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Abstract. Let P denote the set of primes. For a fixed dimension d, Cook—
Magyar—Titichetrakun, Tao—Ziegler and Fox—Zhao independently proved that any
subset of positive relative density of P? contains an arbitrary linear configuration.
In this paper, we prove that there exists such configuration with the step being a
shifted prime (prime minus 1 or plus 1).

1. Introduction

1.1. History and statement of the result. For a set A C Z%, we
define its upper density by d(A) = limsupy_, ‘Am][\l,;mdl. We say A is
dense if d(A) > 0. The celebrated Szemerédi theorem [16] states that any
dense subset of the integers must contain arbitrarily long arithmetic pro-
gressions. After Furstenberg’s [8] ergodic theoretic proof of this result ap-
peared, many far-reaching generalizations have been obtained. For example,
Furstenberg—Katznelson [9] proved a multidimensional generalization of Sze-
merédi’s theorem, namely that for any vectors hy, ..., h; € Z%, any dense sub-
set of Z¢ contains a configuration of the form {a +rhy,...,a+rh;} for some
a € Z* and r € Z nonzero. Bergelson-Leibman [2] generalized Furstenberg-
Katznelson’s result to polynomial configurations. That is to say: Given
vectors hy,...,h; € Z* and polynomials Pi,. .., P; € Z[z] without constant
terms, any dense subset of Z¢ must contain a configuration of the form
{a+ Pi(r)hy,...,a+ Pi(r)h;} for some a € Z¢ and r € Z nonzero.
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2 A.N.LE and T. H. LE

In [6] and [7], Frantzikinakis—-Host—Kra showed that the “step” r in the
theorems of Furstenberg-Katznelson and Bergelson-Leibman can be taken
to be a shifted prime, i.e. a number of the form p — 1 where p is a prime!,
using what we now term the comparison method. These results were also
proved independently by Wooley—Ziegler [20] (in the polynomial case) and
Bergelson-Leibman-Ziegler [3] (in the multidimensional case).

Let P denote the set of primes. For a set A C P%, we define its rela-

tive upper density by dpa(A) = limsupy_, o ||7;4dr;][[11’]]\g]dd||. We say A is dense

in P4 if dpa(A) > 0. The Green-Tao theorem [10] states that any dense
subset of P must contain an arbitrarily long arithmetic progression. Tao—
Ziegler [17] generalized this to polynomial configurations, namely any dense
subset of P must contain a configuration {a+ Pi(r),...,a+ P(r)} for
some a,r € Z,r # 0, where Py,..., P, € Z[z] are given polynomials with-
out constant terms. Regarding multidimensional configurations, Cook—
Magyar—Titichetrakun [4] and Tao—Ziegler [18] independently proved a prime
version of the Furstenberg—Katznelson theorem. That is to say for any
hi,ha, ..., hy € Z%, any dense subset of P¢ must contain a configuration
{a +rhy,a+7ha,...,a+rhy} for some a € Z% and r € Z nonzero. Shortly
after, Fox~Zhao [5] came up with a very short proof of the same result.
Tao—Ziegler and Fox—Zhao’s proofs rely on the program of counting linear
configurations in the primes by Green, Tao and Ziegler [11,13,14]. In con-
trast, Cook—Magyar—Titichetrakun’s [4] proof uses a hypergraph removal
lemma for weighted hypergraphs.

In [15], Wolf and the second author “completed the square” by proving a
hybrid of Tao—Ziegler [17] and Wooley—Ziegler’s [20] results, namely that in
polynomial configurations {a + Pi(r),...,a+ Pi(r)} in dense subsets of the
primes, one can require the step r to be of the form p — 1 (or p + 1), where
p is prime. Their proof relies on the comparison method of Frantzikinakis—
Host—Kra. In this paper, we complete another square by showing that the
step r in the multidimensional result of Cook—Magyar—Titichetrakun, Tao—
Ziegler and Fox—Zhao can also be taken to be of the form p—1 or p+ 1. To
be precise, we will prove the following:

THEOREM 1.1. Let A C P? be of positive relative upper density. Then for
every hy,. .., hy € Z%, there exists a € Z¢ and p € P such that a+ (p—1)hy,
..y a+ (p—1)hy € A. The same is true if we replaced p — 1 by p + 1.

In fact, we are able to find a lower bound for the number of such config-
urations. Again, simple examples show that P — 1 and P + 1 are the only
translates of the primes having this property.

