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1 Introduction

Studies of non-leptonic decays of charmed mesons constitute a primary method of investi-
gations into direct CP-violation in that system. Even though the experimental precision
for studying D decays has steadily improved over the past decade, theory calculations have
faced severe challenges. Precise numerical predictions of CP-violating observables are not
possible at the moment due to large non-perturbative contributions from strong interactions
affecting weak-decay amplitudes. A way out in such a situation involves phenomenological
fits of decay amplitudes to experimentally measured decay widths of charmed mesons. If
the number of fit parameters is smaller than the number of experimentally measured ob-
servables, then predictions are possible. Such fits require a defined procedure on how to
parametrize complex-valued decay amplitudes [1].

One way to approach the problem is to note that the light-quark operators in the weak
effective Hamiltonian governing heavy-quark decays, as well as the initial and final states
form product representations of a flavor SU(3)r group. These product representations can
be reduced with the help of the Wigner-Eckart theorem. This way, a basis is chosen, in
which all decay amplitudes can be expanded in terms of the reduced matrix elements. Such
an approach was applied to both B-decays [2-5] and D-decays [4-8]. In the limit of exact
SU(3) r symmetry, all decays of a triplet of D-mesons, D, D* and D, into two light octet
meson states can be parametrized in terms of five independent complex parameters [6]. We
will refer to this approach as the “SU(3)r matrix-elements approach.”

Alternatively, a topological flavor-flow approach can be used. Developed in the study of
B-decays [4, 5, 9-11], it has been applied to the charm sector [4, 5, 12, 13]. The flavor-flow
approach postulates a basis of universal flavor topologies for various decay amplitudes.!
SU(3)r symmetry can be used to relate decay amplitudes, as both the light-quark final
states and initial D-mesons transform under it. These universal topological amplitudes

"We remind the reader that while the flavor-flow diagrams do resemble Feynman graphs, they are not
computed in perturbative field theory due to large non-perturbative QCD effects.



can be fitted to the existing experimental data. Due to long-distance effects, particularly
rescattering among hadronic final states, often multiple flavor-flow diagrams contribute to
the same process. A subset of linear combinations of flavor-flow amplitudes can then be
identified as the basis set for the flavor-flow approach.

The two approaches described above are equivalent if the number of reduced matrix
elements in the SU(3) p matrix-elements approach is equal to the number of diagrammatic
combinations in the flavor-flow approach, both describing the same set of decay amplitudes.
Such an equivalence has been shown in the of exact SU(3)r symmetry [9, 14], as well as
when first-order SU(3)p-breaking corrections are taken into account [15]. Here we revisit
the question of equivalence of the two descriptions and discuss the fit quality of the available
data in both approaches.

Non-leptonic decays of charmed mesons can be additionally classified according to
the rate of suppression of the (leading-order) weak-decay amplitudes by the Wolfenstein
parameter, A = sin § ~ 0.2 [16], where 6 is the Cabibbo angle. Such amplitudes may contain
zero, one, or two powers of A\. Weak-hadronic decays of charm are, therefore, categorized
into Cabibbo-favored (CF) decays (A «x ViV, ; ~ O(1)), singly-Cabibbo-suppressed (SCS)
decays (A o< V3 V,, ~ O(\) where ¢ = d, s), and doubly-Cabibbo-suppressed (DCS) decays
(A o< VI V.o ~ O(N?)). Since such classification is external to QCD, both the flavor SU(3) ¢
and topological flavor-flow approaches can, in principle, be used to parametrize all CF, SCS,
and DCS amplitudes. This can be considered as an advantage, as some fit parameters can
be obtained from the CF and/or DCS transitions and then used to predict CP-violating
asymmetries in SCS decays [17-21]. This is so because the quark-level transitions for CF
(c — sud) and DCS (¢ — du3) modes involve four distinct quark flavors that belong to
the first two generations and therefore do not generate CP-asymmetries in the Standard
Model at leading order in A. To execute this program one needs to control SU(3) p-breaking
corrections in both approaches [7, 8, 15, 22, 23].

