligible probability; second, it guesses the index
on which adversary A queries the PLBE challenger for index encryption.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-132 R. GOYAL, V. KOPPULA, AND B. WATERS

encryption query for message m on index 7. Here A is allowed to make the encryption
query either before or after the challenge query. The reduction algorithm B proceeds
as follows. If i # i, B aborts and sends a random bit as its guess to the Mixed FE
challenger. Otherwise, it responds to each query as follows. B encrypts message m
as ct < ABE.Enc(abe.pp, ctawr, m) and sends ct to A as its response to the encryp-
tion query. Also, it computes ciphertext ct* as ct* < ABE.Enc(abe.pp, cty,,, m*) and
sends ct* as the challenge ciphertext to A. Note that A could instead have sent its
challenge query before sending the index encryption query. Also, B does not need to
query the Mixed FE challenger for answering any query at this point as it already has
ciphertexts Ctattr, Cthy,. Finally, A sends its guess b to B, and B forwards b as its own
guess.

First, note that both A and B are allowed to make at most 1 index encryption
and polynomially many secret key encryption queries, respectively. Also, note that
B sends its secret key encryption query as well as its challenge query before making
making key generation queries; thus B is an admissible adversary in the 1-bounded
restricted function indistinguishability game. Next, for each query made by A, B
queries the Mixed FE challenger exactly once, and thus all the queries are honestly
and exactly answered. Finally, note that if the Mixed FE challenger computed ct},,,
as a secret key FE ciphertext for function comp;., then B computes ct* as a PLBE
ciphertext for index i*; otherwise it computes ct* as a PLBE ciphertext for index i*+1.
Thus, B perfectly simulates the 1-bounded index hiding security game for A. Also,
since B randomly guesses the challenge index i* as well as query index i, therefore
with at least 1/n(n + 1) probability B’s guess will be correct; thus if A’s advantage
is (nonnegligible) €, then B breaks 1-bounded restricted function indistinguishability
security with (nonnegligible) advantage e/n(n + 1). This completes the proof. d

6.3.3. Message hiding security.

LEMMA 6.4. If ABE = (ABE.Setup, ABE.Enc, ABE.KeyGen, ABE.Dec) is a selec-
tively secure ABE scheme per Definition A.2, then PLBE = (Setup, Enc, Dec, Enc-index)
is a PLBE scheme satisfying the 1-bounded message hiding security property per Def-
inition 3.5.

Proof. Suppose there exists an adversary A such that A’s advantage in the 1-
bounded message hiding security game is nonnegligible. We construct an algorithm
B that can distinguish between ABE encryptions of two different messages, therefore
breaking the security of the ABE scheme.

The reduction algorithm receives 1™ from A. It sets the parameters k, k as in the
construction, and starts by choosing Mixed FE parameters as (Mixed.pp, Mixed.msk)
Mixed.Setup(1*,1%). Tt then computes ctl,,, <+ Mixed.SK-Enc(Mixed.msk, comp,,) and
sends to the ABE challenger 17 and ct¥,, as its challenge attribute. The ABE chal-
lenger generates a key pair (abe.pp,abe.sk) and sends abe.pp to B. For i < n, B
generates Mixed FE secret keys as Mixed.sk; <+ Mixed.KeyGen(Mixed.msk, i) and
sends Cwmixed.sk; as a predicate query to the ABE challenger and receives back se-
cret key abe.sk;. Next, it sends (abe.pp, Mixed.pp) and {abe.sk;},, as the PLBE
public parameters and secret keys to A. After receiving all the keys, A makes a
single index encryption query (m,j) to B. B answers it by computing ciphertexts
Ctattr Mixed.SK-Enc(Mixed.msk,compj) and ct « ABE.Enc(abe.pp, ctawr, m) and
sends ct to A as its response. A also sends two challenge messages (mg, mj) to B.
B then forwards (mg, m7) as its challenge messages to ABE challenger. Next, B for-
wards the challenge ciphertext ct* it receives from ABE challenger to A. Note that A

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-133

could instead have sent its challenge query before sending the index encryption query.
In that case, the reduction algorithm simply answers that first. Finally, A sends its
guess b to B, and B forwards b as its own guess.

First, note that the challenge attribute ctZ,, on each predicate (Cwmixed.sk;) queried
made by B evaluates to 0, with all but negligible probability. This follows from the
correctness condition of the Mixed FE system as ct},, encrypts function comp,, and
for all i < n, comp,, (i) = 0, and thus decrypting ct},, using Mixed.sk; outputs 0.
With all-but-negligible probability, reduction algorithm B is therefore an admissible
adversary in the ABE security game. Thus, B perfectly simulates the 1-bounded!?
message hiding security game for A. As a result, if A’s advantage is nonnegligible, then
B breaks ABE security with nonnegligible advantage. This completes the proof. 0O

7. A new LWE toolkit. In section 2, we defined the notion of lattice trapdoors
along with certain well-sampledness properties. Recall that using lattice trapdoors,
it is easy to compute a preimage U of any matrix Z with respect to a matrix A given
the trapdoor information generated while sampling A. For any matrix U sampled
as above, we say U targets A to matrix Z. Now the well-sampledness properties
(at a high level) state that a matrix sampled using the TrapGen algorithm looks
uniformly random when not given the trapdoor information, and a preimage matrix
that targets to a random matrix looks like a matrix with entries drawn from a Gaussian
distribution.

In this section, we introduce certain enhanced security properties for lattice trap-
doors that will be useful later in proving security of our Mixed FE system. We also
provide a generic construction of lattice trapdoors that achieves these enhanced prop-
erties from any lattice trapdoor scheme that satisfies the well-sampledness properties
described above. At a very high level, the enhanced security properties state the fol-
lowing: (1) For any matrix A that is sampled using the TrapGen algorithm, all those
rows of A which are only used to target random rows look like random rows them-
selves (when not given the trapdoor information). (2) Two preimage matrices Uy, Uy
that target a matrix A to different matrices Zy, Z; should look indistinguishable to
any adversary even when the adversary is given those rows of A where Zg,Z, are
identical. We point out that due to technical constraints in the proof of property (2)
we chose to define the enhanced properties w.r.t. matrices instead of vectors.

7.1. Enhanced lattice trapdoors. Let (EnTrapGen, EnSamplePre) be a pair of
randomized algorithms with the following syntax:
EnTrapGen(1™,1™,q) — (A, Ta). The trapdoor generation algorithm takes as input
n,m,q and outputs a matrix A € Zy*™ together with a trapdoor Ta.
EnSamplePre(A,Ta,0,z) — u. The preimage sampling algorithm takes as input a
matrix A € Zg*™ together with its trapdoor Ta, a target vector z € Zg, and
a parameter 0.2 It outputs u € ZJ* such that A-u” =z’ and |Jul| < /m-o.
We require these algorithms to satisfy the following properties. These properties
are captured via security games between a challenger and a computationally bounded
adversary.

19We would like to point out that the current construction actually gives a PLBE scheme that

satisfies the g-bounded message hiding security property for arbitrary g, i.e., the number of queries
need not be bounded, as long as the ABE scheme is not g-bounded selectively secure.

20 As before, the preimage sampling algorithm could be easily generalized to generate preimages of
matrices instead of vectors by independently running the EnSamplePre algorithm on each column of
the matrix. Throughout this work, we overload the notation by directly giving matrices U € ZI;Xk
(for any k) as inputs to the SamplePre algorithm.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-134 R. GOYAL, V. KOPPULA, AND B. WATERS

Notation. First, we introduce some more notation. We start by defining a
matrix rearrangement procedure Arrange which takes as input dimensions ny, ns, m,
and two matrices A € Zy**™ B € Zy**™, and an ordered set S C [n; + ng] of

size n1, and it outputs a larger combined matrix C € Z,g"1+"2)xm. Concretely, C =

Arrange(1™1,1"2 1™ A B, S). The rearrangement procedure is defined as follows.

Let S = {i1,42,...,0n, }, where i; < it for every 1 < j < k < ny. Similarly, let
S = ([m +n2]\S) = {i},ih,...,i,,,} denote the (ordered) complement of set S. Now
matrix C is obtained by appending rows of matrices A and B as follows: for j € [n4],
Cl[i;] = A[j], and for j € [ns], Cli’] = B[j]. For simplicity of notation, we drop the
dimensions n1,ng, m as explicit inputs to Arrange procedure throughout this section
whenever clear from the context.

Additionally, we define a matrix restriction procedure Restrict which takes as
input dimensions n,m, and matrix A € Zp*™, and an ordered set S C [n] of size /,
and it outputs a smaller matrix C € ngm. Concretely, C = Restrict(1™,1™, A, S).
The restriction procedure is defined as follows.

Let S = {i1,12,...,1n}, where i; < 4 for every 1 < j < k < ¢. Now matrix C
is obtained by removing rows of matrix A which do not lie in set S. Formally, for
Jj € 4], C[j] = Ali;]. As before, for simplicity of notation, we drop the dimensions
n, m as inputs whenever clear from the context.

7.1.1. Row removal property. The first property we introduce is called the
row removal property. It is defined via an interactive security game between the
challenger and an adversary. In the game, the adversary specifies matrix dimensions
n,m, a set of k (< n) indices, which represent the “target” set, and the adversary
must distinguish between the following scenarios.

In the first scenario, the challenger chooses an n x m matrix A with a trapdoor,
and sends A to the adversary. The adversary then participates in a query phase. For
each query, the adversary sends a set of k target vectors. The challenger responds by
outputting a matrix U such that for each index ¢ in the target set, U maps the ith
row of A to one of the target vectors. The matrix U maps the remaining rows of A
to uniformly random vectors.

In the second scenario, the challenger chooses a k x m matrix A with a trapdoor,
extends A to dimension n x m by attaching uniformly random rows, and sends this
extended matrix to the adversary. Next, the adversary sends queries, each query
consisting of k target vectors. The challenger outputs a matrix U such that U maps
the ith row of A to the ith target vector.?!

DEFINITION 7.1 (row removal property). Fiz any function ¢ : N — N and pa-
rameter o : N — RY. A pair of trapdoor generation algorithms LT = (EnTrapGen,
EnSamplePre) is said to satisfy the (q,o)-row removal property if for any PPT ad-
versary A there exists a negligible function negl(:) such that for all A € N, g = q()),
o=oc(\)

prrL%wJZrem,Q,U ()\) = Pr [1 — Exptigl)_vyjrem,Q,a(A) S 1/2 + negl()\),
row—rem,q,o

where Expt T 4 () is as defined in Figure 4.

21 Although one might observe some weak resemblance between our row removal property and
lattice trapdoor properties used in [ALS16, BF11], we would like to point out that after a closer
inspection we observe that our row removal property is different.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-135

Exptﬁ_\:v‘;rem,q,a ()\)

1. Setup Phase. The adversary A, after receiving as input the security
parameter), sends dimensions 1", 1™ and a set S C [n] of size k, such
that m > 2nlogq + 2\ and o > /n-logq-logm + A, to the challenger.®
The challenger chooses a random bit b <— {0, 1} and proceeds as follows:

(a) If b = 0, then it samples two matrices B,P as (B,TB) <
EnTrapGen(1¥,1™,q), P « Zg"*’”“". Next, it sets A =
Arrange(B, P, S) and sends A to the adversary.

(b) Otherwise, if b = 1, then it chooses matrix A as (A,Ta) <
EnTrapGen(1™,1™, q) and sends A to the adversary.

2. Query Phase. The adversary makes a polynomial number of preimage
queries of the form (1, C), where C € Z'; Xt The challenger responds to
each query as follows.

(a) If b= 0, it samples matrix U as U + EnSamplePre(B, Tg, o, C) and
sends U to the adversary.

(b) Otherwise if b = 1, it chooses a random matrix Q as Q + Z
and sets matrix D as D = Arrange(C, Q, S). Next, it samples matrix
U as U « EnSamplePre(A,Ta,0,D) and sends U to the adversary.

3. A sends its guess b'. The experiment outputs 1 iff b =b'.

(n—k)xt
q

%The parameter constraints could be taken out of the security games, but for technical
reasons we include them as part of the definition itself.

row—rem,q,o

F1G. 4. Ezperiment Expt 1 4

A weaker row removal property is one where, in each query, the adversary is
restricted to choosing a set S of size n — 1 during setup phase, and now during query
phase it must make preimage queries of the form (1,C € Zé"fl)“). A different way
to represent the set S in this case is by a single index i € [n] such that {i} = [n]\ S.
We call this property the single row removal property. In our construction, we will
first show a scheme that satisfies the single row removal property and then, via a
simple hybrid argument, we show that the single row removal property implies the

row removal property.

7.1.2. Target switching property. Next, we introduce the target switching
property. For any target Z, if we choose a matrix B with a trapdoor and output
only the preimage of Z with respect to B, then this preimage looks like a random
low-norm matrix. The target switching property is an extension of this property and
is captured via a security game between a challenger and an adversary. In this game,
the challenger specifies the matrix dimensions n,m and a set S C [n] of size k. The
challenger chooses an n x m matrix B and sends the rows of B corresponding to the
set S. It also chooses a challenge bit b which is used in the query phase.

Next, the adversary is allowed polynomially many queries. In each query, the
adversary specifies two matrices, Zg, Z1, such that for every index i € S, the ith rows
of Zy and Z; are identical. The challenger outputs a matrix U such that for every
1 € S, U maps the ith row of B to the ith row of Zg (which is equal to the ith row
of Z1). For the remaining indices i ¢ S, U approzimately maps the ith row of A to
the ith row of Zp. Intuitively, since the adversary does not have the rows indexed by
S, the challenger can switch the targets from rows of Zg to Z;.

DEFINITION 7.2 (target switching property). Fiz any function q : N — N, noise
distribution family {x(\)},cn, and parameter o : N — R*. A pair of trapdoor gener-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-136 R. GOYAL, V. KOPPULA, AND B. WATERS

ation algorithms LT = (EnTrapGen, EnSamplePre) is said to satisfy the (q, x, o)-target
switching property if for any PPT adversary A, there exists a negligible function
negl(-) such that for all A € N, g = q(X), x = x(A), 0 = a(}N),

P07 (0) = Pr 1 Bt 7 (V)] < 1/2 4 negl(3),

where ExptiVTVith’q’X’U(-) is as defined in Figure 5.

Exptyy 57 ()

1. Setup Phase. The adversary A, after receiving as input the security
parameter A, sends dimensions 17, 1™, set S C [n] of size k, such that
m > 2nlogq+ 12X -logq and o > y/n - log q - logm + A, to the challenger.®
The challenger chooses a random bit b € {0,1} and proceeds as follows:

(a) It samples matrix A as (A,Ta) < EnTrapGen(1™,1™, q).
(b) Next, it sets B = Restrict(A, S) and sends B to the adversary.

2. Query Phase. The adversary makes polynomially many queries of
the form (1%,Zo,Z1), where Zo,Z1 € Z}*' and Restrict(Zo,S) =
Restrict(Z1, S). The challenger responds to each query as follows:

(a) Tt chooses matrix E as E <« x™ "> and sets F =
Arrange(0"*! E, S).

(b) Next, it samples matrix U as U < EnSamplePre(A,Ta,0,Zy + E)
and sends U to the adversary.

3. A sends its guess b’, and the experiment outputs 1 iff b = b’.

%The parameter constraints could be taken out of the security games, but for technical
reasons we include them as part of the definition itself.

itch,q,x,
FIG. 5. Exptiy oo ().

As before, we will introduce a weaker notion called the single target switching
property, where in each query the adversary is restricted to outputting only a single
index i € [n], and Zy and Z; must agree on all indices j # i. We will first show that
our construction satisfies the single target switching property, and then, via a hybrid
argument, we show that single target switching implies the target switching property.

7.2. Our construction of enhanced lattice trapdoors. Let ¢ : N — N, o :

N — RT be functions, and let LT = (TrapGen,SamplePre) be a pair of algorithms

that satisfy g-well-sampledness of matrix (Definition 2.7), (¢, c)-preimage sampling

(Definition 2.8). We will construct enhanced lattice trapdoors LTe, = (EnTrapGen,

EnSamplePre) using LT as follows. The construction is reminiscent of the trapdoor
extension algorithms of [ABB10, CHKP10].

EnTrapGen(1",1™,q) — (A,Ta). The trapdoor generation algorithm samples two

matrices, A1, Ag, of dimensions n x [m/2] and n x |m/2] as follows:

(A1, Ta,) + TrapGen(17,1™/21 ¢),

(Ay,Ta,) + TrapGen(17™,1Lm/2)).
It appends both these matrices columnwise to obtain a larger matrix as
A = [A;]A3], and it sets the trapdoor Ta to be the combined trapdoor
information Ta = (Ta,,Ta,)-

EnSamplePre(A,Ta,Z,0) — U. The preimage sampling algorithm takes as input
A = [A | Ay, trapdoor Ta = (Ta,,Ta,), parameter o, and matrix Z €

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-137

ZZXk. It chooses a uniformly random matrix W < ZZX’“ andsets Y = Z—W.

Next, it computes matrices U; € ngm Xk, U, ¢ Z,Em/ZJ “* as

U, < SamplePre(Aq,Ta,,0, W),
U, + SamplePre(Ag, Ta,,0,Y).

Finally, it computes the final output matrix U € Z;”Xk by rowwise appending

matrices Uy, and Us,. Concretely, U = [8;}

Correctness. Correctness follows directly from the correctness of LT.

7.3. Proving security of LTe,. We will now prove that our enhanced trapdoor
sampling scheme satisfies the preimage sampling, row removal, and target switching
properties. First, we show that it satisfies the preimage sampling property if the
underlying trapdoor scheme satisfies the preimage sampling property.

THEOREM 7.3. Fiz any functions ¢ : N — N and o : N — R*. If LT satis-
fies (q,0)-preimage sampling (Definition 2.8), then LTe, also satisfies (g, 0)-preimage
sampling.

Proof sketch. This follows directly from our construction. The preimage sampling
requires that the preimage of a uniformly random matrix Z looks like a Gaussian
sample with parameter o. In our construction, the preimage of a random matrix Z
consists of preimages of W and Z — W, where W is uniformly random. Since Z is
random, so is Z — W. As a result, using the preimage sampling property of LT, we
can argue that these two preimages look like two matrices drawn from D%Z/ 2%k and

Dg;/ 2] Xk, respectively. 0

7.3.1. Row removal property. Now we prove that our trapdoor sampling
scheme satisfies the row removal property. Formally, we prove the following.

THEOREM 7.4. Fiz any functions ¢ : N — N and ¢ : N — R*. If LT satis-
fies (q,0)-preimage sampling (Definition 2.8) and q-well-sampledness of the matriz
(Definition 2.7), then LT, also satisfies the (q, 0)-single row removal property (Defi-
nition 7.1).

Proof. Our proof follows from a sequence of hybrid experiments. We start by
defining a sequence of hybrid experiments such that the first and last experiments
correspond to the original row removal security game when the challenger chooses its
challenge bit b to be 0 and 1, respectively. To complete the proof we show that the
adversary’s advantage must be negligible between any two consecutive hybrids.

We now define hybrids H, for x € {0,1,...,12}. In all the hybrid experiments
below, we set ¢ = ¢(\) and o = o(\). Also, below in each successive hybrid step,
we only describe the modifications. Later in Appendix C.1, we provide the detailed
hybrids.

Hybrid Hg. This corresponds to the original game (per Definition 7.1, with the
single row removal restriction) with b = 0.
1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:
(a) Tt first chooses matrices (By,Tg,) < TrapGen(1"~1,11™/21 ¢) (B,,
Tg,) + TrapGen (1"~1, 1L™/21). Tt sets B = [B; | By).
(b) It also chooses a vector p < Z;* and sets matrix A € Zy*™ as A =
Arrange(B, p, [n] \ {i}).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-138 R. GOYAL, V. KOPPULA, AND B. WATERS

(¢) Finally, it sends A to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Z,(Infl)”. The challenger responds
to each query as follows:

(a) It chooses W < Z((I”_l)” and samples Uy <— SamplePre(By,Tg,, 0, W).
(b) Next, it sets Y = C — By - U; (which is equal to C — W) and computes
U, < SamplePre(Bs, Tg,,0,Y).
(c) Finally, it sends U = [gﬂ to A.
3. The adversary outputs a bit ¥'.

Hybrid H;. In this experiment, the challenger chooses U; to be a random
Gaussian matrix with parameter o for each query.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € ZS{L‘””. The challenger responds
to each query as follows:

(a) It samples Uy < DQZ/Z] <

Hybrid H,. In this hybrid, the challenger chooses B; uniformly at random,
instead of choosing it using TrapGen. At this point, note that the left half of A is a
uniformly random matrix.

1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:
(a) It first chooses By + Z,S”*”X [m/21, (B, Ts,) < TrapGen(1™~1, 1lm/2],
q). It sets B = [B1 | By].

Hybrid Hg. This hybrid involves syntactic changes. The challenger chooses
A+ ZZX [m/21 and derives B; by removing the ith row of A;.
1. Setup phase. The adversary A sends 1™,1™, index i € [n]. The challenger
proceeds as follows:

(a) It first chooses A; « ngrm/ﬂ, (By, Ts,) « TrapGen(1™~1,11m/2] ¢).

It sets By = Restrict(Aq,[n] \ {i}) and B = [B; | Bo].
(b) Tt also chooses a vector py Zém/% and sets Ay = Arrange(Ba, py, [1]\

{i}), A =[A1[Aq].

Hybrid H,4. In this hybrid, the challenger chooses the left half of A using
TrapGen.
1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (Aq,Ta,) + TrapGen (17, 11™/21 ¢), (Bo, Tg,)
 TrapGen(1™~1, 11m/21¢). Tt sets By = Restrict(Ay,[n] \ {i}) and
B = [B; | Bs].

Hybrid Hs. In this hybrid, the challenger chooses U; using SamplePre for each
query.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Z((In_l)”. The challenger responds
to each query as follows:

(a) Tt chooses W' < Z2*", sets W = Restrict(W’, [n] \ {i}), and samples
U, < SamplePre(A;,Ta,,0, W').

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-139

Hybrid Hg. This hybrid represents a syntactic change in which the challenger,
for each query, chooses Y as a uniformly random matrix, and sets W = C - Y =
C-B, U,.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Zfln_l)”. The challenger responds
to each query as follows:

(a) Tt chooses Y «+ Z((Infl)Xt and samples Uy < SamplePre(B2, Tg,,0,Y).

(b) Next, it sets W = C — By - Uy (which is equal to C —Y), chooses a
uniformly random vector w < Z¢, sets W’ = Arrange(W, w, [n] \ {i}),
and computes Uy < SamplePre(A1,Ta,, 0, W’).

Hybrid H7. In this hybrid experiment, the challenger chooses Us from a Gauss-
ian distribution with parameter o.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Zén_l)Xt. The challenger responds
to each query as follows:

(a) It samples Uy + Dgz/ﬂ”.

Hybrid Hg. In this hybrid, the challenger chooses matrix Bo uniformly at ran-
dom. Note that this means Ay is uniformly random in this hybrid.
1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (A1,Ta,) < TrapGen (1”, 1im/21 q)7 By «

Z X2 1 ets By = Restrict(Aq, [n] \ {i}), and B = [B; | Ba).

Hybrid Hg. In this hybrid, the matrix A, is chosen using TrapGen.
1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:
(a) It first chooses matrices (A1, Ta,) < TrapGen (17, 1M/21 ¢}, (A5, Ta,)
< TrapGen(17, 11m/2] ¢). Tt sets By = Restrict(Aq, [n] \ {i}), By =
Restrict(As, [n]\ {i}), and B = [B; | B3].

Hybrid H;g. In this hybrid, the challenger chooses Us using SamplePre for each
query.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Z((I"_I)Xt. The challenger responds
to each query as follows:

(a) Tt chooses Y’ < Zy** and samples Uy < SamplePre(Ay, Ta,, 0, Y').

Hybrid H;;. This hybrid represents a syntactic change in which the ith row of
matrix W' is set as a difference of random vector ¢ and the ith row of Ay - U, instead
of being sampled uniformly at random directly.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Zz(lnfl)”
to each query as follows:

(b) Next, it chooses a random vector ¢ < ZZ, sets C' = Arrange(C, c,
[n] \ {¢}), sets W = C’ — Ay - Uy, and computes U; < SamplePre(Aq,
Ta,, 0, W').

. The challenger responds

Hybrid H;,. This hybrid represents a syntactic change. It corresponds to the
security game in Definition 7.1 with b = 1.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-140 R. GOYAL, V. KOPPULA, AND B. WATERS

1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:

(a) It first chooses matrices (A1, Ta,) < TrapGen (17, 1M/21 ¢}, (A5, Ta,)
< TrapGen (17, 1Lm/2] ¢). Tt sets A = [A; | Ay).
(b) Finally, it sends A to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Z,(Infl)”. The challenger responds
to each query as follows:

(a) It chooses W' <= Zp*" and computes Uy < SamplePre(A;,Ta,, 0, W).
(b) Next, it chooses a random vector ¢ <« ZZ, sets C' = Arrange(C, c,
[n] \ {i}), sets Y = C' — Ay - Uy (which is equal to C' — W’), and
computes Uy < SamplePre(As, Ta,, o, Y').
(c) Finally, it sends U = [gﬂ to A.
3. The adversary outputs a bit b’

Analysis. We will now show that any PPT adversary has at most negligible ad-
vantage in distinguishing any two consecutive hybrids. For any adversary A, let p4,; :
N — [0, 1] denote the function such that for all A € N, p4;(\) is the probability that
A, on input 1*, outputs 1 in hybrid experiment H;. From the definition of the hybrid
experiments, it follows that for all A € N, pao(A) — pa12(N) = 2prrL(%VeVnT;eIII’q’U (A —1.
Therefore, to show that LT, satisfies the (g, o)-row removal property, it suffices to
show that for all A and ¢ € [12], there exist negligible functions negl, such that for all
AEN, pai—1(A) —pai(A) < negl(N).

LEMMA 7.5. Assuming LT satisfies (q, 0)-preimage sampling, for any PPT adver-
sary A there exists a negligible function negly(-) such that for all XA € N, pao(A) —

pa1(A) < negly(N).

Proof. Suppose there exist an adversary A and a nonnegligible function n(-) such
that for all A € N, pao(A) —pa1(A) > n(A). Moreover, let s 4 denote the number of
queries made by A, and let t 4 denote a bound on the number of columns in queried
matrix C (note that the reduction algorithm is allowed to depend on the adversary,
and therefore it knows s4 and t4 corresponding to A).?2 Then we can construct a
reduction algorithm B such that prP25*® %7 (\) > n(A) for all A € N.

The reduction algorithm receives n,m, index i € [n] from A such that m >
2nlogq + 2\ and 0 > /n-logq-logm + A. It forwards 171 1[m/21 154ta to the
challenger.?3 Tt receives By € Z{" Y *I™/21 and U e z[™/#1* 410 Note that the
trapdoor for B; is not used in hybrid H;. The reduction algorithm chooses (B2, Tg,)
using TrapGen, computes A as in Hy (and Hp), and sends A to A. The challenger
also partitions U = [ﬁl [... |I~J'SA]7 where each I~Jj € ng/ﬂ XA

Next, the adversary sends queries. For the i*th query, the adversary sends (1t, C)
for some t < t4. The reduction algorithm sets U; to be the first ¢ columns of fL
It computes Y = C — By - U; and Uy < SamplePre(Bs, TB,,0,Y). It sets U as in
Hy/H; and sends U to A.

Finally, after all queries, if A outputs 1, B guesses that U is sampled using

22Throughout this section, we construct the nonuniform reduction algorithm, as our reduction
algorithms depends on the number of queries made by the adversary as well as the size of the
matrices in each query. However, we would like to point out that the reduction could be made
uniform by simply guessing both of these bounds. This would result in a polynomial loss in the
reduction algorithm’s advantage.

23Note that the reduction algorithm chooses admissible parameters, since [m/2] > nlogq + A >

(n—1)logg+ X and o > v/n-loggq-logm + A > /(n— 1) -loggq-logm/2 + A.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-141

SamplePre; otherwise it guesses that U is a random Gaussian matrix sampled with
parameter o. ~

Note that depending on whether U is sampled using SamplePre or sampled from
Gaussian distribution, B simulates either Hy or H; perfectly. As a result, B’s advan-
tage in the preimage sampling game is at least n(\). 0

LEMMA 7.6. Assuming LT satisfies g-well-sampledness of matriz, for any adver-
sary A, there exists a negligible function negly(-) such that for all A € N, pa1(\) —
pa2(A) < negly(N).

Proof. Suppose there exist an adversary A and a nonnegligible function 7(-) such
that for all A € N, pa1(A) —pa2(X) > n(A). Then we can construct a reduction
algorithm B such that prf}&tgix’q’a()\) >n(A) for all A € N.

The reduction algorithm receives 17,1™, index ¢ € [n] from A. It forwards
17=1,1Im/2] to the challenger.?* It receives B;. The reduction algorithm chooses
(B2, Tg,) using TrapGen, sets A as in Hy (and Hz), and sends A to A.

Next, the adversary sends queries. For each query C, the challenger chooses
U, « D%;/z] “t and computes Y = C—B;-U; and Uy < SamplePre(Bo, 1B,,0,Y).
It chooses p, sets U as in Hy/Hs, and sends U to A.

After all the queries, if A outputs 1, B guesses that B; is sampled using TrapGen;
otherwise it guesses that B; is a uniformly random matrix. Note that, depending on
whether B; is sampled using TrapGen or sampled uniformly at random, B simulates
either Hy or Hy perfectly. As a result, B’s advantage in the matrix well-sampledness
game is at least n(\). 0

LEMMA 7.7. For any adversary A, pa2(A) =pas(N).

Since the only changes from Hs to H3 are syntactical, it follows that any adversary
has identical behavior in both hybrids.

LEMMA 7.8. Assuming LT satisfies q-well-sampledness of matriz, for any PPT
adversary A, there exists a negligible function negly(-) such that for all X € N,
pA3(A) —paa(N) < mnegly(N).

This proof is identical to the proof of Lemma 7.6, except that the reduction
algorithm must send 17, 11"™/21 instead of 171, 11™/21,

LEMMA 7.9. Assuming LT satisfies (q, 0)-preimage sampling, for any PPT adver-
sary A, there exists a negligible function negls () such that for all A € N, pa4(X) —

pAs(A) < negls(N).

This proof is identical to the proof of Lemma 7.5, except that the reduction
algorithm must send 17, 1/™/21 1544 ingtead of 171, 1[7/2] 1sata

LEMMA 7.10. For any adversary A, pas(A) =paes(N).

Note that the distributions in Hs and Hg are identical. In hybrid Hj, the chal-
lenger chooses W' < Zy*™, derives W from ‘W’ by removing the ith row, and sets

Y = C — W. In hybrid Hg, it chooses Y + Z((anl)xm, sets W = C — Y, and sets
W’ to be a matrix extended from W by inserting a random vector at row i. The
distribution of (W, W’ Y) is identical in both hybrid experiments.

LEMMA 7.11. Assuming LT satisfies (q,0)-preimage sampling, for any PPT ad-
versary A, there exists a negligible function negl, () such that for all X € N, p4.6(X) —

pa7(A) < negly(A).

24Note that the reduction algorithm chooses admissible parameters, since [m/2] > nlogq+ A >
(n—1)logg+ A.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-142 R. GOYAL, V. KOPPULA, AND B. WATERS

This proof is identical to the proof of Lemma 7.5, except that the reduction
algorithm must send 171, 11m/2) 1s4t4 ingtead of 171, 11™/2] 154'tA Tt uses the
challenger’s response for setting Bo, Us and chooses the remaining components by
itself.

LEMMA 7.12. Assuming LT satisfies g-well-sampledness of matriz, for any PPT
adversary A there exists a negligible function neglg(-) such that for all X € N, p 4 7(X)—

PAS (A) < neglg(A).

This proof is identical to the proof of Lemma 7.6, except that the reduction
algorithm must send 171 11"/2] instead of 171, 1["/21 It uses the challenger’s
response for setting Bs and chooses the remaining components by itself.

LEMMA 7.13. Assuming LT satisfies q-well-sampledness of matriz, for any adver-
sary A, there exists a negligible function negly(-) such that for all X € N, pag(A) —

pAo(A) < neglg(N).

This proof is identical to the proof of Lemma 7.6, except that the reduction algo-
rithm must send 17, 11"/2) instead of 171, 1["™/21 Tt uses the challenger’s response
for setting Ao and chooses the remaining components by itself.

LEMMA 7.14. Assuming LT satisfies (q,0)-preimage sampling, for any PPT ad-
versary A there exists a negligible function negly,(-) such that for all A\ € N, p4g(X)—
pa10(A) < neglyg(A).

This proof is identical to the proof of Lemma 7.5, except that the reduction algo-
rithm must send 17, 11/2) instead of 17~1,1[™/21 It uses the challenger’s response
for setting A, Uy and chooses the remaining components by itself.

LEMMA 7.15. For any adversary A, pa10(A) =pa11(N).

In hybrid experiment Hig, the challenger chooses Y’ <« Zq*™ and derives Y’
by removing the ith row. It sets W = C — Y, chooses a uniformly random vector
w « Zg", and constructs W’ from W and w. In hybrid Hii, the challenger chooses
Y’ uniformly at random, extends C’ from C by inserting a random vector at the ith
row, and sets W/ = C’ —Y’. As a result, (Y', W’) are identically distributed in
both hybrids. The remaining components in the hybrids either are identical or can
be derived from Y’, W’.

LEMMA 7.16. For any adversary A, pa11(A) = pa12(N).

Note that the distributions in Hy; and Hipo are identical. The proof is identical
to that of Lemma 7.10.

Using the above lemmas, it follows that the advantage of an adversary in the row
removal experiment is at most negl(\).

THEOREM 7.17. Fiz any function ¢ : N — N, 0 : N — R*. Assuming LT, =
(EnTrapGen, EnSamplePre) satisfies the (q,0)-single row removal property, LTe, also
satisfies the (q,c)-row removal property.

Proof. This proof follows via a simple hybrid argument, where we gradually re-
move the nontargeted rows from A one by one. Suppose A outputs set S of size k.
We will define n — k + 1 hybrids Hy, ..., H,—_x+1 as follows.

Hybrid H; for 0 < ¢ < n — k. In hybrid H;, the challenger does the following:
1. Let (1",1™,S C [n]) < A(1Y), and let S = {i1,...,ir}, S = {il,...,i,_,}-
Let Sl = SU{Z&, PN ,Z;} = {gl, [N 7gk+i} andE = [n]\Sl = {17/1, ‘e ,Z‘N/n_k_l'}.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-143

2. Tt chooses (B, TB) + EnTrapGen(1*+, 1™ ¢), P + Zg”—k—i)xm;
3. It sets A € Z;Lxm, where A[ij] = B[j] for all j < k + i, and A[i’j] = P[j] for
all j <n—k—i, and it sends A to A.

4. Next, the adversary sends queries. For each query {c;} the challenger

jes?
first chooses ¢; < Z! for each j € S;\ S, and sets C € ngﬂ)w, where
Cljl =¢;, for all j <k + .
5. Next, it chooses U - EnSamplePre(B, Tg, C, o) and sends (A, U).
6. Flnally, after all queries, the adversary A outputs a bit b'.

Note that Hy and H,,_; correspond to b = 0 and b = 1 in the row removal
experiment. For any adversary A, let p4 ;(\) denote the probability of A outputting
1 in hybrid H;. We will show that for any adversary A, there exists a negligible
function negl(-) such that p4;(A) and pa 41 differ by at most negl(\).

LEMMA 7.18. Fix any index i € {0,1,...,n — k — 1}. Assuming LT, satisfies
the single row removal property, for any PPT adversary A, there exists a negligible
function negl(-) such that for all X € N, p4;(A) — pai+1(A) < negl(A).

Proof. Suppose there exist an adversary A and a nonnegligible function 7(-) such
that for all A € N, pai(A) —pa,it1(A) > n(A). We can use A to build a reduction
algorithm B that can break the single row removal property with advantage 7(-).

The reduction algorithm first receives 1™, 1™ S = {i1,...,ir}. It defines S;y; =
Su {21, ce ';_H} = {i1,...,igrit1}, and lets indx € [k + i + 1] be the index such
that tinax = ;. The reductlon algorithm sends 1+ 1™ and indx.?® It receives
B from the challenger. The reduction algorithm sets A € Zj*™ such that for each
j <k+i+1, Alij] = B[j], and the remaining rows are chosen uniformly at random.

For each query {Cj}je g» the reduction algorithm chooses vectors {c;,...,c;/}
uniformly at random from Zfl and sends {c;j }jelk+i+1],j#indx tO the challenger. The
challenger sends U to the reduction algorithm. The reduction algorithm forwards U
to A. Finally, after all the queries, B outputs the adversary’s final output bit.

