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Abstract—High resolution Fast Fourier Transform (FFT) is
important for various applications while increased memory
access and parallelism requirement limits the traditional
hardware. In this work, we explore acceleration opportuni-
ties for high resolution FFTs in spintronic computational
RAM (CRAM) which supports true in-memory processin,
semantics. We experiment with Spin-Torque-Transfer (STT
and Spin-Hall-Effect (SHE) based CRAMs in implementing
CRAFFT, a high resolution FFT accelerator in memory. For
one million point fixed-point FFT, we demonstrate that
CRAFFT can provide up to 2.57x speedup and 673X energy
reduction. We also provide a proof-of-concept extension to
floating-point FFT.

I. INTRODUCTION

Fast Fourier Transform (FFT) is an important algorithm
which is extensively used in many different applications
with matured implementations. In the literature, FFT has
numerous hardware and software based solutions. However,
most of the time, such solutions target lower resolution FFT,
where the number of points to be processed remains less
than several thousands. Ultra-high resolution FFT — where
the number of points typically reach millions - by itself is
needed for numerous important applications. For example,
wireless communication at the heart of emerging IoT and
energy harvesting domains requires one million point FFT to
enable reliable communication! [1]. FFT sizes reach millions
of points for radar (e.g., synthetic aperture radar, SAR [2]),
sonar and echo-graphy; frequency hopping transmission de-
tection; wide-band spectrum analysis [3]; imaging using radio
telescope arrays [4]; and high-resolution medical imaging [5],
[6], as well. Although software, FPGA, GPU or ASIC based
solutions perform well in small resolutions, due to the space
and complexity constraints, increasing resolution requires
more parallelism and memory access, which directly trans-
lates into higher power consumption and longer execution
times, often depleting available budgets. Since the resolution
may vary for different applications, the flexibility to change
the resolution is also a desired feature.

In-order to address the parallelism and memory access
requirements of high resolution FFTs, processing-in memory
platforms can be utilized. One very promising reconfigurable
in-memory computing substrate is Computational Random
Access Memory (CRAM) [7], [8], which is shown to have
great potential in accelerating emerging applications with
high memory access and massive parallelism demands with
significantly lower power consumption, such as binary neu-
ral networks [9] and pattern matching or genomics [10],
[11]. In this work, we explore acceleration opportunities
for ultra high resolution FFTs in spintronic Computational
RAM (CRAM), by exploiting its true in-memory process-
ing semantics and reconfigurability for variable resolution
support, considering both Spin-Transfer-Torque (STT) and
Spin-Hall-Effect (SHE) based implementations. The paper
is organized as follows: In Sect.Il, we provide preliminary
information for Spintronic Computational RAMs as well as
the FFT variants to be implemented. Sect.IIl describes the
proposed architecture both for fixed-point and floating-point

1To address local oscillator or Doppler effect related carrier frequency
mismatch.
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Fig. 1. (a) 1TIM STT-CRAM; (b) 2TIM SHE-CRAM; (c) NAND circuit
equivalent; (d) NAND truth table.

implementations. Sect.IV covers experimental results. Finally,
SectV summarizes our findings.

II. BACKGROUND
A. Spintronic CRAM

Spintronic Computational RAM (CRAM) [12] fuses com-
pute and memory functions by performing Boolean gate
operations directly within the memory array. No external,
peripheral logic is involved for computation as opposed to
similar spintronic alternatives such as [13], and no data
transfer at the same time. When no computation takes place,
the CRAM array becomes equivalent to a spintronic memory
array, with the same operational semantics for reads and
writes. Different CRAM architectures are proposed so far,
targeting different application domains [7], [9]-[11]. In this
work, we consider two representatives: one STT- and one
SHE-based cell architecture, which deliver the best energy,
latency, area trade-offs. In a given column, CRAM can per-
form only one logic gate at a time, however, all columns
—or a reconfigurable subset of them— can perform this same
one operation simultaneously. This reconfigurable parallelism
is the key to CRAM performance.