! The same result is true with p + 1 in place of p — 1. Simple counterexamples show that these
are the only translates of the primes enjoying this property.
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MULTIDIMENSIONAL CONFIGURATIONS IN THE PRIMES 3

1.2. Proof strategy. In [15], the authors used Tao—Ziegler’s theorem
on polynomial configurations in the primes as a black box and employed
Frantzikinakis—Host—Kra’s comparison method. In the current situation,
our implementation of the comparison method is less straightforward due
to different kinds of averages being considered. Our proof relies on Tao—
Ziegler’s [18] weighted Furstenberg correspondence principle, which we now
recall. With the setup as in Theorem 1.1, Tao and Ziegler constructed a
measure preserving system (X, B, u, (Th)peze) and a set E € B such that for
m € N, the expression

(1) (T, EO - N T, E)

essentially captures the density of homothetic copies of {hi,...,ht} in A.
The existence of m that makes (1) positive is then guaranteed by the
Furstenberg—Katznelson theorem [9]. The whole idea is reminiscent of that of
Furstenberg [8] when proving Szemerédi’s theorem, in which he constructed
a system and a set arising from a dense subset of Z (instead of P%).

To show the step of the configurations found in [18] can be restricted
to shifted primes, one is tempted to use the Franzikinakis—Host-Kra’s com-
parison method. However, this approach does not produce configurations
as desired. In contrast to the measure built in [8], the measure in [18] con-
tains an extra average on a parameter r (see Section 2.4). Hence with this
approach, we end up with configurations of the form

(2) a+mrhy, ..., a+mrhg

with m = p — 1 for some prime p and some r € Z which we have no control
of. The appearance of r arises from the use of Varnavides’ trick [19].

Instead, to prove Theorem 1.1, we first use Furstenberg and Katznelson’s
theorem to fix an m that makes (1) positive. Only after that, the compari-
son method is implemented, taking advantage of the additional average. As
a result, we can obtain configurations as (2) with r» = (p — 1)/m for some
prime p. This produces the desired result.

REMARK 1.2. We remark that Fox-Zhao’s proof [5] also uses Varna-
vides’ trick. While their proof is very simple, the number of configurations
it provides is too small for our purpose. Therefore, we have to resort to the
methods of Tao—Ziegler [18], and this shows that the results in [18] are not
completely superseded by [5].

The detailed proof will be presented in Section 3 contingent upon Propo-
sition 3.1, which is proved in Section 4. In the next section, we set up the
notation and necessary background.
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4 A.N.LE and T. H. LE

2. Preliminaries

2.1. Notations. For N € N, let [N] denote the set {1,2,...,N}. For
a finite set S and a function f: S — R, let E,csf(n) denote the average
18] 2mes £ ().

For two functions f,g: N — R, by writing f(n) < g(n), we mean there
is a constant ¢ > 0 such that |f(n)| < cg(n) for all n € N.

Let 0p—00(1) or o(1) denote a function that goes to 0 as n tends to
infinity.

Let w, be a function growing slowly with n (to be determined later).
Then we define

W, = H p.

p<wn,pEP

For —W,, < b < W, coprime to W,,, define the W-tricked von Mangoldt
function as

(W)
Wy

where A’ is the modified von Mangoldt function

Ame(m) = A,(an + b)

N (m) = logm ifmeP
0 otherwise.

2.2. Furstenberg Z%-system. Let X =22 ={B:B CZ%. Let B
be the o-algebra on X which is generated by basic cylinder sets {B € X :
b € B} for some b € Z%. This space has an Z%-action (T},)pecz¢ defined by
T,B =B +hforall heZand B € X. Then (X, B, (T},)peze) is a topolog-
ical Z?-system, which we call the Furstenberg Z%system.

2.3. The Furstenberg—Katznelson theorem. To provide a uniform
lower bound for the number of desired configurations, we will utilize the fol-
lowing uniform version of the Furstenberg—Katznelson theorem by Bergelson,
Host, McCutcheon and Parreau.

THEOREM 2.1 [1, Theorem 2.1(ii)]. For any k and for any 6 > 0, there
exists a constant c¢(9,k) > 0 depending only on ¢ and k such that the follow-
ing holds. For any k commuting measure preserving transformations 11, ...,
Ty of a probability measure space (X,B,u) and any A € B with u(A) =74,
there exists a positive integer n such that p(Ty "AN---NT."A) > c(0,k).