Here we take a different look at the equivalency of the flavor SU(3)r and the topological
flavor-flow approaches. Since the Wolfenstein parameter A is external to any QCD-based
parametrization of decay amplitudes, one can, theoretically, dial any value for it. In par-
ticular, setting A\ = 0 would only leave CF decays as experimental data for a fit. It is
interesting to note that in this case, in the SU(3)p limit, we would be left with three irre-
ducible SU(3)r amplitudes and four topological flavor-flow amplitudes. In this paper we
explore the equivalency of the phenomenological descriptions of CF charmed-meson decays
in light of this discrepancy.

This paper is organized as follows. In section 2 we review both the flavor SU(3)p
and topological flavor-flow approaches to CF charm decays. We extend the discussion by
including CF decays with the real n and 7’ states and present associated fits. In section 3,
we discuss the connections between those two approaches. We conclude in section 4.

2 Cabibbo-favored decays in light of flavor-SU(3) symmetry

SU(3)r symmetry plays a prominent role in both the SU(3)r matrix-elements and topo-
logical flavor-flow approaches. Both methods use the fact that the initial and final states



transform under some product representations of the SU(3)r group. In particular, the
initial state D-mesons, |D°),|DT),|Df), form a triplet of SU(3)r, while the nine pseu-
doscalar mesons (7, 70, K+ K O,Fo,n,n’ ) contain both an octet and a singlet. The two
approaches differ by the choice of the “basis” parameters, which we discuss below.

In what follows, we employ physical 7 and 7’ states that are constructed from the
SU(3) octet ng and the singlet 7; states using octet-singlet mixing,

n=—cosfng —sinfdn,
n = —sin@ng + cosny, (2.1)
where the octet ng and the singlet 7y states are defined as

ns = (v + dd — 2 55)//6,
m = (vt + dd + s5)/V/3, (2.2)

and 6 is the n — 1’ mixing angle. This mixing angle has nothing to do with weak decays
of heavy flavors and can be fixed externally, for example from B-meson decays [24] or
radiative decays of J/v¢ [25] into n and 7’ final states. Thus, we do not consider it a fit
parameter. Oftentimes, we will use 6 = arcsin(1/3).

2.1 SU(3)r matrix-elements approach

The SU(3)r matrix-elements approach uses the fact that the Hamiltonian governing D
decays into the light mesons also transforms as a product representations of SU(3)p. The
quark-level Hamiltonian for CF D-meson decays can be written as

Her = @V Vi(ud)(sc) + h.c (2.3)

\/i udVes .C. .

We begin by considering the Wigner-Eckart decompositions of the CF D — PP amplitudes
using SU(3)r symmetry. An element of SU(3) can be represented using the state [rY II3)
where 7 is the irreducible representation (irrep) of the state, Y is its hypercharge, while I
and I3 stand for the isospin and its third component, respectively. Under SU(3)p symmetry,
the light quarks u, d, and s (and the respective antiquarks) transform as the fundamental
triplet (anti-triplet) represented by,
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The charm quark (and anti-quark) is heavy and transforms as an SU(3) z singlet represented

by [1,0,0,0). Using this notation one can show that the CF Hamiltonian in eq. (2.3)
contains the irreps 15 and 6 [6-8] and can be represented by,

w\H

2
3.~ 5.0, o> (2.4)
0,

@) = — , % o> (2.5)

GF., o
Har = =2 VaaVe: (A (9%17)_1 + 00(3‘27_1) +he., (2.6)



Decay Representation
DY — Fon ﬁ [(3A27 — 2Ag +/1003) cos 0 + 2(1/10Ag — 5C%) sin 0}
DO — Fon’ ﬁ [(3A27 —2Ag +/10Cs) sin @ — 2(/10Ag — 5C%) cos 9}
Df — 7ty 7 {(31427 — 245 — v/10Cs) cos @ — (v/10Ag + 5Cs) sin 9}
Df — 7ty 7 {(3/127 —2Ag — \/10Cg) sin 0 + (v/10Ag + 5Csg) cos 0}

Table 1. 1 — ' decay-amplitude representations with A,(gl) = Ag and Cél) = Cy in the SU(3)p
matrix-elements approach.

where we have used the notation Og: ?, 1, to denote the SU(3) operators, whereas A and C
represent their respective coefficients.