Each CRAM cell features an Magnetic Tunneling Junction
(MT]) as the state element, which has two magnetic layers
separated by an insulating layer. Polarity of the first magnetic
layer is fixed but the polarity of the second layer can change.
When two polarities (do not) align, MT]J is in low-resistance
parallel, P (high-resistance anti-parallel, AP) state. P state
encodes logic 0; AP state, logic 1. To read the state, passing a
small current (not sufficient for switching) through the device
suffices. To write, a larger current is necessary to change
MT] state as a function of the current direction. While STT-
CRAM cells solely rely on the MTJ, SHE-CRAM cells augment
it with a Spin Hall Effect (SHE) channel. This enables separate
optimization for reads and writes (which otherwise induce
conflicting optimization targets) and thereby results in better
energy efficiency, at the expense of a larger cell area.

Fig.1(a) depicts the 1-Transistor 1-Magnet (1T1M) STT-
MRAM cell structure for 3 adjacent cells in a column. When
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operating as memory, rows can be accessed by selecting the
respective Word-Line (WL). The design features two bitlines
for alternating rows, Bitline-Odd (BLO) or Bitline-Even (BLE),
respectively, and a Logic Line (LL). One end of each MT]J is
connected to its respective bitline, the other end, over an
access transistor, to LL. Reads and writes are performed by
adjusting the voltages on the bitlines and LL, which induce
enough current to sense (switch) the cell state for reads
(writes), respectively.

To compute (i.e., perform a Boolean gate), first the cells in
a column to act as inputs or the output to the gate should
be activated by setting the respective WLs, such that their
MT]Js get connected to the LL. Fig.1(c) shows the resulting
(voltage-dividing) circuit, where each cell is presented by its
resistance, for a 2-input single-output gate. The two ends of
the circuit are connected to BLE (input side) and BLO (output
side), respectively. For example, to perform NAND, R,,:
would be preset to P (0), and the voltage difference between
BLE and BLO adjusted in a way that, R,,; always switches
if at most one of R;,1 and R;,2 is AP (1) (but not both).
Thereby, the output preset value and the voltage applied
between BLO and BLE uniquely define NAND operation,
and enforce state changes according to the truth table shown
in Fig.1(d). The equivalent (parallel) resistance of R;,; and
R;pno assumes its maximum if both are AP (high resistance
state). Hence, the voltage difference should be set in a way
that for any value of the equivalent resistance lower than
this maximum (i.e., for any combination where at most one
of R;y1 and R;,2 can be AP), the current through R, is
enough to switch it. The lower the equivalent resistance, the
higher would be the current through R,.:, for any given
voltage difference between BLO and BLE.

Using this principle (i.e., by determining pairs of preset and
voltage values to enforce switching according to different
truth tables), different gates such as 2-input AND, COPY,
NOT, 3- or 5- input Majority can be implemented. Universal
gates (such as NAND) are fully supported, hence, CRAM
theoretically can enable any type of computation. As a
building block, a full adder can be implemented using the
described gates. Depending on the chosen set of gates, full
adder implementations exist with 3, 4, or 9 stages. [10]-[12].
The only limitation in this case is that if the inputs of the
logic operation are in an even row, then the output should
be in an odd row and vice versa.

Fig.1(b) shows three adjacent cells in a column for SHE-
CRAM. This is the same technology as Spin-Orbit Torque
(SOT) MRAM [14], which will likely replace STT-MRAM.
SHE channels are CMOS/MTJ-compatible and fabricated pro-
totypes exist [15]. Integration with CRAM is covered in [8].
The key feature of SHE-CRAM is separation of read and
write paths. A separate access transistor —each controlled
by a separate wordline, one for write (WLW) and one for
read (WLR)- enables either the read or the write path in
this case. Each cell can be connected to either the read
or the write path, depending on the memory operation or,
when computing, depending on whether it is to serve as
a gate input or output. Hence, WLRs are activated for gate
inputs; and WLW, for the gate output. The operating principle
(specifically when it comes to formation of Boolean gates)
is very similar to STT-CRAM, except that SHE-CRAM can
perform logic and memory writes more energy efficiently.
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Fig. 2. Signal flow graph. Fig. 3. Connectivity matrix.

B. Singleton’s FFT

Although Cooley-Tukey algorithm [16] is the most widely
used FFT variant, it does not have a regular memory access
pattern, complicating direct mapping to CRAM. Singleton’s
FFT [17], on the other hand, has a regular memory access
pattern that does not vary depending on the stage of compu-
tation. Consequently, the near-memory FFT accelerator from
[18], as well as the ASIC-based FFT accelerator from [19],
use Singleton’s FFT as the acceleration target.

