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ABSTRACT
Brain-Computer Interfaces (BCIs) have been used to restore communication and control to peo-
ple with severe paralysis. However, non-invasive BCIs based on electroencephalogram (EEG) are
particularly vulnerable to noise artifacts. These artifacts, including electro-oculogram (EOG),
can be orders of magnitude larger than the signal to be detected. Many automated methods have
been proposed to remove EOG and other artifacts from EEG recordings, most based on blind
source separation. This work presents a performance comparison of ten different automated
artifact removal methods. Unfortunately, all tested methods substantially and significantly re-
duced P3 Speller BCI performance, and all methods were more likely to reduce performance
than increase it. The least harmful methods were titled SOBI, JADER, and EFICA, but even
these methods caused an average of approximately ten percentage points drop in BCI accuracy.
Possible mechanistic causes for this empirical performance deduction are proposed.

KEYWORDS
Brain-computer interfaces, P300 speller, artifacts rejection, physiological signals, signal
processing.

1. Introduction

Brain-Computer Interfaces (BCIs) are an assistive technology tool designed to allow people with
the most significant movement impairments to communicate and control their environment [1].
For these individuals, particularly those with locked-in syndrome who are without other means
of voluntary control, BCIs represent the only hope of autonomy.

While there are many competing technologies and techniques, the most commonly-used
BCI to date is the P300 or P3 Speller based on electro-encephalogram (EEG), first proposed by
Farwell and Donchin [2]. The P3 Speller BCI has been shown to be suitable for in-home use by
people with paralysis, including a research scientist who used the BCI to maintain employment
[3, 4] and another person who used it to control wheelchair tilt [5].

However, substantial concerns have been raised regarding the limits of the usefulness of
the P3 Speller. Visual P3 Spellers tend to perform poorly if the user cannot fixate on the
letter of interest [6]. Other groups have demonstrated that redesigning the interface allows
communication without fixation [7], though with a substantial performance penalty. Our prior
work has also demonstrated the importance of latency variation for some users [8], and offline
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analysis has independently confirmed the efficacy of correction for latency differences between
tasks [9].

This paper focuses on another potential confound with these visual interfaces: eye move-
ments and blinking. Eye movements, including blinking, produce artifacts in EEG recordings
that are orders of magnitude larger than the P3 potential. There are several mechanisms by
which blinking might adversely affect P3 Speller operation: 1) Blinks could cause stimuli to be
missed or perceived at the wrong time, 2) Electro-oculogram (EOG) artifacts including those
generated by blinking could obscure the P3 signal, and 3) Instruction to withold blinking can
cause reductions in the P3 amplitude [10], making detection more difficult. The first problem is
perhaps the easiest to address, as detecting blinks from EEG is relatively simple; therefore this
paper will focus on the other two mechanisms. We argue that the second and third problems
could be addressed by the same solution: namely, the removal of blink artifacts from the EEG
signal. If an automated system could remove these EOG artifacts, then experimenters could
refrain from giving blink instructions that might interfere with the amplitude of the P3 signal.

Many groups have developed methods for removing EOG artifacts, including those from
blinking, from online and offline EEG recordings. Many of these methods are based on blind
source separation (BSS) techniques. Such methods attempt to reconstruct the underlying EEG
signal by subtracting out the estimated component(s) related to EOG activity. Examples include
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20] among many others.

Rather than propose yet another new automated artifact removal (AAR) algorithm, our
group set out to answer two research questions. The first is whether AAR algorithms could
improve the performance of the P3 Speller. The second question is which existing method
would produce the best P3 Speller performance.

To our knowledge, most of the AAR methods we selected have not been used previously
in the setting of the P3 Speller. The exception is [18], which reported a slight reduction in
accuracy (69% to 68%) in an auditory P3 Speller task. We thus believe this to be the first
comparison of AAR methods for the P3 Speller, with the exception of our prior work reported
as abstracts at BCI conferences [21, 22].