Clearly, the reduction algorithm simulates either H; or H;11, depending on the
challenger’s output, and therefore the advantage of B is p4 ;(A) — pa,i+1(N). |

7.3.2. Target switching property. Now we prove that our trapdoor sampling
scheme satisfies the target switching property. Formally, we prove the following.

THEOREM 7.19. Fiz any functions ¢ : N — N and ¢ : N — R*, and error
distribution family {x(\)}r. If LT satisfies q-well-distributedness of matriz (Defini-
tion 2.7), (¢, 0)-well-distributedness of preimage (Definition 2.8), and LWE-sp(4 4 o)
holds (LWE with short public vectors; Assumption 3) where d(A) = 6Alogq(\), then
LTen satisfies the (q, 0, x)-single target switching property.

Proof. To prove the above theorem, we first define a sequence of hybrid games
where the first game is the single target switching security game, and in the last game
the adversary’s advantage is exactly 0. Later we show that the adversary’s advantage
in any two consecutive hybrid games is negligible. For simplicity of notation, we will
let d = d(\), ¢ = q(N\), 0 = a(\), and x = x(A). Below in each successive hybrid
game, we only describe the modifications. Later, in Appendix C.2, we provide the
detailed hybrid games.

25Note that the reduction algorithm chooses admissible parameters, since m > nlogq + A >
(k+i+1)logg+Xand o >+/n-logg-logm+ A > /(k+i+1) logg-logm + A.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-144 R. GOYAL, V. KOPPULA, AND B. WATERS

Hybrid Hy. This corresponds to the single target switching security game.

1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:

(a) Tt chooses matrices (A1,Ta,) + TrapGen(1™,1™/21 ¢) and (Ay, Ta,)
< TrapGen(17, 1L™/2]¢). Tt also chooses a random bit b < {0,1}.

(b) Next, it sets By = Restrict(Aq, [n]\ {i}), B2 = Restrict(Az, [n]\{i}) and
sends [B | Bo] to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1*, Zg, Z1), where Zo, Z; € Z** such that Restrict(Zo, [n]\
{i}) = Restrict(Z;, [n]\{i}). The challenger responds to each query as follows:

(a) It chooses W « Z7**, computes U; < SamplePre(A;,Ta,,0, W).
(b) Tt also samples vector e < x* and sets E = Arrange(0" 1>t e, [n]\{i}).
(c) Next, it sets Y = Zy — A; - Uy + E (which is equal to Z, — W + E) and
computes Uy < SamplePre(As, Ta,,0,Y).
(d) Finally, it sends U = [g] to A.
3. A outputs its guess b'.

Hybrid H;. In this hybrid experiment, the challenger sets U; to be a Gaussian
matrix for each query.
2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1*, Z, Zy), where Zo, Z; € Z;*" such that Restrict(Zo, [n]\
{i}) = Restrict(Z;, [n]\{i}). The challenger responds to each query as follows:
(a) It computes U; ¢ D%Z/ﬂ”.
Hybrid H,. In this hybrid experiment, the challenger sets A; to be a uniformly
random matrix (that is, sampled without a trapdoor).
1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:
(a) Tt chooses A + ng(m/ﬂ and (Ag,Ta,) + TrapGen(1™,1m/21 ¢). Tt
also chooses a random bit b < {0,1}.

Hybrid Hg. This hybrid is a syntactic change. Here, we express Y in terms of
B; and the ith row of A;. Note that the ith row of A; is used only for computing
the ¢th row of Y.
2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, Zg, Z), where Zg, Z; € Z;’Xt such that Restrict(Zo, [n]\
{i}) = Restrict(Z;, [n]\{i}). The challenger responds to each query as follows:
(b) It also samples vector e < x* and sets Z, = Restrict(Zy, [n] \ {i}).
(c) Next, it sets Y =Z; — By - Uy, y = Zp[i] — A1[i] - Uy +e,and Y =
Arrange(Y',y, [n]\ {¢}). It then computes Uy <— SamplePre(Az, Ta,, o,
Y).

Hybrid H,4. In this hybrid experiment, the challenger sets the ith row of Y to
be a uniformly random vector.
2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1*, Zo, Z;), where Z, Z; € Z** such that Restrict(Zo, [n]\
{i}) = Restrict(Z;, [n]\{i}). The challenger responds to each query as follows:
(c) Next,itsets Y = Z;—B;-Uy,y « Z,, and Y = Arrange(Y', y, [n]\{i}).
It then computes Us < SamplePre(Ay, Ta,,0,Y).

Analysis. We will now analyze the adversary’s advantage in the single target
switching experiment. Let p4;(A) denote the probability of A guessing correctly

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-145

(i.e., b’ = b) at the end of hybrid experiment H;. We will show that for every PPT
adversary A and [€ [4] there exist negligible functions negl;(-) such that for all A € N,
pai—1—pay < negli(A).

LEMMA 7.20. Assuming LT satisfies (g, o)-preimage sampling, for any adversary

A there exists a negligible function negly () such that for all X € N, pao —pa1 <
negly (A).

The proof of this lemma is similar to the proof of Lemma 7.5.

LEMMA 7.21. Assuming LT satisfies q-well-sampledness of matriz, for any adver-
sary A there exists a negligible function negly(-) such that for all A € N, ps1—pa2 <

negl,(A).
The proof of this lemma is similar to the proof of Lemma 7.6.

LEMMA 7.22. For any adversary A, pa2 =DpAa3.

Note that the only differences in Ho and Hj are syntactic changes with respect
to matrix Y. As a result, the distributions in the two hybrids are identical.

LEMMA 7.23. If LWE-sp(4 4 o) holds (Assumption 3) where d(A\) = 6Alogq(N),
then for any PPT adversary A there exists a negligible function negl, () such that for
all N €N, pas—paas <negly(N).

Proof. Suppose, on the contrary, there exist an adversary A and a nonnegligible
function 7(-) such that pa s —pa.a > n(A) for all A € N. We will construct a reduction
algorithm B such that Advg'=*P*T7X()\) > 5()) for all A € N.

The reduction algorithm first receives 1", 1™ 4 € [n], Zo, Z; from the adversary A
(such that m > 2nlog ¢g+12Xlog q). The reduction algorithm chooses By Z((Infl) xm
(Ag,Ta,) < TrapGen(1™,11/2] ¢) and derives By from Ay by removing the ith row.
It defines B = [B;| B3] and sends it to the adversary. It also chooses a random bit
b+ {0,1}.

Next, the reduction algorithm receives queries from the adversary, and it uses
the LWE-sp challenger to define matrices U; and y. For each query, the adversary
sends two matrices, Zg, 7, € ZZ“, such that all their rows are equal, except the ith
one. The reduction algorithm queries the LWE-sp challenger for ¢ queries and receives

{(ar, ur)}repy, where a, € Z2 for each r € [t]. It chooses &, « ng’éﬂ*d for each

r € [m], § + ng/ﬂfd.% Next, it sets U; € ng/ﬂxm to be a matrix whose rth
column is [a|a,]” for each r € [m]. It sets y € Z}", where y, = Zy[i], — u, —§ - al.

Once y and U; are determined, the reduction algorithm can compute Uy using
B1,U1,Zy, Ta,. It sets B and U as in Hs/H, and sends U to A.

Finally, after all the queries, the adversary outputs a bit . If b = ¢/, the reduction
algorithm guesses 0 (i.e., u, is an LWE sample); otherwise it guesses 1 (i.e., u, is a
uniformly random element).

Now note that if the LWE-sp challenger uses oracle Os(), then the reduction
algorithm simulates Hy; otherwise it simulates Hs. Therefore, the advantage of B is
at least pag3s —paa- 0

26Since m > 2nlog g+ 12X\ -logq and d = 6)log q, thus [m/2] —d > 0. Here we would like to point
out that in our target switching security game the adversary is allowed to choose the dimensions
m,n; as stated in our LWE assumption framework, however, the lattice dimensions are not chosen
by the adversary. Due to this definitional inconsistency, as a reduction algorithm we always choose
to attack the LWE problem for dimensions d(A) = 6Xlogg(\). This could be avoided by adapting
the existing definitions.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-146 R. GOYAL, V. KOPPULA, AND B. WATERS

Using the above lemmas, it follows that any PPT adversary has an advantage
at most negl(\) in the single target switching security game, since in the last hybrid
game (H,) the challenger’s response is independent of bit b and thus any adversary
advantage is exactly 0. 0

THEOREM 7.24. Fix any function q: N — N, o : N — RT and distribution family
{xX(A\)}r. Assuming LTe, satisfies the (q,0,x)-single target switching property, LTe,
also satisfies the (q, 0, x)-target switching property.

The proof of this theorem follows from a hybrid argument similar to that in the
proof of Theorem 7.17.

8. Constructing 1-bounded mixed functional encryption. In this section
we describe our construction of Mixed FE for input-circling branching programs with
polynomial width and length. Concretely, M, = {0,1}* and F, denotes the class
of input-circling branching programs with input space {0,1}*, width w, and length
¢ = k- L, where kK = (k,w,L). In other words, every branching program reads
each input bit L times in a circular fashion. Before describing our construction, we
introduce some shorthand notation that we will use throughout this section.

8.1. Notation. Consider a set of 4/\ matrices {Bgfl;ﬂ)}ie[@],je[/\]ﬁ,be{o,l} and wf
matrices {Piﬂ)}ie[e] velw) Where each individual matrix lies in Zg*™. For i € [4], let
D; be another matrix defined as below:

The matrix D; consists of matrices ngl;ﬁ) arranged per ad-

joining well-defined ordering. Concre‘éely7 let (4,7, 8,b) be

F(10)]
Bé’looz the indices of any B matrix. The ordering we define is that
Bf’li)
'y))
B i <J.z, og ,
.. .. =72 N < pg,0r
D, — : (4, 41, B1, 1) < (4, j2, B2, b2) =R RS
v B()"l) J1=1J2AP1 =P
b1 Aby < ba.
P, 1 < b2
: Thus, per our ordering (¢,1,0,0), (4,1,0,1), (i,1,1,0),
P;. (4,1,1,1), ..., (i,A,1,1) is an increasing sequence of in-

dices. Similarly, we can define an ordering for matrices
P;, for v € [w] (ie., (i,v1) < (i,v2) < v1 < va).

In words, matrix D; is defined by rowwise appending matrices {nggﬁ)}je[x],ﬂ,be{o,l}
and {P; .}, elw] in an increasing order per the ordering “<” defined above. We will use
the following shorthand notation for representing the above matrix more compactly:

{B(J;ﬁ)}
D, = Wb S jen.pbe{0.1}

40 Sy elw)

Similarly, for any (possibly empty) sets S; C [A] x {0,1}2, S5 C [w], we will use the

shorthand
{B(m)}
thS? = b S Gses

LV peS,y

to represent the matrix generated by rowwise appending matrices {BEJbB)}(j7ﬁ7b)e S
and {Pm}ves2 in an increasing order per the ordering “<”.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-147

8.2. Construction. In this section, we present our Mixed FE scheme. First, we
provide the parameter constraints required by our correctness and security proof. For
functionality indices (k,w, L) (where k denotes the input length, and w, ¢ (= k- L) are
the width and length of branching programs), the setup algorithm chooses parameters
n,m, q,o and noise distributions Xwig, Xiast, Xappr> Xpres Xss Xiwe as follows.

Fix any € < 1. Let x1,x2 be a Bi-bounded discrete Gaussian distribution with
parameter o such that B; = y/m-o. Also, for any B > 0, let Up denote the uniform
distribution on Z N [—B, B], i.e., integers between +B. The setup algorithm chooses
parameters n, m, o, q and sets noise distributions Xig, Xiasts Xappr> Xpre> Xs> Xiwe With the
following constraints. Also, we will use different versions of LWE, with different noise
distributions.

- Xs = Xappr = Xpre = X1 (for enhanced trapdoor sampling);
- n = poly(A), Xiwe = X1, and g < 2" (for LWE security: LWE,, g ype»

LVVE_SS”#LXIwe7 LWE_SPGnlogq,q,apre,xapp,)
-m>2(4\+w)-n-logg+ 12n -loggq (for enhanced trapdoor sampling);
- 0> /(AA+w)-n-logqg-logm+ A (for enhanced trapdoor sampling);

A £ ox
- Xbig = Usy, and Xiast = Usy,,,, Where opig = 0 - 2%, 0155t = (m - 0)" - 2

(for smudging/security);

- Opre = 0, (M - (Obig + Upre))é “(m - (Olast + Opre)) < q/16 (for correctness);

- 0s =0, /0 (M (Tpre + Tappr))’ < /16 (for correctness).

First, note that it is not necessary to have distributions Xwe; Xappr, Xpre b€ the same

distribution. Keeping all these to be different distributions will only affect the under-

lying assumptions to which we reduce security. One possible setting of parameters is
as follows: n = (2\-)V, m =n'*t2¢ . w, ¢=2"", and 0 = n - Jw.

We will now describe our Mixed FE construction.

e Setup(1*, (1%,1%,1%)) — (pp, msk). The setup algorithm takes as input the
security parameter A, message length k, branching program width w, and
number of times it reads each bit L.27 It chooses an LWE modulus ¢, dimen-
sions n,m, and also distributions Xbig, Xs, Xapprs Xpres Xlast as described above.
Let £ =k-L and 7 = (4\ 4+ w)n. It runs the EnTrapGen algorithm ¢ times as
follows:

Viell, (M;T;) < EnTrapGen(1",1™ q).
For each ¢ € [¢], it interprets matrix M; as 4\ + w matrices with dimensions

n X m arranged as follows:

8
M; = {Bf(%jb)}~
i= JENBbE{0.1}

4LV Sy elw)

Also, it samples 4/ matrices {Cl(-i;ﬁ)}i,j,ﬁ,b uniformly at random as ngl;m —
Zy*™ for i € [€],j € [A],B,b € {0,1}. Finally, it sets the public parameters
and the master secret key as

pp = (\,n,m, q,k,w, L, Xpre),

k=({BG". ci”} AP}, AT e) -
ms < i,b i,b ie[f],je[/\],ﬂ,be{o,l} { ; }ze[f],ve[w] { }’LE[Z]

27Note that here we slightly deviate from our definition as we have 3 separate functionality param-

eters instead of a single index. This could simply be handled by extending the Mixed FE definition
to multiple indices.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-148 R. GOYAL, V. KOPPULA, AND B. WATERS

e KeyGen(msk,z € {0,1}*) — sk. The key generation algorithm takes as input
the master secret key msk and a message = € {0,1}*. Let

msk = <{Bféﬁ), Cz(',jém AP tic vep) - {Ti}z‘em) :

}ie[f],je[A],ﬂ,be{O,l}
It chooses a secret vector s of length n as's <— x7 and A — 1 random vectors

y) of length m as y¥) Zy for j € [A — 1]. Next, it sets vector vy as

yN =5. Py — Z y @,
JEA—1]

The key generation algorithm then chooses 2/ secret vectors {sl(-j o)}i, 5,8 and
2(¢ + 1)\ error vectors {egj’ﬁ)}i_,jﬁ of length n and m, respectively, as

vielljeN,Be {01}, sP? ez,
Viell [Al, B € {0,1}, eij’6)<—><£’?g,

VieN,Be{0,1}, e .

}
I,

je€
VS
Let T = 2, i.e., T is a k- L-bit string obtained by appending string z to itself

L times. Next, it computes 2(¢ 4+ 1) key vectors {tgj’ﬂ)}w-,g as follows:

Viell+1],5 €N, e{0,1},

S(ljaﬁ) . ng%‘i) + y(j) + egjﬁ) ifi=1,
0 L0 B 0P gm0 1 i<,
—s{7 . P e ifi=0+1

Finally, it outputs the secret key sk as

ok = ({£59}) .
i€[f+1],j€[A],8€{0,1}

e Enc(pp) — ct. The encryption algorithm takes as input the public parameters
pp = (A, n,m, ¢, k,w, L, Xpre). It first chooses a A-bit string tag < {0,1}* and
2¢ random short matrices {U; 3}, , as

Vie[l,be{0,1}, Uip < xpe
Finally, it outputs the ciphertext ct as

ct= (tagv {Ui7b}i€[1€],b6{0,1}> .

e SK-Enc(msk,BP) — ct. The secret key encryption algorithm takes as input
the master secret key msk and an input-circling branching program BP. Let

j,8) j,B
msk = <{B£]b sz(‘,]b) {Pisticvequ) a{Ti}ie[e]> ;

BP = ({m,b) = (0]} e pe oy - 3CC € [w], rej € [w]) .

}ie[ﬁ],je[A],B,be{O,l} ’

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-149

] ; ; (7,8)
It ﬁrst chooses a A-bit string tag < {0, 1}* and samples 8¢\ matrices {Difb ,
f)Ql;ﬁ)}ijB , fori €[], 5 €[N, B,b€{0,1} as follows:

/L)

D(J‘ﬁ) _ Cl(‘,jz;ﬁ) if 6= tagj and b =0,
b =]
; j ’ «— Z*™) otherwise,
Viell,je B be{0,1}, éw)q) e L
]55-71;5) _ ib if 3 = tag; and b =1,

((— Zf;xm) otherwise.

In the above cases, we use “(<— ngm)” to denote the operation of uniformly
sampling a dimension n x m matrix in Z,. Note that here the sampling
is performed wuniformly and independently each time. Next, the algorithm
samples w matrices {PHLU}ue[w] for the top level and 2w/ error matrices

{E; ., Ei,v Yiele,veqw) as follows:

0n><m ifv= rej’
V NS [w]7 PZ-‘rl,U - {(<_ ngm) Othervvise7

nxm

Vie[lvew], By X Eiy < X0

The algorithm then sets 2w/ matrices {Q, ,, éi,v}ie[é],ve[w] as follows:

Qv =Pitir0(0) + Eip,

Viel[l,ve w], Qiv=Piiinii() + Eio

Next, for ¢ € [¢], we use matrices Mi,Wi,Wi to represent the following
(4X + w)n x m dimension matrices:

{BZ(_J‘I;B) } {Dz(»jz;ﬂ) }
M, = ’ JEMLBbe{0,1} |, W, = ' J€[A]:B8,b€{0,1}
iU vew] Qi,v ve[w]
_ [{p

W, = }je[xl,ﬂ,be{o,l}

{Q.)

vE[w]

Now, the secret key encryption algorithm runs the EnSamplePre to compute
2¢ short matrices {U; 3}, , as

viell U, 0 + EnSamplePre(M;, T}, 0pre, W),
! " U, < EnSamplePre(M;, T;, 0pre, W;).

Finally, it outputs the ciphertext ct as

ct= (tag, {Uiyb}ie[l],be{o,l}) :

e Dec(sk,ct) — {0,1}. The decryption algorithm takes as input a secret key sk
and a ciphertext ct. Let

k=(x{tV? t = (tag, {U; s}, :
> <$’{ g }ie[é+1],je[k],ﬁe{0,1} ’ ¢ (ag,{ ’b}le[e]vb€{071}>

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-150 R. GOYAL, V. KOPPULA, AND B. WATERS

We will assume the algorithm knows the LWE modulus ¢ (i.e., for instance,
the public parameters could be included in the secret keys). Let ¥ = 2T i.e.,
T is a k - L-bit string obtained by appending string x to itself L times. The
decryption algorithm computes the following:

£+1

; - a=i

j=11:i=1

Finally, if ||z|| < ¢/8, it outputs 0; otherwise it outputs 1.

THEOREM 8.1. Assuming the trapdoor scheme LTen satisfies the (g, Opre)-well-
sampledness of the preimage, the (q, Opre)-row Temoval property, the (q, Xiwes Tpre)-
target switching property, assuming that assumptions LWE,, 4 .., LIWE-ss;, ¢ vi.., and
LWE—sp6nlc)g;(zﬁprw(wpr hold (where m,m,q, Opre; Xiwe, Xappr aTe defined as in the con-

struction), for any PPT adversary A that outputs (1¥,1% 1%) such that the param-
eter constraints as provided in the construction are satisfied, then there ezist neg-
ligible functions negly (), negly(+) such that for every X\ € N, A’s advantage in the
1-bounded restricted function indistinguishability security (see Definition 5.2) and 1-
bounded restricted accept indistinguishability (see Definition 5.4) is at most negl; (\)
and negl, (), respectively.

Remark 8.2 (extending to r-bounded security). We would like to point out that
the above construction can be naturally extended to achieve r-bounded security for
any a priori fixed polynomial r. To understand the modification, we will look ahead
to the security proof. Specifically, we will focus on the importance of the A-bit string
tag chosen during encryption. During the proof, we crucially rely on the tag strings
tag and tag® (the first chosen for answering the encryption query, and the second used
to answer the challenge query) being distinct at at least one index. Since they are
chosen uniformly at random each time, thus we know that tag # tag* with probability
1 - 2% Now if the challenger has to answer r encryption queries instead of just
1, then the modification we consider is to increase the alphabet size of tags such
that the tag strings chosen during all encryption queries and the challenge query are
distinct at at least one index. (Note that this would also mean that we will have to
likewise increase the number of underlying matrices chosen and extend the trapdoor
sampling procedure appropriately.) More formally, we will now sample tag strings as
a uniformly random 2r2-ary string of length-A (i.e., tag < {1, ceey 27“2})\). With this
modification we can argue that, with all but negligible probability over the choice
of tag strings tagy,...,tag, and tag*, there exists an index ¢ < X such that the ith
elements in all these tag strings are (pairwise) distinct. With this guarantee, the
current proof could be extended to argue r-bounded security.

8.3. Correctness. We will prove that the Mixed FE scheme described above
satisfies the correctness property. Our correctness proof is divided into two parts.
First, we show that if ct is a Mixed FE encryption of branching program BP, then given
any secret key sk,, the decryption algorithm outputs BP(z) with all-but-negligible
probability. Second, we show that if ct is a normal FE ciphertext, then given any
secret key sk, the decryption algorithm outputs 1 with all-but-negligible probability.

LEMMA 8.3. For every A\, k,w,L € N, for every length k - L and width w input-
circling branching program BP with input space {0,1}*, input x € {0,1}*, the follow-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-151

ing holds:
(pp, msk) < Setup(1*, (1%, 1% 1£));
sk, < KeyGen(msk, z); ct < SK-Enc(msk, BP)
> 1 - negly(A),

Pr |Dec(sk,,ct) = BP(z) :

where negl,(+) is a negligible function.

Proof. Here and throughout, whenever we say matrices/terms corresponding to
(4, B)th strands, then we mean the corresponding matrix/term with the superscript
(4, B). Also, when we refer to the matrices/terms along the strands selected by some
tag string tag, then we mean all those matrices/terms with superscripts (j, tagj) for
RSN\

Now recall that the setup algorithm chooses matrices B 7713) C(] A) P, fori e [(],

€ [A], B,b € {0,1}, v € [w]. Here all matrices B(] S v for any particular value 4
(1 e., any fixed level) are sampled along with trapdoor 1nformat10n Now for any input

T € {O 1}*, the key generation algorithm chooses vectors y() .S such that § is short

(4,8) (4,8)

and Z y¥) =5 P, . It also samples secret vectors s; and error vectors e;

and computes the secret key components tz(] #) in the special way as described in the

construction. Now the mixed FE encryption algorithm samples a A-bit tag string tag,

)

and it uses the trapdoor information to target Bgféﬁ matrices to their corresponding

CEJZ;’B) matrices only along the strands selected by the tag string tag. Additionally, it

also targets the program matrices P; ,, at each level to their counterparts in the next
level per the branching program state transition function. For proving correctness we
simply show that the final program matrix reached after decryption is either short
or random depending upon outcome of the evaluation, and the BZ(.’JI;B) CE)]Z;B) matrices
get canceled at each step, and the error terms are appropriately bounded.
We start by introducing some notation useful for the correctness proof.
e st;: the state of BP after ¢ steps when evaluated on input x.
st BYY) 4 y0) iti=1,
o Ez(-j”ﬁ) def (J 5 C(]f$ + Sl(-j’ﬁ) . B;J;) if1<i<,

(jﬁ) Céjaf) ifi=0+1:
the error- free secret key components, i.e., secret key vectors without adding

error vectors e (j A)

. AEJ) Lot 22:1 t(f’tag’) . H::lv U,z the partial sum computed during de-
cryption after using the first ¢ components of the secret key along only the
(j, tag;)th strand.

AV e 57 B 4y 1 U, i<

‘ vy 152, Uaz., ifi=0+1:
the expected sum during decryption in absence of errors after using the first
1 components of the secret key along the (7, tagj)th strand.

o A E Z LAY and A, = Z (J)

° errgj) S AZ(-]) — Ni and err; d:ef A, — A,

oI, & Py [I,_; Usz.: the matrix denoting partial branching program
evaluation after ¢ decryption steps, i.e., equal to the A; term ignoring the
Z)\ (j»tagj) . B(j’tagj)

1,%7,

i=18i blinding component, and short secret s multiplied.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-152 R. GOYAL, V. KOPPULA, AND B. WATERS

Observe that the decryption algorithm computes Ay4; and tests whether it is close
to zero or not. We start by proving that for all i, 7, the error term err(J) is small and
bounded. This would help us in arguing that for every 7, err; is also small, thereby
giving us that matrices Ay, 1 and Ay, are very close to each other as well. Combining
this with the fact that &Hl is either a random matrix or a short matrix, depending
upon the output BP(z), we get that the sum Ayy; computed by the decryption
algorithm is close to zero if BP(x) = 0; otherwise it is a random vector with large
entries.

CLAIM 8.4. There exists a negligible function negl(-) such that

i

vielje, |err?| < (m-(ong+ope))

Ve [errfl, | < (- (o + ape)’ - (m- (o1 +)

with probability 1 — negl(\).

Proof. We prove the above claim by inducting on the levels ¢. Our proof is
insensitive to the choice of strand index j; thus for the purposes of this proof, it could
be fixed to an arbitrary value.

Base case (¢ = 1). Note that A(D = gj) s(lj 28;) B(] tag] +y) +e v tagJ)

where egj’ %) is a short error vector drawn from Xbig- Also, we have that Ai "

sgj o) Bg{;?gj) +y@) by definition. Thus, we get that

| = -2

H (4.tag;)

‘ < \/7 Obig

with all-but-negligible probability. This completes the proof of the base case. For the
induction step, we assume that the above claim holds for i* and show that it holds
for i* 4+ 1 as well.

(4.ta

Induction step. We know that AW A(]) U5, +t. . Since AZ(Z) =

*+1 T
A(J) + err?) | we get that

i*

) (4.tag;)

A(J) (A(J +eI‘I‘(J)) Ui* Ty +tz i

41 T
(4
= A UZ* T + tE * 41) + err(J) Ui*@*i* .
Now, from our construction we have that

S(j,tag_) B(J,tag) U ~ (4,tag;) _C(j,tagj)

3% T i, T T S T
(4,tag;) (Js tagJ) ~(4,tag;) (4,tag;) (Js tagJ)
= S;. ‘B PO Uiz, +t507 =8, B 154

= A(]) ‘U 7, + t(zflg]) = &E])ﬂ

t. j .
Combining the fact that t(Z:fJ) = tgj_:f]) + egflgj) with the above equations, we get

that, with all-but-negligible probability, the following holds:

err(]) 1= AEJZH — A(i)ﬂ ez(-fflg”) + rr(J) U+ 7,.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-153

Jitag;)

(()
€ix41 Orr;x

+]

= | |1V

(4)
o | <

<Vm-o*+(m- (obig + Upre))i (M opre)

< (m- (obig + 0pre))’ - (m - (0" + 0pre))
where 0" = opig if i* < ¢; otherwise 0™ = 0y5st. This completes the proof of the above
claim. 0

From the above claim, we get that for every j € [)], Herrgr)lH < (m - (obig +
Opre))’ - (M - (Glast + pre)). Thus, by the triangle inequality we can claim that (with
all-but-negligible probability)

llerrepa|| < X-(m - (obig + Upre))Z “(m - (last + opre)) < q/16.
Next, we show that I'; is close to P;y1s,. In other words, the partial branching

program evaluation is correct.

CramM 8.5. For all i € {0,....4}, |0 —Piyre,]| < (m- (Opre + Uappr))i with
probability 1 — negl(\), where negl(+) is a negligible function.

Proof. We prove the above claim by inducting on the levels i.

Base case (¢ = 0). Note that 'y is simply equal to Py ; as starting state sty = 1.
Thus, we get that

[To —P1s,ll =0.

This completes the proof of the base case. For the induction step, we assume that the
above lemma holds for i* — 1 and show that it holds for i* as well.

Induction step. We know that I';x = I';=_; - U;- 5,.. Recall that, per our
construction, U;« .. targets Py .. |, to Pixpq 6, + Erry, where Erry is an n x m

matrix sampled uniformly from x}5I". Concretely, this gives that

Pi’ﬂsti*_1 'Ui*,iﬁ = Pi*—Q—l,stix + Err,, where ||EI‘I'1|| <m- O appr-

By our inductive hypothesis, we have that T';«_1 = P« &,._, +Erry, where |Erry|| <

i —1 . .
(m - (0pre + Tappr))” . Thus, we can rewrite matrix I';« as follows:

T = (P sty , + Erry) - U 5.0
=Pi-tis,. + (Erry + Erry - U 5.,).

Now we have that

|Erry +Erry - Uz, || < m- oappr + (M- (0pre + Uappr))i*’l M- Opre
-

< (m - (Opre + Tappr))

Thus, the claim follows. 0

From the above claim, we get that (with all-but-negligible probability) ||T'; —
Priise,| < (m- (opre + aappr))é. Next, we show that 3¢+1 has low norm if the output
of branching program is 0; otherwise it is not upper-bounded with all-but-negligible
probability.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-154 R. GOYAL, V. KOPPULA, AND B. WATERS

CrAM 8.6. There exists a negligible function negl(-) such that
- < /16 ifBP(z) =0,
HAeHH = ‘
>q/4 if BP(z) =1
with probability 1 — negl(\).

Proof. We know that Eg“ could be written as follows:

2 ¢
Apyy = Zy(j) : H Uag,-
j=1 a=1

Since (2?21 y(j)) =5 -Py,1, this gives that 3(+1 =5-Py1- Hizl U,z, =s-Ty.
Using Claim 8.5, we get that I'y = Py &, + Err, where ||Err|| < (m - (opre + O'appr))e.
Also, we know that Pyyq rj = 0"*™, and Py 1 acc is a uniformly random n x m matrix.
Thus, we get that with all-but-negligible probability

BP(2) = 0= A = 8- Brr| < 8]+ (m - (0e + rapm))’

<oy (M (Cpe + Tappr))’ < 0/16,

BP(r) = 1= || Ars1|| = 5+ Prstace + 5+ Brel] > 5+ Prsacell — a/16 = q/4,
where the last inequality follows from the fact that s Py acc is a uniformly random
vector. This completes the proof of the above claim. 0

By the triangle inequality, we know that
|Resa]| = lerresall < I Acall < | Besa | + llerresall.

Combining this with the above claims, we can conclude that with all-but-negligible
probability

BP(z) =0 = [[Apt1] < ¢/16 + /16 < ¢/8,
BP(2) =1 = |Asi| = a/4 - /16 > o/s.
Thus, for any input « and branching program BP, the mixed FE encryption algorithm

is correct with all-but-negligible probability. This concludes the proof of Lemma 8.3. O

LEMMA 8.7. For every A\, k,w,L € N, for every length k- L and width w input-
circling branching program BP with input space {0, 1}*, input x € {0,1}*, the follow-
ing holds:

(pp, msk) « Setup(1*, (1%, 1%, 11));

Pr | Dec(sky, ct) = 1: sk, + KeyGen(msk, x); ct < Enc(pp)

} > 1~ negl, (V).

where negly () is a negligible function.

Proof. Recall that the output of a normal encryption algorithm is simply inde-
pendently drawn 2¢ short Gaussian matrices {U;}. Now the decryption algorithm
performs the computation

or1 _ ¢

a=1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-155

Here we could rewrite z as
X /e—1 . ¢ ‘ ‘
=3 (5 (5 T) 7 v, i),
j=1 \i=1 a=i

From our construction we know that for any 7,

(4-tag;) (4,tag;) (4-tag;) (j-tag;) (J» 5) (4.tag;)
6 Uy, + 67 = =57 C L5 U, tey Uz, +ely
(j.tag;) (J.tag;) (J tag,
+s0 '(Bz,ie] U“e_ceuj)'

Now note that since Uy z, is sampled independently from xgi ™ and C(j tag”) is a

. . . j,tag . ta
uniform n X m matrix, thus the matrix Bé]@ &) . Uz, — Ct(zj.’fg &) is also a unlformly

. (4:tag;)
random matrix. Also, secret vector s,

(4,tag;
0.3,

is a length n random vector, and thus the

) ‘Ugz, — C(J tag]) is a random vector as well. Now since
(j.ta)

component s(] o8 (B

this is independent of all other components as neither s, CEJL &) appears in
any other term in sum vector z, thus the distribution of z is that of a umformly random
vector over the choice of coins used during setup, key generation, and encryption.
Since we know that the f3-norm of a random vector in Zg* is at least ¢/8 with all-
but-negligible probability, therefore the claim follows.]

8.4. Security proof. We now prove that the Mixed FE scheme described in
section 8.2 satisfies the 1-bounded restricted function indistinguishability as well as
the 1-bounded restricted accept indistinguishability security properties. Our proof is
divided into two components where we first prove function indistinguishability, and
later prove accept indistinguishability. Both proofs proceed via a sequence of hybrid
games.

8.4.1. 1-bounded restricted function indistinguishability. Below we pro-
vide a sequence of hybrid games that we later use to argue function indistinguishability
security.

Game 0 This corresponds to the original 1-bounded restricted function indistinguisha-

bility security game.

e Setup phase. The adversary sends the functionality index (k,w,L) and
descriptions of two branching programs (BP(O)7 BP(l)) to the challenger. Then
the challenger proceeds as follows:

1. Tt chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe 88 described in the construction. Recall £ =
k- L and = (4X + w)n.

2. Next, it samples {Bg,jl;ﬂ)}i,jﬁ?ba {Pi .}, matrices as

{B(J 5)} _

Viel, B S Gspenxfoy2 | | T; | < EnTrapGen(1™,1™, q).
1,0 S yefw]

3. It then samples matrices C(J -A) — Zyx™ fori € [(],7 € [A], B,b € {0, 1}.

4. Finally, it sends the public parameters pp = (A, n,m,q, k,w, L, Xpre) to
the adversary.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-156 R. GOYAL, V. KOPPULA, AND B. WATERS

e Challenge phase. The challenger chooses a random bit v + {0,1} and a
A-bit string tag* < {0,1}*. Let

BP() = ({wggj [w] > Ju]}
§* = [0 x [\ x {0,1}2.

,acc) € [w], rejV) € [w]) ,
i€[¢],beq{0,1}

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)

as
tag*? a? S*7
Vaell, ({Ul Ul,}) « Mixed-SubEnc " "7) (6,g,8b)est

{Pi,v}(i’v)e[l]x[w])
{Tz}ze[l] ; BP(’Y)

Finally, it sends the challenge ciphertext as (tag*, {U;b}ie[z].be{o 1)

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger chooses a A-bit string tag «+ {0,1}* and
responds as follows:

(a) Let S = [¢] x [A\] x {0,1}2. Tt runs the Mixed-SubEnc routine (de-
scribed in Figure 6) as follows. For all a € [¢],

tag, a, S,
{Bgﬁlc@m
({Ua0,Uq,1}) < Mixed-SubEnc %{bP i,b

}u,j,ﬁ,b)es ’
i S (i v) e[l x [w] ?

{Ti}iciq,BP

(b) Finally, it sends the ciphertext as (tag, {Uiab}z‘e[e],be{o,l}).

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses a secret vector as S <— x7 and A — 1 random vectors as
yU) Zy for j € [A —1]. Next, it sets vector vy as

yO =5 P - Y Y0
FEN-1]

(4,8)

(b) It then chooses secret vectors {s,”"’}; ; 5 and error vectors {egj’ﬁ) Yiis

as
¥ (i,5.8) € [0) x [\ x {0,1}, s¥P) « zp,
Y (i,5,8) € () x N x {0,1}, eP? x|
v (5, 8) € N x {0,1}, el « ym..

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-157

Mixed-SubEnc
Inputs:
- Tag tag, Level a, Set S C [x [N x {0,1}%, Matrices
{Bz(,]émv Cgféﬁ)}(i,j,ﬁ,b)esv {Piﬂv}(i,v)e[l]x[w]’ Trapdoors {Ti}ie[a?

