






TABLE I
Gate counts of in-memory single-precision floating-point operations

Operation Standard Library CRAM library
Addition 1041 2882

Multiplication 4262 13795

not addressed [21]. In order to address potential overflow
resulting from bu�erflies without compromising accuracy, we
conservatively increase the output size by one bit a�er each
stage.

Fig.4 depicts the memory layout of the bu�erfly operation
(lines 11 and 12 of Alg.1) in a compute tile for 8-point FFT,
without loss of generality. Real and imaginary parts of the
16-bit input for n ∈ [0, 7] are shown with rn and in. In
step 1 , real (rn) and imaginary (in) parts of inputs xn are
multiplied by real and imaginary parts of the twiddle factors
ωR and ωI , which are wri�en into all compute tiles before
computation starts. In step 2 , real and imaginary numbers
are added. In step 3 , output of step 2 is negated. In step 4 ,
real and imaginary numbers are added to obtain the real and
imaginary outputs. A�er rounding (Sect.III-A2), 4× (16 + s)
different row read operations are performed for sth stage.
Once reads finish, these results are transmi�ed to the tiles
to perform the next stage.

2) Scaling and Rounding: Since bu�erflies in the FFT
algorithm involve additions and multiplications, overflow
is inevitable in the fixed-point implementation. Since full-
resolution output is not required for most applications, prac-
tical implementations typically opt for conservative scaling
to avoid exponential bit growth. Such conservative scaling
involves bit reductions between consecutive stages to prevent
overflow and to keep intermediate numbers below a specified
limit.

In this case, truncation is a practical and costless solution,
however, it increases the quantization error significantly.
�erefore, standard rounding is more preferable. Provided
that rounding discards q bits at each stage, we add 2q−1 to
each number before quantization, to prevent excessive accu-
racy loss. �erefore, the only overhead is an n-bit addition
for an n-bit number. CRAFFT performs this type of rounding
before step 4 in Fig.4 for both real and imaginary values.
Since we apply a conservative bit growth before rounding
in each bu�erfly, our scheme guarantees no overflow. On
top of this, the 1-bit incremental bit growth in each stage,
as described in Sect.III-A1, prevents further overflow in
consecutive stages.

B. Proof-of-concept Extension to IEEE-754 Floating-point FFT

IEEE-754 single-precision floating-point number format
stores real numbers in 32 bits which consists of a sign bit,
8 exponent bits, and 23 fraction (mantissa) bits. It allows
signed numbers to be represented in a significantly higher
dynamic range compared to the fixed-point counterpart of
same bit size in expense of increased complexity for arith-
metic operations. Floating-point addition entails four steps
of operations: First, mantissas of the numbers should be
aligned by shi�ing one number if the exponents are different.
�en aligned mantissas are added. �e sum is renormalized
if binary separator is not placed correctly, by shi�ing the
number up to the first nonzero bit. Finally, the sum is
rounded. Floating-point multiplication also consists of four
steps. First, exponent bits are added. �en, mantissa fields are
multiplied. Finally, renormalization and rounding steps are
performed similar to the floating-point addition. Although

addition and multiplication are complex, sign change only
entails the inversion of the sign bit.
As a proof-of-concept, we implement support for single

precision floating-point as follows: We first synthesize ad-
dition and multiplication operations into a standard gate
library from Verilog code. �en we directly translate this
into CRAFFT’s correspondents for NOT, NAND and AND
gates, without any CRAFFT specific optimization. �e gate
breakdown of operations is given in Table I. Overall scheme
of floating-point computations is similar to the fixed-point
implementation (Sect.III-A). One main difference is that bit
size does not change in consecutive multiplication, addition,
sign change, and addition stages for single precision floating
point numbers. Twiddle factors are also stored as single
precision numbers. �erefore extra scaling and rounding
operations are not needed. �at said, we do not address
floating-point exceptions in this proof-of-concept design.
As we will cover shortly, this proof-of-concept design

results in uncompetitive execution time per operation. Even
in its unoptimized form, however, CRAFFT’s massive paral-
lelism helps in masking this overhead.

TABLE II
Configuration Parameters

Parameter STT-M SHE-M STT-F SHE-F

Tile size (1M) 16 MB 16 MB 64 MB 64 MB
Array dimension 256 256 1024 1024

Compute Tile Count (1M) 2048 2048 512 512
Bulk preset current limit 30 mA 30 mA

P State Resistance 3.15 kΩ 7.34kΩ
AP State Resistance 7.34 kΩ 76.39kΩ
Switching Time 3 ns [22] 1 ns

Switching Current 40 µA [22] 3 µA
Twiddle Tile Size (1M) 1 MB (fixed-point) - 2 MB (floating-point)