2. Methods

2.1. Data Source

As we wished to compare many methods, we chose to compare methods with offline analysis
rather than create multiple online experiments. As our data source, we selected a large dataset
from our previous work [8, 23]. The experimental protocol consisted of 9 sentences typed with
correction over three separate visits. The protocol was begun by 40 participants, including 25
men (age: 45±21 years, mean±std. dev) and 15 women (age: 42±20 years). Of these partici-
pants, eight men and four women were diagnosed with Amyotrophic Lateral Sclerosis, while five
men and one woman were diagnosed with Muscular Dystrophy. Four participants did not return
for a second session, while one dropped out during the second session. We also dropped seven
sentences that were not completed, and three for which one of the AAR methods did not work.
The final dataset includes 320 testing files and 40 training files. For additional demographic
information, please see our previous publications. All data were gathered under approved proto-
cols under the auspices of the University of Michigan’s Institutional Review Board (IRB). The
current analysis is covered by Kansas State University’s IRB, under exempt protocol #7516.

2.2. Original Experimental Setup

As stated, participants operated the BCI over three separate visits. During the first visit, a
training file was generated using the 19-character phrase “A QUICK BROWN FOX” (spaces
included). During each visit (including the first), participants copied three sentences into three
separate environments. Participants were instructed to correct errors through a backspace op-
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tion presented in the P3 Speller BCI. Consequently, the number of characters per sentence
varies by participant, ranging from 23 (the sentence length) to 77.

In a copy spelling with correction task, determining the target character is not straight-
forward. Our baseline assumption was that the target character was the next character in the
sentence, unless errors were present in the text. If errors were present, the backspace was the
target character. However, we supplemented this assumption with two sources of information.
First, after each sentence we asked each participant if he or she focused on incorrect characters,
and we recorded any reported deviations. Second, we inspected each sentence individually to see
if deviations from the expected pattern were present. An example case: one participant missed
a single letter, then typed the following six characters correctly, before verbally acknowledging
the missed character and backspacing back to the point of the original error. In such cases,
the target character was inferred from available information (in the example, the “correct”
characters until the point where backspacing began, then backspaces from that point). The de-
termination of target characters was completed during the analysis in [8], and was not revisited
for this work.

2.3. Recordings and P3 Detection

The original recordings were performed with Electro-Cap caps with wet electrodes at 10-20
locations F3, Fz, F4, T7, C3, Cz, C4, T8, CP3, CP4, P3, Pz, P4, PO7, Oz, and PO8. Reference
and ground were the right and left mastoids, respectively. The potentials were filtered and
digitized by a 16-channel g.USBamp system using hardware passband and 60Hz notch filters.

For detection of the P3 signal, we chose the popular and simple least squares classification
method. While other methods including step-wise linear discriminant analysis [24, 25] and more
complex classifiers such as those based on support-vector machines [26] have produced good
results in the literature, we wished to focus the paper on the effect of AAR methods rather
than the classifier. In our opinion and experience, least-squares classification provides a baseline
estimate of the performance of most linear classifiers.

2.4. AAR Algorithms

We tested nine EOG-removal algorithms in the publicly-available EEGLAB toolbox for MAT-
LAB (Mathworks), version 13.6.5b. Eight methods were from the AAR plugin [11], under the
“Correct EOG using BSS” dropdown option. These methods are titled SOBI [12], IWASOBI
[13], EFICA [14], MULTICOMBI [15], FCOMBI [16], JADER [17], BSSCCA [19], and PCA.
We also used the MARA [18] EEGLAB plugin, configured to fully-automated mode.

Finally, we included results from Mr. Mowla’s previously published AAR method [20] for
comparison, bringing us to a total of ten AAR methods.

Details on each method are available in the corresponding cited publications. Importantly,
all methods were left at default settings. The consequences of this decision will be discussed
in the Limitations section, but we believed this to be a likely use case for a new researcher
incorporating a “fully automated” method.

2.5. Framework for Comparing AAR Algorithms

Each AAR method was applied to each file, including the training files. The training files
were used to build per-participant classifiers, one for each AAR method. These classifiers were
applied to each participant’s cleaned test data. In all cases, a classifier trained and tested on
data cleaned with the same method (e.g. training on a training file cleaned by SOBI, testing on
a testing file cleaned by SOBI). The performance of each method was compared to using raw
train and test data.