As mentioned previously, the final states transform under a product representation of
SU(3)r. Since the octet-octet final states must respect Bose symmetry, we only consider
the following products of SU(3)p irreps,

[(8+1) X (84 1)]pp = (8 X B)aym + (8 x 1)+ 1,
=27+ 8gxg +8gx1 +1gxg + 1. (2.7)

Note that there are two octets in eq. (2.7): one from the octet-octet final state and the
other from the octet-singlet one.

Now, of the above irreps only the 27 and 8 appear in the products 15 x 3 and 6 x 3
needed to construct the states |H|D). Furthermore, 15 X 3 contains both a 27 and an 8,
while 6 x 3 contains only an 8. Therefore, it appears that D — PP amplitudes can be
represented using the following three independent reduced matrix elements.

Aoy = (27|0™3) . Ag = (8|0™[3) , Cx=(8]0°[3) . (2.8)

These reduced matrix elements depend on five real parameters — three magnitudes and
two relative strong phases (one overall phase can be ignored). The amplitudes for the CF
D — PP processes can be constructed using these reduced matrix elements. As there are
two different octets in eq. (2.7), in general this would imply two additional reduced matrix
elements for the @15 and 08 operators, Ag) and Cél) respectively. In section 3 we will
show that indeed in order to get a complete description of these decays one must include
these additional matrix elements that correspond to the SU(3)p-singlet final state.

Assuming them to be the same, Aél) = Ag and C’él) = (g, which can be motivated
by a nonet symmetry, the final states containing physical  and 7’ contain an admixture
of singlet and octet SU(3)r amplitudes. The decay amplitudes into those final states can
be written as shown in table 1. Assuming, for simplicity, § = arcsin(1/3), all CF decay
amplitudes can be written in terms of only three complex parameters of eq. (2.8). We
provide a representation of the decay amplitudes in terms of those parameters in table 2
These matrix elements can be fit to experimentally-measured branching ratios.



Decay SU(3)r Amplitude
DY — Kt ?/Evud 035(\[1427-%[148—[08)
DY — FOWO GTFVudVg; 10 (3A27 2Ag + \/EC@;)
—0

DO K| CEViVi s (3v2407 + V2(VE — 2)As — VB(V5 - 2)Cx)
DO K| SEViaVs 5ibs (340r — 2(1 +4V/5) Ag + VI0(1 + 4V5)Cx )
Dt — FOW—F GTEVuch’; \/’A
D » KK+ \[ wiVes 5 (ﬂAw + V245 + \/508)

D: — 7T+77 C\;[V d cs 15\[ (6\/>A27 — \/5(4 + \/g)Ag — \/5(4 + \/5)08)
Df —»wty | CEVLVE 1l (3427 4+ 2(2v/5 — 1) A5 + VI0(2v/5 — 1)Cs)

Table 2. SU(3)r matrix-elements representation of Cabibbo-Favored Decays in the Standard
Model. Note that the n — n’ angle § = arcsin(1/3).

Meson | Decay | Branching Ratio (%)
DY | K—rt 3.950 = 0.031
Kox0 2.480 £ 0.044
Ky 1.018 £ 0.012
Ky 1.898 & 0.064
Dt | K'rt 3.124 + 0.062
Df | K°K+ 2.95 + 0.14
™+ 1.70 4 0.09
oy 3.94+0.25

Table 3. Experimental branching ratios for CF D decays taken from [26].