IV. Evaluation

To evaluate CRAFFT, we use an in-house simulator which
is capable of performing functional verification as well as
energy and timing calculation. We extract the peripheral
circuitry overhead from NVSim [23]. NVSim estimates subar-
ray overhead resulting from charge/precharge, row decoder,
sense amplifier, and bitlines (as well as array overheads re-
sulting from array read/write operations such as predecoder
overhead). NVSim’s subarrays correspond to our tiles. We
also take the time and energy overhead of tile controllers
into consideration. �e configuration parameters are given
in Table II. STT-M and SHE-M configurations reflect modern
technology, and stem from very conservative assumptions for
switching time and current. STT-F and SHE-F configurations
are future-term technology projections.
We assume that in the beginning of the computation, the

reverse-bit ordered input is wri�en to compute tiles by the
CRAFFT controller. �en the controller configures the tiles
with twiddle factors and triggers the tile controllers to initiate
bu�erfly computation. Bu�erfly operations are executed as
described in Section III. A�er real and imaginary outputs
are calculated, each tile controller simultaneously reads and
broadcasts the tile outputs, following the connectivity cap-
tured by Equation (4). Corresponding tiles receive and write
the inputs of the next FFT stage.
CRAFFT is not limited to ultra-high resolution FFT. �anks

to its reconfigurability, CRAFFT can also support smaller
FFT sizes efficiently. �is is achieved only by reconfiguring
the Twiddle tile accordingly. CRAFFT controller then disables
unused tiles to preserve energy.
We optimize execution time by experimenting with dif-

ferent tile sizes for the four different configurations (STT-M,
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SHE-M, STT-F, and SHE-F, respectively). Since For STT-based
designs, a lot of cycles are required to perform bulk preset
for large tile sizes, increasing the execution time. However,
if the tile size is too small, the design may need to be
distributed to many more tiles. In this case, extra preset
cycles would be needed to reuse the portion of tile where
no future data dependency exists. Another factor is that large
tile sizes incur higher read/write latency. We determined that
the square array dimensions from Table II give the minimum
execution time both for fixed-point and the floating point
implementations.

Another possible design point is an unrolled design where
each stage is calculated in different tiles. �is design can
eliminate twiddle factor distribution overhead as there would
be no need to reconfigure twiddle factors in a non-volatile
memory. �is design also conforms itself very well to pipelin-
ing, therefore has the potential to increase the throughput
significantly. However, such an unrolled design comes with
a very high price tag in terms of area footprint since the
required number of tiles would be multiplied by the number
of stages in FFT. �erefore, it is not considered in this study.

TABLE III
Fixed-point FFT Comparison for 1M point FFT

Time �roughput Energy EDP
Implementation (µs) (MSPS) (µJ ) (nJs)

SHE-F 194.781 5383.368 21.86 4.26
SHE-M 701.565 1494.624 2526 1772
STT-F 194.781 5383.368 185.3 36.1
STT-M 701.565 1494.624 9922 6961

FPGA [21] 4290 233 14700 63236

12 FPGAs [4] 500 2091 3.17×106
∗

1.585×109
∗

∗Estimated conservatively only using static power consumption of the
given FPGAs as the actual figure is not reported.

Fixed-point simulation results for one million point FFT are
summarized in Table III, where execution time for smaller
FFT sizes is given in Fig.6. SHE-F configuration achieves
22× speedup compared to the fastest single-chip Virtex
Ultrascale FPGA implementation in [21]. �e speed-up of
SHE-F drops to 2.57× – which still represents a significant
improvement – when compared to [4] where 12 FPGAs are
utilized with parallel processing. Although this parallel FPGA
baseline does not report energy, only using the static power
consumption of given FPGAs (8 Virtex-4 LX60 and 4 Virtex-4
LX80), we estimate 3.71 J per 1M-point FFT operation, which
is excessively high compared to CRAFFT implementations
(Table III). As shown in Fig.6, the execution time benefit
persist for smaller FFT sizes, as well, however, not so much
at the other end of the spectrum, for very small FFT. �is
is because our execution time overheads such as twiddle
distribution and tile communication become more dominant,
yet CRAFFT still retains a feasible execution time.
Fig.8 provides the energy breakdown of different opera-

tions. We observe that addition and multiplication operations
dominate the overall energy consumption. As expected, in the
STT-based technologies, a significant portion of the energy
is spent on preset operation.
We next analyze the accuracy in terms of Signal-to-

�antization-Noise Ratio (SQNR). SQNR represents the
logarithmic ratio of ideal FFT of the signal to error resulting
from quantization:

SQNR (dB) = 10 log
10

(

E{|Xoriginal|
2}

E{|Xquantized −Xoriginal|2}

)

(5)

Here E depicts expectation; Xoriginal and Xquantized, the
ideal case and the hardware implementation, respectively.
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Fig. 7. (a) SQNR vs. twiddle factor bit size (q); (b) Execution time vs. q for
three different FFT sizes.