- BP = ({mip: [w] — (W]} e x 0,1y > aCC € [w], rej € [w]).
Output: Matrices {Up, Uy }.
Execution: Let S, denote the following set:

Sa = {(j, B,b) € [\] x {0,1}” such that (a,j,3,b) € S}.

Sample matrices {Dg‘j’ﬁ),ﬁéj’ﬂ)}(jﬂg’b)ega as
pe _ JCLY it § = tag; and b = 0,
v = .
. — Z2*™) otherwise,
Y (,,b) € S (CZ)
puo _ Cal if 3 =tag; and b= 1,
O =

(¢ Z3*™) otherwise.

Sample 2w error matrices as E, < Xipor s E, « Xaose* for v € [w]. Also, if a =4,

sample w matrices {P‘€+1a”}v€[w] for the top level as

QX if v = rej,

VoéEw) P v =
[w] 041, {(<_ Zy*™) otherwise.

Next, set 2w matrices {Qv, (Qv} » as
ve|w
91; = Pa+1,7‘ra10(v) + :EIIH

Ve |w],
] Q, =Patir, i (w) T Eo.

Let matrices M, W, W represent the following (|Sa|+w)n x m dimension matrices:

{B(j,m} {D(j’ﬁ)}
M= U Sgenesa|, W= |U" Jgewesa|,
Pi,v veEw] 4,0 S yefw]
N {f)}()j,ﬂ)}
W _Jyswesa
1,0 vE[w]

Run the EnSamplePre to compute matrices {Up, U} as

Uy < EnSamplePre(M, Tt Opre, W),

U, < EnSamplePre(M, T, 0pre;, W).

Fic. 6. Routine Mixed-SubEnc.

(c) Let 7 = xl. Next, it computes key vectors {tgj’ﬁ)}i’j,g as follows:

vV (i,4,8) € [€+1] x [A] x {0, 1},

| ngﬁ-) ngfg) + y(j) + e&]’ﬁ), | ' i=1,
tl(_J»ﬁ) _ _Sgif) . Cz(‘if)fifl + SZ(_J,B) . ngéf) + el(_]’ﬁ)7 1<i<¥,
—sy? . Ci e, i=0+1.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-158 R. GOYAL, V. KOPPULA, AND B. WATERS

(d) Finally, it sends the secret key as (m, {tgjﬂ)}(i,j,ﬁ)e[é-i-l]x[A]x{o,l})-
e Guess. The adversary finally sends the guess 7/, and wins if v/ = ~.

Game 1 This is identical to the previous game, except the challenger now chooses both

tags tag® and tag at the beginning during the setup phase, and it aborts if tag* = tag.
e Setup phase. The adversary sends the functionality index (k,w, L) and
descriptions of two branching programs (BP(O)7 BP(l)) to the challenger. Then
the challenger proceeds as follows:

1. It chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe 88 described in the construction. Recall £ =
k-L and n = (4\ + w)n. It also chooses two A-bit strings tag*,tag
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,

the challenger continues as below.

2. Next, it samples {Bz(jl;ﬂ)}i,jﬁba {P; .}, , matrices as

{B%"} .

Viel], B S Gsmenxfoy? | | T; | < EnTrapGen(17,1™, q).
5V fyelw]

3. It then samples matrices C(J A Zy*™ fori € [f],j €[N, B,b€{0,1}.

4. Finally, it sends the public parameters pp = (A, n,m,q,k,w, L, Xpre) to
the adversary.
e Challenge phase. The challenger chooses a random bit v + {0,1}. Let

op? = ({x0 s0d > b, 2 € B €)
S* =1[4] x [A\] x {0,1}2.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all « € [],

tag*, a, S*,
- _ @.8) .8
({U%0, U 1 }) + Mixed-SubEnc {Bng G }(i,j,ﬁ,b)es*’ o
{Pi,v}(i,v)e[é]x[w] v{Ti}iE[é] ,BPY

Finally, it sends the challenge ciphertext as (tag*, {Uj b}le 0.6e{0.1}).

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = [¢] x [A] x {0,1}2. Tt runs the Mixed-SubEnc routine (de-
scribed in Figure 6) as follows. For all o € [¢],

tag, a, S,
BEJI;B) C(]”B) }

)

({Ua.0,Uq1}) < Mixed-SubEnc {
{Pio} et ol

{Ti}ie[z] ,BP

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-159

(b) Finally, it sends the ciphertext as (tag, {Uis},cig peqoy)-

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses a secret vector as S <— x% and A — 1 random vectors as
yU) Zy for j € [A —1]. Next, it sets vector vy as

yW =5-Py; - Z yY
JEMN-1]

(Jﬁ)}l

b) It then chooses secret vectors {s , error vectors e?) i
3,8 i 23,8

as
v (i,5,8) € [x [\ x {0,1}, sz,
Y (i,5.8) € [x [\ x {0,1}, eP i,
Y (5.8) € N x {0,1}, efy) « xim.

(c) Let & = o, Next, it computes key vectors {1},

vV (6,5, 8) € [t + 1] x [A] x {0, 1},

i,5,8 as follows:

(J B) B(J 5) _|_y(g) _|_e(] ﬂ) i=1
tgj»B) _ J B) Czj f)z . + S(J B) B'E,Jéf}) + el(_j»ﬁ)’ 1<i< E,
um c&@+eg?, i=l+1.

(d) Finally, it sends the secret key as (a:, {tl(-j’ﬁ)}(i’j,[g)e[gﬂ]XWX{OJ}).
e Guess. The adversary finally sends the guess 7/, and wins if 7/ = .

Notation. In all the following hybrid games, let 7* denote the smallest index in
{1,..., A} such that tag}. # tag,., i.e,, j* = min {iel: tag; # tagj}. Since the
challenger aborts whenever tag* = tag, thus j* always exists whenever the challenger
does not abort. Additionally, let 5* = tagj..

Game 2 This is identical to the previous game, except the challenger, while answering

a secret key query, now puts the s - P; ; component in yU") instead of y», and the
rest are sampled uniformly at random.

e Setup phase. The adversary sends the functionality index (k,w, L) and
descriptions of two branching programs (BP(O)7 BP(l)) to the challenger. Then
the challenger proceeds as follows:

1. Tt chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe s described in the construction. Recall that
£=1Fk-Land n = (4X\+w)n. It also chooses two A\-bit strings tag*, tag +
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below.

2. Next, it samples {B;’ G, ﬁ)} 5.8.0: {Piw}, , matrices as

{BE} .
Ve, b S G menxionyz | T, | « EnTrapGen(1",1™, q).

40 Sy elw]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-160 R. GOYAL, V. KOPPULA, AND B. WATERS

3. It then samples matrices C(J A Zy ™ fori e [{],j €[N, B,b€{0,1}.
4. Finally, it sends the pubhc parameters pp = (A, n,m,q, k,w, L, Xpre) to
the adversary.
e Challenge phase. The challenger chooses a random bit v + {0,1}. Let

BP(™ — ({w%) s [w] — [w]}ie[z],be{o,l} ,acc) € [w], rej(“*) € [w]) ,
S* =[] x [A\] x {0,1}2.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as

tag*, a, S*,
{ gjbﬁ) C(JB }

{Pw} (i,v) €[] X [w]
{Titicn » BP®)

Vaell], ({Uho U, }) < Mixed-SubEnc

Finally, it sends the challenge ciphertext as (tag {UZ b}ze (€1.6€{0,1})

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = [¢] x [A] x {0,1}2. Tt runs the Mixed-SubEnc routine (de-
scribed in Figure 6) as follows. For all a € [¢],

tag, a, S,

{ (7,8) C(m)}

({Ua.0,Uq1}) < Mixed-SubEnc wb
Pio} i meigxfu)
{Ti}ie[z] ,BP

(b) Finally, it sends the ciphertext as (tag, {Uivb}ie[l],be{o,l}).

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses a secret vector as S <— x7 and A — 1 random vectors as
y) « Zm for j € [A]\ {j*}. Next, it sets vector yU") as

YRS N S
JEDNG*)

(b) Tt then chooses secret vectors {S(J #) }i,j.8, error vectors {egj’ﬁ)}

as

,5,8

v (i,5,8) € [x [\ x {0,1}, s 7P,
Y (i,5,8) € [] x [\ x {0, 1}, e« x,
v (,8) € N x{0,1}, eZ? + xm..

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-161

(c) Let ¥ = ¥, Next, it computes key vectors {tl(j’ﬂ)}iyjyg as follows:

vV (6,4, 8) € [t + 1] x [A] x {0, 1},

(J») B(L) y(g) —|—e(]’ﬁ) i=1
tgj’ﬁ) _ J B) Czj f)x L+ S(J B) B,Ejgﬁ) + el(_jﬁ)’ 1<i<¥,
- gf ﬁ>.c§;§>+egﬁ>, i=0+1.

(d) Finally, it sends the secret key as (:v, {tgj’ﬁ)}(id,ﬁ)e[e_;’_l]x[)\]X{Ovl}).
e Guess. The adversary finally sends the guess 7/, and wins if v/ = .

Next, we have a sequence of 4¢ hybrid experiments, Game 3.i*.{1,2,3,4} for
" =1to L.

Game 3.i*.1 In hybrids Game 3.i*.1, the B(J) C(] A matrices for the j*th strands

and levels ¢ < i* are not sampled (at all) along Wlth other level ¢ matrices (i.e., (5%, %)

and (5*,1 — *) strands); ciphertext components for levels i < i* are used to target

(] B)

only the remaining matrices; i.e., the ciphertext matrices do not target B,”;”’ matrices

for j = j* and @ < ¢* to some prespecified C(J ?) or random matrices. Also the first
1* — 1 components in each secret key are set to be uniformly random vectors, and the
next component is hardwired such that correctness holds, and also some smudgeable
noise is introduced into these components. Below we describe it in detail.

e Setup phase. The adversary sends the functionality index (k,w,L) and
descriptions of two branching programs (BP(O)7 BP(l)) to the challenger. Then
the challenger proceeds as follows:

1. It chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe S described in the construction. Recall that
{=k-Landn = (4\4+w)n. It also chooses two A-bit strings tag*, tag +
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(*) denote the following sets:

Vi<it, SO =(N\{"}) x {0,1)
vi>i*, 8O =\ x{0,1}2

Also, let

n; =

_ n—4n for i < i*,
n for ¢ > i*.

Set § = {(i,4,) € [(] x [\ x {0,1}* : (5, B,b) € SO}
2. It samples {Bgféﬁ)}mﬁ’b, {P; .}, , matrices as

(4,8)
Ve, { hb }(j,B,b)es“') ,T; | < EnTrapGen(1™:,1™ ¢).

4V Sy fw)

It then samples matrices C(j A Zy*™ for (i, j, B,b) € S.
4. Finally, it sends the public parameters pp = (A, n,m,q,k,w, L, Xpre) to
the adversary.

e

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-162 R. GOYAL, V. KOPPULA, AND B. WATERS

e Challenge phase. The challenger chooses a random bit v < {0,1}. Let

BPO) = ({ngl}] = [u]}

S*=S5.

,acc) € [w], rejV) € [w]) ,
i€[l],be{0,1}

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all « € [{],

tag*, o, S,
i . _ BUA) C(m)}
({U(w?Ua’l}) + Mixed-SubEnc { Wb b [g

{Piv}exw {Titieq - BP®)

Finally, it sends the challenge ciphertext as (tag*, {U;b}ie[f.6e(0.1}).

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = S. It runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all « € [¢],

tag, «, S,
{B(j7ﬂ) C(j,ﬂ)}
({Ua0,Ua1}) < Mixed-SubEnc P s bes”
Piw}i)egxul
{Ti}icq . BP

(b) Finally, it sends the ciphertext as (tag, {Ui,b}z‘e[é],be{o,l})

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows.

(a) It chooses a secret vector as § <— x7 and A — 1 random vectors as
y0) 2 for j € N\ {j*}.
G0 o8 TP &G

(b) It then chooses vectors s; i as follows:

Y (i,5,8) € [x [\ x {0,1}, sz,
¥ (i.,8) € [0 x A x {0,1}, eP? i,
V(5.8 € N x {01}, e} « i
V(0,8 elit—1]x{0,1}, & 7 ez
vBe{0,1}, & ym.

B
B

(c) Let # = aL, and let stlgfﬁ*),stl(-g*) denote the state of branching
programs BP, BP() after i* — 1 steps, respectively. Also, let I',y,
and UE’? denote the following;:

P=[+1x (NN Hx{01}, y= > yY,
JEDIL*}

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-163

U;k,b 1f5:5*7

) 2 ® _
v (Za/B?b) € [é] X {07 1} ’ Ui,b - {Ui,b lfﬁ =1— ﬁ*

Next, it computes key vectors {tgj 0)}Z—,j’ﬁ as follows. For all tuples

(4,5,8) €T,
(] B) B(J A 4 yO) + e(lj’ﬂ) ifi=1,
tZ(J,B) _ (J ﬁ) CE] f)L + s(jaﬂ) -B(.jiﬁ) _,_ez(j,ﬁ) if1<i<d,
(]’B) Cfifj) éﬂ:l) ifi = E +1,

YV (i,8) € [i* —1] x {0,1}, t¥ P —3u0 +el P,

i —1 i =1 it —1
- ~(5*,8) ~
vBe{o1}, tU=—% (ti 11 Ué%) -y- [v,

a=1 d=a 6=1
+ S PZ* t(ﬂ)+s(6) B(CE)+e(] ﬁ)_"_egz*’ﬁ)

v (i, 0) € ([t + 1\ [*]) x {0, 1},
) LU BU o) <y,

(76)
t(-j*’ﬁ) _ {_Szj 1 -C/’ 1 T

(s
—sy P oy ’ﬁ)+e§11’5 ifi=0+1.

(d) Finally, it sends the secret key as (z, {tgjﬁﬁ)}(i"%ﬁ)e[éJrl]X[)\]X{O’l}).
e Guess. The adversary finally sends the guess +/, and wins if v/ = ~.

Game 3.7*.2 This is identical to the previous game, except the (i*+1)th key component

in the j*th strands is also hardwired. Below we describe it in detail.

e Setup phase. The adversary sends the functionality index (k,w,L) and
descriptions of two branching programs (BP®, BPM) to the challenger. Then
the challenger proceeds as follows:

1. Tt chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbig> Xs> Xappr» Xpres Xlasts Xiwe s described in the construction. Recall £ =
k- L and n = (4\ + w)n. It also chooses two A-bit strings tag*, tag «+
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(*) denote the following sets:

vi<it, 89 =(\{i"}) x{0,1}?,
Vit SO =[x {01}
Also, let

n; =

~ n—4n for ¢ < i*,
n for i > i*.

Set § = {(i,,8,0) € [(] x [\ x {0,1}* + (5, 8,b) € SV}
2. It samples {B(]) Vg6 {Piw};, matrices as

@ 5)} ~
Vielt, { ?P- (}j,@b)esm ,T; | < EnTrapGen(1™¢,1™,q).

i S pew]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-164 R. GOYAL, V. KOPPULA, AND B. WATERS

3. It then samples matrices CEJZ;B) Zy*™ for (i,7,8,b) € S.
4. Finally, it sends the public i)arameters pp = (A, n,m,q, k,w, L, Xpre) to
the adversary.
e Challenge phase. The challenger chooses a random bit v + {0,1}. Let

BP(= ({ﬂgib) : [w] — [w]}

S*=S.

,acc) € [w], rejV) € [w]) ,
i€le],be{0,1}

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all a € [(],

tag*, a, S,
L _ GA))
({UmO?Ua’l}) + Mixed-SubEnc {Bng Ci }(i,j,ﬁ,b)es*)

{Piv”}(i,v)e[é] x [w] ? {Ti}ie[e] ’ BP®)

Finally, it sends the challenge ciphertext as (tag*, {U:,b}ie[é],be{(),l})'

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = S. Tt runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all « € [{],

tag’ a’ S’
{B(y‘,m C(m)}
({Uqa.0, Ua}) < Mixed-SubEnc B T S igpbyes’
Pio} 50)elt))
{Ti}icpy - BP

(b) Finally, it sends the ciphertext as (tag, {Uivb}ie[f],be{o,l}).

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) Tt chooses a secret vector as § < x” and A — 1 random vectors as
vz for j € W\ {°).

G5 o8 TP 68 a5 follows:

% i [

(b) It then chooses vectors s

Y (i,5,8) € (] x [\ x {0,1}, s 2z,
V(0.5 8) € [x N x (0.1}, e e ¥,
V(8 € N x {01}, el ¢ X
V(0,8 elit—1]x{0,1}, & 7 ez
vBe{0,1}, &7 « xin.
(c) Let ¥ = a2, and let stgi_ﬁ*),stgf*) denote the state of branching
programs BP, BP() after i* — 1 steps, respectively. Also, let I',y,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-165

and U%) denote the following;:

L=+ x (N\{"Hx{01}, y= > yY,

JEMN{G*}
_ U:, it =g
Y (4,8,b) € [(] x {0,1}2, U = ~ib ’
(7’ ﬂ) [} { } i,b Ui,b lf 5 =1— ﬂ*
Also, for 8 € {0,1}, let Bgﬂ%ﬂ = 0™ and let EEZ " denote

the following vector:

i*—1 i*—1 if—1
~".8) _ ~(5".8) ®_s (8)
z(ta 'HUMS) 5 LU

a=1 =Tet 6=1
TN P)

% I*

Next, it computes key vectors {tl(.j o)}i, ;.5 as follows. For all tuples

(i,5,8) €T,
(J») B(J,B) Ly _|_e(J7B) ifi=1,
tgj’ﬁ) — (J B) Cz] f)w L+ Z(J B) nggﬁ) + el(_] B i1 < <,
- y . i) Fel® i1,

Vi, B) e it — 1] x {0,1}, t90 =57 4 el7H),
vae{o1}, t90 =t L eue)

(68 T T
v ﬂ € {07 1}7 tgz+f) = Z (ta ' H Uéﬁﬂ?s) -y H U‘(;vﬁzl
6=1

a=1 =«

| S P t(ﬁ) +S(718) B(]*7ﬂ)~ _"_e’fz*)ﬁ)

i*+1,s i*+1 *+1,T% 1 +1 >

v (i,8) € ([L+ 1]\ [i* +1]) x {0, 1},

t(j*,B){_sz(']jiﬁ)'C(Dy B QT g <

i ,Z;

—Séj*’ﬂ) _C(j 75) +eéj+1’ﬂ) ifi=0+1.

(d) Finally, it sends the secret key as (x {t } (s B)le+1x A Ax{0,1})-
e Guess. The adversary finally sends the guess 7/, and wins if 7/ = .
Game 3.i*.3 This is identical to the previous game, except B(J’ﬁ) C(]’B) for strands
7 =7 and levels i = ¢* are not sampled along with other level ¢* matrlces but instead
they are sampled uniformly at random. Also, ciphertext components for level i* are
used to target only the remaining matrices. Below we describe it in detail.
e Setup phase. The adversary sends the functionality index (k,w, L) and
descriptions of two branching programs (BP(O)7 BP(l)) to the challenger. Then
the challenger proceeds as follows:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-166 R. GOYAL, V. KOPPULA, AND B. WATERS

1. It chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe as described in the construction. Recall that
¢=Fk-Landn = (4A\+w)n. It also chooses two A-bit strings tag*, tag
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(*) denote the following sets:

Vi<it+1, SY=(N\{7"}) x {0,1}%,
Vi>i*+1, SO =[\x{0,1}2
Also, let

n; =

~ n—4n fori <i* +1,
n for i > i* + 1.

Set 8 = {(i,5, 3,b) € [(] x [\] x {0,1}* : (j, ,b) € SV}
2. It samples {Bz(v?b’ﬂ)}i,jﬁyb, {P;}, , matrices as

{B%?} _
Vi€ [, }bp (7,8.:0)eS@ | T, | < EnTrapGen(1™,1™, q),

i’v}ve[w]

vV (8,b) € {0,1}%, BY) « zpxm,

3. It then samples matrices C(] B Zyx™ for (i, j, B,b) € S.
4. Finally, it sends the public parameters pp = (A, n,m,q, k,w, L, Xpre) tO
the adversary.
e Challenge phase. The challenger chooses a random bit v < {0,1}. Let

() — . 60) ()
BP ({m w] = [w]}ie[z],be{o’l},acc € [w],rej € [w]),

S*=83.
The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all « € [{],
tag*’ Oé, S*7
U o BUA). C(a‘,ﬁ)} 7
({U%0,U 1 }) + Mixed-SubEnc { ib b f s ese o
{Pi,v}(i v) E[€] x [w] 7{Ti}ie[é] ,BPYY

Finally, it sends the challenge ciphertext as (tag*, {Uj b}ze 0.6e{0.1}).

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = S. It runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all « € [{],

tag7 a’ S’
B(Jlﬁ)7 C(jaﬂ)

({Uqa,0,Uq,1}) < Mixed-SubEnc { b &b }(i,J}ﬂb)Gi?7
{Pi,v}(i,v)e[z]x[w] ’

{Ti}ie[e] ’ BP

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-167

(b) Finally, it sends the ciphertext as (tag, {Uss}ic(e,pefo,1})-

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) Tt chooses a secret vector as § < x” and A — 1 random vectors as
¥y <z for j € N\ {5°).

G.B), (] B8) t(j 5) (] 8)

(b) It then chooses vectors s; as follows:
V(05,0 € [0 x N x {01}, 577 2,
V(G 8) € [0 x N x (0.1}, e e iy,
V(. 8) € N x {01}, e} e Xk

Vv (5, 8) € i — 1 x{0,1}, © P zm,

q
vBe{0,1}, &1 ym

(c) Let ¥ = x¥, and let st(1 # s ’8*) denote the state of branching
programs BP, BP() after i* — 1 steps, respectively. Also, let I',y,
and Ul(./? denote the following;:

D=+ x (NN Hx{01}, y= > yY,
e~}
Ui, ifg=p"

. 2 B _
v (Za/B?b) € [E] X {07 1}) Ui,b - {Ui,b lfﬂ =-1—= 5*

Also, for 8 € {0,1}, let BY A — 0™*™ and let t(j 2

£+1,Tp41
the following vector:

NN T Ry P
t;- = Z <toc T H Ué@g) H U5 s

+5- P, St(ﬁ)+S(j ’ﬁ) B()—1-551 B)

denote

Next, it computes key vectors {tl(.j o)}i, ;.5 as follows. For all tuples

(1,5,8) €T,
(J B) B(] 5) 4 y(]) 4 e(] B) if i = 1,
tz(_Jﬁ) - (Jﬁ) C G» [13)35 L+ S(J 5) nggf) + e(] B it < <,
(J ﬁ) C/ﬂf]) éi?) ifi=10+1,

V(i 8) € it~ 1) x {0,1}, 0P =177 4o,

For all g € {0,1},

" PO N
£ 0 | 78,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-168 R. GOYAL, V. KOPPULA, AND B. WATERS

tz(z:-”f) = Z (v H U5 z(;) HU5 Ts

a=1

(37.8) B(J ,B) +e(z*ﬁ)

+S'P +S*+1 'L+1wz+1 i*4+1

15t
v (i, 8) € ([0 + 1\ [" +1]) x {0, 1},

e _{ (j*l,B) cl™p) +S(]) gU"h) —|—e§j*7ﬁ) i<

i—1,T 1,T;

(J :8) Céjr,;ﬁ) g_lﬁ) ifi=10+1.

(d) Finally, it sends the secret key as (:v, {tgjﬂ)}(i,j,ﬁ)e[é-i-l]x[A]x{o,l})~
e Guess. The adversary finally sends the guess 7/, and wins if v/ = .

Game 3.7*.4 This is identical to the previous game, except the ¢*th level key compo-

nent in the j*th strands is a uniformly random n length vector; i.e., all first i* level
components in the j*th strand are random elements. Also, we no longer sample the
matrices Bgfb’ﬁ
it in detail.

e Setup phase. The adversary sends the functionality index (k,w,L) and
descriptions of two branching programs (BP(O)7 BP(l)) to the challenger. Then
the challenger proceeds as follows:

1. It chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe s described in the construction. Recall that
¢ =Fk-Land n = (4A\+w)n. It also chooses two A\-bit strings tag*, tag +
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(*) denote the following sets:

), Cgfgﬂ) for strands j = j* and levels ¢ = ¢* at all. Below we describe

Vi<it+1, SO =(N\{"H x{0,1}%
Vi>i*+1, SO =\ x{0,1}2

Also, let

n; =

_ n—4n fori < i* +1,
n for ¢ > i* + 1.

Set § = {(i,4, 8,b) € [(] x] x {0,1} : (j, 8,b) € SD}.
2. It samples {Bgfgﬂ)}i7j757b, {P;.}, , matrices as

(175)} ~
Viel], { “b G pbese | [T, | « EnTrapGen(17,1™, q).

i,V vew]

3. It then samples matrices C(] A Zy*™ for (i, j, B,b) € S.
4. Finally, it sends the public parameters pp = (A, n,m,q, k,w, L, Xpre) to
the adversary.
e Challenge phase. The challenger chooses a random bit v + {0,1}. Let

() = ™ . ™) i
BP ({m w] = [w]}iem’be{o7l}7acc € [w],rej € [w]),

S*=S5.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-169

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all a € [{],

tag*, a, S,
i} . _ BUA) C(j,ﬂ)}
({Ua,O7Ua,1}> + Mixed-SubEnc { b L [pese

{Piv}ivyernw I Titici BP®)

Finally, it sends the challenge ciphertext as (tag*7 {Uzb}ie[0.e{0.1})

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = S. Tt runs the Mixed-SubEnc routine (described in Figure 6)

as follows. For all a € [{],

tag, «, S,
{B(j,m C(m)}
({Ua.0, Ua1}) < Mixed-SubEnc BT S igpbyes’
{Piv”}(i,v)e[Z]X[w])
{ﬂ}ze[é]) BP

(b) Finally, it sends the ciphertext as (tag, {Ui,b}z‘e[é],be{o,l})

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses a secret vector as § <— x7 and A — 1 random vectors as
y0) 2 for j € N\ {5}
G0 o8 TP &GH)

(b) It then chooses vectors s;”"”’, ; as follows:

7

Y (i,5,8) €[] x N x {0,1}, ¥ « 71,
Y (i,5,8) €) x N x {0,1}, eP? i,
V (5, 8) € N x {0,1}, el « xm,

V0.8 e x {01} &7 ez,

vBe{01}, &l .

(c) Let = oL, and let stgi_ﬁ*),stgf*) denote the state of branching
programs BP, BP() after i* — 1 steps, respectively. Also, let ')y,
and U;ﬁb) denote the following:

=+ x(N\G D x{01}, vy= > v,
JEMN{I*}
u;, ifg=p",

. 2 ® _
v (Z,ﬁ,b) S [q X {07 1}) Ui,b - {Ui,b lfﬁ =1= 5*

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-170 R. GOYAL, V. KOPPULA, AND B. WATERS

Also, for g € {0,1}, let Bgﬂ z)e+1 0™*™. Next, it computes key

vectors {tij’ﬁ)}i,jﬁ as follows. For all tuples (i,7,8) € T,

(Jﬁ) B(Jﬁ)+y(J)+e(JB) if =1,

t0 = { 0D C(J"fl s Bl +e(J i1 <i<y,
(J 5) C/f[) éilj) ifi=10+1,

VG, B8) € [i*] x {0,1}, 0P T | oGm0,

(J ,B) ~ a
VBe 1), 0 z(Hug@é)—y-nvf;@s
=1

TG - R (G".8)

ts- Pi*-‘rl,stgf) 1T 4 Ter

v (i,08) € ([L+ 1]\ [i* +1]) x {0, 1},

t(j*,,B){_sz('ffﬁ)'C(DU B QT g <

i—1,T; -1 ,X4

—sg O 1 e i i =0+ 1.

(d) Finally, it sends the secret key as (x {t } (s8)€le+1x A Ax{0,1})-
e Guess. The adversary finally sends the guess 7/, and wins if 7/ = .

Game 4 This is identical to the previous game, i.e., Game 3.£.4. For ease of exposition,

we describe it in detail below.

e Setup phase. The adversary sends the functionality index (k,w,L) and
descriptions of two branching programs (BP(O)7 BP(l)) to the challenger. Then
the challenger proceeds as follows:

1. It chooses an LWE modulus ¢, dimensions n,m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe s described in the construction. Recall that
¢ =Fk-Land n = (4A\+w)n. It also chooses two A\-bit strings tag*, tag +
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(*) denote the following sets:

vield, S9=(N\ {7} x {01}
Also, let m; = n — 4n for all 5 € [{].

Set 5= {(i,5,8,0) € (] x [\ x {0,1}* : (j, 8,b) € SV}
2. It samples {Bgfgﬁ)}mﬁyb, {Pi}, , matrices as

(J,ﬁ)} -
Ve[, { tb S Gapes || Ty | < EnTrapGen(17,1™, q).

40 S yefw)

It then samples matrices C(j A « Zy*™ for (i, 4, 8,b) € S.
4. Finally, it sends the public parameters pp = (A, n,m,q,k,w, L, Xpre) to
the adversary.

e

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-171
e Challenge phase. The challenger chooses a random bit v < {0,1}. Let

BPO) = ({wg)] = [w]}
S* = 8.

,acc) € [w], rejV) € [w]) ,
i€le],be{0,1}

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all « € [{],

tag®, o, S*,
o _ G.8) B
({Ua70,Ua71}) < Mixed-SubEnc {Bi,b 7Ci,b }(i,j,B,b)ES* ’

Pio}meaniol - (Thierq - BPY

Finally, it sends the challenge ciphertext as (tag*, {U;b}ie[e] be{0.1))

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = S. It runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all o € [(],

tag7 a’ S’
B(-jﬁ), C(_j»ﬁ) ,
b b }(i,j,67b)eS

{Piav}(i,v)e[f]x[w] ’

{Ti}iciq BP

({Uw.0,Ua.1}) < Mixed-SubEnc {

(b) Finally, it sends the ciphertext as (tag, {Uivb}ie[bee{O,l}).

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) Tt chooses a secret vector as § «— x7 and A — 1 random vectors as
y () Zy for j € A\ {j*}-
G.B), e(jﬁ)?’t“(,jvﬁ)

(b) It then chooses vectors s; i . as follows:

Y (i,4,8) € [€] x [A\] x {0,1}, ng,ﬁ) ez
Y (i,5,8) € [x N x {0, 1}, ey,
v (4, 8)
v (

€N x{0,1}, el i,
i,8) e[l x{0,1}, & 7 ezm

(c) Let # = z, and let stéi_lﬁ *),stéi*l) denote the state of branching
programs BP, BP() after ¢ steps, respectively. Also, let I, y, and
Uz(.)ﬁb) denote the following:

P=[+1x (NN Hx{01}, y= Y yY,
JEDIL*}

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-172 R. GOYAL, V. KOPPULA, AND B. WATERS

U; if 8 = B*
Y (i, 8,b) € [(] x {0,132, UW = b] 8 =B,
} U, ifpg=1-p"
For v € [w], let Ptgf_ 1)U be the top level matrices chosen while com-

puting the challenge ciphertext. Similarly, let Pé +_15) be the top
level matrices chosen while computing the query ciphertext. Next,
it computes key vectors {tgj’ﬁ)}i,j,g as follows. For all (i,7,8) € T,

(] B) B(J B) 4 y(J) 4 e(] B) if 4 = 1,
tgj’ﬁ) _]75) C(Lﬂ) + SZ(J,) 'Bz(‘jg%i) + eEJ,B) ifl1<i<d,

1$71

JB) C/ij +el ifi=r41,

Y (i, B) € [£] x {0,1}, tgﬁﬁ) :zv(:j*ﬁ) +e§j*75).

For all g € {0,1},

L L L
(7”8 78) v G)
=3 (W0 T,) -5 T
d=a 0=1

) (G".8)
+s- P£+1), + e

(d) Finally, it sends the secret key as ({t }(m B)e[f+1]x A]><{0,1})-
e Guess. The adversary finally sends the guess 7/, and wins if 'y’ = 1.
Next, we have a sequence of £ hybrid experiments, Game 4.7* for i* =1 to /.

Game 4.7* This is identical to the previous game, except the challenger uses the routine

Mixed-SubEnc™ to generate the first i* components of both the challenge as well as the
query ciphertext. This routine is similar to Mixed-SubEnc, except that Mixed-SubEnc*

outputs ciphertext components that map the {P;- .}, elw] matrices to uniformly ran-

dom matrices (instead of mapping to {PZ +1»7f(”)}ve] 8 in Mixed-SubEnc).

e Setup phase. The adversary sends the functionality index (k,w,L) and
descriptions of two branching programs (BP(O)7 BP(l)) to the challenger. Then
the challenger proceeds as follows:

1. It chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe S described in the construction. Recall that
{=k-Landn = (4 \4+w)n. It also chooses two A-bit strings tag*, tag +
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(*) denote the following sets:

vield, SY=(N\{;"}) x{0,1}%

Also, let n; = n — 4n for all i € [(].
Set S = {(i,5,8,b) € [(] x [\] x {0,1}* : (j,8,b) € SV}
2. It samples {B(]) }ig.p.bs {Piw}; , matrices as

2)
Ve, { ?P- (}j,@b)esm ,T; | < EnTrapGen(1™¢,1™,q).

v S yefw)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-173

3. It then samples matrices C(] A Zy*™ for (i, j, B,b) € S.
4. Finally, it sends the public parameters pp = (A, n,m,q, k,w, L, Xpre) to
the adversary.
e Challenge phase. The challenger chooses a random bit v + {0,1}. Let

8P = ({nl) ful > ful} v € fulure® € ful).

S*=S9.

The challenger then runs the Mixed-SubEnc and Mixed-SubEnc™ routines (de-
scribed in Figures 6 and 7) as

Ve i),
tag*, o, S*,
{B(j,ﬁ) C(j,ﬂ)}
({U%0,U 1 }) + Mixed-SubEnc” po TR Jgebest |

{Piv}0)eigxu) >
T; 1€[{)
Vae [\ "],

tag*’ O[, 5*7

8 j»8
{BU"C7 s
(4,4,8,b)€S

{Piv”}(i,v)e[é] X [w] ?
{T}icpy ,BPY

({U% 4, U4, }) « Mixed-SubEnc

Finally, it sends the challenge ciphertext as (tag {UZ b}zE 0.6€{0,1))

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S =S. It runs the Mixed-SubEnc and Mixed-SubEnc* routines

(described in Figures 6 and 7) as

Ve i,
tag, «, S,
{B(]‘,B> C(j,ﬁ)}
({Ua.0,Uas}) ¢ Mixed-SubEnc* BT S sbyes”
{Plu}zv e[l x[w]?
{T }ZE[Z
Vaell\[i"],
tag, a, S,
{B(_jﬁ) C(_j,ﬁ)}
({Ua.0,Uq1}) < Mixed-SubEnc b Jigpbes
Pio}ioetgxqul
{Ti}icin, BP

(b) Finally, it sends the ciphertext as (tag, {Uivb}z‘e[e] be{0.1}).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-174 R. GOYAL, V. KOPPULA, AND B. WATERS

Mixed-SubEnc*
Inputs:
- Tag tag, Level a, Set S C [x [A] x {0,1}?, Matrices

4,8) (.8)
{Bi".Cl 7 o smes (Pivk i eixuy Trapdoors {Ti},c .
Output: Matrices {Up, Uy }.
Execution: Let S, denote the following set:

Sa = {(j,ﬂ,b) € [N\ x {0, 1}2 such that («,7,8,b) € S}.

Sample matrices {D,(Jj’ﬁ),]F:i)g,j’/j)}(Jﬂ’b)esm as
DUA _ C((xj,,bﬂ> if 8 = tag; and b =0,
b= .
. — Z72*™) otherwise,
v (5, 8,5) € S, ; (j,ﬂ)q) .
ﬁ(]yﬁ) _)JCah if B =tag; and b=1,
g =

(< Zy*™) otherwise.

Sample 2w matrices matrices {QU, Qv} » as
ve|w
Q — anm7
Voe [w]v ~" 31 m
Q, « Zy3*™.
Let matrices M, W, W represent the following (|Sa|+w)n x m dimension matrices:

{B(a‘,m {ng,a)}
M = f{’b (GBbESa |, W= (7.8.b)€Sa
P

LY Syelw] Qi’v vE[w]

B {ﬁ}(}jﬂ)}
W _Jysmesa

e vE[w]

Run the EnSamplePre to compute matrices {Up, U1} as

Uy < EnSamplePre(M, Tt Opre, W),

U, < EnSamplePre(M, T, 0pre, W).

Fic. 7. Routine Mixed-SubEnc*.