The measured branching ratios, B, for the CF D — PP decays are given in table 3. The
absolute value of each decay amplitude can be determined from the measured branching
ratios using,

8rhm?, B
|Ap_pp| = \/ 7_1; pfﬁpp, (2.9)

where p* refers to the magnitude of the three-momentum of each final-state pseudoscalar
in the D-meson rest frame. Since there are eight measured D — PP branching ratios that
depend on five real parameters (three magnitudes and two relative phases of three reduced
matrix elements), a y?-minimization fit can be employed to determine the parameters.
Such a fit has three degrees of freedom. We perform a fit by constraining the Cg amplitude



Decay Representation
DY - K | GEV,VE (<22(C - B) + 52(C + 2E))
DO =Ky | CEVuVE (S3(C - B) - <2(C +2E))
D —»wty | GEViVs (29T - A) - S5U(T + 24))
Df —»wtn | ViV (BT - A)+ %(T +24))

Table 4. Amplitudes for n — 7' CF decays in the topological-diagram representation with the
assumption that the octet and singlet diagrams are equal.

to be purely real and find,

X2/ dof = T477/3,
Ag7 = (0.279 4 0.002) GeV?,
Ag = (0.840 £ 0.008) e+ GeV?,
Cg = (0.17 £ 0.02) e(78F2% Gev3, (2.10)

Clearly, the fit is very poor. This leads us to believe that the above description of CF
D — PP decays in terms of the minimum number of SU(3)r reduced matrix elements is
incomplete and needs to be modified.

In the next section we discuss another parametrization of the same matrix elements, in
terms of the topological flavor-flow amplitudes. We again identify the minimal set of basis
amplitudes to describe the CF decays in the flavor-SU(3) limit. This minimal set appears
to work better, seemingly providing an adequate description of CF decays, including those

with the  and 1’ mesons in the final state.

2.2 Topological flavor-flow approach

The eight CF D — PP decays can also be described in terms of topological flavor-flow
diagrams using SU(3)r symmetry, as discussed in ref. [27]. Based on the Hamiltonian in
eq. (2.3), the amplitudes for the CF D — PP decays can be represented using four flavor
topologies shown in figure 1. The basis of the topological amplitudes is obtained by identi-
fying the color-favored tree (1), color-suppressed tree (C'), exchange (F), and annihilation
(A) amplitudes. These four topological amplitudes depend on seven real parameters, four
magnitudes and three relative phases (once again one overall phase is ignored).

The amplitudes for CF decays with at least one 1 or ' meson in the final state have
explicit dependence on the  — n’ mixing angle. The topological flavor-flow representation
for these decays are given in table 4.

Once again employing 6 = arcsin(1/3), in table 5, we express all CF D — PP decays
in terms of flavor-topological diagrams.

The above diagrammatic description of the CF D — PP processes leads to a parame-
trization of the eight decay modes in terms of seven real parameters. This time, with
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Figure 1. Topological flavor-flow diagrams used to describe CF D — PP decays.

Decay Diagrammatic Amplitude
DY — K7t %Vudvg; (T +E)
DO — K70 SEV.aVE 55(C — E)
DO — Ky SV, FC
D' =K' | vy (%) (C+3E)
Dt 5 Kt SEV,aVE (C+T)
Df - K'K* VoV (C + 4)
D} —wtn EViaVe, 5(T - 24)
Df =ty %VudVQQ %(T + A)

Table 5. Amplitudes for CF D decays expressed in terms of SU(3)r flavor-topological diagrams.



one remaining degree of freedom, a y?-minimization fit can once again be performed. We
perform such a fit by constraining 7" to be purely real and find,

X2n/dof = 1.36/1,
T = (0.366 + 0.003) GeV?
C = (0.298 + 0.002) ¢/~ 191-020-4)° Gy |
E = (0.201 £ 0.004) e/(1193+08)” Gay3 |
A= (0.04 4 0.01) B3+)° Gev3 . (2.11)

This fit appears to be excellent, suggesting that the diagrammatic representation of CF
D — PP decays aligns well with experimental measurements. Note that the diagrammatic
approach has one additional complex-valued amplitude (i.e. two additional real-valued
parameters) compared to the SU(3)r matrix-elements approach. We observe a significant
decrease in the minimum value of y? even though the diagrammatic description is still
overdetermined, i.e. there are more observables than parameters.