Algorithm 1: N-point Singleton’s FFT.

input : z, where n € [0, N — 1] in bit-reversed order
output: y,, where n € [0, N — 1

1 54— log, N;
2 w— e 2™
3 for k€ (0,5 —1] do
4 | Twiddles[k] +— w";
5 end
6 for k € [1,s] do
7 for j € 0,5 — 1] do
J
8 CurrentTwiddles[j] «— Twiddles] [2’2;)” | I;
9 end

10 for j € (0,5 — 1] do

1 Yj — T2j + @211 X CurrentTwiddles[j];

12 Yjp & T2j = 21 X CurrentTwiddles[j];
13 T—y;
14 end

15 end

Algorithm 1 summarizes N-point Singleton’s FFT, where
the signal flow graph for 8-point is given in Fig. 2. Singleton’s
FFT requires bit-reversed inputs in the beginning but it
produces ordered results after the computation is complete.
After each stage of computation, odd products of (radix-2)
butterflies are mapped to the first half; and even products, to
the second half of the output vector. We define 2*" input and
output of a butterfly with =, and y., where z € [0, N — 1].
For N-point FFT, provided that

w=e (1)
radix-2 butterfly is defined by equations (2) and (3) as I\given
n [19], where the current stage k € [1,s] and j € [0, 5 — 1]
for s = log, N stages:

=3
Yj = T2j + Tojpw 2P 2

=3
3)

Yjp i = T2j — T2j41W

In each stage, (2) and (3) are calculated for each j where x and
y are immediate butterfly inputs and outputs, respectively.
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Fig. 4. Transposed and non-interleaved butterflies in a single FFT stage for an 8-point FFT.

III. CRAFFT: HiGcH ReEsoruTioN FFT IN CRAM

CRAFFT tailors CRAM to efficiently support Singleton’s
FFT, with a particular focus on scalability. Specifically, to
accommodate very large problem sizes as induced by the
target (ultra-high) FFT resolutions, CRAFFT adapts a tiled
CRAM design, as depicted in Fig.5. Very large monolithic
CRAM arrays would not be feasible in this case due to
electrical restrictions on array dimensions. Each tile features
a separate tile controller, orchestrated by the global CRAFFT
controller. The global controller distributes computational
steps, as well as external memory read and write requests
to the respective tiles. Thereby CRAFFT exploits two types of
parallelism: the finer grain column-level parallelism and the
coarser grain tile-level parallelism.

CRAFFT features two types of tiles: A Twiddle tile and
Compute tiles. The Twiddle tile keeps real and imaginary
parts of precomputed powers of w per Equations (1), (2),
and (3). Compute tiles feature CRAM arrays where the FFT
computation takes place. Compute tiles are homogeneous
in design, array size and organization, and communicate
with the CRAFFT controller via tile controllers. Alongside
triggering FFT operations in each butterfly stage, CRAFFT
controller reads the twiddle factors from the Twiddle tile and
writes them to compute tiles before computation starts in
each FFT stage.

We next discuss how CRAFFT implements Alg.1, using the
running example from Fig.4 which demonstrates computation
in a single (compute) tile for 8-point FFT step-by-step. First,
CRAFFT initializes Twiddle tile by filling it with precomputed
powers of w (line 4 of Alg.1). Then, for each stage (line 6),
CRAFFT controller distributes the current twiddle factors to
the twiddle fields in compute tiles (line 8) which are denoted
by transposed green rows in Fig.4. We always write xy;
and ;41 to the same column in each compute tile. After
performing multiplications and additions (lines 11 and 12,
following steps in Fig.4), computation is completed within
each column in each compute tile. As the final step in a
stage, compute tile controllers read and transmit immediate
outputs (y,) to corresponding tiles where they become im-
mediate inputs (x,) in the next FFT stage (line 13). Since
redistribution of ys (of current stage) to corresponding s
(of next stage) follows a fixed regular pattern (algorithmically,
by construction), no index calculation is needed for mapping
YnsS.