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses a secret vector as S <— x% and A — 1 random vectors as
y) Zy for j € AN {5*}-
(G:8) e(j,6)7’tvl(ﬁvﬁ>

(b) It then chooses vectors s; ; as follows:

Y (i,4,8) € [x N x {0,1}, sV 7z,
¥ (i,5,8) € [x N x {0,1}, P« i,
V(5,8 € N x {0,1}, e « xin,,

v (

c
8 el x {01}, &7 ezm

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

28Technically, in Game 4.(¢ + 1), p

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-175

(c) Let 7 = oL, and let stg1 9 5t£+1) denote the state of branching
programs BP, BP) after ¢ steps, respectively. Also, let I',y, and
Ugi) denote the following:

=+ 1 x W\ x {01}, y= > ¥V,
JEDNG*}
Ui, ifpg=p"

. 2 ® _
v (Za/B?b) € [é] X {07 1} ’ Ui,b - {Ui,b lfﬁ =1— ﬁ*

For v € [w], let Péil)v be the top level matrices chosen while

computing the challenge ciphertext. Similarly, let Pgilﬁ) be the
top level matrices chosen while computing the query ciphertext.?8
Next, it computes key vectors {tl(-] o)}i, 4.8 as follows. For all tuples

(@,5,6) €T,
(J B) B(] /3) + y(J) 4 e(] »B3) if i = 1,
tz('jﬁ) — (J ﬁ) C J f)am - S(J 5) BE a:,) + e(] B i1 < <,
(JB) C(Jﬁ) (JB) fi=r+1

0, Ty €+1

Y (i, 8) € [x {0,1}, t9D =3P L el"H),

¢ l l
, (J ,B) -
Vhe) 10 z(HUfs%)—y-HUfs%

(d) Finally, it sends the secret key as ({t } (.3 PEl+11x A Ax{0,1})-
e Guess. The adversary finally sends the guess v/, and wins if v/ = ~.

Game 5 This is identical to the previous game, i.e., Game 4.£. For ease of exposition,

we describe it in detail below.

e Setup phase. The adversary sends the functionality index (k,w,L) and
descriptions of two branching programs (BP(O)7 BP(l)) to the challenger. Then
the challenger proceeds as follows:

1. It chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe S described in the construction. Recall that
{=k-Landn = (4\4+w)n. It also chooses two A-bit strings tag*, tag +
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(*) denote the following sets:

viell, sY=(N\{7"}h x{0,1}*
Also, let m; =7 — 4n for all ¢ € [{].
Set S = {(,4,8,b) € [f] x [\] x {0,1}% : (5,53,b) € SD}.

ol is not sampled during Mixed-SubEnc*. For that
+1,8

Y1
experiment, we will assume these matrices are chosen for the first key query and used for all remaining

keys.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-176 R. GOYAL, V. KOPPULA, AND B. WATERS

2. It samples {B(J 6)}17%5,[,, {Piv}, , matrices as

(J,ﬁ)} ~
Ve, { b S Gapese || Ty | < EnTrapGen(17,1™, q).

4V Sy elw)

3. It then samples matrices C; J . Zyxm for (i, j, B,b) € S.
4. Finally, it sends the public parameters pp = (A, n,m,q, k,w, L, Xpre) tO
the adversary.
e Challenge phase. The challenger chooses a random bit v < {0,1}. Let

() — . () ()
BP ({m w] = [w}}ie[é]ﬁe{o’l},acc e [w], rej" € [w]),

S*=35.
The challenger then runs the Mixed-SubEnc® routine (described in Figure 7)
as follows. For all « € [],

tag*7 a7 5*7

{BG . cHP}
(¢,5,8,b)eS*

{Piv}ioexiu) {Titier

({Ua 0 :;1}) < Mixed-SubEnc*

Finally, it sends the challenge ciphertext as (tag {UZ b}ze 0.6€{0.1))

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S=S. It runs the Mixed-SubEnc* routine (described in Fig-

ure 7) as follows. For all o € [¢],

tag7 a’ S’
o . BUA) C(j,ﬂ)} 7
({Uq0,Uq1}) < Mixed-SubEnc { b S pmes
Piso}inyexu) Titiely

(b) Finally, it sends the ciphertext as (tag, {Uiv}iciveron).

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses a secret vector as S <— x% and A — 1 random vectors as
vy <z for j € N\ {77}.

(b) It then chooses vectors sgjﬁ), eEj’B)fl(-j’ﬁ) as follows:

i,j,B) € [0) x A x {0,1}, sV 7z,
i,j.B) € [0) x [\ x {0,1}, e i,
.736 P‘] X {07 1}7 eg,-f) — Xlastv

i B ~(3".,B)

v
v
v
v] < {0,1}, & 7z

(i
(i
(4:8) €
(i,5) €

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-177

(c) Let 7 = oL, and let stgiﬁ *)75t%:1) denote the state of branching
programs BP, BP) after ¢ steps, respectively. Also, let I',y, and

Ugi) denote the following:

L=[+1]x ((A\{7"}) x{0,1}, y= Z y,
JEMN{*}
u;, ifg=p",

. 2 B _
v (Za/B?b) S [6] X {07 1} i Ui,b - {Ui,b lfﬁ =1= 5*

For the first key query, it samples matrices Péf_)l , forve[w],Be

{0,1} as follows:29

8) _ onxm if v = rej,
0+1,5ty7) (+ ngm) otherwise.

Next, it computes key vectors {tl(-j o)}i, 4.8 as follows. For all tuples

(4,5, 8) €T,
tz('J’B) — 755-&?) . 05]—7?)5171 + Sg]aﬂ) . ngéf) +e§]75) ifl<ig < 67

—s{P P p el ifi =041,

v (2,5) c [a X {07 1}7 tz(vj*ﬁ) :EZ(_j B) +e§j*’ﬁ)7

/ 4 /
i ~(3*.8) ~
vBe{o1), ti)=—%" (ta -HU§?£5> -y-T[v,
=« 6=1

a=1
) " .8)
+s Pz+1,st§@1 T e

(d) Finally, it sends the secret key as (:z:, {tgjﬁ)}(i,j,ﬁ)e[é-i-l]x[A]x{o,l})-
e Guess. The adversary finally sends the guess 4/, and wins if v/ = ~.

8.4.2. Indistinguishability of hybrid games in section 8.4. We will now
show that the hybrid experiments described above are computationally indistinguish-
able. For any PPT adversary A, let Adv 4 ,(-) denote the advantage of A in Game z.

LEMMA 8.8. There exists a negligible function negl(-) such that for any adversary
A and A € N, Adv 4 0(A\) — Adv_4,1(A) < negl(N).

Proof. The only difference between Game 0 and Game 1 is that the challenger
aborts if tag* = tag. The probability of this event is 27*, and it is independent of the
adversary’s choice of (k,w, L) and BP(O)7 BP™) in the setup phase. As a result, for
any adversary A, Adv.ao(X) — Adv,g1(A) <272 n]

LEMMA 8.9. For any adversary A and A € N, Adv_4,1(\) = Adv42(N).

29Recall, as defined in Game 4.(¢+ 1), that these matrices are sampled only for the first key query,

and all remaining key queries use the same matrices.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-178 R. GOYAL, V. KOPPULA, AND B. WATERS

Proof. The only difference between the two hybrids is with respect to the keys.
In Game 1, for each key query, the challenger chooses A — 1 uniformly random vectors
y) Zy for j < X and sets y& = 5Py, _Zjep\—l] y). In Game 2, the challenger
chooses y\7) « Zy for j € [\ {j*} and sets yU) =5.-Py; — 2N} y\). Fix
all y9) for j ¢ {j*,A\} and §-P; ;. Then the following two distributions are identical:

4 (") gm.
(4") (A)) . Y <_~ N - }
{(y Y y(A) =s-Pi1 - Zje[/\—l] y(]) 7

)\ m.
{<Y(j*),y“)> : ys,j;— ik v) }
yYv ' =s5-Py, _Eje[A]\{j*}yJ

This implies that the distributions in Game 1 and Game 2 are identical.]

LEMMA 8.10. For any PPT adversary A, there exists a negligible function negl(-)
such that for all A € N, Adv42(A) — Adv.a3.1.1(A) < negl(A).

Proof. Let us first consider the differences between Game 2 and Game 3.1.1. The
setup and challenge phases are identical in both games. The post-challenge ciphertext
query is also handled identically in both games. The only difference in the two games
is with respect to the key queries. In particular, for each key query x, the key com-
ponents {tgj*’ﬁ)}ﬁe{OJ} are computed differently in the two games. In Game 2, the

challenger sets tgj*’ﬁ) =-y+s-Py; —i—sgj*’ﬁ) .BY_A) —&—egj*’ﬁ), while in Game 3.1.1,

1,51
tgj B) ("8 gUTA) 4 gl™h) +e§] B)

—y+s-Pii+sy 7 Te
lemma (Lemma 2.1), since oig/0iwe > 2% we can argue that there exists a negligible
function negly, ,4(-) such that for all A € N, m € N, SD(D;,D2) < 2m - neglg,q4(A),
where

it sets . Using the smudging

D) = {(egj*’o),egj*’1)> : egj*’ﬂ) Xpig for B € {0,1} },

(3*.8) m
G R . e\ for B e {0,1);
Dy = (egj 0 +e§] ’O),e(lj 0 +e§] ’O)) : S%j*,ﬁ) X:’y'lg or € {0,1})
€ — xn, for g € {0,1}

As a result, if an adversary A makes geys(A) key queries, then for any A € N,
Adv 42(A) — Adv 4 3.1.1(A) < Greys(A) - (2m - negly,q(N)). 0

LEMMA 8.11. For any PPT adversary A, there exists a negligible function negl(-)
such that for all A € N, Adv g 3.+1(X) — Adv 4 3.4 2(A) < negl(N).

Proof. The main difference in these two games is in the key generation phase. In

particular, for each key, the terms (tE] +?),t£]+1)) are computed differently in both

games. In Game 3.7*.1, tsz_’f) = —sgf”” CEJ*;’B) +s§]:_f) BEZ;B)H +e§Z;’f), while in
Game 3.7*.2, the challenger sets t£]+’f) as — 25:1 (ES ’B)~Hf§;a U)fingzl U

5755 61555
F5 P,y 4T BUL oD, which i oqual o —s¢) - CU) +

sz(f;f) BEJ*iB)H + egﬂi’f) + é’gflf)-Uf’)@* +s-E. In the second equality, nglf) — Xiwes
m

s < x5, E is sampled by Mixed-SubEnc from x7 5". The second equality follows by

substituting the value of Efj R Zf::_ll tfj o). g*:—; Ug@s) -y- f;:_ll Ugﬁf)é 45
P..» +SEZ*’H)-B(j*Lﬂ)+§Ez*’ﬁ) (note that this is how Ifj %

Jx
17, T

is defined in Game 3.7*.2).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-179

To prove this lemma, we will use the following fact, which follows from the smudg-
ing lemma (Lemma 2.1). Here, we use the fact that if e and U have entries bounded
by Opre - poly(A), then e- U can be “drowned” by a noise vector €’ drawn from a noise
distribution with parameter opye - 22X,

FacT 8.1. Let Xbig, Xs» Xapprs Xiwe e families of distributions over Z as defined in
the construction. For any polynomials n(-), m(-), there exists a negligible function
neglg 1 (+) such that for all X\ € N, n. = n(\), m = m(X\), xbig = Xbig(A), Xs = Xs(A),
Xappr = Xappr(A); Xiwe = Xiwe(A), and matriz U € Zg**™ such that [|[U|| < opre - 1,
SD(Dq,D2) < neglg 1(A), where

nxXm.

- e xﬁ?g;sl<— X3 B Xoppr
Dlz{e:eexbig}; Dy=qel+e+ez: ex=s-Eje; < xi.;

e;=¢€,-U

As a result, if an adversary A makes geys(A) key queries, then for any A € N,
Adv g3+ 1(A) = Advaz.ic2(A) < greys(A) - (2 - meglg 1 (A)). o
LEMMA 8.12. Assuming the trapdoor generation algorithms LTe, satisfy the

(¢, Opre)-row removal property, for any PPT adversary A, there exists a negligible func-
tion negl(-) such that for all A € N, i* € [(], Adva 3.+ 2(A) — Adv 4 3.+.3(A) < negl(A).
Proof. First, let us consider the differences between Game 3.i*.2 and Game 3.4*.3.

1. Set SG7): In Game 3.i*.2, the challenger sets S¢) = [\] x {0,1}?, while in
Game 3.i*.3, SO = (I\]\ {5*}) x {0,1}? (tag*, tag are chosen at the start of
the security game, so j* is well defined here). Also, n;» = n = (4A + w)n in
Game 3.7*.2, while n;« = n — 4n in Game 3.7*.3.

2. {B(j’B }i—i= matrices: In Game 3.i*.2, the challenger chooses (M, Tj«)
EnTrapGen(17, m, q), while in Game 3.7*.3, the challenger chooses (M;«, T}~)
< EnTrapGen(1"=%" 1™ ¢). As aresult, in Game 3.i*.2, it derives all matrices
{Bgiif)}(j,ﬁ,b)e[A]x{0,1}2 from M;«. In Game 3.i*.3, the challenger chooses
{Bgz’b”g)}b7 pefo,1} uniformly at random, while the remaining are derived from

3. Ciphertexts: Since the set S¢7) is different in both games, the challenge and
query ciphertexts are constructed differently in both games.
Let us now discuss why the row removal property is applicable here. In particular,

we will focus on (U;k 05 Ul 1, U, Uy) In Game 3.i*.2, each of these four matrices
maps [B(J :0) | B(J 0) | B(J 1) | B(J 1)] to a uniformly random matrix. To see why,
let us suppose tagj. = 3* and tagj* =1—*. Then
B(j*’ﬂ*) U* = C2 0 , the rest are mapped to random matrices;
. B(Z 1ﬂ) ‘Ui, = CZ* 1, the rest are mapped to random matrices;
° B(J 1-67) ‘Ui = C(] 1 A7) , the rest are mapped to random matrices;
° Bz(-1711 9 Ui 1 = C(] 1 s) , the rest are mapped to random matrices.

Also, it is important to note that the {Cgfj’ﬁ)}b,ge{oyl} are not used for responding
to key generation queries. Therefore, we can use the row removal property to remove
the rows corresponding to B(J ®) from the level i* matrices.

Suppose, on the contrary, that there exist an adversary A and a nonnegligible
function n(-) such that for all A € N, Advgz.i«2(X) — Advas+3(A) > n(A). We
will use this adversary to build a reduction algorithm B that breaks the (g, opre)-row
removal property of LT,.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-180 R. GOYAL, V. KOPPULA, AND B. WATERS

The reduction algorithm first receives functionality index (k,w, L) from A. De-
pending on the functionality index, the reduction algorithm sets ¢ = k- L, n, m,
n = (4\+w)n as in Game 3.7*.2 (and Game 3.i*.3) and sends these parameters to A.

The reduction algorithm chooses tag*, tag and defines j* as the first index where
the two tags differ. For all i # i*, B defines sets S() and samples matrices (with trap-
dOOI‘S) {{Bg"][,ib)}(j,ﬁ,b)es(iﬂ{Pi,U}vg[w] aTi}iyéi* as in Game 3.7*.2 (and Game 32*3)
The reduction algorithm defines a set Sp which represents the set of rows that are
removed in the transition between the two games. Formally, the reduction algorithm
defines the sets

pos = {j : b, € {0,1}, (i*, 5%, b, 3) is at position j in the set {i*} x [A] x {0,1}?},

Sg=J {nG-D+1LnG-1)+2,...,nj}.

JEpos

It sends 17,1™, Si to the row removal property challenger. It receives A from the
challenger, which it parses as

B/
A= { b }(j,ﬁ,b)e[/\]x{o,l}2

"0 S yew]

The reduction algorithm also chooses (4\ + w — 4) matrices {ngbﬂ)}i¢i*7j;§j*
uniformly at random from Zg*™.

Next, it receives the challenge programs BP® BP(!). Tt chooses ~v + {0,1}. For
all i # 4%, it computes (U7, U} ;) components by itself (this step is identical in both
games). For ¢ = ¢*, it uses the row removal property challenger. It sets matrices

ng’ﬁ) and f)l(jj’ﬁ) as follows:

DUA _ {CE?,;“ if 3 = tag, and b =0,
; . N N Zp*™) otherwise,
YV (7,8,0) € (IN\ {5"}) x {0,1}?, s .
f)(j’ﬁ) — {Ci,l; if B =tag; and b=1,
’ (<= Zz*™) otherwise.

Next, it sets matrices {Qi»v}ve[w]’ {Qi,v}ve[w] as in Figure 6 and sets matrices W
and W as

{ﬁgj,m

Qi,v ve[w] Qi

{Dp) N }
W = b JBbes. W = (,8,b)ESa

)
)

v vE[w]

It sends them as queries to the row removal challenger (note that ng*b’ﬂ) is not

required for defining W and VV) The challenger responds by sending Uj. ; and
Uj. 1, respectively. The reduction algorithm forwards { (U, U; ;) }z‘e[g to the adver-
sary. The ciphertext query is handled similarly, and the reduction algorithm receives
{(Ui0,Us 1)}, cjg Which it forwards to A (the remaining ciphertext components can

be computed by the reduction algorithm).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-181

Next, the adversary sends polynomially many key queries. Note that the keys
are generated in an identical manner in both games. Moreover, these keys can be
generated without having {Cgijb’ﬂ)}b,g and the trapdoor for M.

Finally, the adversary sends its guess, which the reduction algorithm forwards to
the row removal property challenger. Clearly, if the row removal challenger chooses
b = 0, then the reduction algorithm perfectly simulates Game 3.:*.3. If the challenger
chooses b = 1, then the reduction algorithm perfectly simulates Game 3.i*.2 (here we
use the fact that in Game 3.i*.2, each of the matrices {U;-Z7O, UL 1, Ui o, U;- 1 } maps

[B; G O) | B(] 0) \ B(J 1) | B G 1)} to a uniformly random matrix).
Therefore the reductlon algorlthm has advantage at least n(-).]

LEMMA 8.13. Assuming the (n,q, owe)-LWE assumption holds, for any PPT ad-

versary A, there exists a negligible function negl(-) such that for all X € N, i* € [{],
AdVA,g_i*lg(A) — AdV_A73_i*_4()\) S negl(/\)

Proof. In Game 32’ .3, for each key query z, for each 5 € {0,1}, the component
f(i B _ z -1 (va nB) z *—1 U(@) .- g‘:—11 Uu® & 5. P, e + S(] B)

S 8,Ts 6,Zs

BY ﬁ)—&—'é(] ﬁ). In Game 3.i* .4, t(] #)

* Z Lg%

< Zy'. Let gkeys = Gkeys(A) denote the

number of keys queried by A(1%). To prove that these two games are computationally
indistinguishable, we will define gueys hybrid experiments.

Hybrid H, for o € {0,1,..., gkeys}. In this hybrid, for the first o keys, the

~(37,0

tﬁi) components are sampled uniformly at random in the first o queries, while the
~(3",1

tfz) components are sampled as in Game 3.¢*.3. For the remaining geys — 0 key

queries, the keys are generated as in Game 3.i*.3 in the remaining queries.

Hybrid H,; for o € {0,1,...,qkeys}- In this hybrid, for all keys, the t(j 0
~G"1)

components are sampled uniformly at random. For the first o queries, the ti*
components are sampled uniformly at random, while the remaining are sampled as in
Game 3.7*.3.

Clearly, Hp o corresponds to Game 3.i*.3, Hy,, . 1 is identical to Game 3.i*.4, and
Hy,.0 = Ho1. Let aq;p(\) denote the advantage of A in Hj .

CramM 8.14. Assuming the (n,q, owwe)-LWE assumption, for any PPT adversary
A making qeeys(-) key queries, there exists a negligible function n,o(-) such that for
all X € N, Greys = Greys(A) and all indices 0 € [Geys), G A,0-1,0 — G400 < Noo(A).

Proof. Suppose there exist an adversary making geys key queries, and a non-
negligible function 7(-) such that for all A € N, there exists an index 0 € [gkeys| such
that a4,0-1,0 — @400 > N(A). We will use A to build a reduction algorithm B that
breaks the (n, g, owe)-LWE assumption.

The reduction algorithm first receives (1%,1% 1%) from A. It sets 7 = (4\ +
w) - n. The reduction algorithm queries the LWE challenger m times and receives
{(ai, us) Yicm. It sets a matrix A = [a] a3 ...al] (that is, A € Z*™) and u =
[uruz . .. uy] (that is, u € Z7").

The reduction algorithm then chooses two tags, tag*, tag <— {0,1}*, and let j* be
the first index where they differ. Next, the reduction algorithm defines set S for each
i, set S, matrices {Bgfb”B)}(iJ,ﬁ’b)eg, {Pitic e and {Ti}ieq as in Game 3.4%.3

(and Game 3.i*.4). Note that (i*,5*,5,b) ¢ S for b, € {0,1}. The reduction algo-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-182 R. GOYAL, V. KOPPULA, AND B. WATERS

rithm chooses Bgfjb’l) Zy*™ for b € {0,1}. It sends the public parameters to .A.

The adversary sends two challenge functions, BP(O), BP(l), and a ciphertext query
BP. Note that in Game 3.i*.3 (and Game 3.i*.4), the challenge and query ciphertext
are computed identically, and the reduction algorithm has all the matrices/trapdoors
required for computing the ciphertext components.

Next, after receiving the challenge ciphertext and the query ciphertext, the ad-
versary queries for secret keys. For the first o — 1 secret keys, the reduction algorithm
responds as in H,_1 (which is identical to the response in H,). In particular,

to handle these key queries, the reduction algorithm does not require BE* ;), since

in both hybrids t, 70
x € {0, 1}*. Tt sets X by repeating the input L times, and sets B(j O) = A (the LWE
public matrix) and chooses BY 0 < Zy*™ (this might be ubed for the later key

%, 1—2;x
queries). The reduction algorithm sets

- !
Egz 70) - Z <~(J ! H U5 z5> H U5 T + s Pi*’Stgg) tu

a=1

< Zg'. For the oth query, the reduction algorithm receives

~(3",1
It computes tz(j) as in Hy_10 (and H,p). All the remaining key queries are han-

dled identically in H,—10 and H,, and the reduction algorithm has all the matri-
ces required to compute them (in particular, after responding to the oth query, all
{Bgﬂjb’ﬂ)}(bﬁ)emlp are well defined).

Finally, the adversary sends its guess, and the reduction algorithm forwards it

to the LWE challenger. Clearly, if u is a uniformly random vector, then so is the
~(57,0)

t,- component for the oth query, and therefore B perfectly simulates H,o. If
0 j* ~
tiz) BEJ I‘?) +e (] 0 , then the reduction algorithm implicitly sets s(] 0 — g,

Also, note that s(] 0 is chosen afresh for each key query, and hence s will not be
required anywhere else in simulating H,_1 9. Therefore the reduction algorithm per-
fectly simulates H,—1 . As a result, it breaks the LWE assumption with advantage 7.

CraM 8.15. Assuming the (n,q, owe)-LWE assumption holds, for any PPT ad-
versary A making queys(-) key queries, there exists a negligible function n, 1(-) such that
for all A € N, Greys = Greys(A) and all indices 0 € [Qkeys); GA,0—-1,1 — CA01 < N 1(A).

This proof is identical to the proof of Claim 8.14.

Using the above claims, it follows that for any PPT adversary, there exists a
negligible function negls ;. , such that for all A € N, Adv 4 3.+ 3(A) — Adv.4,3.+.4(A) <
negly ;. 4(A). a

LEMMA 8.16. For any PPT adversary A, there exists a negligible function
negly (;+41y.1(") such that for all A € N, Advaszi-4(A) — Advaz q1).1(A) <
neng‘(i*Jrl)‘l()‘)'

Proof. The only difference between Game 3.i*.4 and Game 3.(¢* + 1).1 is that for
each key query, the components (t EJ +(1J), tij +’1)) are computed differently. In particu-

lar, in Game 3.(i* +1).1, the term t(er’l) has an additional term e(Z+f) which is drawn

from the x| distribution.

The proof of this lemma is identical to the proof of Lemma 8.10 by setting
negly (;+41).1(") = Gkeys(+) - (2m - negly,q(+)) (vecall that negl, q(-) is the negligible
function given by Lemma 2.1). d

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-183

Next, we will look at Game 4.7 for ¢ € [¢]. For notational convenience, we refer to
Game 4 as Game 4.0. First, recall that Game 4.0 is identical to Game 3.£.4. Note that
in Game 4.0, the challenger uses {P1 ,},c[w) only for computing (U*{y07 U*{’l) (for the
challenge ciphertext) and (Uy o, U; 1) (for the ciphertext query). In particular, it is
not used in the key generation phase. More generally, for all i € [(], {P; 4 }ye[w) is used
in Game 4.(i — 1) only for computing (U}, U} ;) and (U0, U;1). This observation
is useful for the following lemma.

LEMMA 8.17. Assuming LTen satisfies the (¢, Xappr, Opre)-target switching property,
then for any PPT adversary A there exists a negligible function negly ;. (-) such that
for all X € N and i* € [{], Adv g4, (+—1) — Advg 4.+ < negly ;. (A).

Proof. The only difference between Game 4.(¢* — 1) and Game 4.7* is with re-
spect to the matrices (Uj. o, Uj. ;) (in the challenge ciphertext) and (U« o, Uj- 1)
(in the ciphertext query). In Game 4.(i* — 1), these matrices are computed using
Mixed-SubEnc, while they are computed using Mixed-SubEnc* in Game 4.i*. Recall
that the only difference between the Mixed-SubEnc and Mixed-SubEnc® ciphertext

components is that the Mixed-SubEnc™ outputs map the {Pi*w}ve[w] matrices to uni-

formly random matrices (instead of mapping to {Pi*+1,ﬂ(v) }Ue[w] as in Mixed-SubEnc).

An important point to note is that the {P;« ,}] matrices are not used anywhere

velw
else in both games. In particular, note that {P;« ,}

{U:*—l,baUi*—l,b}be{071}-

Suppose there exist an adversary A and a nonnegligible function 7(-) such that
Advy i+ —1(A) —Advy i« (A) > n(A). We will construct a reduction algorithm that breaks
the target switching property with advantage n(-).

velw] A€ not used for computing

Setup phase. The reduction algorithm first performs the following steps from
the setup phase, which are common for both Game 4.(i* — 1) and Game 4.i*. It defines
ni, SO for all i € [{], chooses tag*, tag < {0,1}*, and defines j* as the first index
where tag* and tag differ. Next, it defines {{Bg?(;ﬁ)}(j7ﬁ,b)es(i)a {Piw}ve[w] T Yizin as
in Game 4.(i*—1). Tt also defines S and chooses {Cgféﬁ)}(i j.apes asin Game 4.(i* —1).

The reduction algorithm setsjg = n; —w - n and queries the target switching
property challenger by sending 17¢,1™ and setting Sg = [k]. It receives a matrix
A€ Z’;X’” and parses A as follows:

- |{B%”}
A {{ b S G ppesi |

Challenge phase. The reduction algorithm receives BP(l), BP®). It chooses
v < {0,1}, and for all o < * it computes (U, o, U}, ;) using Mixed-SubEnc” (as in
Game 4.(i* — 1) and Game 4.i*). Note in particular that {P; , },¢c[w) are not used for
computing these matrices. It then sends its target switching property query matrices

Z; . Z7 , of dimensions n; x m defined below.

(45,8))

« {Ci*’b }(j 8.0)eSE) | {ng’f)} ,

Zy, = ” Zy, = 7 (5,B,0)ESUET) |
{Pi*,ﬂ':* b(”) — Z;Llunxm

It receives Uj. , from the challenger.

vE[w]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-184 R. GOYAL, V. KOPPULA, AND B. WATERS

Query phase. The ciphertext query is handled similarly to the challenge cipher-
text. The key queries are handled identically in both Game 4.(i* —1) and Game 4.¢*. 0O

LEMMA 8.18. For any adversary A, Advgs = 0.

Proof. We will argue that any adversary 4 has advantage 0 in Game 5. First,
note that the challenge phase uses Mixed-SubEnc®. As a result, it does not have any

information about the choice v < {0,1}. Next, in the key query phase, for each

key query, the challenger chooses p¥ (s » which might depend on 7. However,
Sty

the important point here is that for each key query x, both challenge programs have

identical output. Therefore, the p

Z—&-LstzJrl

the adversary has zero advantage in Game 5. a

() Matrices are independent of y. As a result,

8.4.3. 1-bounded restricted accept indistinguishability. In order to prove
restricted accept indistinguishability security, we take a slightly different approach.
First, we show that our construction achieves complete accept indistinguishability
security, which is defined as follows.

DEFINITION 8.19 (g-bounded complete accept indistinguishability). Let ¢(-) be
any fized polynomial. A Mized FE scheme Mixed-FE = (Setup, Enc, SK-Enc, KeyGen,
Dec) is said to satisfy g-bounded complete accept indistinguishability security if there
exist algorithms SK-Enc*, KeyGen™ such that for every stateful PPT adversary A there
exists a negligible function negl(-), such that for every A\ € N the following holds:

(1%, f*) < A(1Y);
(pp, msk) < Setup(1*,1%);
b+ {0,1}; cty < SK-Enc(msk, f*);
ctg < Enc(pp)

Pr AOZ{(')’OS(')(pp, cty) =b:

where

e oracle OY(-) = KeyGen*(pp,), O1(:) = KeyGen(msk, -),
03(-) = SK-Enc*(pp,), O3(-) = SK-Enc(msk, -);

e A can make at most q(\) queries to the O4(-) oracle;

e cvery secret key query m made by adversary A to the O%(-) oracle must satisfy
the condition that f*(m) =1 as well as f(m) =1 for every ciphertext query
f made by A to the O5(-) oracle; and

o A must make all (at most q(\)) O5(-) oracle queries before making any query
to the O%(-) oracle.

At a high level, this states that if the adversary only queries for keys for inputs
m and ciphertexts for functions f such that f(m) = 1 on all combinations, then there
exist special encryption and key generation algorithms (SK-Enc*, KeyGen™) such that
they only take public parameters as inputs, and the adversary cannot distinguish
between correctly computed keys and ciphertexts from these (simulated) special keys
and ciphertexts.

Below we provide a sequence of hybrid games that we later use to argue complete
accept indistinguishability security. To complete the argument, later (in section 8.4.5)
we simply argue that complete accept indistinguishability implies restricted accept
indistinguishability.

Game 0 This corresponds to the original 1-bounded restricted accept indistinguisha-

bility security game in which the challenger encrypts the challenge branching program
BP* sent by the adversary.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-185

e Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:

1. Tt chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbig> Xs> Xappr» Xpres Xlasts Xiwe as described in the construction. Recall that
=Fk-Land n= 4\ +w)n.

2. Next, it samples {Bgféﬂ)}17j7/37b, {P;,}, , matrices as

{B%”} _
Bb S Gspenxfony || T, + EnTrapGen(1™,1™, q).

4,0 fyefw]

Vi€ l[f,

3. Tt then samples matrices Cgfgﬁ) — Zyx™ fori € [(],7 € [A], B,b € {0, 1}.
4. Finally, it sends the public parameters pp = (A, n,m,q, k, w, L, Xpre) t0
the adversary.

e Challenge phase. The challenger chooses a random A-bit string tag* «
{0,1}*. Let

BP* = ({miy s [w] = [u]}
S* =[] x [\] x {0,1}2.

el pefo,1y 2 3C € [w], rej* € [w]) ,

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all a € [{],

({U%, Uz, }) « Mixed-Subknc [{BY%”, ¢l

}(i,j,,B,b)eS* ’ .
{Pi,v}(i,v)e[e]x[u)]) {Ti}ie[f] ,BP

Finally, it sends the challenge ciphertext as (tag*, {U;b}z‘e[z],be{o,l}).

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger chooses a A-bit string tag « {0,1}* and
responds as follows:

(a) Let S = [€] x [A\] x {0,1}2. Tt runs the Mixed-SubEnc routine (de-
scribed in Figure 6) as follows. For all a € [¢],

tag’ a, S?
i, j,8
BY,", ¢
(4,5,8,b)€S
(Pio} s uyetxu)

{Ti}ie[e] ,BP

{U4.0,Uq4 1} + Mixed-SubEnc {

(b) Finally, it sends the ciphertext as (tag, {Uis},cg peqoy)-

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-186 R. GOYAL, V. KOPPULA, AND B. WATERS

(a) It chooses a secret vector as § <— x7 and A — 1 random vectors as
y) Zy for j € [A —1]. Next, it sets vector yM as

y(/\) =3Py, — Z y(j)
JEMN—1]
(jﬁ)}

b) It then chooses secret vectors sQ B) i.i.8, €rror vectors {e;
k3 23,8 [3
as

,5,8

Y (i,4,8) €[] x N x {0,1}, sV 7z,
YV (i,5,8) € [0 x [\ x {0,1}, eP? i,
v (5, 8) € N x {0,1}, e@? « ym..

(c) Let = ¥, Next, it computes key vectors {tl(j’ﬁ)}iyjyg as follows:

¥ (6,3, 8) € [+ 1] x] < {0,13,
sVD BUD 4 yU) eV i =1,
609 = { g0 . QUA_ 4 (UIBUA 4 P i1 <<y,

ENCON IR +e§3+”f) ifi=0+1.

£,y

(d) Finally, it sends the secret key as ({t } (i,5,8)€[+1] X[\ }x{0,1})-
e Guess. The adversary finally sends the guess 7.

Game 1 This is identical to the previous game, except the challenger now chooses both

tags tag® and tag at the beginning during the setup phase, and it aborts if tag* = tag.
e Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:
1. It chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe S described in the construction. Recall that
{=k-Landn = (4\+w)n. It also chooses two A-bit strings tag*, tag <
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below.
2. Next, it samples {BE?&B)}LJ‘,@@ {Piu};, matrices as

(J,B>} -

Ve, { b S Gemenxion | T, | « EnTrapGen(17,1™, q).
40 Sy efw]

3. It then samples matrices C(J A — Zy*™ fori € [f],7 € [A], B,b € {0, 1}.

4. Finally, it sends the pubhc parameters pp = (A, n,m,q, k,w, L, Xpre) to
the adversary.
e Challenge phase. Let

BP* = ({”f,b s w] — [w]}ie[@be{(),l} ,acc™ € [w], rej* € [w]) ,
S* = [0] x [A] x {0,1}2.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-187

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all a € [{],

tag*, «, 5*7
j,8 /8
Bz(,Jb)vcz(‘,jb)} i g .’
(4,4,8,b)€S
{Piyv}(i,v)e[é]X[iv] ’

T; ie[l]

({Ua 0s 21}) + Mixed-SubEnc {

Finally, it sends the challenge ciphertext as (tag {UZ b}ze (€1.6€{0,1})

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = [¢] x [A] x {0,1}2. Tt runs the Mixed-SubEnc routine (de-
scribed in Figure 6) as follows. For all a € [¢],

tag? a’ S’
{B(_jﬁ) C(j,ﬁ)}
({Ua.0, Ua1}) < Mixed-SubEnc BT i s byes

{P’ U} (i,v) €[] x [w] ?

{Ti}icq -BP
(b) Finally, it sends the ciphertext as (tag, {Uivb}ie[f],be{o,l})

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) Tt chooses a secret vector as § «— x” and A — 1 random vectors as
y () Zy for j € [A —1]. Next, it sets vector yM as

yV =5 P - Y Y0
FEN-1]

(b) Tt then chooses secret vectors {s(J #) }i,j.8, error vectors {egj’ﬁ)}

as

,5,8

¥ (i,5,8) € [0) x [\ x {0,1}, s¥P « zp,
V (0,5, 0) € [0 x D x {01}, e e X,
v (5:8) € W x {01}, el X
(c) Let ¥ = ¥, Next, it computes key vectors {tgj’ﬁ)}¢7j75 as follows:
V (6,7, 8) € [0 +1] x [A] x {0, 1},

(J B) B(] /3)+y(J)+e(J ,B3) lflfl
tl('jﬁ): (Jﬁ) ijf)$71+s(]5) B()+e(J3) if1<i<d,

Uﬂ) cfﬂfj) e ifz_£+1.

(d) Finally, it sends the secret key as (:z:, {tgj’ﬁ)}(m,ﬁ)e[gﬂ]xWX{071}).
e Guess. The adversary finally sends the guess 7.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-188 R. GOYAL, V. KOPPULA, AND B. WATERS

Notation. In all the following hybrid games, let diff denote the set of indices
J such that tagj # tag,. Similarly, let comm denote the set of indices j such that
tag; = tag;. Concretely, in all the following hybrids, sets diff and comm are defined
as follows:
diff = {j € [\] : tag] #tag;}, comm = comm.