In the following section we investigate the differences between the two approaches and
present an argument for greater consistency between the two parametrizations.

3 Connections between flavor-flow and matrix elements in SU(3)r

An obvious difference between the two approaches presented in the previous section is that,
even in the limit of exact SU(3)r symmetry, the minimal bases contain different numbers
of complex independent parameters: three in the matrix-elements approach and four in the
flavor-flow approach. Yet, we expect an equivalence between the two approaches [9, 14].
The implication is either that the SU(3)r matrix-elements approach described above is
incomplete or that the diagrammatic approach has too many parameters. A key observation
that follows is that the one-to-one correspondence between group theory and diagrams is
possible to achieve by treating the decays involving only octets separately from those also
involving singlets. In order to demonstrate these separate correspondences, in table 6, we
have listed the SU(3)r matrix-elements and flavor-flow representations side-by-side.
Focusing our attention, first, on the octet-octet final-state amplitudes in table 6, we see
that there are six decay amplitudes that depend on three SU(3)p reduced matrix elements.
Therefore, there must be three relationships between these amplitudes. They are,

AD® = K1) + V2A(D® —» K’ = A(DY —» K'nt), (3.1)
AD® - K'7%) + V3AD" — K ng) =0, (3.2)
V2ADT = Knt) + V3ADF = ntns) = V2AD — K'KH). (3.3)

These relationships match with sum rules previously demonstrated in ref. [28]. Of these
relationships, the first is a consequence of isospin symmetry, while the other two originate
from the full SU(3)r symmetry. Note that these relationships are satisfied by both matrix
elements and diagrams. Although there are still four diagrams in play, every amplitude can



Decay ‘ Matrix Elements ‘ Diagrams
SU(3)r octet-octet final states

D' K-t | L <\/§A27 V244 — ﬁcg) T+E
DO Km0 | (3457 — 245 + VI0Cs) (C—E)/\2
e e (?,AQ7 2As + \/ﬁcg) —(C—E)/\6
Dt - K'nt S5 A T+C
Df KKt | L (\/§A27 1 V2Ag + \/508) C+A

Df — g 5f( 3A27+2A8+\ﬁ08) —2(T - A)/V6
SU(3) r octet-singlet final states

D° - Ky — = (V245 — V/5Cs) (C+2E)/V3
DF = 7ty = (V245 + V/505) (T +24)/V/3

Table 6. Amplitudes for CF D — PP processes using the SU(3)r matrix-elements and flavor-
flow representations. We have separated decays to final states involving octets only and those also
involving singlets. Overall factors containing G r and Voky, that are identical in both representa-
tions, have been left out for brevity.

be written in terms of three distinct linear combinations of them. One can establish a one-
to-one correspondence between the combinations of these diagrams and matrix elements as
follows. The SU(3)r reduced matrix elements can be expressed in terms of the flavor-flow
diagrams using

Aagr 0 V2 0 T+E
Ag| = |22 2 22| |T+C|. (3.4)
Cs —§ 0 V5| |Cc+4

Since the transformation matrix has a non-zero determinant it is invertible thus establishing
a one-to-one correspondence. Next, we turn our attention to the octet-singlet final state
amplitudes in table 6. Here, there are two decay amplitudes that depend on two SU(3)p
reduced matrix elements and two combinations of flavor-flow diagrams. Once again, the
reduced matrix elements can be expressed in terms of diagrammatic amplitudes using

V10 V10
Ag ) C+2F (3.5)

Here too, we see that the transformation matrix is invertible and a one-to-one correspon-
dence exists.

Although egs. (3.4) and (3.5) establish a one-to-one correspondence between matrix
elements and sets of flavor-flow amplitudes, it is easy to see that the correspondences are not
the same. On the SU(3)r matrix-elements side this can be traced back to the definitions:
while the 27 appears only in the 8 x 8 final states, the 8 appears in both 8 x 8 and 8 x 1.