3



Acc
ep

te
d

M
an

us
cr

ip
t (A

M
)

2.6. Metrics and Statistical Testing

We have previously argued [27] that the most useful metric for the P3 speller is BCI Utility
[28] because it enables comparisons between studies. In this case, all comparisons are between
methods applied to the same datafile. Therefore, unlike comparisons between different studies,
each method has the same amount of data and time available. Since the timing is consistent
between the methods, BCI Utility is a direct translation of accuracy. We have reported both
metrics for consistency with our prior recommendations; as the information within is equivalent,
the reader may focus on whichever metric is more familiar. All metrics are calculated on a per-
file (per-sentence) basis. The average change for each metric is presented in the Results section.

Our test for statistical significance is derived from the question “Is this method more likely
than not to help (or hurt) performance, as compared to not using it?” In order to answer
this question, we first noted the most common performance change, and then considered how
likely that outcome was as compared to the other possible outcomes. For example, if the method
decreased performance, we then compared the number of sentences with a performance decrease
to the number of sentences that had either better or equivalent performance. The files were then
considered independent Bernoulli random variables; the sum of the performance should then
follow a binomial distribution. The MATLAB function “binofit” was used to develop confidence
bounds for the likelihood of a change in the indicated direction. A lower confidence bound
above 50% indicated the method was not changing performance randomly, but instead had a
statistically significant bias toward either better or worse performance. Given our number of
comparisons, we used Bonferroni correction when calculating the confidence bounds (α = 0.005,
or 0.05/10 methods).

When testing for significance using this approach, we used the accuracy rather than Utility
numbers. The sign of the change is equivalent except for a few cases where the original Utility
was zero due to an accuracy below 50%; we still wished to capture changes in performance,
positive or negative, for these files.

3. Results

The mean and median changes in accuracy and BCI Utility are shown in Table 1. Given the
number of participants, files, and methods, individual results are not tabulated. As can be seen
from the table, the performance changes are uniformly negative, and substantial.

Table 1. Changes in accuracy and BCI Utility (mean and median) for each method. Accuracy changes are reported in

percentage points, not relative change. BCI Utility was calculated using the formulas for corrected characters per minute.

Method Mean ∆Acc Med. ∆Acc Mean ∆Utility Med. ∆Utility

(%) (%) (char/min) (char/min)

BSSCCA -17.4 -14.9 -0.19 -0.15

EFICA -11.5 -7.55 -0.14 -0.08

FCOMBI -19.6 -15.7 -0.23 -0.16

IWASOBI -20.5 -16.3 -0.24 -0.17

JADER -9.2 -6.1 -0.11 -0.07

MARA -70.3 -77.8 -0.47 -0.48

MULTICOMBI -22.6 -19.4 -0.27 -0.19

PCA -22 -18.5 -0.23 -0.17

SOBI -9.7 -6.7 -0.12 -0.08

MOWLA -23.3 -22.6 -0.28 -0.24

Figures 1 and 2 display box plots for each method’s change in accuracy and Utility, respec-
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tively. The plots were made with MATLAB’s “boxplot” command. As shown in the figures,
only three methods (SOBI, JADER, and EFICA) include zero change in their central quartiles.

-100

-80

-60

-40

-20

0

20

C
h
a
n
g
e
 (

p
e
rc

e
n
ta

g
e
 p

o
in

ts
)

Effects on accuracy by method (positive is better)

B
S

S
C

C
A

E
F

IC
A

F
C

O
M

B
I

IW
A

S
O

B
I

J
A

D
E

R

M
A

R
A

M
U

L
T

IC
O

M
B

I

P
C

A

S
O

B
I

M
O

W
L

A

Figure 1. Boxplot of change in accuracy when applying each method (negative change indicates reduced performance).

Red line indicates median, blue box denotes 25th and 75th percentiles. Whiskers enclose all data not marked as an outlier
by MATLAB’s default method; asterisks indicate outliers.
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Figure 2. Boxplot of change in BCI Utility when applying each method (negative change indicates reduced performance).
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The number of sentences for which performance decreased is listed for each method in Table
2. This table also lists the estimated percent chance that the method decreases performance,
along with the corresponding confidence intervals. A confidence interval with lower bound above
0.50 indicates the method is statistically more likely to hurt performance than improve it or
leave it unchanged. As shown in the table, all AAR methods were statistically more likely to
hurt performance than any other outcome.

Table 2. Number of “harmed” sentences (out of 320), along with estimates of probability and corresponding confidence

interval (C.I.).