Additionally, let j* denote the smallest index in diff (i.e., j* = minjcqifr j), and let
p* = tagj.. Note that since the challenger aborts whenever tag™ = tag, thus j*, 8*

always exist whenever the challenger does not abort. Also, we will use diff to denote
the set diff excluding index j*, i.e., diff = diff \ {j*}.

Game 2 This is identical to the previous game, except the challenger, while answering
a secret key query, now puts the s - P; ; component in yU") instead of y, and the
rest are sampled uniformly at random.

e Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:

1. Tt chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe s described in the construction. Recall that
{=k-Landn = (4\4+w)n. It also chooses two A-bit strings tag*, tag <
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger contmues as below.

2. Next, it samples {B;’ G, B)} 15,86 {Piw},; , matrices as

(s ﬂ)} -
Ve lf, { B S Gpenxqoy || T | EnTrapGen(1",1™, q).
4,0 fyelw]
3. It then samples matrices C(J -A) — Zy*™ fori € [(],7 € [A], B,b € {0, 1}.

4. Finally, it sends the public parameters pp = (A, n,m,q, k,w, L, Xpre) tO
the adversary.
e Challenge phase. Let

BP* = ({ﬂ';b s [w] — [w]}ie[@be{o’l} ,acc* € [w], rej* € [w]) ,
S* =10 x [\] x {0, 1}%.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all a € [{],

tag*’ a’ S*V
GH) Gl
B, Ciy

(P

}(i,j,,B,b)ES* ’
) (i)l x[w]
Titicle

({U%0, U 1 }) Mixed-SubEnc {

Finally, it sends the challenge ciphertext as (tag {UZ b}zE (€],6€{0,1})

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for

encryption. The challenger responds as follows:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-189

(a) Let S = [¢] x [A] x {0,1}2. Tt runs the Mixed-SubEnc routine (de-
scribed in Figure 6) as follows. For all o € [¢],

tag, a, S,
{B(J ,8) C(] ﬁ)}
({Ua.0, Ua1}) < Mixed-SubEnc Be b S s bes

Pio i vyeraxu)
{,Tl}ze[é BP

(b) Finally, it sends the ciphertext as (tag, {Ui’b}ie[e],be{o,l}).

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses a secret vector as § <— x7 and A — 1 random vectors as
yW <z for j € [A]\ {j*}. Next, it sets vector yU") as

Yo =5 P - 3y
JENNG)

(JB} Jﬁ)}

(b) It then chooses secret vectors {s
as

i3 » error vectors {e;”"’}; i g

Y (i,4,8) € [x N x {0,1}, sV 7z,
Y (i,5,8) € [0 x A x {0,1}, eP? i,
V (5, 8) € N x {0,1}, e@? « ym..

(c) Let T = xF. Next, it computes key vectors {tgj’ﬁ)}
Y (i,5,8) € [0+ 1] x [\] x {0,1},

U7 . BUD) 4 y() el if =1,

i.j.p as follows:

t0 = gl ‘f)cij fz L HsPIBED L0 iy <<,
s CUP) 4 @D =1,

(d) Finally, it sends the secret key as (z, {tl(-j’ﬁ)}(i’jﬁ)e[gﬂ]XWX{OJ}).
e Guess. The adversary finally sends the guess «'.
Next, we have a sequence of 4¢ hybrid experiments, Game 3.i*.{1,2,3,4} for
i*=1to L.

Game 3.i*.1 In hybrids Game 3.i*.1, the B; j A C(]ﬁ) matrices for all diff strands and

levels ¢ < i* are not sampled (at all) along w1th other level i matrices; ciphertext
components for levels i < i* are used to target only the remaining matrices; i.e., the

(] B)

ciphertext matrices do not target B, matrices for j € diff and 7 < i* to some pre-

specified CE?Z;’B) or random matrices. Also, the first i* — 1 components in each secret
key are set to be uniformly random vectors, and the next component is hardwired
such that correctness holds, and some smudgeable noise is also introduced in these
components. Below we describe it in detail.
e Setup phase. The adversary sends the functionality index (k,w,L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-190 R. GOYAL, V. KOPPULA, AND B. WATERS

1. It chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe as described in the construction. Recall that
¢=Fk-Landn = (4A\+w)n. It also chooses two A-bit strings tag*, tag
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(*) denote the following sets:

Vi<i*, S =comm x{0,1}?
Vit S =[)\x{0,1}2

Also, let
_ {ﬁ— \diff| - 4n for i < i*,

n for 1 > i*.

Set § = {(i,,8:b) € [(] x [\ x {0,1}* : (j,B,b) € SV}
2. It samples {BZ(-'?I;B)}Z‘J”B’}), {Pi},; , matrices as

(jﬂ)} -
Viel], { “b S pbese | [T, | « EnTrapGen(17,1™, q).

4LV S yelw]

3. It then samples matrices CEJI;B) < Zyg=™ for (i,], 8,b) € S.
4. Finally, it sends the public ’parameters pp = (A, n,m,q, k,w, L, Xpre) to
the adversary.
e Challenge phase. Let

BP* — ({w;jb] = [0} g e oy 220" €] ref € [w]) ,
S*=8.
The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all « € [{],

tag®, a, S,
(1,8 @.8)
({U%.0,U 1 }) Mixed-SubEnc {Bz’b Cis }(iyj,ﬁ,b)GS* ’
Piv}iemxr
T; 1€[l]

Finally, it sends the challenge ciphertext as (tag*, {U;b}iem,be{o,l})

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = S. It runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all a € [{],

tag, a, S,
({Uw.0,Uq1}) < Mixed-SubEnc w0 Jigpbes’
Pio} i0)ele))

{Ti}ie[e] ’ BP

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-191

(b) Finally, it sends the ciphertext as (tag, {Uis},cig peqoy)-

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses a secret vector as S <— x% and A — 1 random vectors as
y) = Zm for j € [N\ {j*}-

(b) It then chooses vectors sgj’ﬁ), egj’5)7fgj’ﬁ),€§j’5) as follows:

v [A < {0,1}, s 2z,
v ([% [\l % {0,1}, e« xii,
Y (5.8) € N x {01}, el « xim.,
¥ (1,4, 8) € [i* — 1] x diff x {0,1}, &
v (

K2

— Zgl,

diff x {0,1}, &Y ym.

)
=
m

(c) Let # = aL, and let stlgfﬁ*),stl(-?*) denote the state of branching
programs BP, BP* after i* — 1 steps, respectively. Also, let T',y,
and Uz(.ﬁb) denote the following:

= [0+ 1] x comm x {0,1}, y= Z v,
JEMN{I*}
u;, if3=p",

. 2 ®B) _
v (Z,B,b) € [5] x {07 1}) Ui,b - {Ui,b if g =1-p*.

Next, it computes key vectors {tgj’ﬁ)}i_,jﬁ as follows. Forall (7,4,) €

L,
S(lj’ﬁ) . B(] B) =+ y(]) T e(] NE)) if i = 1’
(09 = | Z@cUh L AR LD i1 i<,
s . cl) e,f,ﬁf) iti=0+1,

Y iy, 8) € [i* — 1] x diff x {0,1}, t9F) =3P 4 B,

V(j,ﬁ)ecﬁfx{o 1},

i —1 i*—1

(G.8) _ (3:8)) j)

X (87 T) 4o T vt
a=1 =1

+ S(Jﬂ) B(Jﬂ) _|_e(JB)+e(Jﬁ)

v B8 €10,1},
B = (208 TT) T o)
8 _ =" -
ti = <ta 11 U5,55> -y [[U5,
a=1 =« =1

1+ 35.-P.) _|_S(J B) B(] 7,6)_|_e(J 7B)+e(] ,/3)

* s L

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-192 R. GOYAL, V. KOPPULA, AND B. WATERS

¥ (0,5, 8) € ([£+ 1)\ [i*]) x diff x {0,1},
t(j’ﬁ) B { (J ﬁ) CE] f)x + S(J B) B(] B) (_J}B) ifi<?,

—fﬂ) C(Jereéﬂf) 1fz:€+1.

(d) Finally, it sends the secret key as (x, {tgj’ﬁ)}(i,j,g)e[eﬂ]x[A}x{o,1})-
e Guess. The adversary finally sends the guess 7.

Game 3.:*.2 This is identical to the previous game, except the (i*+1)th key component

in all diff strands is also hardwired. Below we describe it in detail.

e Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:

1. It chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe as described in the construction. Recall that
¢=Fk-Landn = (4A\+w)n. It also chooses two A-bit strings tag*, tag «
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S denote the following sets:

Vi<i*, S =comm x{0,1}?
Vit S =[x {01}
Also, let
= n — |diff| - 4n for ¢ < ¥,
R N7 for i > i*.

Set § = {(i,,8,b) € [(] x \] x {0,1}* + (5,8,b) € SV}
2. It samples {B(J B)}z7j7g7b, {Pi},; , matrices as

{BYG”} _
Ve, o S Gamesa | Ty | EnTrapGen(1™, 1™, q).
{Piﬂ’ vE[w]
It then samples matrices C(J . Zy*™ for (i, j, 8,b) € S.
4. Finally, it sends the public parameters pp = (A, n,m,q, k,w, L, Xpre) tO
the adversary.
e Challenge phase. Let

Rt

BP* = ({TK'Zb : [w] — [w]}ie[é],be{O,l} ,acc™ € [w], rej* € [w]))

S =38.
The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all o € [(],

tag*a a, S*v
(@.8) 0.8)
Bsz ’Ci,jb

(P

}(i,j,,B,b)ES* ’
o (i)elf]x[w]
T; i€[l]

({U%.0, U 1 }) « Mixed-SubEnc {

Finally, it sends the challenge ciphertext as (tag {UZ b}ze (€],6€{0,1})

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-193

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = S. It runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all a € [{],

tag, a, S,
{B(a) ab; a)}
({Ua.0, Ua}) < Mixed-SubEnc B i gsbyes’

Pio} i vyerxu)
{E}ze[é BP

(b) Finally, it sends the ciphertext as (tag, {Ui’b}ie[ﬂ] be{0.1)).

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) Tt chooses a secret vector as s <= x and A — 1 random vectors as
y () Zy for j € A\ {j"}. _
(b) It then chooses vectors sgj”g),egj’ﬂ),fz(.j’ﬁ),é'g]’ﬂ)

i,3,8) €[] x N x {0,1}, sP? 1z,

i3, 8) € [0 x [\ x {0,1}, e« xfi,

v (i
(i

w N x {0,1}, el ym,

(~(4,8)
(

as follows:

i,4,B8) € [i* —1] x diff x {0,1}, &7 « Z7",

%
%
v i
YV (4, B) € diff x {0,1}, &9 ym .

(c) Let 7 = oL, and let st(1 s),sti*ﬁ) denote the state of branching
programs BP, BP* after 1* — 1 steps, respectively. Also, let T',y,
and Ugi) denote the following:

=[+1] x comm x {0,1}, y= Z y9,

JEMN{*}
U’ if 8= (%,
V(B0 e x {07 U =g e Tl
Ui,b if 5 =1- ﬂ .
Also, for (j,8) € diff x {0,1}, let Byfj)x“l — 0" and let £
denote the following vector. For all j € dlfF
i*—1
~(4,8) (4,8) (B)
73 (7 T) - T v
a=1 6=1
+ s(ﬁ B) BEJ g)* + e(J B)
i —1
~(3".8) i*.B) (8)
@ (6 T) -5 T
a=1 6=1
+35-P. - +S(] :8) BEZ mJi)_,_e("B)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-194 R. GOYAL, V. KOPPULA, AND B. WATERS

Next, it computes key vectors {tz(-j P)}LLB as follows. For all tuples

(ivjaﬁ)er’
sVD BUD £ yU) el ifi=1,
£08) — yfpcgﬂfg +sPIBYY el i1 <i <y,

- gﬂm-c§75>+e§{£) iti=0+1,

Y (6,4, B) € [i* — 1] x diff x {0,1}, t¥P =3V 4 0P
Y (4, 8) € diff x {0,1}, tgg,ﬁ) :i(_z,ﬁ) N eEZﬁ),

V /8 S {071}7 tg-z:ﬁ) :FESZ »B) +egz*7ﬂ)7

. — B) -
Y (j,8) € diff x {0,1}, t97) =— Z(S| §?§6>
=1 =«
2
=1

G:8) gl.h) (4,8)
+osa Bl s g et

.*’ it ~(»*,6) i _ i
vaeion, @0 -3 (& Tug) -5 Tl
5=1

a=1 =«

SNCT N N R)

+ S Pz *+1, st(ﬁ) 41,7, 41 *4+1

VY (i,5,8) € ([0+ 1]\ [* + 1]) x diff x {0,1},

t(j’ﬂ) _ { J B) C(J B) + S(J B) B(] B) + egj’ﬁ) ifi<¢,

i—1 Z]Z,,l

(Jﬁ) C(]B)—i—eg_’[f) 1fl—€+1.

ZZE[

(d) Finally, it sends the secret key as (ac, {t§j7ﬁ)}(i7j,ﬁ)e[€+l]x[)\]x{ovl}).
e Guess. The adversary finally sends the guess «'.

Game 3.7*.3 This is identical to the previous game, except B(J A ,C,]) for diff strands

and levels ¢ = ¢* are not sampled along with other level ¢* matrlces but instead they
are sampled uniformly at random. Also, ciphertext components for level i* are used
to target only the remaining matrices. Below we describe it in detail.

e Setup phase. The adversary sends the functionality index (k,w,L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:

1. It chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe 88 described in the construction. Recall £ =
k-L and n = (4\ + w)n. It also chooses two A-bit strings tag*, tag +

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-195

{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(*) denote the following sets:

Vi<i*+1, S =comm x{0,1}?,
Vi>i*+1, S®=[\x{0,1}%

Also, let
- n —|diff| -4n for ¢ < i* + 1,
7 for i >i* + 1.

Set 5= {(i,5,8,0) € (] x [\ x {0,1}* : (5, 8,b) € SV}
2. Tt samples {Bgféﬁ)}i7jﬁ,b, {P; .}, , matrices as

(jﬁ)} -
Vi€ [, { b S Gemeso || T |« EnTrapGen(1™,1™, q),

4LV S yelw)

¥ (j.5,b) € diff x {0,1}2, BYY « zpxm,
3. It then samples matrices Cg,jéﬁ) < Zy*™ for (4,7, 8,b) € S.
4. Finally, it sends the public parameters pp = (A, n,m,q, k, w, L, Xpre) to
the adversary.
e Challenge phase. Let

BP* = ({miy : [w] = [u]}

S*=S5.

i€lf),be{0,1} ,acc* € [wL rej* c [w]) 7

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all a € [{],

tag*, a, S*,
({U%0,U 1 }) + Mixed-SubEnc N RN CR OIS
Piodivyer
T; i€[e]

Finally, it sends the challenge ciphertext as (tag*7 {Uzb}ie[é],be{o,l})

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = S. Tt runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all « € [{],

tag’ a? S7
BUA qU)

({Uqa,0,Uq,1}) < Mixed-SubEnc { b &b }(i,J}ﬂb)Gi?7
{Pi,v}(i,v)e[z]x[w] ’

{Ti}ie[e] ’ BP

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-196 R. GOYAL, V. KOPPULA, AND B. WATERS

(b) Finally, it sends the ciphertext as (tag, {Uis};cig peqoy)-

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses a secret vector as S <— x% and A — 1 random vectors as
y) = Zm for j € [N\ {j*}-

(b) It then chooses vectors sgj’ﬁ), egj’5)7fgj’ﬁ),€§j’5) as follows:

Y (i,5,8) € [] x N x {0, 1}, sPP 7P,

Y (i,5,8) €[] x N x {0,1}, e« x,

YV (j,8) € N x {0,1}, eZ% i,

¥ (i,5,8) € [i* — 1] x diff x {0,1}, &7 « 7™,
v (

4, 8) € diff x {0,1}, &%) ym .
(c) Let 7 = o, and let st(1 s) (6*) denote the state of branching

programs BP, BP* after 7 — 1 steps, respectively. Also, let T',y,
and U%) denote the following;:

=[0+1] x comm x {0,1}, y= Z y9,

JEMN{I*}
u;, ifg=p",
V(B0 el x {0,y U =g e Tl
Ui,b if 5 =1- ﬂ .
Also, for (j,8) € diff x {0,1}, let Béi_f)wﬂ = 0™ and let t(j %

denote the following vector. For all j € dlfF

_ 1 i*—1
oS (@7 T) - T ol
=1

a=1

5GP BUY 130P),

=1 —1 i*—1
~(3%,8) ~(3%,B) ~
t#}z@-nmymw&

a=1 =« =1

FEPL 48P BYP 43P,

Next, it computes key vectors {tl(-j o)}i, ;5,8 as follows. For all tuples

(7:7.].7 /8) e F’
(] B) B(J B) y(]) +e(] B) if i = 1,
tz(»jﬁ) — (] 5) CE] f)L) + S(] B) BE%?) + egj’B) if 1 < q g &
W) el 4 egzg) ifi=0+1,

Zﬂc(

Y (i), 8) € [i* — 1] x diff x {0,1}, 9 =3P 4 oP),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-197

V (), B) € diff x 0,1}, 30 —F97 4 9
vBe{o1}, t9F = E(Z B L),

For all (j,8) € diff x {0,1},
8 C 8 11 (8 S s
thJr% =— Z (ta . H Ug};é) Lyl H U((m)5
a=1 b=a 5=1
(G.68) . gUA) 3.8)

+sph Bl . e

For all g € {0,1},

=3 (@ 1o - [1ve

a=1 =« 6=1
P~ (3™.8) G".8) G".8)
+s: Pi*+1,st§f>+l t 8y Bi*-‘,—l,%i*-',-l +teni,

YV (i,5,8) € (L4 1)\ [i* + 1]) x diff x {0,1},

Gy [P s B el if i <
t = i t—Lxi—1 T i,T4 7
7 7S§]ﬂ) . C(]’B) + egiff) lfl _ E + 1.

£,T¢

(d) Finally, it sends the secret key as (:v, {tgjﬁ)}(i,j,ﬁ)e[é-i-l]x[A]x{o,l})-
e Guess. The adversary finally sends the guess 7.

Game 3.5*.4 This is identical to the previous game, except the ¢*th level key com-

ponent in diff strands is a uniformly random n length vector, i.e., all first ¢* level

components in diff strands are random elements. Also, we no longer sample the ma-
(

trices Bifl;ﬁ), Cgfl;ﬁ) for diff strands and levels i = i* at all. Below we describe it in
detail.

e Setup phase. The adversary sends the functionality index (k,w,L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:

1. It chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe s described in the construction. Recall that
£ =Fk-Land n = (4A\+w)n. It also chooses two A\-bit strings tag*, tag +
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,

the challenger continues as below. Let S(*) denote the following sets:

Vi<i*+1, S =comm x {0,1}?,
Vi>i*+1, SO =[\x{0,1}%

Also, let
o n — |diff| -4n for i < i* 41,
A for i > i* + 1.

Set S = {(4,4,8,b) € [f] x [\] x {0,1}% : (5,53,b) € SD}.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-198 R. GOYAL, V. KOPPULA, AND B. WATERS

2. It samples {B(J 6)}17%5,[,, {Piv}, , matrices as

(4,8)
Viel, { b }(J}@b)esm ,T; | « EnTrapGen(17,1™, q).
{Piﬂ’ vE[w]
3. It then samples matrices ngbﬁ) « Zy*™ for (i,], 8,b) € S.
4. Finally, it sends the public parameters pp = (A\,n,m,q, k, w, L, Xpre) tO
the adversary.
e Challenge phase. Let

BP* = ({ﬁ,b s w] — [w]}ie[e],be{o,l} ,acc* € [w], rej* € [w]) 7

S*=S5.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all « € [{],

tag*, a, 57,
(G.8) ~(:B)
B, Clh

{P

}(i,j,ﬂ,b)es* ’
oS (i) el x[w]
T; i€le]

({Ua 0s 21}) < Mixed-SubEnc {

Finally, it sends the challenge ciphertext as (tag {UZ b}zE 0.6€0,1))

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = S. Tt runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all « € [{],

tag, «, S,
B%m,cﬁm} ’
' ’ (4,5,8,b)€S
Pivv}(i,v)e[f] X [w] ?
{Ti}icq . BP

({Uaq,0,Uq,1}) ¢ Mixed-SubEnc {

(b) Finally, it sends the ciphertext as (tag, {Uivb}ie[l],be{o,l}).

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses a secret vector as S <— x7 and A — 1 random vectors as
¥z for j €)\ 7).

(b) It then chooses vectors sgj’ﬁ), egj’5)7fgj’ﬁ),€§j’5) as follows:

v (iaj7 B) S [é] X [)\] X {0,1}, SEJ’B) — ZZ7

Y (i,5,8) € [x [\ x {0,1}, ey,
V (5, 8) € N x {0,1}, e « ym,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-199

YV (i,], B) € [i*] x diff x {0,1}, ’EEJ}B)

Y (4, 8) € diff x {0,1}, &9« ym

1z,

(c) Let ¥ = aF, and let stgi_ﬁ*),stgf*) denote the state of branching
programs BP, BP* after i* — 1 steps, respectively. Also, let T',y,
and Ugf)) denote the following:

['=[+1] xcommx {0,1}, y= > yY,

JEMN{*}
. U; if = p*
v , ,b e [0 % 0’1 a [ﬂﬁ):: i,b)
(7’ 6) [} { } 7,,1) Ul)b if /8 — 1 _ B*.
Also, for (j,8) € diff x {0,1}, let Bgﬁ?ieﬂ = 0™*™, Next, it com-

putes key vectors {tgj’ﬂ)}i,jﬁ as follows. For all tuples (i,7,8) € T,

s BUD) | y0) 4 U i =1,

. . 1L . . .
t7) = ¢ PV sPIBUD e if 1 < i<
—s? P e ifi=041,

Y (i, 4, B) € [i*] x diff x {0,1}, 9D =D 4 &),

v (j, B) € diff x {0,1}, 99 =~ % (fif’ﬂ) 11 Ué%)

)
a=1 d=a

i*
j B 3 8 j»8
+ y(J) ’ H U((sai)é—’_ SEZ""i ’ BEZ—Fi,Ei*-‘f-l + eg-’z-’ri’
6=1

e 1 G
R Gl | A I]
o=t o=a o=1
+5 Py, +oil B el
Y (i,4,8) € ([£ + 1]\ [i* + 1]) x diff x {0,1},

oy _ [~ OO, i B L6 i<,
P s el el ifi=04 1

(d) Finally, it sends the secret key as (3:, {tgj’ﬁ)}(i7j,ﬂ)e[£+l]><[A]x{ovl}).
e Guess. The adversary finally sends the guess 7.

Game 4 This is similar to Game 3.£.4, except that the terms tg:l’ﬂ) have an additional

small error é’g:l’ﬂ), which is smudged by the main error term eg:l”g),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-200 R. GOYAL, V. KOPPULA, AND B. WATERS

e Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:

1. Tt chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbig> Xs> Xappr» Xpres Xlasts Xiwe as described in the construction. Recall that
£=Fk-Land n = (4 \+w)n. It also chooses two \-bit strings tag*, tag +
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(*) denote the following sets:

Viell], S%=comm x{0,1}2.

Also, let n; = n — |diff| - 4n for all i € [¢].
Set 5 = {(i,4,8.b) € [(] x [\ x {0,1}2 : (. 3.b) € SO}
2. It samples {B(] N80 {Piv}, . matrices as

7,0

(Jﬁ)} B
Ve, { “b i ppeso | T, | « EnTrapGen(17,1™, q).

4,0 ve[w]

It then samples matrices C(j A Zy*™ for (i, j, B,b) € S.
4. Finally, it sends the public parameters pp = (A, n,m,q,k,w, L, Xpre) to
the adversary.
e Challenge phase. Let

e

BP* = ({miy + [w] = (]} pe oy »2C" € [l re” € [u])

S*=S5.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For a € [{],

tag*, a, S,
' {B(‘jl;ﬂ)’ C(J'Z;ﬁ)} ’
({U%0,U 1 }) Mixed-SubEnc N “7) (i,g.8,b)es"
Piv}ivegxpul
{Ti}ie[é}) :

Finally, it sends the challenge ciphertext as (tag {UZ b}ze [€.6€{0,1})

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = S. It runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all a € [{],

tag7 a’ S’
B(j’ﬁ), C(jaﬂ)

({Uq,0,Uq,1}) < Mixed-SubEnc { b &b }(i,J}ﬂb)Gi?7
{Pi,v}(i,v)e[z]x[w] ’

{Ti}ie[e] ’

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-201

(b) Finally, it sends the ciphertext as (tag, {Uis},cig peqoy)-

. Secret key queries. The adversary queries the challenger on polyno-

mially many messages for corresponding secret keys. For each queried

string x, the challenger responds as follows:

(a) It chooses a secret vector as s - xi and A — 1 random vectors as
y) = Zm for j € [N\ {j*}- 4

(b) It then chooses vectors sgj’ﬁ), egj’5)7fgj’ﬁ),€§j’5)

V(04,8 € 10 x N x {0,1}, sz,

V(00,8 € [x N x 0,1}, e i,

(

v j’ ﬁ) < [)\] x {O’ 1}’ eé{ﬁff) — Xlast’
¥ (i), 8) € [x diff x {0,1}, &7« zm,

vBe {01}, &7 « .

as follows:

(c) Let 7 = oL, and let stéi_lﬁ) stg +1) denote the state of branching
programs BP, BP™ after ¢ steps, respectively. Also, let I',y, and
U(B) denote the following:

I'=[¢{+1] xcomm x {0,1}, y= Z y(j)’
JEMN{I*}

V6.8 el x o2 Ul —{ Ve HE=5

’ Uy ifp=1-p"

For v € [w], let PY)

1 be the top level matrices chosen while

computing the challenge ciphertext. Similarly, let Pz +1 v) be the
top level matrices chosen while computing the query ciphertext.
Next, it computes key vectors {tgj’ﬂ)}i’ng as follows. For all tu-

ples (i,j,8) € T,

ngiﬁ) . Biﬁ) + y(j) + egjﬁ) ifi=1,
tgj,ﬂ) _ _sgiﬂf)cgﬁf)i?) + S(J ﬁ)B(J 5) + e(] 5) if1<i<e,
_ng’ﬁ) Céjﬁ) + eg’ff) ifi=0+1,

V (i, 5, 8) € [f] x diff x {0,1}, t9F =3P 4 0,

14

¥ (j,B) € diff x {0,1}, 9 = — Z(“”HU%)

=1

14
H (J B)
5w5 f+1 ’

’ ¢ 4
(J ,B) =
vBeh ¢ =-3 (11 Ufsf;%a») -y U3,
d=a o=1

(8") (3*.8) | =(".8)
1), +ee]+1 +e0 -

+s-P

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-202 R. GOYAL, V. KOPPULA, AND B. WATERS

(d) Finally, it sends the secret key as (m, {tgjﬂ)}(i,j,ﬁ)e[é-i-l]x[A]x{o,l})-
e Guess. The adversary finally sends the guess 7.

Game 5 This is identical to the previous game, except the (¢+ 1)th key components in

the special strand (i.e., j*th strand) are random elements. We describe this in detail
below.

e Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:

1. It chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe &S described in the construction. Recall that
{=k-Landn = (4 \4+w)n. It also chooses two A-bit strings tag*, tag «
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(*) denote the following sets:

Viell], S%=comm x{0,1}°.

Also, let n; = n — |diff| - 4n for all i € [¢].
Set § = {(i,j,8,0) € [(] x [\ x {0,1}* : (j, 8,b) € SV},
2. It samples {Bgféﬂ)}i,j’gﬁb, {P;}, , matrices as

(J ﬂ)} -
Vi€ [, { }bp (7,8.:0)eS@ | T, | < EnTrapGen(1™,1™, q).

i’v}ve[w]

3. Tt then samples matrices C(J h) « Zy*™ for (i, 4, 8,b) € S.
4. Finally, it sends the public parameters pp = (A, n,m,q,k,w, L, Xpre) to
the adversary.
e Challenge phase. Let

BP” = ({W;b fw] = [w]}ie[é],be{o,u ,acc™ € [w], rej* € [w]) ,

S*=S5.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all a € [{],

tag*ﬂa’S*7
BUA) CUA) 7
({U% 0, U% 1 }) + Mixed-SubEnc { vo b }(wﬁb)es*

Piwkmemxw)
{ 1}26[2]

Finally, it sends the challenge ciphertext as (tag {UZ b}zE (€],6€{0,1})

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for

encryption. The challenger responds as follows:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-203

(a) Let S = S. It runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all a € [{],

tag, «, S,

B)
BEJb)7Cz(Jb)

{P

}(i,j,[ﬁ,b)ES ’

ivv}(i,v)e[f] X [w] ?
{Ti}icq . BP

({Uq,0,Uaq,1}) ¢ Mixed-SubEnc {

(b) Finally, it sends the ciphertext as (tag, {Ui’b}ie[e],be{o,l}).

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses a secret vector as § <— x7 and A — 1 random vectors as
yW) «zZm for j € [A]\ {j*}.

(b) It then chooses vectors sgj’ﬂ),egj’ﬂ),fij’ﬁ),é'gj’ﬂ) as follows:

v (Z.aj7 B) S [é] X [)\] X {0, 1}, SZ(]”B) — ZZ7
(

B) € [\ x {0,1}, eéi‘f) — X

¥ (i,5,8) € [(] x diff x {0,1}, &7« zm,

vae{01}, . «zm
(c) Let = x¥, and let stélﬁﬁ) 5te+1) denote the state of branching

programs BP, BP* after ¢ steps, respectively. Also, let I' and Ugi)
denote the following;:

= [+ 1] x comm x {0, 1},

. Ui, ifpg=p",
¥ (i,8.0) € [() x {0,157, U = {U: ifB=1-p"

For v € [w], let Pfﬁl)v be the top level matrices chosen while

computing the challenge ciphertext. Similarly, let Pérﬁj) be the
top level matrices chosen while computing the query ciphertext.

Next, it computes key vectors {tgj B)}iJ,B as follows. For all tu-
ples (i,5,8) € T,

sP? . BYY 1y 1l iri=1,

tZ(J,B) _ 751(51)05 f o 55375)B5]é€) + eZ(J,B) if1<i<é,
—s? . ci) b eV iti=r41,

Y (6,5, 8) € [0] x diff x {0,1}, tU® =3P 4 D,

For all (4, 8) € diff x {0,1},

l ?
Ne (4,8) B j,8
6 z(HU)) T, + e,
=« =1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-204 R. GOYAL, V. KOPPULA, AND B. WATERS

, (37,8) ,
VB efo1},) =87 +efl)”.
(d) Finally, it sends the secret key as (, {t(J’)} (i,J,B)E[+1]x [N x 0,1}) -
e Guess. The adversary finally sends the guess 7.
Next, we have a sequence of £ hybrid experiments, Game 5.* for i* =1 to ¢.

Game 5.7* This is identical to the previous game, except matrices B(]’ﬂ) C(]’B) for

J € comm, 3 =1 — tag; strands (i.e., strands in which B(]) wwere targetlng random
matrices themselves) and levels i S 1* are mot sampled along with other level ¢ <
1* matrices, but instead they are sampled uniformly at random. Also, ciphertext
components for levels ¢ < ¢* are used to target only the remaining matrices. Below
we describe it in detail.

e Setup phase. The adversary sends the functionality index (k,w,L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:

1. It chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe s described in the construction. Recall that
¢=Fk-Landn = (4A\+w)n. It also chooses two A\-bit strings tag*, tag +
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,

the challenger continues as below. Let S(*) denote the following sets:
Vi<it, SO= {(5,8,b) € [\] x {0,1}% : j € commAB :tagj}7
Vi>i*, S =commx {0,1}%

Also, let

~)2 [comm| +w)n for i <i*,
" A= ([diff] - 4n for i > i*.

Set § = {(i,4,.b) € [(]x [\ x {0,1}* : (j,8,b) € SO},
2. It samples {Bz(.ﬁjéﬂ)}mﬂyb, {Pin}, , matrices as

(_J,ﬁ)} ~
Ve, { b S Gapese || Ty | < EnTrapGen(17,1™,q),

4V Sy elw)

Y (i,4,8,b) € ([i*] x comm x {0,1}2)\ §, BY? « zmxm,

It then samples matrices C(] A < Zy*™ for (4,7, 8,b) € S.
4. Finally, it sends the public parameters pp = (A, n,m,q, k,w, L, Xpre) to
the adversary.
e Challenge phase. Let

BP* = ({ﬁ,b s w] = [w]}iem,be{o,l} ,acc™ € [w], rej* € [w]) 7

S*=S.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all a € [{],

@

tag®, o, S*,
{B(m) C(jﬁ)}
({U% 4, U% 1 }) ¢ Mixed-SubEnc vo TR fgpbest”
Piviemgxr

T; i€[l]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-205

Finally, it sends the challenge ciphertext as (tag*, {U}, }iciebefo,1})-

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = S. It runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all o € [(],

tag, «, S,
{B(m) C(j,ﬂ)}
({Ua.0, Ua1}) < Mixed-SubEnc B b i pbyes’
{Piv”}(i,v)e[Z]X[w])
{T’l}ze[é]) BP

(b) Finally, it sends the ciphertext as (tag, {Uis},cig pe o)-

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses a secret vector as S <— x% and A — 1 random vectors as
yU) -z for j € N\ {57}

3, ﬁ) (J ﬁ) N(Jvﬁ) (J B8)

(b) It then chooses vectors s; as follows:

Y (i,7,8) € [€] x [\] x {0,1}, ngyﬁ) ez,
YV (i,5,8) € [0 x N x {0,1}, eP? i,
v (

5.8 e N x {01}, e« xi.,

¥ (i), 8) € [x diff x {0,1}, &7« zm,

vae{01}, t «zm
(c) Let ¥ = o, and let stéiﬁ) 5t2+1) denote the state of branching

* (8)
programs BP, BP™ after ¢ steps, respectively. Also, let T" and U,
denote the following:

I'=[¢+1] x comm x {0,1},

‘ u;, ifg=p"
v b) € 14 0.1 2’ U(/B) _ i,b)
(1763) H X{ ’ } i,b Ui,b ifﬁ=1—ﬁ*.

For v € [w], let Péf_l)v be the top level matrices chosen while com-

puting the challenge ciphertext. Similarly, let P§ _Hﬁ) be the top
level matrices chosen while computing the query ciphertext. Next,

it computes key vectors {tl(j’ﬂ)}iyjyg as follows. For all (i,7,8) € T,

sV BUA 4 y0) 4ol =1

tgjﬂ) — (J ﬁ) CE] [f)m - + s(] B) BEJ%?) + ez('jﬁ) if 1 <1 g &
- gm i) +e§{£) ifi=0+1,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-206 R. GOYAL, V. KOPPULA, AND B. WATERS

V (6,5, 8) € [0] x diff x {0,1}, tU =3P 4 D,

For all (4, 8) € diff x {0,1},

14
i, (4,8)
=3 (0 L0) e T, et

a=1

~(3".B)
v B €{0,1}, tgilm =ty + egnﬁ)-

(d) Finally, it sends the secret key as (, {tz(.]’)}(i’jﬁ)e[gﬂ]x[,\]X{o’l}).
e Guess. The adversary finally sends the guess 7.
Next, we have a sequence of ¢ hybrid experiments, Game 6.7* for i* =2 to ¢ + 1.

Game 6.:* This is identical to the previous game (i.e., Game 5.£), except in the comm

strands, for which we sample Bgféﬁ), CE?,;B) matrices uniformly at random, the key
components for levels i < i* are random elements. Below we describe it in detail.

e Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:

1. It chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe as described in the construction. Recall that
¢=Fk-Landn = (4A\+w)n. It also chooses two A-bit strings tag*, tag
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(*) denote the following sets:

Viel], SYW={(B80b)e[Nx{0,1}* : jecommApS=tag;}.

Also, let n; = (2 - [comm| + w)n for all i € [£], and set S =1{(i,5,8,b) €
[£]x [A] {0, 1}2 : (5,8,b) € SV}
2. It samples {BZ 5)}i,j737b, {P; v}, , matrices as

(_J,ﬁ)} ~
Ve, { b fGapese || Ty | < EnTrapGen(17,1™,q),

4LV Sy elw)

v (17]76717) S (M] X comm X {071})\S B(] B) « ZrLXm

3. Tt then samples matrices C « Zy*™ for (i, 4, 8,b) € S.
4. Finally, it sends the pubhc parameterb pp = (A, n,m,q,k,w, L, Xpre) to
the adversary.
e Challenge phase. Let

BP* — ({ﬁ,b s w] — [w]}ie[z]’be{o’l} ,acc* € [w], rej* € [w]) 7

S*=S.
The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all « € [{],
tag*, a, S,
{B(m) C(jﬁ)}
({U% 0, U% 1 }) + Mixed-SubEnc vo TR fgpbest
Piviemx
T; i€[l]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-207

Finally, it sends the challenge ciphertext as (tag*, {Uj b}le 0.6e{0.1}).