2.4. Summary of Tao and Ziegler’s construction. Our proof re-
lies heavily on the proof of Tao and Ziegler [18]. Since many detailed con-
structions in that proof will be used, we summarize them here for the con-
venience.
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From now on we fix a dimension d, as well as a dense subset A C P?.
There exists a d > 0 and a sequence N,, going to infinity as n — oo such that

|4n] > 8P N[N

where A, = AN [Nn]d. By deleting a small number of elements from A,
(and reducing § accordingly), we may assume A, € [§'N,, (1 — §')N,]? for
some 0 < ¢’ < 1/2. Note that in [18], the authors only removed the primes
in [0,0'N,]. The reason for this removal is to make sure when n is large
enough, all primes in A,, are coprime to W,,. Then they used the pigeonhole
principle to choose by, ..., by satisfying (6) later. Here, for our purpose, we
also delete the primes in [(1 — ¢')N,, N,]. It is because later, we will need
to shift the variable a in A,,. This deletion makes sure the shift does not
move a out of [INV,].

Let w, < logloglog N,, be a sufficiently slowly growing function which
will be chosen later. Define W,, = Hp<wn,p€73p as in Section 2.1. For —W,, <

bi, ..., by < W, coprime to W,,, denote b = (by,...,by) € Z%. Define N/ =
| N, /Wy, | and

(3) Al ={a€e[N)": Waha+be A,}

Let M,, = o(NN},) be a sequence of natural numbers. For a € A/, and r €
[M,], let Byypn=1{b€Z:a+rbe Al}. For finite set Q2 C Z% and n € N,
define a measure pq , on the Furstenberg Z%-system X by

d
pan = Eaenrja Brepar, )98, ... H H Aw, b, (a; + cir)

=1 CVLEQVL
where ; is the projection of Q on the i-th coordinate, a = (a1, as,...,aq)
and ¢ is the delta mass, i.e.
1 itBeS
4 0p(S) =
) B(5) {O otherwise

for any B C Z% and S C X. Let E be the basic cylinder set
E={Be€X:0z € B}
Then for every hi,...,h; € Z%, by definition of the measure HQ,n, one has
(5) /LQ,n(ThlE n---N Tth) =
k d
Eae[]\md ETE[MH] H 1A§z (CL + Thj) H H Amei(ai + CZ'T)
j=1 i=1¢,€Q;
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6 A.N.LE and T. H. LE

In [18], it is shown that we can choose wy, b1, ..., by and M, such that
Aw, b, for 1 <i < d satisfy the linear forms condition (see Proposition 2.2
below) and

(6) lim Eae N’]d 1A’ HAme al = > 4.

n—oo
Then we define a measure 1 on X by

(7) = p-lim (p-lim g gja )

l—oo0 M—00

where p-lim is a fixed Banach limit functional, i.e. a linear functional ex-
tending the standard limit functional lim on convergent sequences such that

(8) liminf z,, < p-limx, < limsup z,,.
n—00 n—00 n—00

It is easy to see that the measure u is well-defined and is a probability
measure on (X, 3). The crucial point is that Tao and Ziegler used the lin-
ear forms condition to prove y is invariant under T}, for all h € Z¢ and to
prove the compatibility property ([18, Proposition 2.7]). For hy, ..., h; € Z9,

let ©; be the projection of {hy,...,h;} to j-th coordinate and 2 = H;l:l Q
By definition,

HQmn = B{hy,... .hi},n-

The compatibility property says that if we have € = H’;Zl Q) such that
Q; C Q; for all 1 < j < d, then

/LQ,n(ThlE N---N Tth) = MQ’,n(ThlE MN---N Tth) + 0(1)
In other words,
(9) ,U/Q/,n(ThlE Nn---NTy E) = :U’{hl,...,hk},n(TmE N---NTy E)+o(1)
as long as €' of the form H?:l Q) and {h,..., by} C .

With the measure u, one gets (X, B, i, (T )nheze) is a measure preserving
Z%-system. From (6) and (9),

d
(10)  p(E) = p;)lim poyn(E) = p-_>11m Eaciviy1ag (a) [ ] Aw, . (ai) = 6.

Acta Mathematica Hungarica 164, 2021



MULTIDIMENSIONAL CONFIGURATIONS IN THE PRIMES 7

2.5. Linear forms condition. As mentioned earlier, the construction
of the measure p relies on the following property of W-tricked von Mangoldt
functions called the linear forms condition.