Harmed Estimated C.I. Lower C.I. Upper

Method Sentences Probability Bound Bound

BSSCCA 267 0.83 0.77 0.89

EFICA 232 0.73 0.65 0.79

FCOMBI 269 0.84 0.78 0.89

IWASOBI 277 0.87 0.80 0.91

JADER 231 0.72 0.65 0.79

MARA 305 0.95 0.91 0.98

MULTICOMBI 281 0.88 0.82 0.92

PCA 274 0.86 0.79 0.91

SOBI 229 0.72 0.64 0.78

MOWLA 304 0.95 0.91 0.98

Finally, the individual, sentence-level results are presented in Figures 3 and 4. These figures
show the performance for each sentence, for each AAR method, plotted against the raw (no
AAR) performance. Figure 3 uses accuracy, Figure 4 shows BCI Utility. The overall negative
effect on performance is clearly visible in the figures. These figures further demonstrate the
lack of pattern in the results. In our past experience, new techniques have at times shown
promise for participants with poor online performance but no gain for those with good online
performance. Unfortunately, in this case it can be seen that no AAR method shows consistent
improvement at any initial level of performance.
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0 0.2 0.4 0.6 0.8 1 1.2

Raw BCI Utility (char/min)

0

0.2

0.4

0.6

0.8

1

1.2

C
le

a
n
e
d
 B

C
I 
U

ti
lit

y
 (

c
h
a
r/

m
in

)

Effects on BCI Utility

BSSCCA

EFICA

FCOMBI

IWASOBI

JADER

MARA

MULTICOMBI

PCA

SOBI

MOWLA

1-1 Line

Figure 4. Cleaned vs Raw BCI Utility for ten AAR methods, in corrected characters per minute. The 1-1 Line represents
no change in performance. Any icons above the line are performance increases, while those below the line represent

performance decreases.

7



Acc
ep

te
d

M
an

us
cr

ip
t (A

M
)

4. Discussion

The primary finding from the study is straightforward: for the vast majority of participants,
the use of BSS-based AAR algorithms led to substantially reduced BCI performance. However,
the consequences of this finding depend on the reason or mechanism behind this performance
penalty. Here, we will propose several possible mechanisms for this penalty; formal investigation
of each of these mechanisms is out of the scope of the current paper and will be left for future
work.

The first possible mechanism is a source renumbering or lack of source consistency. Among
BSS techniques, there is little guarantee that the same source present in different data will
be numbered similarly. This mechanism could be ruinous to the performance of classification
based on the individual components. However, since all the methods we used re-combined the
components back into a time-domain signal prior to classification, we do not believe this issue
to be the cause of our findings.

The second possible mechanism is P3 rejection: where the AAR methods incorrectly label
some or all of the P3 signal as noise. Like blink and EOG artifacts, the P3 is a spatially broad,
low-frequency potential. While the spatial distribution of P3 is different to that of EOG, it
seems possible that BSS methods designed to find EOG may incorrectly identify the P3 as an
artifact. Some corroboration of this mechanism is provided by a reduced P3 amplitude that
we have observed after applying the AAR methods. However, the standard deviation of the
EEG signals is also reduced by an equal or greater measure, implying that the detectability or
signal-to-noise ratio should not be greatly affected by this mechanism. If our initial assessment
is incorrect, and this is a substantive issue, the development of P3-specific AAR algorithms
would be indicated.

A third possible mechanism is based on properties of linear algebra relevant to our classifier.
All of the methods investigated are BSS-based methods. BSS methods are fundamentally simi-
lar in that they identify sources, label some as noise, and reconstruct the signal after discarding
some number of sources. The resulting cleaned signal matrix is by definition lower rank than the
original signal. If the original signal was rank N originally, and M components were discarded,
the resulting signal matrix is rank N-M. Since the signal matrix is not full-rank, the numerical
inversion performed in linear regression becomes less stable and more sensitive to small noise
perturbations. Our initial investigations lend some credence to this possible mechanism; the
condition number of the matrix inverted during linear regression increases by a factor of ap-
proximately 105 after cleaning. If this is the mechanism causing the reduction in classification
performance, then reducing the number of reconstructed channels may be a solution to the
observed issue. However, it should be noted that our initial investigations into step-wise linear
discriminant analysis, which should be less vulnerable to this particular mechanism, did not
show any notable difference in performance penalty.