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = S. It runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all « € [{],

tag, «, S,
{B(j,ﬁ) C(j,ﬁ)}
({Ua0,Ua1}) ¢ Mixed-SubEnc P s bes”
Pivv}(i,v)e[f]x[w])
{Ti}icy - BP

(b) Finally, it sends the ciphertext as (tag, {Ui:b}ie[e],be{o,l})

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses a secret vector as S <— x% and A — 1 random vectors as
vy <z for j € N\ {77}

3, 5) (J ﬁ) (J”@) ~(J B8)

(b) It then chooses vectors s; as follows:

i,5,8) €[] x [\ x {0,1}, sP? 1z,

v (
V0.8 €0 x N x (0.1}, %P e\,
v (J’ﬁ) [)\] {O’ 1}’ eé{k?) A Xlasta
v (4,4, 8) € [4] x diff x {0,1}, tl(,jﬁ)gzga
Y (4,7) € [i*] x comm, tgj’l_tagj) «zm,

vae{01}, . «zm

(c) Let ¥ = xF, and let stx_lﬁ) stgﬂ) denote the state of branching
)

programs BP, BP* after £ steps, respectively. Also, let T' and U(B
denote the following:

I = ([(+1]\[*]) x comm x {0,1} U {(i*,,8) : j € comm, 3 = tagj},

U; if 8= p*,
VB el x {01y U= {Tw 0P
’ U, ifpg=1-p%
For v € [w], let Pgil)v be the top level matrices chosen while com-
puting the challenge ciphertext. Similarly, let P§ Hﬁ) be the top
level matrices chosen while computing the query ciphertext. Next,
it computes key vectors {t(j’ﬂ)}m- s as follows. For all (i,7,5) €T,

(.77) B(Ja5)+y(g)+e(]7ﬁ) lflfl

(00 = |00 08 08 BUS L 9 i1 i<y,
_ ? 5>,C§%ﬂ>+eg{£) ifz—12+1,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-208 R. GOYAL, V. KOPPULA, AND B. WATERS

1tag) ~(j1—tag, 1—tog,
Y (i,7) € [i*] x comm, tgj’l t2g;) _ tl(.] t28;) + el(-J ! tag’)7

V (i,5,8) € [(] x diff x {0,1}, t3F) =3P 4 &lH),

For all (j, 8) € diff x {0,1},

B (4.8) (4,8)
txsz(HU) vaeeau

a=1

vae o), 90 =17+ e?ﬂ"”.
(d) Finally, it sends the secret key as (, {t(J’)} (i,J,B)E[+1]x [N x 0,1}) -
e Guess. The adversary finally sends the guess 7.

Next, we have a sequence of ¢ 4+ 1 hybrid experiments, Game 7.i* for i* = 1 to
e+ 1.

Game 7.¢* This is identical to the previous game (i.e., Game 6.(¢ + 1)), except in the

comm strands, for which we still sample B(j A C(j 5) matrices using EnTrapGen, the

key components for levels ¢ < i* are random elements Also, we no longer sample the
matrices ngl;ﬂ) Cljl;ﬁ) at all, which were sampled uniformly at random in the previous
game. Below we describe it in detail.

e Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:

1. It chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe as described in the construction. Recall that
¢=Fk-Landn = (4A\+w)n. It also chooses two A\-bit strings tag*, tag
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S denote the following sets:

Viell], SYW={(jB0b)e[Nx{0,1}* : j€ccommAp=tag,}.

Also, let n; = (2 - [comm| + w)n for all i € [£], and set S ={(i,j,B,b) €
[€]x [A] > {0, 1}2 : (5,8,b) € SV}
2. It samples {BZ))}i,j7ﬁ7b, {Pin}, , matrices as

{B(j’ﬁ)})
viell, W S Ganes | [Ty |+ EnTrapGen(17,1™, q).

i,V vew]

@

It then samples matrices ngbﬁ) < Zy*™ for (i,7,8,b) € S.
4. Finally, it sends the public parameters pp = (A, n,m,q, k,w, L, Xpre) to
the adversary.
e Challenge phase. Let

BP* = ({ﬁ,b s w] — [w]}ie[e],be{o,l} ,acc* € [w], rej* € [w]) 7

S*=5.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-209

as follows. For all « € [{],

tag*, a, S*,
' {nggﬁ)’ ngl;/ﬂ)} 7
({U%0,U 1 }) + Mixed-SubEnc ’ 7) (i.5.8,b)es
P iyt
T; €[]

Finally, it sends the challenge ciphertext as (tag {UZ b}ze 0.b€{0,1})

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = S. Tt runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all « € [{],

tag7 a? S7
{B(a‘w C(j,ﬁ)}
({Ua.0, Ua1}) < Mixed-SubEnc B b S igpbyes’

{Pivv}(i,v)e[l] X [w] ?

{Ti}ie[e] ’ BP

(b) Finally, it sends the ciphertext as (tag, {Uis}icig peqoy)-

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows:

(a) It chooses a secret vector as S <— x7 and A — 1 random vectors as
yW -z for j € N\ {57}

3, ﬁ) (J B8) t(Jvﬁ) (J B8)

(b) It then chooses vectors s; as follows:

i,7,8) € [€] x [\] x {0,1}, Sz(j»ﬁ) «zn,
i J, ﬂ) [x [A] x {0,1}, ey,
’j?

v (i
v (i
Y (j,B) € [\ x {0,1}, PP «

7 g 011 Xlast»
v (i ~(4,8)
v (i,

B) € [€] x diff x {0,1}, ¢, « Z",

) [1] X .comm, {EjJ_tag]‘) — ZZ;L7
V (i,7) € [¢*] x comm, Egj’tagf) «zm,

Vpe {07 1}7 téiiﬁ) — Z;n
(c) Let & = 2", and let Stg,-_lﬁ) stg +1) denote the state of branchmg

programs BP, BP* after £ steps, respectively. Also, let I' and Ui7b
denote the following:

P={(i5.8) € (£ + D\ 7)) x comm x {0,1} : 8 = tag}

‘ U, if B=p"
v b) e [¢ 0.1 2, U('B) _ i,b ’
(2763) H X{ ’ } i,b Ui,b ifﬁ=1—ﬁ*.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-210 R. GOYAL, V. KOPPULA, AND B. WATERS
For v € [w], let Pgil)v be the top level matrices chosen while com-
puting the challenge ciphertext. Similarly, let Pé H’B) be the top

level matrices chosen while computing the query ciphertext. Next,
it computes key vectors {tgg,ﬁ)}m’ﬁ as follows:

Y (i,7) € [*] X comm, tgj’tagj) = Egj’tagj) + el(.j’tag").

For all (i,7,8) € T,

(J’B) Cf;fi) Y el iti=t41,
¥ (i) € [0+ 1] x comm, 7178 IRy o1,

V (i, 8) € 0] x diff x {0,1}, t9P =37 4+),

For all (4, 8) € diff x {0,1},

L £
B) 3,8) 8) j B) j»8
=3 (7 T) e TT0i2 o

d=a 6=1

~(3".B)
v g€ {0,1}, tgilm =ty + E+1ﬁ)-
(d) Finally, it sends the secret key as (z, {tgjﬁﬁ)}(i’j,ﬁ)e[e+1]X[)\]X{(Ll}).
e Guess. The adversary finally sends the guess 7.

Game 8 This is identical to the previous game (i.e., Game 7.(¢ + 1)). For ease of

exposition, we describe it in detail below.

e Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:

1. Tt chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe S described in the construction. Recall that
{=k-Landn = (4\+w)n. It also chooses two A-bit strings tag*, tag <
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S denote the following sets:

Viel, SYW={(B0b)e[Nx{0,1}* : j€ccommAp=tag,}.

Also, let 71; = (2 - [comm| 4+ w)n for all i € [¢], and set S = {(i, 7, 8,b) €
()% [A] x {0,1}* = (4,5,b) € SO},
2. It samples {Bgféﬁ)}i)jﬁ,b, {P;}, , matrices as

(37[3)} B
Vielt, { l{bP (7,8:0)eS® | T, | < EnTrapGen(1™,1™, q).

ivv}ve[w]

3. It then samples matrices Cg,jf) Zy*™ for (4,7, 8,b) € §

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-211

4. Finally, it sends the public parameters pp = (A, n,m,q, k, w, L, Xpre) t0
the adversary.
e Challenge phase. Let

BP* — ({ﬂ;b] = [0} peqony 20" €], ref* € [w]) :
S*=85.
The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all a € [{],

tag*7 a’ 5*7
(4.8 (,8)
Bi,]b ’Ci,jb

{P

}(i,j,,ﬂ,b)es* ’
0 i) el cfu]
T; i€le]

({Ua 0s 21}) < Mixed-SubEnc {

Finally, it sends the challenge ciphertext as (tag®, {UZ b}zE 0.6€0.1)).

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = S. Tt runs the Mixed-SubEnc routine (described in Figure 6)
as follows. For all « € [¢],

tag, «, S,
{B(J 8) c(.“”}
({Ua.0,Ua}) < Mixed-SubEnc po b f i phes
Piw}(im)elxul
{Ti}icq . BP

(b) Finally, it sends the ciphertext as (tag, {Uiyb}i€[€]7b€{071})

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows. .

(a) It chooses |diff| — 1 random vectors as y/) < Z™ for j € diff.
(45:8) t(] B) (] 8)

(b) It then chooses vectors e; as follows:
v (0.5.8) € [x N x {01}, e e xify,
(j’) [] X {071}7 egi[f) < Xlast’
(4,8) m
V(05,0 € [x N x{0.1}, & <z,
v (4,58) € comm x {0, 1}, téjﬁ) — Ly

vae{01}, T «zm

(c) Let = 2%, and let U%) denote the following:

u;, if3=p",

, 2 B _
v (Zvﬁab) S [a X {07 1} ’ Ui,b - {Ui,b lfﬁ =1—= B*

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-212 R. GOYAL, V. KOPPULA, AND B. WATERS

Next, it computes key vectors {tl(.j #)}mﬁ as follows:
Y (i,4,8) € [+ 1] x comm x {0,1}, t¥F) =T 4 &P,
Y (6,5, 8) € [f] x diff x {0,1}, 97 =3P 4 8,
For all (4, 8) € diff x {0,1},

(00 _Z (G:8) HU m) +y(J)HU el

a=1

~(3".B) B
v g€ {0,1}, tgilm =ty + EH),
(d) Finally, it sends the secret key as (3:, {tgj’ﬁ)}(i7j,ﬂ)e[€+l]><[A]x{ovl}).
e Guess. The adversary finally sends the guess 7.
Next, we have a sequence of £ hybrid experiments, Game 8.7* for i* =1 to /.

Game 8.7* This is identical to the previous game, except now the challenger samples
the first i* ciphertext components (both challenge and queried) as random Gaussian
matrices. Below we describe it in detail.

e Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:

1. Tt chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbig> Xs> Xappr» Xpres Xlasts Xiwe as described in the construction. Recall that
£ =Fk-Land n = (4 \+w)n. It also chooses two A\-bit strings tag*, tag +
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(*) denote the following sets:

Viell, SY={(Bb)e\x{0,1}*: jecommApB=tag;}.

Also, let ; = (2 - |comm| 4+ w)n for all i € [4], and set S = {(i,7,8,b) €
(0% [A] x {0,1}* = (4,8,b) € SO}
2. It samples {B(J’B)}i,j,g,b, {P;,}, , matrices as

(Jﬂ)} ~

Viel], { “bGpbese | [T, | « EnTrapGen(17,1™, q).
i, vew]

3. It then samples matrices C(]’B) « Zy*™ for (i, 4, 8,b) € S.

4. Finally, it sends the public parameters pp = (A, n,m,q,k,w, L, Xpre) to

the adversary.
e Challenge phase. Let

BP* = ({miy + [w] = []} g pe oy »2C" € [l re” € [w])

S*=S5.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6)
as

v (avb) € [Z*] X {07 1}7 U* b — Xgrlexm'

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-213

For all a € [4] \ [#*],

tag®, o, S,
({U%.0.U%1}) Mixed-SubEnc ’ 70 (4,5,8,b)es
Piv} i myegx
T; i€[l]

Finally, it sends the challenge ciphertext as (tag {UZ b}ze (€].6€{0,1})

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:
(a) Let S = S. It runs the Mixed-SubEnc routine (described in Figure 6)
as

V (a,0) € [i*] x {0, 1}, Uy ¢ xpe™
For all o € [\ [i*],
tag, «a, S,

B0l

{P

}(i,j,ﬁ,b)es ’
00} (i) €6 [w]
Ti}byey «BP

({Ua.0,Uq,1}) < Mixed-SubEnc {

(b) Finally, it sends the ciphertext as (tag, {Uiviciveron).

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows: .

(a) Tt chooses |diff| — 1 random vectors as y/) « Zy for j € diff.

(b) It then chooses vectors e(j A t(] ﬁ) (j) as follows:
v (0.5.8) € [x N x {01}, e e iy,
V(.8 € x {01}, ey Xl
V@B ellxNx o, &7z,
Y (4,8) € comm x {0, 1}, tz(’i-/f) —Zg

vae{0,1}, t «zm

(c) Let 7 = 2%, and let Ugi) denote the following;:

u;, ifpg=p%,

2 B _
(/67 [] {0 1} Uz’,b - {Ui,b lfﬂ =1 75*'

Jﬁ)}

Next, it computes key vectors {t; i.j.p as follows:

Y (i,7,8) € [+ 1] x comm x {0,1}, tgj”B) :Eﬁj’ﬁ) +e£j’ﬁ),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-214 R. GOYAL, V. KOPPULA, AND B. WATERS

Y (3,5, 8) € [0] x diff x {0,1}, tUP =3P 4),

For all (4, 8) € diff x {0,1},

4 Vi)
B (4,8) 8 . 3 5
t) = § < HUg’E{s) +y0 - JUL + el

d=a 6=1

, ~(3".B)
v g€ {0,1}, t&ilﬂ) =ty + 2+16)-

(d) Finally, it sends the secret key as (:z:, {tgjﬁ)}(i,j,ﬁ)e[é-i-l]x[A]x{o,l})-
e Guess. The adversary finally sends the guess 7.

Game 9 This is identical to the previous game (i.e., Game 8.¢), except the last secret

key components in all diff strands also include an additional noise term which is much
smaller than the overall noise added in those components. Below we describe it in
detail.

e Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:

1. Tt chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbigs Xs» Xappr> Xpre> Xlasts Xiwe s described in the construction. Recall that
{=Fk-Landn = (4\+w)n. It also chooses two A-bit strings tag*, tag <
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(*) denote the following sets:

Viell], S%W={(B0b)e[Nx{0,1}* : jccommAp=tag,}.

Also, let 72; = (2 - [comm| + w)n for all i € [£], and set S ={(i,j,8,b) €
[x [\l x {0,1}* © (4,8,b) € SV}
2. It samples {Bz(.?éﬂ)}i7jﬁ7b, {Piv}, , matrices as

(37,8)} B
Ve, { B fGameso | T | EnTrapGen(17:,1™ q).

4LV Sy elw)

It then samples matrices C(J A « Zy*™ for (i,], 8,b) € S.
4. Finally, it sends the public parameters pp = (A, n,m,q,k,w, L, Xpre) tO
the adversary.
e Challenge phase. The challenger generates ciphertext components as

R

Y (i,b) € [(] x {0,1}, Ujp < xpre ™

Finally, it sends the challenge ciphertext as (tag {UZ b}zE (€],6€{0,1})

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for

encryption. The challenger responds as follows:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-215

(a) It generates ciphertext components as
V (i,0) € [f] x {0,1}, Uip ¢+ Xpra

(b) Finally, it sends the ciphertext as (tag, {Ui»b}ie[z],be{o,u)

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows: .

(a) Tt chooses |diff| — 1 random vectors as y/) < Zy for j € diff.

G5 §P) &)

(b) It then chooses vectors e; as follows:

i,5,8) €[] x [\ x {0,1}, e« xn,

v (i
Y (j,B8) € [\ x {0,1}, e@? «
J ’ ’ e€+1 Xlast’
v (
A

i,5,8) € [0 x [\] x {0,1}, szga

(4,8) € comm x {0,1}, tgﬁ) — 7y

vae{01}, w0 —zm

Y (j,B) € diff x {0,1}, &P « ypm.
(c) Let = 2%, and let U%) denote the following:

, Ui, ifB=p",
V(0. 6,0) €0 x (0.1, U = {Ui if f=1-p"

Jﬁ)}

Next, it computes key vectors {t; i.j.p as follows:

()
()

Y (i,4,8) € [+1] x comm x {0,1}, tVF =57 1 ¢
Y (i, 4, 8) € [€] x diff x {0,1}, tz(j’ﬁ) (] B) ‘e

l
V (4, 8) € diff x {0,1}, @7 = Z(’EW 11 g;)
a=1 =«

4

+ y(j) . H U((S,ﬂi)g
6=1

(4,8 B i,
e]+1) H U((s x)g + 9%1)’

, ~(3".8) ,
v g €{0,1}, téilﬁ) =ty + E+ .

(d) Finally, it sends the secret key as (z, {tl(-j’ﬁ)}(i’j,ﬂ)e[gﬂ]XWX{OJ}).
e Guess. The adversary finally sends the guess «'.

Game 10 This is identical to the previous game, except the last secret key components

in all cﬂﬁ strands are random vectors as well. Below we describe it in detail.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-216 R. GOYAL, V. KOPPULA, AND B. WATERS

e Setup phase. The adversary sends the functionality index (k,w, L) and
description of branching program BP* to the challenger. Then the challenger
proceeds as follows:

1. Tt chooses an LWE modulus ¢, dimensions n, m, and also distributions
Xbig> Xs> Xappr» Xpres Xlasts Xiwe as described in the construction. Recall that
£=Fk-Land n = (4 \+w)n. It also chooses two \-bit strings tag*, tag +
{0,1}*. If tag* = tag, then it aborts and the adversary wins. Otherwise,
the challenger continues as below. Let S(*) denote the following sets:

Viell], SYW={(B0b)e[Nx{0,1}* : jccommAp=tag,}.

Also, let 72; = (2 - [comm| + w)n for all i € [£], and set S ={(i,j,B,b) €
[x [\l x {0,1}* + (4,8,b) € SO}
2. It samples {Bz(,?b’ﬂ)}i,jﬁyb, {Pi},, matrices as

(4,8)
Viel], { b }(j,[ib)es“) ,T; | + EnTrapGen(17,1™, q).
{Pivv}ve[w]
3. It then samples matrices ngbﬁ) « Zy*™ for (i, 4, 8,b) € S.
4. Finally, it sends the public parameters pp = (A, n,m,q, k,w, L, Xpre) tO
the adversary.
e Challenge phase. The challenger generates ciphertext components as

v (i,b) € [(] x {0,1}, Ujp < xpre ™

Finally, it sends the challenge ciphertext as (tag {UZ b}ze (€],6€{0,1})

e Post-challenge phase. The adversary is allowed to make at most 1 secret
key encryption query, followed by polynomially many secret key queries. The
challenger responds to each query as below.

1. Ciphertext query. The adversary sends a branching program BP for
encryption. The challenger responds as follows:

(a) It generates ciphertext components as
V (i,0) € [f] x {0,1}, Uip ¢ Xpre

(b) Finally, it sends the ciphertext as (tag, {Uiv}iciveron).

2. Secret key queries. The adversary queries the challenger on polyno-
mially many messages for corresponding secret keys. For each queried
string x, the challenger responds as follows: .

(a) Tt chooses |diff| — 1 random vectors as y/) « Zy for j € diff.
(5:8) t(] 5) (] 8)

(b) It then chooses vectors e; as follows:
¥ (i,5.8) € [0 x N x {0,1}, el™ i,
V(. 8) € N < {0,1}, e} X
v (i.g8) el x N x {01}, &7z,
¥ (j, 8) € comm x {0,1}, tos) « Z™,
vae{01}, " «zm

¥ (j,8) € diff x {0,1}, tos) « Zm.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-217

(c) Let & = o, Next, it computes key vectors {t”}; ;5 as follows:
Y (i,4,8) € [€+ 1] x comm x {0,1}, t,Ej B) _ Z(p) —&—e(j B)
Y (3,4, 8) € [0] x diff x {0,1}, t9P =3I 4 0P,

i Jiff ~(5,8)
V0.9 €l x (0.1, 62 =T em

: " :
v ﬁ € {07 1}7 t§+ D= - tZ-‘rl + gilﬁ)'

(d) Finally, it sends the secret key as (:z:, {tgj’)}(iJ,B)E[Hl]X[A]X{OJ})'
e Guess. The adversary finally sends the guess +/.

8.4.4. Indistinguishability of hybrid games in section 8.4.3. Now we show
that the hybrid experiments described in section 8.4.3 are computationally indistin-
guishable. For any PPT adversary A, let p4 . (-) denote the probability that adversary
A outputs 7' =1 in Game z.

LEMMA 8.20. There exists a negligible function negl(-) such that for any adversary
Aand A € N, pao(A) —pai1(N) < negl(A).

Proof. The proof of this lemma is identical to that of Lemma 8.8. O
LEMMA 8.21. For any adversary A and X € N, pa1(A) = pa2(X).
Proof. The proof of this lemma is identical to that of Lemma 8.9. O

LEMMA 8.22. For any PPT adversary A, there exists a negligible function negl(-)
such that for all A € N, Adv.g2(A) — Adva 31.1(A) < negl(A).

Proof. First, let us list the differences between Game 2 and Game 3.1.1. The setup,
challenge phase, and ciphertext query are handled in an identical manner. The key
querles however, are handled differently. For each key query =, the challenger outputs
{t; (3.8 }(m BElx N x{0,1) 8S the secret key. The components {t }jed”’f’ﬁe{o 1} are
computed differently in Game 2 and Game 3.1.1. In particular, in Game 3.1.1, the
challenger adds an additional error term e(j A X 11 t(J 28

The proof of this lemma is similar to the proof of Lemma 8.10, (and uses the
smudging lemma, Lemma 2.1). Therefore, Adv 42(X) — Adv4,3.1.1(A) < greys(A) - (2 -
|diff| - neglinua(A) < Greys(A) - (2X - negly,,g(A)), and the lemma follows by setting
negls ;1 = (2A - neglgnyq)- 0

LEMMA 8.23. For any PPT adversary A, there exists a negligible function negl(-)
such that for all A\ € N and i* € [{], Advg 3.4+1(A) — Adv g 34+ 2(N) < negl(A).

Proof. Let us first consider the differences between Game 3.i*.1 and Game 3.7*.2.
The setup, challenge phase, and ciphertext query are handled in an identical manner
in both games. The key generation queries are computed differently (in particular the
components {tgjf{ }jediff,pef0,1} in each secret key).

The proof of this lemma is similar to the proof of Lemma 8.11, and the main idea

(568) 506

is to use Fact 8.1 to argue that e Zf% drowns e;x 1 - Uplz - and e 5. a

LEMMA 8.24. Assuming the trapdoor generation algorithms LTe, satisfy the
(¢, Opre)-row removal property, for any PPT adversary A and i* € [{], there exists
a negligible function negl(-) such that for all A € N, Adv4 3.2(X) — Adva 3. 3(A) <
negl(\).

Proof. This proof is similar to the proof of Lemma 8.12, and we will be using the
row removal property to prove it. We will first present the differences between the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-218 R. GOYAL, V. KOPPULA, AND B. WATERS

two games and then discuss why the row removal property is applicable here. The
exact reduction from the row removal property to indistinguishability of Game 3.i*.2
and Game 3.i*.3 can be found in the proof of Lemma 8.12.

Differences between Game 3.i*.2 and Game 3.i*.3:

1. Set S¢7): In Game 3.i*.2, the challenger sets S¢) = [\] x {0,1}2, while in
Game 3.i*.3, S07) = comm x {0,1}? (tag*,tag are chosen at the start of the
security game, so the set diff is well defined here). Also, n;« = n = (A\+w)n
in Game 3.¢*.2, while n;+ = n — |diff| - 4n in Game 3.7*.3.

2. {B(j ﬁ)} i—;~ matrices: In Game 3.i*.2, the challenger chooses (M;~, Tj») <
EnTrapGen(lﬁ, 1™ q), while in Game 3.i*.3, it chooses matrices (M;«, Tjx)
EnTrapGen(17~1diffl-4n 1m) " As a result, in Game 3.i*.2, it derives all matri-

ces {B(]’b Y8 e x{0,1}2 from M. In Game 3.i*.3, the challenger chooses

{Bi*,b }jediff,b,8e{0,13 uniformly at random, while the remaining are derived
from M«

3. Ciphertexts: Since the set S¢7) is different in both games, the challenge and
query ciphertexts are constructed differently in both games. In particular, the
challenge ciphertext components (U7 o, Uj. ;) and the ciphertext query com-
ponents (U;» g, U;« 1) are computed using Mi* and T;«, which are computed
differently in Game 3.7*.2 and Game 3.7*.3.

Let us now discuss why the row removal property suffices for proving this lemma.
e Consider the four matrices (Uf*70,U;‘*yl,Ui*ﬁo,Ui*,l). Fix any j € diff, and

let tag} = 8 and tag; = 1 — 3. Then, from the definitions of Dl(]j’ﬁ) and f),()j’ﬁ)
in Mixed-SubEnc, it follows that

- BEJ g) UL, = ng g), and the rest are mapped to random matrices;

- BEJ ?) UL, = ng f), and the rest are mapped to random matrices;
— BEJ}) B) U = CEJB 6), and the rest are mapped to random matrices;
- Bz(-Z’j_ﬁ) U1 = 051111—5)7 and the rest are mapped to random matrices.

e Next, note that the {ngig)}jed]ff’b’ge{o’l} are not used for responding to key
generation queries.

e Using the above points, we can conclude that in Game 3.:*.2, for eachj € diff,
cach of (U}, o, Uj. ;, U« o, Uy 1) maps [B(j 0) | Bzz ?) | B(] u | BZ* 1} to a
uniformly random matrix.

The proof of this lemma therefore follows using the row removal property. |

LEMMA 8.25. Assuming the LWE,, 4 0,.. assumption holds, for any PPT adversary
A and i* € [{] there exists a negligible function negls ;. 4(-) such that for all X\ € N,
Adv 4 3.5+ 3(A) — Adv 4 3.5-.4(N) < negls ;. 4(A).

Proof. The proof of this lemma is similar to the proof of Lemma 8.13, except that
it involves more hybrid experiments.
In Game 3.i*.3, for each key query z, for each 8 € {0,1} and j € diff, the

component t(]’ﬂ) = El) (jﬁ) 5 71Uz(§5z)¢) y: 3711 U(m +5-P. st

SEZ’ﬁ) -B(] H 4 e(J A In Game 3.i* 4, t(]’ﬁ) < Zy'. Let Greys = Qkeys(A) denote the

* CE *
number of keys queried by A(1%). To prove that these two games are computationally
indistinguishable, we will define gieys - A hybrid experiments.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-219

Hybrid H,, ; , for o € {0,1,..., Qkeys }» je [A]. In this hybrid, for the first o

N ~(5,0 . :
keys, for j € diff N [j], the tgj) components are sampled uniformly at random, while

the remaining components are sampled as in Game 3.7*.3.

Hybrid H,; ; for o € {0,1,..., Qkeys } ,] € [A]. In this hybrid, for all keys

. +(5,0 .
and j € diff, the tiz) components are sampled uniformly at random. For the first

R ~(j,1 .
o queries and j € diff N [j], the th) components are sampled uniformly at random,
while the remaining are sampled as in Game 3.i*.3.

Clearly, Ho0,0 corresponds to Game 3.i*.3, Hy, . x1 is identical to Game 3.i*.4,
Ho 1ap = Hopp, and Hg, xo0 = Hop,1. Let aA’ij’b()\) denote the advantage of A
in Hi; b

CramM 8.26. Assuming the LWE,, ; 5. assumption holds, for any PPT adversary
A making Geeys(+) key queries there ezists a negligible function n, s ,(-) such that for

all X €N, Gheys = Greys(A) and all indices 0 € [queys) and j € [N, aa0j—1,0 — Gd0,0 <
noﬁ,O()‘)'

CramM 8.27. Assuming the LWE,, 4 5. assumption holds, for any PPT adversary
A making queys(-) key queries there exists a negligible function n,oo(-) such that for
all A (6 i\l, Qkeys = Gkeys(A) and all indices 0 € [gyeys) and j € Al Ap0i11" Ca0j1 <
n073’1 A).

The proofs of these claims are similar to the proof of Claim 8.14. If j ¢ diff, then
H oj—1b =Hy5 Otherwise, we can reduce LWE to the indistinguishability of these
two hybrids.]
LEMMA 8.28. For any PPT adversary A and i* € [{ — 1] there exists a negligible

function negl(-) such that for all X € N, Adv 4 3.5+ 4(A) — Adv 4 3.(i+41).1(A) < negl(A).
This proof is identical to the proof of Lemma 8.22.

LEMMA 8.29. For any PPT adversary A there exists a negligible function negl(-)
such that for all A € N, Adv.g3.0.4(A\) — Adv.4.4(X\) < negl(N).

Proof. The only difference between Game 3./.4 and Game 4 is that the ty:l’ﬂ)

terms contain an additional noise term, gé{:{ﬁ). The proof of this lemma is identical

to the proof of Lemma 8.22 and follows via the smudging lemma (Lemma 2.1).]
LEMMA 8.30. Let 0 : N — RT and q : N — N be functions, and xs(\) = D /55(n)
and Xwe(A) = Do) for each X € N. Assuming the L\WE-ss,, 4 o,..) assumption holds,
for any PPT adversary A there exists a negligible function negl(-) such that for all
A €N, Advg.4(X) — Adv g5(N) < negl(A).
Proof. The only difference between Game 4 and Game 5 is in the key generation
phase. In Game 4, for each query, the term tg:l”g*) =— Zi:l (ffj L nga U(B*))

8,%5
+y- Hf;:l Ug% +§~P;i1)st(ﬁ*) JréyHﬂ)+e£~_1’5), and similarly the term tg_l’l_ﬁ) —
- WH41
5.p0) +'ééj+l’17ﬁ)+ other terms . In Game 5, for each key query, both téﬂ_l’o)

e+1,st0 70

and té{l’l) are set to be uniformly random. Using the short secrets version of LWE,
wr <. pB) ~(",87) 5. pl-89) ~(*,1-67) ;
we can switch both s P€+17stf/f1) +e,, ;" " ands P€+1,stff[1ﬁ*) +e/ to uniformly
random vectors. This switch is possible because
e S is chosen from x%, and é’g_l’ﬁ),é’yﬂ’l_’g) are chosen from X e

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-220 R. GOYAL, V. KOPPULA, AND B. WATERS
e s, egﬂ’ﬁ) and §g:{17ﬁ*) are not required anywhere else in Game 4 or Game 5;
each of these three terms is chosen afresh for each key query;

9 s+ and Zrlﬁ ()1 v are uniformly random matrices.

£41,st
Formally, vl;fg will show that Game 4 and Game 5 are computationally indistin-
guishable via a sequence of hybrid experiments. Let Gkeys = Gkeys(A) denote the num-
ber of keys queried by A(1*). To prove that these two games are computationally
indistinguishable, we will define gyeys hybrid experiments.

Hybrid H, for o € {0,1,...,qkeys}- In this hybrid, for the first o keys, the
£ +(1)),tl(f)l +11) components are sampled uniformly at random in the first o queries.
For the remaining geys — 0 key queries, the keys are generated as in Game 4 in the
remaining queries.

Clearly, Hy corresponds to Game 4, while H,

denote the advantage of A in H;.

CramM 8.31. Let 0 : N = RT and ¢ : N — N be functions, and xs(A\) = D\/EU(A)
and Xiwe(A) = Do(ny for each X € N. Assuming the LIWE-ss(,, 4 o,..) assumption holds,
for any PPT adversary A making qeys(-) key queries there exists a negligible function
negl(-) such that for all X € N, qreys = Greys(A) and all indices 0 € [Greys], GA,0—1 —
a0 < negl(A).

is identical to Game 5. Let a4())

keys

Proof. Suppose there exist an adversary making gyeys key queries, and a nonneg-
ligible function 7(-) such that for all A € N, there exists an index 0 € [gkeys] such that
Ao—1— aAo > 1N(A). We will use A to build a reduction algorithm B that breaks
the LWE-ss(;, ¢,0,..) assumption.

The reduction algorithm receives (k,w, L) from the adversary and sets the pa-
rameters as in H,_1/H,. It makes 2m queries to the LWE-ss challenger and re-
ceives {(a;,u;)},<y,, It chooses tag® tag « {0,1}*, and j* is the first position
where tag* and tag differ. Next, it sets 72; as in H,_,/H, and chooses (M;,T}) +
EnTrapGen(17:,1™, q).

Challenge phase. The reduction algorithm receives challenge ciphertext BP*,
which specifies the reject state rej*, and uses Mixed-SubEnc for computing the chal-
lenge ciphertext. Note that Mixed-SubEnc chooses P/, uniformly at random. The
reduction algorithm sets P11 rj+ to be a matrix whose jth column is a;f. All other
Py 1., are chosen uniformly at random.

Ciphertext query. The reduction algorithm receives ciphertext query BP and
uses Mixed-SubEnc for computing the ciphertext query. Let rej denote the reject state
of BP. It sets Pyi1re to be a matrix whose jth column is az,;ﬂ. The remaining
Py 1, matrices are chosen uniformly at random.

Key queries. The reduction algorithm first sets u? = [ug ...] and uf =
(37.8)

[Um1 - Ugm]. For the first o — 1 key queries, the t;5 ;"' components are chosen
uniformly at random. For the oth key query, the reduction algorithm sets t@{HB) —
_Za 1 g*ﬁ*) H5 a Mé) H5 1U<(sﬁz<; + eg:iﬁ*) +u”" and téill =

25:1 (ffj e Hé:a Es,lai,f)) +y- Ha:1 U((s,lg_f) + eéfil_ﬁ*) +u'~#". The

remaining key queries are handled as in H,_1/H,.

Now, if all the u; terms output by the LWE challenger are uniformly random,
then tx_l’ﬁ) and tgH A7) are uniformly random, and hence the reduction algorithm
simulates H,. If each u; = §oaf+é'j, then the reduction algorithm simulates H, ;. O

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-221

LEMMA 8.32. Assuming the trapdoor system LTe, satisfies the (g, opre)-Tow Te-
moval property, for any PPT adversary A, there exists a negligible function negl(-)
such that for all X € N, Adv45(\) — Adv_q5.1(A) < negl(A).

Proof. Let us first consider the differences between Game 5 and Game 5.1.

e Set SM: In Game 5, the challenger sets SV = comm x {0,1}2, while in
Game 5.1, SM = {(j,5,b) : j € comm A B = tag;} (tag”,tag are chosen at
the start of the security game, so these sets are well defined here). Also,
1y = (4|comm| + w)n in Game 5, while 777 = (2|comm| + w)n in Game 5.1.

. {B(j 5)}1‘:1 matrices: In Game 5, the challenger chooses matrices (M, T}) +

EnTrapGen(1(4‘°°”"“H‘w)"7 1™ q), while in Game 3.i*.3, it chooses the matrices
(M, Tl) < EnTrapGen(1®lcommitw)n 1m o) As aresult, in Game 5, it derives

all {B] G, *3)} (j,B,b)€commx {0,132 from Mj. In Game 5.1, the challenger chooses

{Bg{bﬁ }jEcommﬁ;&tagj,be{o,l} uniformly at random, while the remaining are
derived from M;.

e Ciphertexts: Since the set S() is different in both games, the challenge
ciphertext components (U7, U7 ;) and the ciphertext query components
(Ui,0,Uy,1) are computed using My and T3, which are computed differently
in Game 5 and Game 5.1.

Let us now discuss why the row removal property suffices for proving this lemma.
Consider any matrix U € {Uj} , U7, Uy, Uy}, fix any j € comm, and let 8 =

tag;. Then, from the definitions of D(j’ﬁ) and ﬁéj’ﬁ) in Mixed-SubEnc, it follows that

B(J’1 # .U is a random matrix for both b € {0,1} (because tagj = 3).
The proof of this lemma therefore follows using the row removal property (the
reduction algorithm is similar to the one described in the proof of Lemma 8.12). 0O

LEMMA 8.33. Assuming the trapdoor system LTe, satisfies the (g, opre)-Tow Te-
moval property, for any PPT adversary A, there exists a negligible function negl(-)
such that for all X € N and i* € [{] , Adv 45.(+—1)(A) — Advg5.0(A) < negl(A).