In a nutshell, each compute tile performs butterfly com-
putation. Tile controllers activate the columns and rows par-
ticipating in computation. Once real and imaginary parts of
the inputs are written into each compute tile in bit-reversed
order, each butterfly is computed in a separate column,
allowing L different butterflies to be computed in parallel
given a tile with L columns. Once butterfly computation is
complete, the tile controller reads the output row by row and
transmits it to the tiles which are in charge of the next stage.
The key here is laying out data and scheduling computations
in a way to best exploit CRAFFT’s intrinsic column- and tile-
level parallelism.
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Fig. 5. CRAFFT organization.
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Since the order to transmit data to the next stage does not
change for Singleton’s FFT by construction, CRAFFT does
not need specialized routing. Specifically, for N-point FFT, %
different butterflies are needed. Without loss of generality,
we assume that both N and L are powers of two, and that
L < % Assuming L x L tiles, this renders a total of %
compute tiles for N-point FFT. Following the notation from
Equations (2) and (3) and using ¢ € [0, % — 1] as the tile
index, we can express CRAFFT’s connectivity as

t L—J it 14— FJ it FJ +£;t+1<—> FJ +£ 4

2 2 2] 4L 2] 4L

Here, each arrow indicates a connection between the tiles
with the respective indices on the left and right sides of the
arrow. Identity (4) can be obtained by integer division of
the indices from Equations (2) and (3) by 2L after replacing
j with the limits of tile indices since js are monotonically
increasing. For reference, the connectivity matrix for an 16-
tile CRAFFT is shown in Fig.3, which clearly shows that no
involved routing would be necessary. We next take a closer
look into the fixed-point and floating point designs.

A. Fixed-point FFT

1) Design Specifics: In fixed-point arithmetic, fractional
arithmetic is performed only using integers, by scaling the
numbers by a determined factor which is a power of 2.
Any arithmetic operation can be performed using standard
Boolean arithmetic in full-adder granularity. It is important to
note that, to best exploit CRAFFT’s column-level parallelism,
we place inputs and outputs in the memory in an interleaved
fashion, i.e., inputs (outputs) reside in even (odd) cells in
a column or vice versa. CRAFFT performs fixed-elementary
addition and multiplication operations as described in [9]. For
addition and subtractions, we use a ripple-carry full-adder
based structure where each full adder is implemented as a
cascade of 3 gates [10]. Multiplication relies on a step-by-
step implementation of Wallace-Dadda tree adder [20], which
renders N (N — 1) full-adders for N-bit multiplication.

Similar to [21], the input (x per Alg.1) represents an 16-
bit signed integer. Fixed-point complex numbers are repre-
sented as a vector limited by unit circle. However, butterfly
operations may cause a complex number to grow outside
the unit circle. Each butterfly stage can scale the complex
number up to - a 0.7 which can cause overflow if

V2
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TABLE I
GATE COUNTS OF IN-MEMORY SINGLE-PRECISION FLOATING-POINT OPERATIONS

Operation | Standard Library | CRAM library
Addition 1041 2882
Multiplication 4262 13795

not addressed [21]. In order to address potential overflow
resulting from butterflies without compromising accuracy, we
conservatively increase the output size by one bit after each
stage.

Fig.4 depicts the memory layout of the butterfly operation
(lines 11 and 12 of Alg.1) in a compute tile for 8-point FFT,
without loss of generality. Real and imaginary parts of the
16-bit input for n € [0,7] are shown with 7, and 4,. In
step @, real (r,) and imaginary (i) parts of inputs z,, are
multiplied by real and imaginary parts of the twiddle factors
wpr and wy, which are written into all compute tiles before
computation starts. In step @, real and imaginary numbers
are added. In step @, output of step @ is negated. In step @,
real and imaginary numbers are added to obtain the real and
imaginary outputs. After rounding (Sect.Ill-A2), 4 x &16 +s)
different row read operations are performed for s stage.
Once reads finish, these results are transmitted to the tiles
to perform the next stage.

2) Scaling and Rounding: Since butterflies in the FFT
algorithm involve additions and multiplications, overflow
is inevitable in the fixed-point implementation. Since full-
resolution output is not required for most applications, prac-
tical implementations typically opt for conservative scaling
to avoid exponential bit growth. Such conservative scaling
involves bit reductions between consecutive stages to prevent
overflow and to keep intermediate numbers below a specified
limit.