PROPOSITION 2.2. Let d > 1 be a fized dimension. Let N, be a sequence
of natural numbers going to infinity as n — oco. Then we can choose se-
quences M, = o(N},), H, = o(M,) and w, such that the following is true:

Let m,ky,...,kqg > 0 be natural numbers. For 1 <1 <d, 1 <75 <k, let
Gi 74+ 5 7, be linear forms with integer coefficients and pairwise linearly
independent. One has

d k;

(11) Eaeinyye Ererr, £, [ 1] visn(@i5(am) = 1+ 0(1)
i=1j=1

for all subintervals L; , of [—My, M,] of length greater than H, and v; ;, =
Aw, p for some (b,W,) = 1.

REMARK 2.3. The linear forms condition found in [18, Proposition 2.5]
is slightly weaker than the version presented here in the sense that it is
restricted to linear forms of the form ¢; j(a,r) = a; + 1 ;(r) for some lin-
ear forms 1; j: Z™ — Z where a = (ay,...,aq). The generalization here is
needed for Proposition 3.1 and its proof is identical to [18, Proof of Theorem
1.4]. We summarize below for completeness.

ProoF. First note that the collection of (m, k1, ..., kg, ¢; ;) is countable.
Fix an arbitrary enumeration of them. By [12, Theorem 5.1], for M € N,
there exists w = w™) and n™) such that

d ki
: 1
(12) Eaev 1 Ererty, £, [ [ 11 #n(@is(am) = 1) <
i=1j=1
for the first M choices of m, k1, ..., kq, ¢;; as long as L;, are subintervals

of [N’ /M, N’ /M] of length greater than N/ /M? and n > nM),

We can choose n™) so that the sequence n) is increasing in M.
For M € N and n®™) < n < nM+D et w,, = w®) | M, = N/ /M and H,, =
N! /M?. These choices satisfy the conclusion of Proposition 2.2. [

2.6. Other tools. Similar to [15], we need the following elementary
lemmas.

LEMMA 2.4 (Cauchy—Schwarz). Let A, B be finite sets, f,F be functions
on A and g be a function on A x B. If |f| < F pointwise. Then

|EaeA,ber(a)9(a7 b) ‘ ? < EueaF'(a) x EqeaF(a)|Evepy(a, b)‘2
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8 A.N.LE and T. H. LE

LEMMA 2.5 (van der Corput). Let (zy)nez be complez-valued sequence
satisfying x, = 0 outside of interval [N]. Then

|Ene[zv]93n|2 K Ep) <« NEne[NJTnTnth -

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 conditional on a proposition whose
proof will be presented in the next section. Let the setup be as in Section 2.4.
Fix hi, ho, ..., h € Z¢. By (7), for every m € N, one has

(13) p(Ton, EN-- N T, E) = p-limp-lim gy ja (T, EO- - 0 T E).

=00 m—00
By (9) (compatibility property), if {mhy,...,mhs} C [~1,1]¢, then

p-lim ,u,[_l’”dm(TmhlE N---N Tmth)
N—00
= p-lim ,Uf{mhl,...,mhk},n(TmmE N---N Tmth) .
N—00

Therefore, we have
(14)
,U,(TmhlE n---N Tmth) = p-lim N{mhl,...,mhk},n(TmhlE n---N Tmth) .

n—oo

Since (X, B, t, (T},) heze) is a measure preserving Z?-system and p(E) = 6 >0,
Theorem 2.1 implies that there exist ¢(d, k) > 0 and m € N such that

(15) M(TmhlE n---N Tmth) > 6(5, k)
By (14),

p-lim M{mhl,...,mhk},n(TmmE M- Tmth) > 0(6, k)

n—oo

This means

(16) tegmbnmii b (T B OV -0 T, E) > (6, k) — o(1)
By (5), the inequality (16) implies
(17)
k d
Eacinvi 14 Erepa, ] H Las (@ +rmhy) H H Aw, b, (a; + ¢ir) > c(d,k) —o(1)
j=1 i=1c, e

where Q; C Z is the projection of the set Q = {mhy,...,mhy} on the i-th
coordinate.
The following proposition is our version of the comparison method.
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PRroPOSITION 3.1. Let everything be as before. Then

k
(18) ETE[Mn] (Awml(mT') - 1) Eae[Nﬂd H 1‘,4;1 (CL + Tmhj)
j=1

d
x [T TT Aw (@i +cir) = o(1).