The proof of this lemma is identical to the proof of Lemma 8.32.

LEMMA 8.34. Assuming the LWE,, 4 5. assumption holds, for any PPT adversary
A there exists a negligible function negl(:) such that for all A € N, Advas.¢(\) —
Adv_g6.2(A) < negl(N).

Proof. The proof of this lemma is similar to the proof of Lemma 8.13.

In Game 5.¢, for each key query z, for each j € comm, the components tgj’ﬁ) =
S(J,B)B()+y(]) + e(J 8) and tgj’ﬂ) _ —s(lj’ﬁ) . C()+ S(J B8) Bé]i) + egj’ﬁ). In

Game 6.1, then t(J’1 t2g;) tg’l we) Zy'. Let Queys = Gkeys(A) denote the num-

ber of keys queried by A(1*). To prove that these two games are computationally
indistinguishable, we will define gyeys - A hybrid experiments.

Hybrid H

0.0 for o € {0,1,..., gkeys}, 7 € [A]. In this hybrid, for the first o

keys, for j € comm N [j] the t(]’1 €5),téj’litag") components are sampled uniformly

at random, while the remaining components are sampled as in Game 5.4.

Hybrid H,; , for 0 € {0,1,...,quys}»J € [A]l. This hybrid is similar to the
previous one, except that for j = 7 + 1 it adds an additional yje noise to t(J’1 t2;)
and t(j’l tagJ)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-222 R. GOYAL, V. KOPPULA, AND B. WATERS

Clearly, Hoo,0 corresponds to Game 5.0, Hy, . 11 is identical to Game 6.2, and
Ho 130=Hop0. Let ay 0l »(A) denote the advantage of A in Hoj' b
CLAIM 8.35. For every PPT adversary A making qeeys queries, there exists a
negl(-) such that for all A € N, 0 € [queys], and j € [A], ay , 50— a 4,51 < negl(A).
The proof of this claim follows via the smudging lemma (Lemma 2.1).

CramM 8.36. Assuming the LWE,, 4 5. assumption holds, for any PPT adversary
A making qeeys(-) key queries there exists a negligible function negl(-) such that for all
X EN, Greys = Greys(A), and all indices 0 € [qreys] and j € A, Apoi-11— Ou0jo <
negl(\).

Proof. The proof of this claim follows from the LWE assumption. The reduction

algorithm makes 4m queries to the LWE challenger and receives {a;, u; }j cam- 1t sets
(j,1—tag;) T T (j,1—tag;) T T (j,1—tag;) T T

Bl,o 7= lag ...ay), C1,o 7= [am+1 g,], B1,1 = [a2m+1 coeagp],
(j,1—tag;)

Cyy 7 = lad,.y..-al,] It also sets uyo = [ur... U], W20 = [Umi1 ... Usm],

ui1 = [U2m+1 . --Usm], U1 = [u3m+1 . --u4m]- R
t(jylftagj)
1

For the oth key query z, the reduction algorithm sets =uyz + y(j) +

gj’l_tagj) and téj’l_tagi) =uyz + eéj’l_tagj). The rest of the key components can be
handled without the LWE challenge terms. 0

LEMMA 8.37. Assuming the LWE,, 4 5. assumption holds, for any PPT adversary
A there exists a negligible function negl(-) such that for all A\ € N and i* € {3,...,¢},
AdV_Aﬁj*_l()\) — AdV_Aﬁ_i* ()\) § negl(/\)

Proof. The only difference between Game 6.(i* — 1) and Game 6.5* is with re-

spect to the key queries. In Game 6.(i* — 1), for each j € comm, the challenger

(jvl_tagj) (j»l_tag]‘) (j,l—tagj) (j,l—tagj) (jvl_tagj) (j71_tagj) : .
sets t,. = -8 L O B3, +e;. , while it

switches these terms to random in Game 6.¢*.
The proof of this lemma uses (standard) LWE, similar to the proof of Lemma 8.34.
One minor difference between this lemma and Lemma 8.34 is that in the previous

lemma, the challenger switches both t(lj’litag") and téj’litagj) (this is because the
vector sgj’litagj) is used for computing both of these components). However, in this

lemma, the reduction algorithm sets the LWE challenge’s public vectors as the rows

of ng:éitag”’) and Cgflllitagj), and the LWE challenge is used for setting tg?litagj). o
LEMMA 8.38. For any adversary A and X € N, Adv 4.6.(041)(A) = Adv.a7.1(A).
Proof. The only difference between Game 6.(¢ + 1) and Game 7.1 is with respect

to the {t(lj’tagj)}jecomm components in key queries. In Game 6, for each key query x,
the challenger chooses {y(j) }j;éj* and sets tgj’tagﬂ') = S§J>tagj) .Bgfiitfgj) +yW _|_e53>tagj)
for each j € comm. In Game 7.1, the {tgj’tagj)}jecomm vectors are set to be uniformly
random vectors.

Note that in Game 6.(¢ + 1), the y) terms are chosen afresh for each key, and
y () is only used in constructing t(lj’tagj) (recall tgj’lftag") is uniformly random). As a

result, the components {t(lj’tagj)}jecomm are uniformly random vectors, and therefore

the secret keys in the two games are identically distributed. 0

LEMMA 8.39. Assuming the LWE,, 4 5. assumption holds, for any PPT adversary
A there exists a negligible function negl(-) such that for all A\ € N and i* € {2,...,¢},

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-223

AdVA77.Z‘*_1(A) — AdVAj_i* ()\) S negl(/\)
Proof The only difference between Game 7.(¢* — 1) and Game 7.:* is with respect

to the {t,. (7126, }jecomm components in key queries. In Game 7.(:* — 1), for each key
query x, the challenger sets t (J’ &) _ —sﬁi oe;) ng t;gj)l +s£z 2e;) BEJ t:g:) +e§1’“gf)

for each j € comm. In Game 7.7, the {t(]’tag] }jccomm Vvectors are set to be uniformly
random vectors. We will show that these two games are computationally indistin-
guishable via a hybrid argument. First, we will define gyeys - A hybrid experiments.

Hybrid H, ; , for 0 € {0,1,...,qkeys}, j € [Al. In this hybrid, for the first

o keys, for j € commnN [j], the t(]’ %) components are sampled uniformly at random,

while the remaining components are sampled as in Game 7.7*.

Hybrid H_ -, for 0 € {0,1,..., Gkeys}>J € [A]. This hybrid is similar to the

(j,tag;)

o g 1
previous one, except that for j = _j + 1 it adds an additional xjwe noise to t;.

Clearly, Hopo,0 corresponds to Game 7.(i* — 1), Hg,, x1 is identical to Game 7.2 ,
and Ho_1 30 = Ho0,0. Let aA,Oj’b(/\) denote the advantage of A in H, s
CLAIM 8.40. For every PPT adversary A making qeeys queries, there exists a

negl(-) such that for all A €N, 0 € [queys] and j € [A], ay 50— ay 51 < negl(A).
The proof of this claim follows via the smudging lemma (Lemma 2.1).

CramM 8.41. Assuming the LWE,, 4 5. assumption holds, for any PPT adversary
A making qeeys(-) key queries there exists a negligible function negl(-) such that for all
A €N, Gheys = Greys(A) and all indices 0 € [qieys] and j € [A], o511~ Ou0i0 =
negl(\).

Proof. The proof of this claim follows from the LWE assumption, where the re-

duction algorithm sets the LWE pubhc vectors to be columns of C(J tag’) Cgf:tfgf),

(j tag;) (j.ta g,)

and the LWE challenge is used to set t,. . Note that the vector s;._ ;" is used only

(5 ta

for defining t,. . This is because this vector is chosen afresh for each key query,

(J 5)

and in hybrids H_ - G141 /H, > .00 the key component t . is already random.?° O

Recall that Game 8 is identical to Game 7.(¢ + 1).

LEMMA 8.42. Assuming LTen satisfies the (¢, Xappr, Opre)-target switching property
and (q, opre)-well-sampledness of preimage, for any PPT adversary A there exists a
negligible function negl(-) such that for all X € N and i* € [£], Adv 45 (i=—1)(\) —
Adv g s.i+(A) < negl(A).

Proof. First, let us discuss the differences between Game 8.(i* —1) and Game 8.7*.
In Game 8.(:* — 1), the challenge ciphertext components {U; ;}i>4 pefo,1} and query
ciphertext components {Ujp}i> pefo,1} are computed using Mixed-SubEnc, while
the remaining are chosen from Gaussian with parameter yp. Game 8.¢* is similar to
Game 8.(i* — 1), except for the challenge ciphertext components Uj. o, U7 ; and the
query ciphertext components U; g, Uy ; are chosen from the Gaussian distribution
with parameter opre. To show that these games are indistinguishable, we will define
a hybrid experiment H.

(5,tag5) (7 tag;)

301f ¢, i+_1 was not already switched to random, then s,. ;7" would have been used to define it.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-224 R. GOYAL, V. KOPPULA, AND B. WATERS

Hybrid H. This hybrid is similar to Game 8.(i* — 1), except that the challenger
computes {Uf*,b, Ui+ b }vefo,1} such that they map M- to uniformly random matrices.
Let Adv4 g denote the advantage of adversary 4 in hybrid H.

CLAIM 8.43. Assuming LTen satisfies the (q, Xapprs Opre)-target switching property,
for any PPT adversary A, there exists a negligible function negl(-) such that for all
A€ N and i* € [(], Adv45.3i-—1)(A) — Adva i (A) < negl()).

Proof. The proof of this claim is similar to the proof of Lemma 8.17. First,
let us discuss the reasons why the target switching property is applicable here. Let
S(°) be defined as in Game 8.(i* — 1)/Game 8.i*, with BP* = {7 b amerx o1y and
BP = {mib}(i,p)e[x{0,1} the challenge/query programs.

1. In both Game 8.(:* —1) and hybrid H, the components {U;b, Ui,b} are chosen
from a Gaussian distribution, and therefore these terms do not contain any
information about the {Py- 4 },efw) OF {Bgzlf)}(j,ﬁ,b)esﬂ") matrices.

2. The components {Uzb, Ui,b} do not contain any information about

i>3*,b€{0,1}
the {Pi }vepu) OF {BEZ”f)}(m,b)eSu*) matrices (this follows from the con-
struction).

3. The keys are all either random vectors or computed in terms of the chal-
lenge/query ciphertext components, and therefore do not explicitly require
{Pi- v Yoew) OF {Bgzlf)}(j”@)b)es(m matrices.

Consider matrices {Zab, Z3 . Zoy, Z1 b} beqo,1) defined as follows:

{C(j’ﬁ)}
. T S G.8)est) | s i xm
Zoy = " o= [« Zgm],
{Pi*,ﬂ';‘*)b(v)
L ve[w] |
{cepd]
Zoy = p UARESTIN 74 = [Zgm].
I { i1 () velw] |

The reduction algorithm sends (1ﬁi, 1m7(2)) to the target switching property chal-
lenger.?! It does not receive any matrix from the challenger (since the challenge set is
empty). Next, it chooses (M;, T;) < EnTrapGen(17:,1™, q) for all i > i*, and parses
M; as in Game 8.(i* —1)/Game 8.i* to obtain {BY;”}; 5 e and {P;,},,, for all
1 > 1*. It receives BP* as the challenge query from the adversary. The reduction algo-
rithm sends Zg ,, Z7 , to the target switching property challenger and receives U;-
in response. It chooses the remaining components as in Game 8.(i* — 1)/Game 8.i*
and sends the challenge ciphertext to the adversary.

Next, it receives the ciphertext query BP. It sends Zg y, Z; , to the target switch-
ing property challenger and receives U;- ;. The remaining ciphertext components
are chosen as in Game 8.(¢* — 1)/Game 8.5*, and the reduction algorithm sends the
challenge ciphertext to the adversary. Finally, the adversary makes key queries.
For each key query, the reduction algorithm sets {tgj’ﬁ)}(i7j,5)e[g+1]XWX{071} as in
Game 8.(i* — 1)/Game 8.i* and sends them to the adversary. The adversary sends its
guess, which the reduction algorithm forwards to the challenger.

3INote that the set specified by the adversary in the target switching property game can be empty.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-225

Therefore, if there exist a PPT adversary A and a nonnegligible function 7 such
that Adv 4 g.(;+—1)(A) —Adv4 g (A) > n(A) for all A, then there exists a PPT algorithm
B that breaks the target switching property.]

CLAIM 8.44. Assuming LTe, satisfies the (q,0pre)-well-sampledness of the pre-
image, for any PPT adversary A there exists a negligible function negl(-) such that
for all A € N, Adv 4 g (N) — Adv 4.8+ (A) < negl(A).

Proof. This proof follows directly from the (g, o)-well-sampledness of the pre-
image property. Suppose there exist a PPT adversary A and a reduction algorithm
n(-) such that Adv4 g (A) — Advgs.i-(A) > n(A) for all A € N. Then there exists a
reduction algorithm that breaks the (g, o)-well-sampledness of the preimage property.

The reduction algorithm sends 17¢,1™,1*™ to the challenger. Note that m >
n;log g+ and o > v/n -logq - log m+ A\, as required. It receives a matrix U € Zg”x‘“”,
which it parses as U = [Uj. o | Uj.; | Uis o | Ui=1]. The reduction algorithm also
chooses (M;, T;) + EnTrapGen(l”’ lm,q) for all i # i*

On receiving the challenge ciphertext, it chooses the remaining ciphertext com-
ponents as in Game 8.(¢* — 1)/Game 8.:* and sends them to the adversary. Similarly,
it handles the ciphertext query. Finally, for the key queries, the reduction algorithm

handles them as in Game 8.(i* — 1)/Game 8.7*. d
Using these two claims, it follows that Adv 4 g (;+—1)(A) — Adv 4 g.i- (A) is bounded
by a negligible function. 0

LEMMA 8.45. For any PPT adversary A there exists a negligible function negl(-)
such that for all A € N, Adv g 5.¢(A) — Adv_49(N) < negl(X).

Proof. The only difference between these two hybrids is with respect to the

key components {t(j’ﬂ)} In Game 8./, these vectors are computed as

jediff,8e{0,1}"
) ((Jﬁ H5 o 615) y). H U (4) gﬁf), While in Game 9, this vector is

5w5

(5,8) B B B B
set to be Y, Ca 'H5 aUt(5 a?(s) y 'H5:1 U((S,a,?(; +e e+1 H5 o Usz, T é{u)a

where egﬂf) — Xne- Note that the U;; matrices are all drawn from the Gaussian

distribution with parameter oy, and therefore, with all but negligible probability,
~(4, Y] _ . _

||e§il sy U((S%)EH < MOwe - (mapre)e L. Since 0jast/M0Ine - (mopre)l 1> 2% we

can use the smudging lemma to argue that the statistical distance between these two

games is at most M - Qieys - Nl g (). |

LEMMA 8.46. Assuming the L\WE-sp; . .~ assumption (Assumption 3) holds
(where d(X\) = 6n-logq), for any PPT adversary A, there exists a negligible function
negl(-) such that for all A € N, Adv 4 9(A) — Adv.4,10(N\) < negl(A).

Proof. The only difference between Game 9 and Game 10 is with respect to the

key components {t; +1)} In Game 9, for each key, these are computed

jediff,3€{0,1}

LGB _ (:8)) . B 8) U® 4 elh)
as te{u = a1 (H5 a 5%) + (Y(]) 'Ul,zl ZH)H5 2 515 ezu)
while in Game 10, these vectors are uniformly random. To prove this claim, it suffices
to switch (y(J) U(ﬁ) + eéj 5)) to a uniformly random vector. Since y(j) — ZLg',

U(B) — Dm ™ and egﬁl) — Xin., we can use the LWE-sp assumption as in the proof
of Theorem 7 19 O

8.4.5. Proving 1-bounded restricted accept indistinguishability. First,
note that by using the lemmas provided in section 8.4.4, we can conclude that our
construction satisfies 1-bounded complete accept indistinguishability security. Con-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-226 R. GOYAL, V. KOPPULA, AND B. WATERS

cretely, algorithms SK-Enc* and KeyGen®, which take as input the public parameters,
are defined as follows: SK-Enc™ is the same as the standard encryption algorithm Enc

(that is, it outputs random Gaussian matrices), and KeyGen™ on input x outputs the

secret key as (:c, {tgj’ﬁ)}(i7j75)€[4+1]XWX{OJ}), where all tz(j’ﬁ) are sampled uniformly

at random from Z7*. Since in Game 10 the challenger is already using SK-Enc® and
KeyGen™ to answer corresponding queries, therefore, using lemmas in section 8.4.4,
we can argue 1-bounded complete accept indistinguishability security.

Lastly, to finish the proof we only need to argue that the probability adversary
outputs 1 in the 1-bounded restricted accept indistinguishability security game—
when the challenger computes challenge ciphertext as a normal functional encryption
ciphertext instead of encrypting BP*—is negligibly close to the probability adversary
outputs 1 in Game 10. Note that this again follows from the lemmas in section 8.4.4,
or, in other words, it follows from the fact that our construction satisfies 1-bounded
complete accept indistinguishability security. This is because if an adversary can
distinguish Game 10 from the scenario described above, then we could come up with
a reduction algorithm that breaks the 1-bounded complete accept indistinguishability
security of our construction.

The idea is straightforward. The reduction algorithm will simply forward mes-
sages (back and forth) between the attacker and the complete accept indistinguisha-
bility challenger, except with the following changes:

e The reduction algorithm does not forward the adversary’s challenge program
BP* as its challenge query to the challenger of the complete accept indistin-
guishability game. Instead it runs the normal encryption algorithm Enc and
sends the output back to the adversary as its challenge ciphertext.

e In addition, the reduction algorithm sends the adversary’s post-challenge en-
cryption query (if any) to the challenger as its challenge query and forwards
the challenger’s response to the adversary.

e Also, the reduction algorithm does not make any post-challenge encryption
query. (Note that key queries are answered as before.)

e Finally, it outputs whatever the adversary outputs.

Clearly the reduction algorithm perfectly simulates the indistinguishability experi-
ment (between Game 10 and the scenario described above); thus if the adversary’s ad-
vantage is nonnegligible, then the reduction algorithm also breaks 1-bounded complete
accept indistinguishability security with nonnegligible probability. This completes the
proof.

Appendix A. Background: Attribute-based encryption.

A.1. Key-policy attribute-based encryption. A key-policy attribute-based
encryption (KP-ABE) scheme ABE, for a set of attribute spaces X = {X,},, predi-
cate classes C = {C,},, and message spaces M = {M,},, consists of four polytime
algorithms (Setup, Enc, KeyGen, Dec) with the following syntax:

e Setup(1*,1%) — (pp, msk). The setup algorithm takes as input the security
parameter A and a functionality index . It outputs the public parameters
pp and the master secret key msk.

e Enc(pp,z,m) — ct. The encryption algorithm takes as input public parame-
ters pp, an attribute x € X, and a message m € M,. It outputs a ciphertext
ct.

e KeyGen(msk, C') — ske. The key generation algorithm takes as input master
secret key msk and a predicate C' € C,. It outputs a secret key skc¢.

e Dec(skg,ct) — m or L. The decryption algorithm takes as input a secret key

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-227

skc and a ciphertext ct. It outputs either a message m € M, or a special
symbol 1.

Correctness. A KP-ABE scheme is said to be correct if there exist negligible
functions negl, (), negly () such that for all A, x € N, for all x € X;, C € C,,, m € M,,
the following holds:

(pp, msk) « Setup(1*, 1%);
C(z) =1 = Pr |Dec(skg,ct) =m: skeo « KeyGen(msk, C); > 1 —negl, (X),
ct < Enc(pp, z,m)
(pp, msk) < Setup(1*, 1%);
C(z) = 0 = Pr |Dec(skg,ct) = L skg + KeyGen(msk, C); >1—negly(N).
ct < Enc(pp,x,m)

Security. The standard notion of security for a KP-ABE scheme is that of full
or adaptive security. It is formally defined as follows.

DEFINITION A.1. A KP-ABFE scheme ABE = (Setup, Enc, KeyGen, Dec) is said
to be fully secure if for every stateful PPT adversary A there exists a negligible function
negl(-), such that for every A € N the following holds:

1% < A(1%); (pp, msk) ¢ Setup(1*, 1);
Pr AKeyGen(msk,~)(Ct) =b: ((m07 ml), 1,‘) — AKeyGen(msk,-)(pp);
b+ {0,1}; ct + Enc(pp, z,mp)

1
S 5 + negl()\),

where every predicate query C, made by adversary A to the KeyGen(msk,-) oracle,
must satisfy the condition that C(z) = 0.

In this work, we only require the scheme to achieve selective security, which is
formally defined as follows.

DEFINITION A.2. A KP-ABE scheme ABE = (Setup, Enc, KeyGen, Dec) is said
to be selectively secure if for every stateful PPT adversary A, there exists a negligible
function negl(+), such that for every A\ € N the following holds:

(1%, 2) = A(1*); (pp, msk) < Setup(1*,17);
Pr AKeyGen(msk,~)(Ct) —b- (m07m1) — AKeyGen(msk,-)(pp);
b« {0,1}; ct < Enc(pp,x,mp)

1
< 5 + negl()‘)a

where every predicate query C, made by adversary A to the KeyGen(msk,-) oracle,
must satisfy the condition that C(x) = 0.

Appendix B. ABE and Mixed FE to PLBE: Preserving perfect cor-
rectness. In this section, we give an alternate construction for constructing PLBE
such that if the underlying ABE scheme achieves perfect correctness, then so does the
PLBE scheme, even if the Mixed FE scheme is not perfectly correct. Since existing
ABE schemes [GVW13, BGG+14] can be made perfectly correct by appropriately
truncating noise distributions used, this gives a pathway to get perfect correctness
under LWE. Note that the construction described in section 6.1 only achieves perfect
correctness when both underlying ABE and Mixed FE schemes are perfectly correct.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-228 R. GOYAL, V. KOPPULA, AND B. WATERS

This is because the policy circuit is the Mixed FE decryption circuit, and thus in
order to guarantee perfect correctness, we need the minimum requirement that the
Mixed FE normal ciphertexts always decrypt to 1. Below we give the main idea to
obtain perfect correctness.

Outline. At a very high level, the idea is to encrypt the message m under two
independent ABE systems such that at least one of the ciphertext components can
always be decrypted to obtain the underlying message. To this end, during setup we
sample two ABE key pairs (abe.pp,, abe.msk;) (for b € {0,1}) and a Mixed FE key
pair (Mixed.pp, Mixed.msk). To generate the secret key for the ith user, we generate
a Mixed FE secret key Mixed.sk; for message i, and later compute two ABE keys
abe.sk; ¢, abe.sk; 1 for predicates Mixed.Dec(Mixed.sk;,-) and Mixed.Dec(Mixed.sk;,)
using abe.mskg, abe.msk;, respectively. Here Mixed.Dec(Mixed.sk;,) denotes the cir-
cuit that first decrypts the input using key Mixed.sk; and later applies a “not” gate
(i.e., outputs the complement). Now the PLBE ciphertexts will consist of two parts,
one for each ABE subsystem. For PLBE normal encryption, one computes two cipher-
texts ctp (for b € {0,1}) as encryptions of message m under attributes cta, using
parameters abe.pp,, where ctay, is computed as before. Now for encrypting a message
to index 4, the encryption algorithm behaves differently in that it computes cty as
before, but ct; will now be an encryption of message 0 under the same attributes.
The reason for not encrypting the message m in the second component of the index
ciphertext becomes clear while proving security.

Now for arguing perfect correctness, we observe that it should be the case that
Mixed.Dec(Mixed.sk;, ctawr) equals either 0 or 1. Thus, at least one of the PLBE
normal ciphertext components could be correctly decrypted. Note that for such an
argument we only require that ABE be perfectly correct. Next, the security proof is
similar to that in section 6.3, except that when arguing normal hiding security of our
construction we need to rely on both the ABE security as well as the weak accept
indistinguishability property of the Mixed FE scheme. The main idea is that by
correctness of the functional encryption scheme, we can say that with all but negligible
probability the attribute used in the second component of the challenge ciphertext is
not satisfied by any of the ABE keys queried. Thus, as our first hybrid argument, we
could use ABE security to switch the second challenge ciphertext component to an
encryption of 0 instead of message m. The remaining proof is identical to as before,
with the only modification being that the reduction algorithm needs to generate the
ABE keys for the second component on its own during the entire reduction. Below
we describe our construction PLBE = (Setup, Enc, Enc-index, Dec) for messages spaces

{M,},, in detail.

B.1. Construction. Let ABE = (ABE.Setup, ABE.Enc, ABE.KeyGen, ABE.Dec)
be a KP-ABE scheme for a set of attribute spaces {X}, , predicate classes {C, }, , and
message spaces {M,},, and let Mixed-FE = (Mixed.Setup, Mixed.Enc, Mixed.SK-Enc,
Mixed.KeyGen, Mixed.Dec) be a Mixed FE scheme, for function classes {F,}, and
message space {Z,},, with ciphertexts of length ¢(\, k). For every n, let k = k(n)
be the lexicographically smallest functionality index such that every string of length
log(n) can be uniquely represented in message space Z (i.e., {0,1}'°¢(") C Z,), and
function class F,; contains the “comparison” (>) operator. Also, let K = K(\, k) be the
lexicographically smallest functionality index such that every string of length £()\, k)
can be uniquely represented in attribute class Xz (i.e., {0,1}¥*%) C %), and Cx
contains a Mixed FE decryption circuit (as well its complement circuit) corresponding
to functionality index k. Below we describe our construction.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-229

e Setup(1*,17) — (pp, msk, {Ski}i<n)' The setup algorithm runs ABE.Setup
and Mixed.Setup to generate ABE and Mixed FE public parameters and
master secret key as (abe.pp, abe.msk) < ABE.Setup(1*,1%) and (Mixed.pp,
Mixed.msk) < Mixed.Setup(1*,1%). Next, it runs Mixed.KeyGen to generate
n mixed FE secret keys Mixed.sk; as

Vi<mn, Mixed.sk; < Mixed.KeyGen(Mixed.msk, 7).

Let Cijiyed.sk, denote the circuit Mixed.Dec(Mixed.sk;,), and let Cly e ., de-

note the circuit Mixed.Dec(Mixed.sk;, -); i.e., Chpieqok, 1S the Mixed-FE de-
cryption circuit with key Mixed.sk; hardwired and a “not” gate applied on
the output of decryption. Next, it computes 2n ABE secret keys abe.sk; ; as

Vi<n,be{0,1}, abesk;;, + ABE.KeyGen(abe.msky, Ciyied.sk,)-

Finally, it sets pp = (abe.ppg, abe.pp;, Mixed.pp), msk = (abe.mskq, abe.msk,
Mixed.msk), and sk; = (abe.sk; o, abe.sk; 1) for i < n.

e Enc(pp,m) — ct. Let pp = (abe.ppy,abe.pp;, Mixed.pp). The encryption
algorithm first computes ctayr < Mixed.Enc(Mixed.pp). Next, it encrypts
message m as ct, < ABE.Enc(abe.ppy, ctatr, m) for b € {0,1} and outputs
ciphertext ct = (ctg, cty).

e Enc-index(msk,m,i) — ct. Let msk = (abe.mskg, abe.msk;, Mixed.msk) and

comp,; denote the comparison function ; i, i.e.,, comp;(z) = liff x > 4.
The encryption algorithm first computes ctay < Mixed.SK-Enc(Mixed.msk,
comp;). Next, it encrypts message m as cty < ABE.Enc(abe.ppy, Ctattr, m)
and ct; < ABE.Enc(abe.pp;, ctattr, 0) and outputs ciphertext ct = (ctg, cty).

e Dec(sk,ct) — mor L . Let sk = (sko,sky) and ct = (ctg,ct;). The de-
cryption algorithm runs ABE.Dec on ciphertexts ct, using key sk, as y, =
ABE.Dec(sky, ctp) for b € {0,1}. If yg # L, it outputs yo. Otherwise, it sets
y1 as the output of decryption.

B.2. Correctness. For all \,n € N, message m € M), public parameters
and master secret keys (abe.pp,,abe.msk,) - ABE.Setup(1*, 1%) (for b € {0,1}),
(Mixed.pp, Mixed.msk) < Mixed.Setup(1*,1%), the secret keys sk, j, for i < n,b € {0,1}
are simply the ABE keys abe.sk; ;, <— ABE.KeyGen(abe.msky, Clﬁ’,,ixedvski). For any index
1 < n, consider the following two cases:

1. Normal encryption. For any ciphertext ct = (ctg, ct;) computed as ctj,
ABE.Enc(abe.pp,, Ctattr, m) for b € {0, 1}, where ctay, +— Mixed.Enc(Mixed.pp),
we know that either Mixed.Dec(Mixed.sk;, ctay) = 1 or Mixed.Dec(Mixed.sk;,
Ctaer) = 0. In other words, Ciyicq o (Ctater) = 1 for some bit b € {0,1}.
Therefore, by perfect correctness of ABE scheme, we have that for some bit
b € {0,1}, ABE.Dec(abe.sk;, cty) = m. Therefore, the PLBE decryption
algorithm always decrypts the normal ciphertexts correctly.

2. Index encryption. This is identical to the argument provided in section 6.2.
Note that perfect correctness for PLBE only requires perfect decryption in the
case of normal encryption. Thus, it is sufficient to prove statistical correctness
in the case of index encryption.

Therefore, the PLBE scheme is perfectly correct.

B.3. Security. The proof of security is almost identical to that provided in
section 6.3, except that to argue normal hiding security of our construction, we first

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-230 R. GOYAL, V. KOPPULA, AND B. WATERS

need to use ABE security of the auxiliary subsystem (for b = 1) and the statistical
correctness property of the underlying Mixed FE scheme simultaneously to switch the
encryption of challenge message m* to 0. The rest of the proof is identical.

Appendix C. Hybrids.
C.1. Detailed hybrid experiments for Theorem 7.4.

Hybrid Hy. This corresponds to the original game (per Definition 7.1, with the
single row removal restriction) with b = 0.

1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:

(a) Tt first chooses matrices (By,Tg,) < TrapGen(1"~1,1/™/21 ¢) (B,,
Tg,) < TrapGen(1"~1, 11m/2] ¢). Tt sets B = [B; | Ba].

(b) It also chooses a vector p < Z;* and sets matrix A € Zy*™ as A =
Arrange(B, p, [n] \ {i}).

(c¢) Finally, it sends A to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € ZS,”*””. The challenger responds
to each query as follows:

(a) It chooses W < Z((Zn_l)“ and samples Uy <— SamplePre(By,Tg,, 0, W).
(b) Next, it sets Y = C — By - U; (which is equal to C — W) and computes
Uy < SamplePre(Bsy, Tn,,0,Y).
(c) Finally, it sends U= [g!] to A.
3. The adversary outputs a bit ¥’

Hybrid H;. In this experiment, the challenger chooses U; to be a random
Gaussian matrix with parameter o for each query.

1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:

(a) Tt first chooses matrices (By,Tg,) < TrapGen(1"~1,11™/21 ¢), (B,,
Tg,) < TrapGen(17~1, 11™/2] ¢). Tt sets B = [B; | Ba].

(b) It also chooses a vector p < Z;' and sets matrix A € Zy*™ as A =
Arrange(B, p, [n] \ {i}).

(c) Finally, it sends A to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Zén_l)Xt. The challenger responds
to each query as follows:

(a) It samples Uy « DJ™/?1¥,
(b) Next, it sets Y = C ~ B, -U; and computes Uy < SamplePre(Bs, Tg,,,
o,Y).
(¢) Finally, it sends U = [gﬂ to A.
3. The adversary outputs a bit ¥’

Hybrid H,. In this hybrid, the challenger chooses B; uniformly at random,
instead of choosing it using TrapGen. At this point, note that the left half of A is a
uniformly random matrix.

1. Setup phase. The adversary A sends 1™,1™, index i € [n]. The challenger
proceeds as follows:
(a) Tt first chooses By «+ Z((I"_l)X [m/21 (B, Tg,) < TrapGen(17~1, 1lm/2]
q). Tt sets B = [B1 | By].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-231

(b) It also chooses a vector p < Z;* and sets matrix A € Zy*™ as A =
Arrange(B, p, [n] \ {i}).
(c) Finally, it sends A to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Zfln_l)”. The challenger responds
to each query as follows:

(a) Tt samples U; + ng;/ﬂ xt
(b) Next, it sets Y = C — B - U; and computes Us < SamplePre(Bs, T5,,
o, Y).
(c¢) Finally, it sends U = [gﬂ to A.
3. The adversary outputs a bit b'.

Hybrid Hj. This hybrid involves syntactic changes. The challenger chooses
A+ ZZX fm/2] and derives By by removing the ith row of A;.

1. Setup phase. The adversary A sends 1™,1™, index i € [n]. The challenger
proceeds as follows:

(a) It first chooses A; + ngrm/ﬂ, (By, TB,) « TrapGen(1™~1,11m/2] ¢).
It sets By = Restrict(A 1, [n] \ {i}) and B = [B; | Bs].

(b) It also chooses a vector p, < Zém/QJ and sets As = Arrange(Ba, po,
[P\ {i}), A = [A1]A,].

(¢) Finally, it sends A to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Z,(Jn_l)Xt. The challenger responds
to each query as follows:

(a) Tt samples U; + DQZ/Q]”.
(b) Next, it sets Y =C ~ B, -U; and computes Uy < SamplePre(Bs, Tg,,,
o0,Y).
(¢) Finally, it sends U = [gﬂ to A.
3. The adversary outputs a bit b'.

Hybrid H,4. In this hybrid, the challenger chooses the left half of A using
TrapGen.

1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:

(a) It first chooses matrices (Aq,Ta,) + TrapGen (17,11™/21 ¢), (Bo, Tg,)
< TrapGen(1™~1, 11m/21¢). Tt sets By = Restrict(Ay,[n] \ {i}) and
B = [B; | B,

(b) It also chooses a vector p, <+ Z(Emm and sets Ao = Arrange(Bs, po,
M\ {i}), A =[A1[As].

(c¢) Finally, it sends A to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € ZS,”*””. The challenger responds
to each query as follows:

(a) It samples Uy « Dg;/ﬂ <t
(b) Next, it sets Y = C ~ B; - U; and computes Us SamplePre(Bs, T,,
o, Y).
(¢) Finally, it sends U = [8;} to A.
3. The adversary outputs a bit ¥'.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-232 R. GOYAL, V. KOPPULA, AND B. WATERS

Hybrid Hj. In this hybrid, the challenger chooses U; using SamplePre for each
query.

1. Setup phase. The adversary A sends 1™,1™, index i € [n]. The challenger
proceeds as follows:

(a) Tt first chooses matrices (A1, Ta,) < TrapGen (1”, 1“”/2],(]), (B2, TB,)
< TrapGen(1™~1, 1m/21 ¢). Tt sets By = Restrict(Ay,[n] \ {i}) and
B = [B; | B,].

(b) Tt also chooses a vector py + Z(Em/QJ and sets As = Arrange(Ba, ps,
[n]\ 7)), A — [A1]| As).

(¢) Finally, it sends A to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Z,(Infl)Xt. The challenger responds
to each query as follows:

(a) It chooses W' «— Z2*", sets W = Restrict(W’, [n] \ {i}), and samples
U, < SamplePre(Aq,Ta,,0, W’).
(b) Next, it sets Y = C — B; - U; and computes Uy < SamplePre(Bs, Tg,,,
o0,Y).
(¢) Finally, it sends U = [gﬂ to A.
3. The adversary outputs a bit b'.

Hybrid Hg. This hybrid represents a syntactic change, in which the challenger,
for each query, chooses Y as a uniformly random matrix, and sets W = C - Y =
C—-B; U,.

1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:

(a) It first chooses matrices (Aq,Ta,) + TrapGen (17,11™/21 ¢), (Bs, Tg,)
< TrapGen(1"~1, 1Lm/21¢). Tt sets By = Restrict(Ay,[n] \ {i}) and
B =[B; |B;].

(b) It also chooses a vector py < Z
[n]\{i}), A = [A1]A,].

(¢) Finally, it sends A to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Z((I"_I)Xt. The challenger responds
to each query as follows:

(a) Tt chooses Y « Z,(Infl)Xt and samples Uy < SamplePre(B2, Tg,,0,Y).
(b) Next, it sets W = C — By - Uy (which is equal to C —7Y), chooses a
uniformly random vector w < Z{, sets W’ = Arrange(W, w, [n] \ {i}),
and computes Uy < SamplePre(A1,Ta,, 0, W').
(c) Finally, it sends U = [gﬂ to A.
3. The adversary outputs a bit b'.