In this case, truncation is a practical and costless solution,
however, it increases the quantization error significantly.
Therefore, standard rounding is more preferable. Provided
that rounding discards ¢ bits at each stage, we add 277! to
each number before quantization, to prevent excessive accu-
racy loss. Therefore, the only overhead is an n-bit addition
for an n-bit number. CRAFFT performs this type of rounding
before step @ in Fig.4 for both real and imaginary values.
Since we apply a conservative bit growth before rounding
in each butterfly, our scheme guarantees no overflow. On
top of this, the 1-bit incremental bit growth in each stage,
as described in SectlIll-Al, prevents further overflow in
consecutive stages.

B. Proof-of-concept Extension to IEEE-754 Floating-point FFT

IEEE-754 single-precision floating-point number format
stores real numbers in 32 bits which consists of a sign bit,
8 exponent bits, and 23 fraction (mantissa) bits. It allows
signed numbers to be represented in a significantly higher
dynamic range compared to the fixed-point counterpart of
same bit size in expense of increased complexity for arith-
metic operations. Floating-point addition entails four steps
of operations: First, mantissas of the numbers should be
aligned by shifting one number if the exponents are different.
Then aligned mantissas are added. The sum is renormalized
if binary separator is not placed correctly, by shifting the
number up to the first nonzero bit. Finally, the sum is
rounded. Floating-point multiplication also consists of four
steps. First, exponent bits are added. Then, mantissa fields are
multiplied. Finally, renormalization and rounding steps are
performed similar to the floating-point addition. Although

addition and multiplication are complex, sign change only
entails the inversion of the sign bit.

As a proof-of-concept, we implement support for single
precision floating-point as follows: We first synthesize ad-
dition and multiplication operations into a standard gate
library from Verilog code. Then we directly translate this
into CRAFFT’s correspondents for NOT, NAND and AND
gates, without any CRAFFT specific optimization. The gate
breakdown of operations is given in Table I. Overall scheme
of floating-point computations is similar to the fixed-point
implementation (Sect.IIl-A). One main difference is that bit
size does not change in consecutive multiplication, addition,
sign change, and addition stages for single precision floating
point numbers. Twiddle factors are also stored as single
precision numbers. Therefore extra scaling and rounding
operations are not needed. That said, we do not address
floating-point exceptions in this proof-of-concept design.

As we will cover shortly, this proof-of-concept design
results in uncompetitive execution time per operation. Even
in its unoptimized form, however, CRAFFT’s massive paral-
lelism helps in masking this overhead.

TABLE I
CONFIGURATION PARAMETERS
Parameter STT-M | SHE-M | STT-F SHE-F
Tile size (IM) T6MB | 16 MB | 64 MB | 64 MB
Array dimension 256 256 1024 1024
Compute Tile Count (1M) 2048 2048 512 512
Bulk preset current limit 30 mA 30 mA
P State Resistance 3.15 kQ) 7.34k2
AP State Resistance 7.34 kXY 76.39k82
Switching Time 3 ns [22] 1 ns
Switching Current 40 pA [22] 3 uA
Twiddle Tile Size (1M) 1 MB (fixed-point) - 2 MB (floating-point)

IV. EvaLuAaTIiON

To evaluate CRAFFT, we use an in-house simulator which
is capable of performing functional verification as well as
energy and timing calculation. We extract the peripheral
circuitry overhead from NVSim [23]. NVSim estimates subar-
ray overhead resulting from charge/precharge, row decoder,
sense amplifier, and bitlines (as well as array overheads re-
sulting from array read/write operations such as predecoder
overhead). NVSim’s subarrays correspond to our tiles. We
also take the time and energy overhead of tile controllers
into consideration. The configuration parameters are given
in Table II. STT-M and SHE-M configurations reflect modern
technology, and stem from very conservative assumptions for
switching time and current. STT-F and SHE-F configurations
are future-term technology projections.

We assume that in the beginning of the computation, the
reverse-bit ordered input is written to compute tiles by the
CRAFFT controller. Then the controller configures the tiles
with twiddle factors and triggers the tile controllers to initiate
butterfly computation. Butterfly operations are executed as
described in Section III. After real and imaginary outputs
are calculated, each tile controller simultaneously reads and
broadcasts the tile outputs, following the connectivity cap-
tured by Equation (4). Corresponding tiles receive and write
the inputs of the next FFT stage.