Using 16-bit signed twiddle factors, we obtain an SQNR of
90.6dB compared to the standard double precision implemen-
tation of MATLAB. Fig. 7(a) and 7(b) capture the effect of
twiddle factor bit size, q, considering different FFT sizes.
�e effect of q is somehow limited due to the fixed 16-
bit input size, however, it can improve SQNR at expense of
increased execution time as well as energy consumption up to
a saturation point. �is is because input bit size is fixed (6dB
per bit, 96dB for 16 bits). However, FFT SQNR can slightly
exceed 96 dB because we increase the bit size in each stage
and each bu�erfly introduces a small amount of bit growth.
We conclude the evaluation with a feasibility analysis of

the proof-of-concept floating-point implementation. Table IV
compares our results to single-precision FPGA and ASIC
implementations from the literature for different FFT sizes.
For one million point FFT, we observe that the SHE-F
configuration achieves 3.2× speedup with 1.93× more energy
consumption. �is result still points to a great potential,
as our current design, tightly tailored for fixed-point FFT,
does not optimize floating-point operations. Still, CRAFFT’s
energy-delay product is 1.66× lower in this case. �is single-
precision implementation achieves 135dB SQNR compared to
the double-precision MATLAB implementation.

V. Conclusion

In this work, we proposed CRAFFT, a spintronic Compu-
tational RAM (CRAM) based FFT accelerator, which can effi-
ciently handle ultra-high resolution FFT at scale. At the same
time, CRAFFT is fully reconfigurable to support smaller size
FFT. We covered two different MTJ based technologies with
four different configurations. While CRAFFT is optimized for
fixed-point, we also present a floating-point implementation
as an exploratory design point.
For the fixed-point case, CRAFFT is 22× and 2.57× faster

than fastest known single-chip and parallel implementations
from the literature, while consuming significantly less en-
ergy. For floating point, on the other hand, fastest CRAFFT
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TABLE IV
Floating-point FFT Comparisons

FFT Size Metric SHE-F SHE-M STT-F STT-M ASIC [2] ASIC [24] FPGA [25] FPGA [1]

4K

Time (µs) 955.72 2855.2 955.72 2855.2 21.6 - - -
�roughput (MSPS) 4.29 1.43 4.29 1.43 18.96 - - -

Energy (µJ ) 1.521 142.9 5.05 336.8 9.720 - - -
EDP (nJs) 1.45 408 4.83 961.69 0.03 - - -

16K

Time (µs) 1116.1 3336.9 1116.1 3336.9 76.9 - - 216
�roughput (MSPS) 14.68 4.91 14.68 4.91 203.1 - - -

Energy (µJ ) 7.098 666.88 23.587 1571.8 4.23 - - 6998∗

EDP (nJs) 7.92 2225.3 26.33 5.245 0.33 - - 15.12∗

64K

Time (µs) 1279.92 3836.96 1279.92 3836.96 306.3 - - 869
�roughput (MSPS) 51.20 17.08 51.20 17.08 204.05 - - -

Energy (µJ ) 32.45 3048.59 107.83 7185.59 18.29 - - 281.56∗

EDP (nJs) 41.53 11697.3 138.01 27570.7 5.6 - - 244.672∗

256K

Time (µs) 1457.6 4410.8 1457.6 4410.8 1285.4 3636.8 - 3939
�roughput (MSPS) 179.85 59.43 179.85 59.43 194.49 - - -

Energy (µJ ) 146.02 13718.65 485.22 32335.01 78.67 1316.5 - 1276.2∗

EDP (nJs) 212.83 60510.1 707.25 142623.4 101 4787.84 - 5027.1∗

1M

Time (µs) 1690.5 5279.5 1690.5 5279.5 5407.5 17790 - 13971
�roughput (MSPS) 620.267 198.612 620.267 198.612 184.96 - 457 -

Energy (µJ ) 648.96 60971.8 2156.55 143711.8 336.3 6439.98 - 4526∗

EDP (nJs) 1097.1 321902.7 3645.7 758731.3 1820 114567 - 63241∗

4M

Time (µs) 2144.6 7327.9 2144.6 7327.9 - - - -
�roughput (MSPS) 1955.70 572.37 1955.70 572.37 - - 217 -

Energy (µJ ) 2855.4 268276.1 9488.8 632333.2 - - - -
EDP (nJs) 6123.9 1965906 20350.3 4633687 - - - -

∗Estimated conservatively only using static power consumption of the given FPGAs as the actual figure is not reported.
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Fig. 8. Energy breakdown of fixed-point and floating-point FFT.

configuration achieves 3.2× speedup while consuming 1.93×
more energy than the fastest ASIC implementation from the
literature. Overall, this unoptimized CRAFFT configuration
still achieves 1.66× more energy efficiency (EDP).
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