(gm/QJ and sets Ay = Arrange(B%pg,

Hybrid H7. In this hybrid experiment, the challenger chooses Us from a Gauss-
ian distribution with parameter o.

1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger

proceeds as follows:
(a) It first chooses matrices (Aq,Ta,) + TrapGen (17, 11™/21 ¢), (Bo, Tg,)
 TrapGen(1™~1, 11m/21¢). Tt sets B; = Restrict(Ay,[n] \ {i}) and

B = [B; | B,
(b) It also chooses a vector p, <+ Z(Emm and sets As = Arrange(Bs, po,

M\ {i}), A =[A1[As].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-233

(¢) Finally, it sends A to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Z,(Infl)”. The challenger responds
to each query as follows:

(a) It samples Uy D%@/QJ”.
(b) Next, it sets W = C — By - Uy, chooses a uniformly random vector
w Z!, sets W' = Arrange(W,w, [n] \ {i}), and computes U; «
SamplePre(Ay,Ta,,0, W').
(c) Finally, it sends U= [g!] to A.
3. The adversary outputs a bit ¥'.

Hybrid Hg. In this hybrid, the challenger chooses matrix B, uniformly at ran-
dom. Note that this means Ay is uniformly random in this hybrid.

1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:

(a) It first chooses A; <« TrapGen (17,1™/21 ¢), By + Z,(Infl)xm/%. It
sets By = Restrict(Aq,[n] \ {i}) and B = [B; | Bo].

(b) It also chooses a vector p, < Z(Em/QJ and sets Ao = Arrange(Bs, po,
M\ {i}), A = [A1]A,].

(c¢) Finally, it sends A to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Zl(lnfl)”
to each query as follows:

(a) It samples Uy « Dg;/ﬂ <t
(b) Next, it sets W = C — B, - Uy, chooses a uniformly random vector
w < Z!, sets W' = Arrange(W,w, [n] \ {i}), and computes U; <«
SamplePre(A1,Ta,, 0, W').
(c¢) Finally, it sends U = [gﬂ to A.
3. The adversary outputs a bit b'.

. The challenger responds

Hybrid Hg. In this hybrid, the matrix Ay is chosen using TrapGen.

1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:

(a) It first chooses matrices (A1, Ta,) < TrapGen (17, 1M/21 ¢}, (A5, Ta,)
+ TrapGen (17, 11m/21 ¢). Tt sets By = Restrict(Ay, [n] \ {i}), Ba =
Restrict(As, [n]\ {i}), and B = [B; | B3].

(b) It sets A = [A1]|Ag].

(c) Finally, it sends A to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Z((I"_I)Xt. The challenger responds
to each query as follows:

(a) Tt samples Uy + Dg?;/” <t

(b) Next, it sets W = C — By - Ug, chooses a uniformly random vector
w < Z, sets W' = Arrange(W,w, [n] \ {i}), and computes U; <«
SamplePre(Ay,Ta,,0, W').

(c¢) Finally, it sends U = [gﬂ to A.

3. The adversary outputs a bit ¥'.

Hybrid H;g. In this hybrid, the challenger chooses Us using SamplePre for each
query.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-234 R. GOYAL, V. KOPPULA, AND B. WATERS

1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:

(a) It first chooses matrices (A1, Ta,) < TrapGen (17, 1M/21 ¢}, (A5, Ta,)
+ TrapGen (17, 11m/21 ¢). It sets By = Restrict(Ay, [n] \ {i}), Ba =
Restrict(Aas, [n]\ {i}), and B = [B; | Bs].

(b) It sets A = [A1]|As].

(c¢) Finally, it sends A to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Z((I"_I)Xt. The challenger responds
to each query as follows:

(a) Tt chooses Y’ < Zy** and samples U < SamplePre(Ay, Ta,, 0, Y').

(b) Next, it sets W = C — By - Uy, chooses a uniformly random vector
w < Z!, sets W' = Arrange(W,w, [n] \ {i}), and computes U; <«
SamplePre(A1,Ta,, 0, W').

(c¢) Finally, it sends U = [gﬂ to A.

3. The adversary outputs a bit b'.

Hybrid H;;. This hybrid represents a syntactic change in which the ith row of
matrix W' is set as a difference of random vector ¢ and the ith row of A5 - U, instead
of being sampled uniformly at random directly.

1. Setup phase. The adversary A sends 1™,1™, index i € [n]. The challenger
proceeds as follows:

(a) Tt first chooses matrices (A1,Ta,) < TrapGen (1", 1rm/21,q), (A2, Ta,)
< TrapGen(1", 11/2] ¢). Tt sets By = Restrict(Aq, [n] \ {i}), By =
Restrict(As, [n]\ {i}), and B = [B; | B3].

(b) Tt sets A =[A1]As].

(¢) Finally, it sends A to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € Z,(Infl)Xt. The challenger responds
to each query as follows:

(a) It chooses Y’ <= Z7** and samples Uy < SamplePre(Ay, Ta,,0,Y’).

(b) Next, it chooses a random vector ¢ < Zfl, sets C' = Arrange(C, c,
[n] \ {7}), sets W = C’ — A5 - Uy, and computes U; + SamplePre(Aq,
Ta,, o, W').

(¢) Finally, it sends U = [gﬂ to A.

3. The adversary outputs a bit b'.

Hybrid H;». This hybrid represents a syntactic change. It corresponds to the
security game in Definition 7.1 with b = 1.

1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:

(a) It first chooses matrices (A1,Ta,) < TrapGen (17, 1M/21 ¢}, (A5, Ta,)
<+ TrapGen (17, 11m/21 ¢). Tt sets By = Restrict(Ay,[n] \ {i}), Bs =
Restrict(As, [n]\ {i}), and B = [B; | B3].

(b) It sets A = [A1 | Ag].

(c¢) Finally, it sends A to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, C), where C € ZS,”*””. The challenger responds
to each query as follows:

(a) Tt chooses W' <= Zp*" and computes Uy < SamplePre(A;,Ta,, 0, W).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-235

(b) Next, it chooses a random vector ¢ < Z,, sets C' = Arrange(C, c,
[n] \ {i}), sets Y = C' — A; - Uy (which is equal to C' — W’), and
computes Uy <+ SamplePre(Aq, Ta,, o, Y').
(c) Finally, it sends U = [gﬂ to A.
3. The adversary outputs a bit b’

C.2. Detailed hybrid experiments for Theorem 7.19.

Hybrid Hy. This corresponds to the single target switching security game.

1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:

(a) Tt chooses matrices (A1,Ta,) + TrapGen(1™,1™/21 ¢) and (Ay, Ta,)
< TrapGen(17, 11™/2] ¢). Tt also chooses a random bit b < {0,1}.

(b) Next, it sets By = Restrict(Aq, [n] \ {i}), B2 = Restrict(Aa, [n] \ {i}),
and sends [B; | By to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%,Zg, Z1), where Zo,Z, € Z7*" such that Restrict(Z,
[n] \ {i}) = Restrict(Z1,[n] \ {i}). The challenger responds to each query as
follows:

(a) Tt chooses W «+ Z;‘Xt and computes Uy < SamplePre(A1,Ta,,0, W).
(b) Tt also samples vector e < x* and sets E = Arrange(0" 1>t e, [n]\{i}).
(c) Next, it sets Y = Zy — A; - Uy + E (which is equal to Z, — W + E) and
computes Uy < SamplePre(As, Ta,,0,Y).
(d) Finally, it sends U = [g!] to A.
3. A outputs its guess b'.

Hybrid H;. In this hybrid experiment, the challenger sets U; to be a Gaussian
matrix for each query.
1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:
(a) Tt chooses matrices (A1, Ta,) « TrapGen(1”,1"/21 ¢) and (A, Ta,)
< TrapGen(17, 1L™/21 " ¢). Tt also chooses a random bit b + {0, 1}.
(b) Next, it sets By = Restrict(Aq, [n]\ {i}), B2 = Restrict(As, [n]\{i}) and
sends [B1 | B2] to A.
2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, Zo, Z1), where Zo,Z;, € Z}** such that Restrict(Zo,
[n] \ {¢}) = Restrict(Z1,[n] \ {i}). The challenger responds to each query as
follows:
(a) Tt computes Uj <+ Dgz/ﬂ xt,
(b) It also samples vector e < x* and sets E = Arrange(0"~V*? e, [n]\ {i}).
(c) Next, it sets Y = Zy — A1 - U; + E and computes Uy < SamplePre(A,
Ta,,0,Y).
(d) Finally, it sends U = [gﬂ to A.
3. A outputs its guess b'.

Hybrid H,. In this hybrid experiment, the challenger sets A; to be a uniformly
random matrix (that is, sampled without a trapdoor).
1. Setup phase. The adversary A sends 1™,1™, index i € [n]. The challenger
proceeds as follows:
(a) Tt chooses Ay « Zi*I™/?1 and (Ay, Ta,) + TrapGen(1™,1m/2] ¢). Tt
also chooses a random bit b < {0,1}.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-236 R. GOYAL, V. KOPPULA, AND B. WATERS

(b) Next, it sets By = Restrict(Aq, [n]\ {¢}), B2 = Restrict(Az, [n]\{i}) and
sends [B | Bo] to A.

2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, Zo, Zy), where Zo, Z; € Z}*" such that Restrict(Zo,
[n] \ {i}) = Restrict(Z1,[n] \ {i¢}). The challenger responds to each query as
follows:

(a) It computes Uj Dg:;/ﬂ <t
(b) Tt also samples vector e < x* and sets E = Arrange(0" 1>t e, [n]\ {i}).
(¢) Next, it sets Y = Zy — A1 - U; + E and computes Uy < SamplePre(As,
TAza g, Y)
(d) Finally, it sends U = [gﬂ to A.
3. A outputs its guess b'.

Hybrid H3. This hybrid is a syntactic change. Here, we express Y in terms of
B; and the ith row of A;. Note that the ith row of A; is used only for computing
the ¢th row of Y.
1. Setup phase. The adversary A sends 1™,1™, index 4 € [n]. The challenger
proceeds as follows:
(a) Tt chooses A + ng(m/ﬂ and (Ag,Ta,) + TrapGen(1™,1m/21 ¢). Tt
also chooses a random bit b < {0,1}.
(b) Next, it sets B; = Restrict(A1, [n]\ {i}), B2 = Restrict(A,, [n]\ {i}) and
sends [B1 | Bo] to A.
2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, Z,Z,), where Z,Z; € ZZ” such that Restrict(Zo,
[n] \ {i}) = Restrict(Zy,[n] \ {i}). The challenger responds to each query as
follows:
(a) It computes U; + Dgz/z] <t
(b) Tt also samples vector e <— x* and sets Z; = Restrict(Zy, [n] \ {i}).
(c) Next, it sets Y = Z; — By - Uy, y = Zp[i] — Aq[i] - Uy +e,and Y =
Arrange(Y',y, [n]\ {i}). It then computes Uy < SamplePre(Asq, Ta,, o,
Y).
(d) Finally, it sends U = [gﬂ to A.
3. A outputs its guess b'.

Hybrid Hy4. In this hybrid experiment, the challenger sets the ith row of Y to
be a uniformly random vector.
1. Setup phase. The adversary A sends 1™,1™, index i € [n]. The challenger
proceeds as follows:
(a) It chooses A; < Z0*!™/21 and (A,, Ta,) < TrapGen(17,1lm/2) g). Tt
also chooses a random bit b < {0,1}.
(b) Next, it sets By = Restrict(Aq, [n]\ {i}), B2 = Restrict(As, [n]\{i}) and
sends [B1 | B2] to A.
2. Query phase. The adversary makes a polynomial number of preimage
queries of the form (1%, Zo, Z1), where Zo, Z;, € Z** such that Restrict(Zo,
[n] \ {¢}) = Restrict(Z1,[n] \ {i}). The challenger responds to each query as
follows:
(a) Tt computes U; <+ Dgz/ﬂ xt,
(b) It sets Zj = Restrict(Zy, [n] \ {i}).
(c) Next,itsets Y' = Z;—B;-Uy,y « Z,, and Y = Arrange(Y',y, [n]\{i}).
It then computes Us +— SamplePre(As, Ta,,0,Y).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-237

(d) Finally, it sends U = [g] to A.

3. A outputs its guess b'.

Acknowledgment. We thank Chris Peikert for useful discussions about the
Micciancio—Peikert lattice trapdoors [MP12].

[ABB10]

[ABP+17]

[ACPS09]

[ADGM16]

[ADM+07]

[AGVW13]

[Ajt99)

[ATW11]

[ALS16]

[Bar86]

[BDFPS6)

[BDK+11]

[BF99]

[BF11]

[BG11]

[BGG-+14]

REFERENCES

S. AGRAwWAL, D. BONEH, AND X. BOYEN, Lattice basis delegation in fized dimen-
ston and shorter-ciphertext hierarchical IBE, in Proceedings of the 30th Annual
Conference on Advances in Cryptology - CRYPTO’10, Springer-Verlag, Berlin,
Heidelberg, 2010, pp. 98-115

S. AGRAWAL, S. BHATTACHERJEE, D. H. PHAN, D. STEHLE, AND S. YAMADA, Efficient
public trace and revoke from standard assumptions: Extended abstract, in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, 2017, pp. 2277-2293.

B. AppLEBAUM, D. CasH, C. PEIKERT, AND A. SAHAIL, Fast cryptographic primitives
and circular-secure encryption based on hard learning problems, in CRYPTO,
2009, pp. 595-618.

D. Apon, N. DOTTLING, S. GARG, AND P. MUKHERJEE, Cryptanalysis of Indistin-
guishability Obfuscations of Clircuits over GGH13, Cryptology ePrint Archive,
Report 2016,/1003, 2016.

M. ABpALLA, A. W. DENT, J. MALONE-LEE, G. NEVEN, D. H. PHAN, AND N. P.
SMART, Identity-based traitor tracing, in Proceedings of the Public Key Cryp-
tography, PKC 2007, 10th International Conference on Practice and Theory in
Public-Key Cryptography, Beijing, China, 2007, pp. 361-376.

S. AGRAWAL, S. GORBUNOV, V. VAIKUNTANATHAN, AND H. WEE, Functional encryp-
tion: New perspectives and lower bounds, in Proceedings of the 33rd Annual
Cryptology Conference Advances in Cryptology - CRYPTO 2013, Part II, Santa
Barbara, CA, 2013, pp. 500-518.

M. AJTAl, Generating hard instances of the short basis problem, in Proceedings of
the 26th International Colloquium on Automata, Languages and Programming,
Prague, Czech Republic, ICALP’99, 1999, pp. 1-9.

G. AsHAROV, A. JAIN, AND D. WicHs, Multiparty Computation with Low Commu-
nication, Computation and Interaction via Threshold FHE, Cryptology ePrint
Archive, Report 2011/613, 2011, http://eprint.iacr.org/2011/613.

S. AGRAWAL, B. LIBERT, AND D. STEHLE, Fully secure functional encryption for inner
products, from standard assumptions, in Advances in Cryptology - CRYPTO 2016,
Part III, Lecture Notes in Comput. Sci. 9816, Springer, Berlin, 2016, pp. 333-362.

D. A. BARRINGTON, Bounded-width polynomial-size branching programs recognize ex-
actly those languages in NC', in Proceedings of the Eighteenth Annual ACM
Symposium on Theory of Computing, STOC ’86, 1986, pp. 1-5.

A. BorobpiN, D. DoLEv, F. E. Ficu, AND W. PAUL, Bounds for width two branching
programs, SIAM J. Comput., 15 (1986), pp. 549-560, https://doi.org/10.1137/
0215040.

B. BArAK, Y. Dobis, H. Krawczyk, O. PEREIRA, K. PIETRZAK, F.-X. STANDAERT,
AND Y. YU, Leftover hash lemma, revisited, in Proceedings of the 31st Annual
Conference on Advances in Cryptology - CRYPTQO’11, Springer, 2011, pp. 1-20.

D. BoNEH AND M. K. FRANKLIN, An efficient public key traitor tracing scheme, in
Proceedings of the 19th Annual International Cryptology Conference on Advances
in Cryptology - CRYPTO’99, Santa Barbara, CA, 1999, pp. 338—-353.

D. BoNEH AND D. M. FREEMAN, Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures, in International Workshop on Public
Key Cryptography, Lecture Notes in Comput. Sci. 6571, Springer, Heidelberg,
2011, pp. 1-16.

Z. BRAKERSKI AND O. GOLDREICH, From absolute distinguishability to positive dis-
tinguishability, in Studies in Complexity and Cryptography. Miscellanea on the
Interplay between Randomness and Computation, Springer, 2011, pp. 141-155.

D. BoneH, C. GENTRY, S. GORBUNOV, S. HALEVI, V. NIKOLAENKO, G. SEGEV, V.
VAIKUNTANATHAN, AND D. VINAYAGAMURTHY, Fully key-homomorphic encryp-
tion, arithmetic circuit ABE and compact garbled circuits, in Proceedings of the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

http://eprint.iacr.org/2011/613
https://doi.org/10.1137/0215040
https://doi.org/10.1137/0215040

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-238 R. GOYAL, V. KOPPULA, AND B. WATERS

[BGH+15]

[BLMR13]

[BLP+13]

[BLSV17]

[BNOS]

[BPOS]

[BS15]

[BSWO06]

[BV15]

[BVWW16]

[BWO6]

[BWZ14]

[BZ14]

[CC17)

[CFL+16]

[CFNY4)

[CFNPOO]

[CGH+15]

[CHKP10]

33rd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Advances in Cryptology - EUROCRYPT 2014, Copenhagen,
Denmark, 2014, pp. 533-556.

Z. BRAKERSKI, C. GENTRY, S. HALEvVI, T. LEPOINT, A. SAHAI, AND M. TIBOUCHI,
Cryptanalysis of the Quadratic Zero-Testing of GGH, IACR Cryptology ePrint
Archive, 2015.

D. BoneH, K. LEwi, H. W. MONTGOMERY, AND A. RAGHUNATHAN, Key homomorphic
PRFs and their applications, in Advances in Cryptology - CRYPTO 2013, 33rd
Annual Cryptology Conference, Part I, Santa Barbara, CA, 2013, pp. 410-428.

7. BRAKERSKI, A. LANcLOIS, C. PEIKERT, O. REGEV, AND D. STEHLE, Classical hard-
ness of learning with errors, in Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, 2013, pp. 575-584.

7. BRAKERSKI, A. LOMBARDI, G. SEGEV, AND V. VAIKUNTANATHAN, Anonymous IBE,
leakage resilience and circular security from new assumptions, in Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Springer, 2018, pp. 535—-564.

D. BONEH AND M. NAOR, Traitor tracing with constant size ciphertext, in Proceedings
of the 2008 ACM Conference on Computer and Communications Security, CCS
2008, Alexandria, VA, 2008, pp. 501-510.

O. BILLET AND D. H. PHAN, Efficient traitor tracing from collusion secure codes, in
Proceedings of the Information Theoretic Security, Third International Confer-
ence, ICITS 2008, Calgary, Canada, 2008, pp. 171-182.

Z. BRAKERSKI AND G. SEGEV, Function-private functional encryption in the private-
key setting, in Proceedings of the 12th Theory of Cryptography Conference, The-
ory of Cryptography - TCC 2015, Part II, Warsaw, Poland, 2015, pp. 306—324.

D. BONEH, A. SAHAI, AND B. WATERS, Fully collusion resistant traitor tracing with
short ciphertexts and private keys, in EUROCRYPT, 2006, pp. 573-592.

N. BITANSKY AND V. VAIKUNTANATHAN, Indistinguishability obfuscation from func-
tional encryption, in Proceedings of the IEEE 56th Annual Symposium on Foun-
dations of Computer Science, FOCS 2015, Berkeley, CA, 2015, pp. 171-190.

Z. BRAKERSKI, V. VAIKUNTANATHAN, H. WEE, AND D. WicHs, Obfuscating conjunc-
tions under entropic ring LWE, in Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, 2016, pp. 147-156.

D. BONEH AND B. WATERS, A fully collusion resistant broadcast, trace, and revoke
system, in Proceedings of the 13th ACM Conference on Computer and Commu-
nications Security, CCS 2006, Alexandria, VA, 2006, pp. 211-220.

D. BonNeEH, D. J. Wu, AND J. ZIMMERMAN, Immunizing Multilinear Maps against
Zeroizing Attacks, Cryptology ePrint Archive, Report 2014/930, 2014.

D. BONEH AND M. ZHANDRY, Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation, in Proceedings of the 34th Annual
Cryptology Conference Advances in Cryptology - CRYPTO 2014, Part I, Santa
Barbara, CA, 2014, pp. 480-499.

R. CANETTI AND Y. CHEN, Constraint-hiding constrained PRFs for NC' from LWE,
in EUROCRYPT, 2017, pp. 446-476.

J. H. CHEON, P.-A. FouQug, C. LEE, B. MINAUD, AND H. Ryu, Cryptanalysis of
the new CLT multilinear map over the integers, in Advances in Cryptology -
EUROCRYPT 2016, Part I, Lecture Notes in Comput. Sci. 9665, Springer, Berlin,
2016, pp. 509-536.

B. CHOR, A. FiaT, AND M. NAOR, Tracing traitors, in Advances in Cryptology -
CRYPTOQO’94, Lecture Notes in Comput. Sci. 839, Springer, Berlin, Heidelberg,
1994, pp. 257-270.

B. CHOR, A. FiaT, M. NAOR, AND B. PINKAS, Tracing traitors, IEEE Trans. Inform.
Theory, 46 (2000), pp. 893-910.

J.-S. Coron, C. GENTRY, S. HArLevi, T. LepoinT, H. K. MaJji, E. MiLES, M.
RAYKOVA, A. SAHAI, AND M. TIBOUCHI, Zeroizing without low-level zeroes: New
MMAP attacks and their limitations, in Proceedings of the 35th Annual Cryptol-
ogy Conference, Advances in Cryptology - CRYPTO 2015, Part I, Santa Barbara,
CA, 2015, pp. 247-266.

D. CasH, D. HOFHEINZ, E. KiLTtz, AND C. PEIKERT, Bonsai trees, or how to delegate
a lattice basis, in Proceedings of the 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques Advances in Cryptology -
EUROCRYPT 2010, French Riviera, 2010, pp. 523-552.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

[CHL+15]

[CIL16]

[CLLT16]

[CLLT17]

[CLT14]

[CPPO5]

[CVW-+18a]

[CVW18b]

[DG17a)

[DG17b]

[DMNSO06]

[DNRA09]

[DY13]

[FNPO7]

[Frel0]

[GGH+13]

[GGH15]

[GKP+13]

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-239

J. H. Cueon, K. HaN, C. LEE, H. Ryu, AND D. STEHLE, Cryptanalysis of the multi-
linear map over the integers, in Proceedings of the 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Ad-
vances in Cryptology - EUROCRYPT 2015, Part I, Sofia, Bulgaria, 2015, pp.
3-12.

J. H. CHEON, J. JEONG, AND C. LEE, An algorithm for NTRU problems and crypt-
analysis of the GGH multilinear map without a low-level encoding of zero, LMS
J. Comput. Math., 19 (2016), Suppl. A, pp. 255-266.

J.-S. CoroN, M. S. LEg, T. LEPOINT, AND M. TiBoUcCHI, Cryptanalysis of GGH15
multilinear maps, in Proceedings of the 36th Annual International Cryptology
Conference, Advances in Cryptology - CRYPTO 2016, Part II, Santa Barbara,
CA, 2016, pp. 607-628.

J.-S. CoroN, M. S. LEg, T. LEPOINT, AND M. TIBOUCHI, Zeroizing attacks on indis-
tinguishability obfuscation over CLT13, in Proceedings of the 20th TACR Interna-
tional Conference on Practice and Theory in Public-Key Cryptography, Public-
Key Cryptography, PKC 2017, Part I, Amsterdam, The Netherlands, 2017, pp. 41—
58.

J.-S. CorON, T. LEPOINT, AND M. T1BOUCHI, Cryptanalysis of Two Candidate Fizes of
Multilinear Maps over the Integers, Cryptology ePrint Archive, Report 2014/975,
2014.

H. CHABANNE, D. H. PHAN, AND D. POINTCHEVAL, Public traceability in traitor trac-
ing schemes, in Proceedings of the 24th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Advances in Cryptology -
EUROCRYPT 2005, Aarhus, Denmark, 2005, pp. 542-558.

Y. CHEN, V. VAIKUNTANATHAN, B. WATERS, H. WEE, AND D. WICHS, Traitor-tracing
from LWE made simple and attribute-based, in Proceedings of the 16th Interna-
tional Conference, Theory of Cryptography, TCC 2018, Part II, Panaji, India,
2018, pp. 341-369.

Y. CHEN, V. VAIKUNTANATHAN, AND H. WEE, GGH15 beyond permutation branching
programs: Proofs, attacks, and candidates, in Proceedings of the 38th Annual
International Cryptology Conference, Advances in Cryptology - CRYPTO 2018,
Part II, Santa Barbara, CA, 2018, pp. 577-607.

N. DOTTLING AND S. GARG, Identity-based encryption from the Diffie-Hellman as-
sumption, in Proceedings of the 37th Annual International Cryptology Confer-
ence, Advances in Cryptology - CRYPTO 2017, Part I, Santa Barbara, CA, 2017,
pp- 537-569.

N. DOTTLING AND S. GARG, From selective IBE to full IBE and selective HIBE, in
Theory of Cryptography, Part I, Lecture Notes in Comput. Sci. 10677, Springer,
Cham, 2017, pp. 372—-408.

C. DwWORkK, F. MCSHERRY, K. N1ssiM, AND A. D. SMITH, Calibrating noise to sensitiv-
ity in private data analysis, in Proceedings of the Third Theory of Cryptography
Conference, Theory of Cryptography, TCC 2006, New York, 2006, pp. 265-284.

C. Dwork, M. NAOR, O. REINGOLD, G. N. ROTHBLUM, AND S. VADHAN, On the
complexity of differentially private data release: Efficient algorithms and hardness
results, in Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, STOC’09, ACM, New York, 2009, pp. 381-390.

Y. Dobpis AND Y. YU, Overcoming weak expectations, in Theory of Cryptography,
Springer, 2013, pp. 1-22.

N. Fazio, A. Nicorosi, AND D. H. PHAN, Traitor tracing with optimal transmission
rate, in Proceedings of the 10th International Conference on Information Security,
ISC 2007, Valparaiso, Chile, 2007, pp. 71-88.

D. M. FREEMAN, Converting pairing-based cryptosystems from composite-order groups
to prime-order groups, in Proceedings of the 29th Annual International Conference
on Theory and Applications of Cryptographic Techniques - EUROCRYPT’10,
Springer-Verlag, Berlin, Heidelberg, 2010, pp. 44—61.

S. GARG, C. GENTRY, S. HALEVI, M. RAYKOVA, A. SAHAIL, AND B. WATERS, Candidate
indistinguishability obfuscation and functional encryption for all circuits, STAM
J. Comput., 45 (2016), pp. 882-929, https://doi.org/10.1137/14095772X.

C. GENTRY, S. GORBUNOV, AND S. HALEVI, Graph-induced multilinear maps from
lattices, in Theory of Cryptography. Part II, Lecture Notes in Comput. Sci. 9015,
Springer, Heidelberg, 2015, pp. 498-527.

S. GOLDWASSER, Y. KALAI, R. A. PoprA, V. VAIKUNTANATHAN, AND N. ZELDOVICH,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/14095772X

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STOC18-240

[GKRW17]

[GKSW10)

[GKW17a]

[GKW17b)

[GPVO08]

[GVW12]

[GVW13]

[GVW15)

[Hall5]

[HJ16]

[KD98]

[KMUW17]

[KYO02a]

[KY02b]

[LPSS14]

[MP12]

[MRO7]

[MSZ16]

C.

Y.

K.

A.

K.

S.

D.

D

E

R. GOYAL, V. KOPPULA, AND B. WATERS

Reusable garbled circuits and succinct functional encryption, in Proceedings of
the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC’13,
2013, pp. 555-564.

. GovaL, V. KoppuLA, A. RUSSELL, AND B. WATERS, Risky traitor tracing and
new differential privacy negative results, in the Annual International Cryptology
Conference, Springer, 2018, pp. 467-497.

. GARG, A. KUMARASUBRAMANIAN, A. SAHAI, AND B. WATERS, Building efficient

fully collusion-resilient traitor tracing and revocation schemes, in Proceedings of
the 17th ACM Conference on Computer and Communications Security, CCS ’10,
ACM, New York, 2010, pp. 121-130.

. GoyaL, V. KorpuLA, AND B. WATERS, Lockable obfuscation, in Proceedings of the
58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
2017, pp. 612-621.

.. GOYAL, V. KopPULA, AND B. WATERS, Separating semantic and circular security

for symmetric-key bit encryption from the learning with errors assumption, in
Advances in Cryptology - EUROCRYPT 2017, Part II, Lecture Notes in Comput.
Sci. 10211, Springer, Cham, 2017, pp. 528-557.

GENTRY, C. PEIKERT, AND V. VAIKUNTANATHAN, Trapdoors for hard lattices and
new cryptographic constructions, in STOC, ACM, New York, 2008, pp. 197-206.

. GORBUNOV, V. VAIKUNTANATHAN, AND H. WEE, Functional encryption with

bounded collusions via multi-party computation, in Advances in Cryptology -
CRYPTO 2012, Lecture Notes in Comput. Sci. 7417, Springer, Heidelberg, 2012,
pp. 162-179.

. GORBUNOV, V. VAIKUNTANATHAN, AND H. WEE, Attribute-based encryption for

circuits, in Proceedings of the 2013 ACM Symposium on Theory of Computing,
STOC’13, ACM, New York, 2013, pp. 545-554.

. GORBUNOV, V. VAIKUNTANATHAN, AND H. WEE, Predicate encryption for circuits

from LWE, in Advances in Cryptology - CRYPTO 2015, Part II, Lecture Notes
in Comput. Sci. 9216, Springer, Heidelberg, 2015, pp. 503-523.

. HALEVI, Graded Encoding, Variations on a Scheme, Cryptology ePrint Archive,

Report 2015/866, 2015.

Hu anD H. JiA, Cryptanalysis of GGH map, in Advances in Cryptology - EURO-
CRYPT 2016, Part I, Lecture Notes in Comput. Sci. 9665, Springer, Berlin, 2016,
pp- 537-565

KUROSAWA AND Y. DESMEDT, Optimum traitor tracing and asymmetric schemes,
in Proceedings of the International Conference on the Theory and Application of
Cryptographic Techniques, Advances in Cryptology - EUROCRYPT ’98, Espoo,
Finland, 1998, pp. 145-157.

. KowaLczyk, T. MALKIN, J. ULLMAN, AND D. WICHS, Hardness of non-interactive

differential privacy from one-way functions, in the Annual International Cryptol-
ogy Conference, Springer, 2018, pp. 437—466.

KiayiAs AND M. YUNG, Traitor tracing with constant transmission rate, in Pro-
ceedings of the International Conference on the Theory and Applications of Cryp-
tographic Techniques, Advances in Cryptology - EUROCRYPT 2002, Amsterdam,
The Netherlands, 2002, pp. 450-465.

KUROSAWA AND T. YOSHIDA, Linear code implies public-key traitor tracing, in
Proceedings of the 5th International Workshop on Practice and Theory in Public
Key Cryptosystems, Public Key Cryptography, PKC 2002, Paris, France, 2002,
pp. 172-187.

LING, D. H. PHAN, D. STEHLE, AND R. STEINFELD, Hardness of k-LWE and applica-
tions in traitor tracing, in Proceedings of the 34th Annual Cryptology Conference,
Advances in Cryptology - CRYPTO 2014, Part I, Santa Barbara, CA, 2014, pp.
315-334.

MicciaNcio AND C. PEIKERT, Trapdoors for lattices: Simpler, tighter, faster,
smaller, in Proceedings of the 31st Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Advances in Cryptology - EURO-
CRYPT 2012, Cambridge, UK, 2012, pp. 700-718.

. M1cciancio AND O. REGEV, Worst-case to average-case reductions based on Gauss-
ian measures, STAM J. Comput., 37 (2007), pp. 267-302, https://doi.org/10.1137/
S0097539705447360.

. MILES, A. SAHAI, AND M. ZHANDRY, Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGHp3, in Advances in

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360

Downloaded 10/05/21 to 128.83.141.100 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

[NP9g)

[NWZ16]

[Pei09]

[PSTO06)

[Reg05]

[SS10]

[SSWO1]

[SWOs]

[WZ17]

[Yao86]

COLLUSION RESISTANT TRAITOR TRACING FROM LWE STOC18-241

Cryptology - CRYPTO 2016, Part II, Lecture Notes in Comput. Sci. 9815,
Springer, Berlin, Heidelberg, 2016, pp. 629-658.

M. NAOR AND B. PINkAS, Threshold traitor tracing, in Advances in Cryptology -
CRYPTO’98, Springer, 1998, pp. 502-517.

R. NisHiMAKI, D. WicHs, AND M. ZHANDRY, Anonymous traitor tracing: How to
embed arbitrary information in a key, in Proceedings of the 35th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Advances in Cryptology - EUROCRYPT 2016, Part II, Vienna, 2016, pp. 388—-419.

C. PEIKERT, Public-key cryptosystems from the worst-case shortest vector problem:
Ezxtended abstract, in Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, 2009, pp. 333—342.

D. H. PHAN, R. SAFAVI-NAINI, AND D. TONIEN, Generic construction of hybrid public
key traitor tracing with full-public-traceability, in Proceedings of the 33rd Inter-
national Colloquium on Automata, Languages and Programming, ICALP 2006,
Part II, Venice, Italy, 2006, pp. 264-275.

O. REGEV, On lattices, learning with errors, random linear codes, and cryptography,
in Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, 2005, pp. 84-93.

A. Sanar AND H. SEvarLiocLu, Worry-free encryption: Functional encryption with
public keys, in Proceedings of the 17th ACM conference on Computer and Com-
munications Security, CCS’10, ACM, New York, 2010, pp. 463-472.

J. STADDON, D. R. STINSON, AND R. WEIL, Combinatorial properties of frameproof and
traceability codes, IEEE Trans. Inform. Theory, 47 (2001), pp. 1042-1049.

D. R. STINSON AND R. WEI, Combinatorial properties and constructions of traceability
schemes and frameproof codes, STAM J. Discrete Math., 11 (1998), pp. 41-53,
https://doi.org/10.1137/S0895480196304246.

D. WicHS AND G. ZIRDELIS, Obfuscating compute-and-compare programs under LWE,
in Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, 2017, pp. 600-611.

A. YAO, How to generate and exchange secrets, in Proceedings of the 27th Annual Sym-
posium on Foundations of Computer Science, SFCS 1986, Toronto, ON, Canada,
1986, pp. 162-167.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/S0895480196304246

	Introduction
	Technical overview
	Some future directions
	Additional related work
	Organization

	Preliminaries
	Lattice preliminaries
	Learning with errors
	Lattice trapdoors

	Branching programs

	Traitor tracing
	Public key traitor tracing
	Security

	Private linear broadcast encryption
	q-bounded PLBE security
	Decoder-based PLBE security

	Traitor tracing from 1-bounded secure PLBE
	Decoder-based PLBE from 1-bounded secure PLBE
	Traitor tracing from decoder-based PLBE
	IND-CPA security
	Correctness of tracing

	Mixed functional encryption
	Construction of PLBE from Mixed FE and ABE
	Construction
	Correctness
	Security
	Normal hiding security
	Index hiding security
	Message hiding security

	A new LWE toolkit
	Enhanced lattice trapdoors
	Row removal property
	Target switching property

	Our construction of enhanced lattice trapdoors
	Proving security of LTen
	Row removal property
	Target switching property

	Constructing 1-bounded mixed functional encryption
	Notation
	Construction
	Correctness
	Security proof
	1-bounded restricted function indistinguishability
	Indistinguishability of hybrid games in section 8.4
	1-bounded restricted accept indistinguishability
	Indistinguishability of hybrid games in section 8.4.3
	Proving 1-bounded restricted accept indistinguishability

	Appendix A. Background: Attribute-based encryption
	Key-policy attribute-based encryption

	Appendix B. ABE and Mixed FE to PLBE: Preserving perfect correctness
	Construction
	Correctness
	Security

	Appendix C. Hybrids
	Detailed hybrid experiments for Theorem 7.4
	Detailed hybrid experiments for Theorem 7.19

	Acknowledgment
	References