CRAFFT is not limited to ultra-high resolution FFT. Thanks
to its reconfigurability, CRAFFT can also support smaller
FFT sizes efficiently. This is achieved only by reconfiguring
the Twiddle tile accordingly. CRAFFT controller then disables
unused tiles to preserve energy.

We optimize execution time by experimenting with dif-
ferent tile sizes for the four different configurations (STT-M,
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SHE-M, STT-F, and SHE-F, respectively). Since For STT-based
designs, a lot of cycles are required to perform bulk preset
for large tile sizes, increasing the execution time. However,
if the tile size is too small, the design may need to be
distributed to many more tiles. In this case, extra preset
cycles would be needed to reuse the portion of tile where
no future data dependency exists. Another factor is that large
tile sizes incur higher read/write latency. We determined that
the square array dimensions from Table II give the minimum
execution time both for fixed-point and the floating point
implementations.

Another possible design point is an unrolled design where
each stage is calculated in different tiles. This design can
eliminate twiddle factor distribution overhead as there would
be no need to reconfigure twiddle factors in a non-volatile
memory. This design also conforms itself very well to pipelin-
ing, therefore has the potential to increase the throughput
significantly. However, such an unrolled design comes with
a very high price tag in terms of area footprint since the
required number of tiles would be multiplied by the number
of stages in FFT. Therefore, it is not considered in this study.

TABLE Il
F1xep-POINT FFT COMPARISON FOR 1M POINT FFT

Time Throughput Energy EDP

Implementation (us) (MSPS) () (nJs)
SHE-F 194.781 5383.368 21.86 4.26
SHE-M 701.565 1494.624 2526 1772
STT-F 194.781 5383.368 185.3 36.1
STT-M 701.565 1494.624 9922 6961

FPGA [21] 4290 233 14700 63236

12 FPGAs [4] 500 2091 3.17x10%% | 1.585%10%7

*Estimated conservatively only using static power consumption of the
given FPGAs as the actual figure is not reported.

Fixed-point simulation results for one million point FFT are
summarized in Table III, where execution time for smaller
FFT sizes is given in Fig.6. SHE-F configuration achieves
22x speedup compared to the fastest single-chip Virtex
Ultrascale FPGA implementation in [21]. The speed-up of
SHE-F drops to 2.57x — which still represents a significant
improvement — when compared to [4] where 12 FPGAs are
utilized with parallel processing. Although this parallel FPGA
baseline does not report energy, only using the static power
consumption of given FPGAs (8 Virtex-4 LX60 and 4 Virtex-4
LX80), we estimate 3.71 J per 1M-point FFT operation, which
is excessively high compared to CRAFFT implementations
(Table III). As shown in Fig.6, the execution time benefit
persist for smaller FFT sizes, as well, however, not so much
at the other end of the spectrum, for very small FFT. This
is because our execution time overheads such as twiddle
distribution and tile communication become more dominant,
yet CRAFFT still retains a feasible execution time.

Fig.8 provides the energy breakdown of different opera-
tions. We observe that addition and multiplication operations
dominate the overall energy consumption. As expected, in the
STT-based technologies, a significant portion of the energy
is spent on preset operation.

We next analyze the accuracy in terms of Signal-to-
Quantization-Noise Ratio (SQNR). SQNR represents the
logarithmic ratio of ideal FFT of the signal to error resulting
from quantization:

E{| Xoriginat*} ) )
E{|Xquantized - Xoriginal|2}

Here E depicts expectation; Xoriginai and Xquantized, the
ideal case and the hardware implementation, respectively.

SQONR (dB) = 101log,, (
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Using 16-bit signed twiddle factors, we obtain an SQNR of
90.6dB compared to the standard double precision implemen-
tation of MATLAB. Fig. 7(a) and 7(b) capture the effect of
twiddle factor bit size, g, considering different FFT sizes.
The effect of g is somehow limited due to the fixed 16-
bit input size, however, it can improve SQNR at expense of
increased execution time as well as energy consumption up to
a saturation point. This is because input bit size is fixed (6dB
per bit, 96dB for 16 bits). However, FFT SQNR can slightly
exceed 96 dB because we increase the bit size in each stage
and each butterfly introduces a small amount of bit growth.