Decay ‘ Matrix Elements ‘ Diagrams
SU(3) r octet-singlet final states

DO K |~ (vV2al) = vBe{V) | —(C1+2E1)/V3

Df st | = (vVaAL +vBC) | (T1+240)/V3

Table 7. Amplitudes for CF D — PP with octet-singlet final states using SU(3) p matrix-elements
and diagrams. Overall factors containing G and Vokwm, that are identical in both representations,
have been left out for brevity.

In principle, these final state octets are different and the corresponding amplitudes should
be treated as such. On the side of topological flavor-flow amplitudes, similarly, this implies
distinct diagrams for octet-octet and octet-singlet final states. In order to make these
distinctions clear for the matrix elements, we use the following (re)definitions.

Aoy = (2703} , As = (85.8|0™%]3) , Cs = (88x80%]3) . (3.6)
AW = <88leoﬁ\3> , o= <88le(96|3> .37

For diagrams, we simply add the subscript 1 to represent the octet-singlet final states.
Since these changes affect only the octet-singlet final states part of table 6, we have listed
the changes in table 7.

Let us, now, reconsider the y? minimization fits presented in section 2 in light of the
newly-defined amplitudes. The SU(3)r matrix-elements approach for the fits involved
three complex-valued amplitudes (Aa7, Ag, and Cg), rather than the five defined here
(A7, Ag, Cs, A(l), and Cél)). The implicit assumptions in the fit were,

AW = Ag, and OV =Cs. (3.8)

The results of the fit were poor showing that matrix elements for the octet-octet and
octet-singlet final states may not be identical. On the other hand, the diagrammatic
approach involved four complex-valued amplitudes (7', C, E, and A), as opposed to eight
(T,C,E,A,Ty,Cq, Ey, and A;). The diagrammatic fits, therefore, assumed X = X; where
X =T,C,FE, and A.

In either scenario, matrix elements or diagrams, the parametrizations established in
this section are insufficient by themselves to produce a reasonable fit. Both parametriza-
tions are equivalent as established above, and as such there are five complex-valued ampli-
tudes which correspond to nine real-valued parameters (five magnitudes and four relative
phases). With only eight branching ratios to fit, lack of additional input will lead to
overfitting. Clearly, additional input is necessary to perform a fit.

On the SU(3)r matrix-elements side a fit was made possible by the assumption that
the reduced matrix elements for octet-octet and octet-singlet final states were the same.
These assumptions put two complex constraints reducing the number of fit parameters to
five. The resulting fit was rather poor. On the other hand, the flavor-flow side assumption
that individual diagrams corresponding to octet-octet and octet-singlet final states are the

~10 -



same led to four complex constraints reducing the number of fit parameters to seven. The
resulting fit was good.

Due to the established equivalence between the SU(3)r matrix-elements and topolog-
ical flavor-flow approaches, one naturally inquires about the consequence of either set of
assumptions on the alternate parametrization. The SU(3)r matrix-elements side assump-
tions, Ag) = Ag and C’él) = (Y, lead to the following relationships on the topological
flavor-flow side,

(T +C)+5(E+A)]—V5[(T1 +C1) +2(E1 + A1) =0, (3.9)
VE[(T —C)+ (E - A)| +[(Ty — C1) — 2(Ey — A1)] = 0. (3.10)
Similarly, the flavor-flow side assumptions that X = X; where X = T,C, F, and A, lead
to the number of reduced matrix elements being greater than that of the flavor-flow am-

plitudes. Then, the relations of egs. (3.4) and (3.5) lead to the following phenomenological
relationship on the SU(3)r matrix-elements side,

3 Ay +8As — 45 A = 0. (3.11)

A fit performed with A27,Cg,Aél), and C’él) as the available matrix elements, but with
Ag constrained through the relationship in eq. (3.11), yields identical results as the dia-

grammatic fit assuming an equivalence between octet-octet and octet-singlet final states.
We find,

/dof = 1.36/1,
Agr = (0.256 4 0.003) GeV?3,
Cs = (0.357 £ 0.010) '*+1)° GeV?
AP = (0.71 £ 0.02) /07D Gev?
(M = (0.348 £ 0.005) e 143E2° Gev3 (3.12)

Xmin

Note that neither egs. (3.9) and (3.10), nor eq. (3.11) automatically imply underlying
relationships between the related parameters at a fundamental level. However, the fact that
the fit on the diagrammatic side is far better than on the matrix-elements side, indicates
a phenomenological preference for eq. (3.11).