A fourth possible mechanism is that the EOG was being inadvertently used for classification.
While the participants should have been moving their eyes only between characters rather
than during the presentation of stimuli, participants did fixate on the characters and EOG is
large relative to the P3. The temporary EOG from fixation, which should have resolved before
flashing began, would not be synchronized with target presentations and should, therefore, not
have affected classification on average. Stereotyped saccades immediately after target stimuli,
however, could theoretically produce EOG consistent enough to affect classification. We did
not observe such movements during recordings, and these movements seem unlikely to have
been performed by large numbers of participants. Nevertheless, further investigation will be
necessary to rule out EOG-based classification on at least a subset of participants.

Our fifth and final possible mechanism is perhaps the most concerning. Could the partic-
ipants, knowingly or inadvertently, have been timing their blinks such that they were using
blinks to control the “brain-computer” interface? Certainly, in our observations, participants
are likely to withhold blinking while waiting for an upcoming stimulus. Like eye movements,
blinks produce EOG that is orders of magnitude larger than the P3. A classifier could easily
latch onto such a large signal, provided the timing is tight enough, and the average person’s
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blink reaction time is easily less than the classification window.
If either the fourth or fifth mechanism is causing the performance penalty, then the AAR

methods are really only removing “cheating” that a fully paralyzed person could not perform.
Thus, we argue that, if some combination of these mechanisms is the cause of the penalty, all
labs should include EOG rejection even though it will hurt the apparent performance of their
BCI. The labs would gain in return, however, the knowledge that their performance estimates
are far closer to that achievable by those without voluntary eye or blink control. Given the
throughput of current BCI systems as compared to eye trackers and other assistive technology
[7], including single-switch scanning devices, people with voluntary eye and blink control already
have better options than a BCI.

We did find some evidence that at few AAR methods may be helpful for a small subset of
participants. These individuals may play a key role in elucidating the underlying mechanisms
at play; alternatively, they may be exemplars of an entirely different mechanism.

We believe the MARA publication [18] to be the only prior P3 speller investigation with an
AAR method. They, too, reported a reduction in performance but it was much smaller than that
reported here (roughly one percentage point, from 69 to 68). Several differences in approach
might explain the larger reduction in our study. First, they used auditory P3 speller data, which
likely had less EOG artifact. Second, they used MARA’s supervised rejection mode rather than
the fully automated mode used in our study. Third, their EEG setup had significantly more
channels – 64 to our 16 – which would be expected to increase the usefulness of BSS methods.
Fourth, their pre-processing and classification results were considerably different.

4.1. Limitations

This work is a retrospective analysis of existing data which was collected for a separate purpose.
While we believe the comparison between methods is fair, the work could be strengthened
through replication by other laboratories or on a new dataset. We acknowledge that online use
may also lead to different outcomes than offline analyses, though the present results are not
encouraging.

The usefulness of BSS methods may also depend on the number of channels. This study
used a relatively small number of channels (16), whereas our ongoing data collection uses 64
channels. In future work, we hope to investigate if any of these methods are helpful in a higher
channel-count setting.

Currently, we are investigating possible mechanisms by which the observed lowering of
performance can be explained. The results of these investigations are expected to direct future
research effort toward minimizing the observed performance penalties.

Finally, it is possible that one or more methods could benefit substantially from parameter
tuning. While the AAR toolbox uses a published approach [11] to automate the process, there
are still parameters that could possibly improve performance if optimized. MARA’s documen-
tation, in particular, implies that fully-automated operation is expected to produce sub-optimal
performance. Our primary result should be interpreted in light of this limitation.

5. Conclusion

While the SOBI, JADER, and EFICA methods were the least harmful, all BSS-based algo-
rithms used in this study substantially decreased P3 Speller performance. This is an empirical
finding, but the effect is not small. We have proposed candidate mechanisms for this perfor-
mance decrease which are at least a priori reasonable. However, the proper response of the
BCI community to this empirical performance reduction depends heavily on the mechanism
that causes it. Further investigation into the mechanisms behind this performance penalty are
warranted and underway. In the meantime, researchers are cautioned that the choice of in-
cluding EOG rejection algorithms can cause larger-than-expected differences in overall system
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throughput.
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