We conclude the evaluation with a feasibility analysis of
the proof-of-concept floating-point implementation. Table IV
compares our results to single-precision FPGA and ASIC
implementations from the literature for different FFT sizes.
For one million point FFT, we observe that the SHE-F
configuration achieves 3.2x speedup with 1.93x more energy
consumption. This result still points to a great potential,
as our current design, tightly tailored for fixed-point FFT,
does not optimize floating-point operations. Still, CRAFFT’s
energy-delay product is 1.66 x lower in this case. This single-
precision implementation achieves 135dB SQNR compared to
the double-precision MATLAB implementation.

V. CONCLUSION

In this work, we proposed CRAFFT, a spintronic Compu-
tational RAM (CRAM) based FFT accelerator, which can effi-
ciently handle ultra-high resolution FFT at scale. At the same
time, CRAFFT is fully reconfigurable to support smaller size
FFT. We covered two different MT] based technologies with
four different configurations. While CRAFFT is optimized for
fixed-point, we also present a floating-point implementation
as an exploratory design point.

For the fixed-point case, CRAFFT is 22X and 2.57x faster
than fastest known single-chip and parallel implementations
from the literature, while consuming significantly less en-
ergy. For floating point, on the other hand, fastest CRAFFT
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TABLE IV
FLOATING-POINT FFT COMPARISONS

FFT Size Metric SHE-F SHE-M STT-F STT-M | ASIC [2] | ASIC [24] | FPGA [25] | FPGA [1]
Time (us) 955.72 2855.2 955.72 2855.2 21.6 - - -
4K Throughput (MSPS) 4.29 1.43 4.29 1.43 18.96 - - -
Energy (1J) 1521 1420 5.05 336.8 9720 - - -
EDP (nJs) 1.45 408 4.83 961.69 0.03 - - -
Time (us) 1116.1 3336.9 1116.1 3336.9 76.9 - - 216
16K Throughput (MSPS) 14.68 4.91 14.68 4.91 203.1 - - -
Energy (uJ) 7.098 666.88 | 23587 | 15718 173 = . 6998™
EDP (nJs) 7.92 2225.3 26.33 5.245 0.33 - - 15.12%
Time (1) 1279.92 3836.96 1279.92 3836.96 306.3 - - 869
64K Throughput (MSPS) 51.20 17.08 51.20 17.08 204.05 - - -
Energy (uJ) 32.45 3048.59 107.83 7185.59 18.29 - - 281.56
EDP (nJs) 41.53 11697.3 138.01 27570.7 5.6 - - 244.672%
Time (15) 1457.6 4410.8 1457.6 4410.8 1285.4 3636.8 - 3939
256K Throughput (MSPS) 179.85 59.43 179.85 59.43 194.49 - - -
Energy (u.J) 146.02 13718.65 485.22 32335.01 78.67 1316.5 - 1276.27
EDP (nJs) 212.83 60510.1 707.25 142623.4 101 4787.84 - 5027.1F
Time (1.8) 1690.5 5279.5 1690.5 5279.5 5407.5 17790 - 13971
M Throughput (MSPS) [ 620.267 198.612 620.267 198.612 184.96 - 457 -
Energy (uJ) 648.96 60971.8 2156.55 143711.8 336.3 6439.98 - 4526™
EDP (nJs) 1097.1 321902.7 3645.7 758731.3 1820 114567 - 632417
Time (1s) 21446 | 73279 | 21446 | 73279 - - - B
M Throughput (MSPS) 1955.70 572.37 1955.70 572.37 - - 217 -
Energy (uJ) 2855.4 268276.1 9488.8 632333.2 - - - -
EDP (nJs) 6123.9 1965906 20350.3 4633687 - - - -
*Estimated conservatively only using static power consumption of the given FPGAs as the actual figure is not reported.
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Fig. 8. Energy breakdown of fixed-point and floating-point FFT.

configuration achieves 3.2x speedup while consuming 1.93 x
more energy than the fastest ASIC implementation from the
literature. Overall, this unoptimized CRAFFT configuration
still achieves 1.66x more energy efficiency (EDP).
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