For the sake of completeness, we performed additional seven-parameter y2-minimi-
zation fits to the data, each time changing the input relationship between the SU(3)p
matrix elements. The minimum values of x? obtained in these fits are listed in table 8. We
see that all but one of the fits appear worse than the fit with octet-octet and octet-singlet
diagrams set equal to each other. The fit that has a smaller minimum y? is one where we
imposed the relationship C’él) = (Cy. For this fit, we find,

X2,/dof = 0.801/1,
Ag7 = (0.253 4 0.003)GeV?,
Ag = (1.021 % 0.009) '9+D° Gev3,
08 = (0.089 + 0.005) ¢'(=55%5)° GeV3,
= (0.79 4 0.02) &/ (7H0E)" Gav3, (3.13)

- 11 -



Input relationship P
A7 =0 2660
arg(Aél)) = arg(Asg) and arg(Cél)) =arg(Cg) | 175
arg(Aél)) = arg(Cél)) and arg(Ag) = arg(Cg) | 162
Ag=0 160
Cg=0 88.2
AN =0 9.31
AV = 4Aq 8.32
cM =0 7.80
S| = |Ag| and |C§Y] = |Gy 3.05
3 Ayr +8Ag —4v5 A =0 1.36
ALY = |V and |4s] = |Cy 0.937
) = ¢y 0.801

Table 8. Input relationships between SU(3)r matrix elements used to perform y? minimization
fits, listed in descending order of minimum x? value obtained in a fit. Each input relationship adds
two real-valued constraints. The corresponding fits each have one degree of freedom. arg(X) refers
to the phase of the matrix element X.

Diagrammatically, this input relationship is equivalent to eq. (3.9) on the flavor-flow side.

We conclude this section with the following observation. Since in the most general
case the number of basis decay parameters exceeds the number of experimentally-measured
CF decay modes, additional assumptions must be employed to extract individual reduced
matrix elements or flavor-flow amplitudes presented above. Yet, the relations such as
egs. (3.4) and (3.5) are rather general. This allows us to make a comment regarding
hadronic final state interactions (FSI) in charm. In the SU(3)r limit FSI cannot change
the values of the reduced matrix elements. In other words, action of the strong interaction
S-matrix on the basis of the SU(3)r reduced matrix elements leaves this basis invariant.
This is not necessarily so for the individual flavor-flow amplitudes. Yet, the combinations
of these amplitudes are preserved under strong FSI. Extraction of the magnitudes and
phases of the individual amplitudes is only possible with additional assumptions.

4 Conclusions

Nonleptonic decays of charmed mesons provide plethora of interesting information about
QCD dynamics in its nonperturbative regime. In this paper we discussed two phenomeno-
logical parametrizations of those decay amplitudes based on SU(3)r symmetry, which have
been proven equivalent in the decays of B-mesons.

We argue that application of such parametrizations to charm decays require care due
to insufficient number of experimentally-measured decay models and the presence of final
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state interactions. Noting that the Wolfenstein parameter A is external to any QCD-based
parametrization of decay amplitudes, the equivalency of the flavor SU(3)r and the topo-
logical flavor-flow approaches must be separately realized for the Cabibbo-favored decays
of charmed mesons. Including decays to the physical n and 1’ mesons in our description,
we find relationships between the basis parameters of the flavor-flow amplitudes. This can
be interpreted from the point of view that quark rescatterings imply that only certain lin-
ear combinations of flow diagrams can contribute to the decay amplitudes. We presented
extractions of the basis amplitudes in two approaches under various assumptions.
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