=1 Cq EQL

Assume we already had Proposition 3.1. Then (18) together with (17)
imply that

k d

(19) ETE[MH] Eae[Né]dAWnJ(mT) H 1A§z (a + Tmhj) H H AWn,bi(ai + Cﬂ")
j=1 i=1c¢;€Q;

> ¢(0,k) —o(1).

Hence for any sufficiently large n, the set A/, contains a configuration of the
form a+rmhyq, ..., a+rmhy with W,mr +1 € P. This is equivalent to say-
ing that A,, contains W,a + b+ W, mrh; for 1 < j <k with W,mr € P—1.
This finishes our proof of Theorem 1.1 for the step being p — 1 for some
p € P. For the case p + 1, simply replace Ay, 1(mr) —1 by Aw, —1(mr) —1
in Proposition 3.1. The rest of the proof remains the same.

In fact, (19) gives us a lower bound for number of the pairs (@, p) € [N,]?
X [WymM, + 1] satisfying p € P and a+ (p—1)h; € A for all 1 < j <k.
This number is not less than the number of pairs (a,r) € [N/]? x [M,] such
that W,mr +1 € P and a +mrh; € Aj,. By (19), the latter is greater than
(20)

1d 1+ ‘?,1 Q,
(c(d, k) —o(1)) x MuNo™ (M YR
log(WymM,,+1)log>i=1 %41 N, \@(Wh)

Since N} = | N,/W,,| and W,, = o(log(M,,)), we get (20) is equal to

1—d+>% |19
MnNg Wn +21:1 ‘ ‘

21 c(0,k) —o(1)) x a X d :
(21) (c(8,k) —o(1)) log M, log=izt 1% N, (W) 12 1]

4. Proof of Proposition 3.1

The rest of our paper is devoted to proving Proposition 3.1. The strategy
is similar to [15, Proposition 1] which in turn is inspired by the method in
[6,7]. The idea here is that after a finite number of applications of Cauchy—
Schwarz and van der Corput, the left hand side of (18) is bounded by an
expression consisting entirely of W-tricked von Mangoldt functions. This
expression then tends to zero by the linear forms condition.
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10 A.N.LE and T. H. LE

4.1. A toy example. To illustrate the ideas of the proof, we first work
with the following special case. The proof of the general case is not much
different.

In this model case, we take d =2, hy = (1,1) and hy = (2,1). Then the
projection of ©Q = {hy, ho} onto the first coordinate is 2y = {1,2} and onto
the second coordinate is Q9 = {1}. We need to show:

(22) Ere[Mn] (AW71(TTLT) — 1)E(a1’a2)€[NTlJ2 1A/n((a1 +mr,as + mr))
x 14 ((ay + 2mr,az + mr))

XAwp, (a1 +mr)Awp, (a1 + 2mr) Ay, (ag + mr) = o(1).

From now on, for simplicity, we write W instead of W,,. Likewise, we
will assume m = 1 since doing so significantly simplifies the notation while
not affecting the proof.

For n € N and a = (a1, az) € Z?, define following functions:

o v(n) = Aw,i(n).

o vy 1(a) = Awyp, (a1) and vy 2(a) = Awyp, (az).

o 151(a) = Awyp, (ar) and v 2(a) = 1.

e 0i(a) = v11(a)vr 2(a).

[ Gg(a) = 1/2,1(&)1/272(60.

Note that the way we define v; ; (4,7 = 1,2) depends on the set {h1, ha}.
Since the second coordinate of ho coincides with the second coordinate of hq,
we define 19 2(a) = 1. On the other hand, if they did not coincide, we would
define 19 9(a) = Awyp, (az).

The left hand side of (22) becomes

2
(23) ETG[MH](V(T) - 1)Ea€[N;1]2 H 114;1 (CL + rhj)Hj(a + Thj).
j=1

As discussed in Section 2.4, the way we truncate A, (hence A})) allows us
to shift @ 4+ rh; to a. Hence (23) is equal to

(24)

EaE[N;P 1‘,4;1 (a)@l(a) ETE[MH} (l/(?”) — 1) 1‘,4;1 (a+ (hg - hl)T’)eg(a-i- (hg - hl)T).

By Cauchy—Schwarz inequality, the square of previous expression is at most
(25) Eaeing)21a; (a)01(a) Boe n, 16214, ()01 (a)
x| Eyepar, (0(r) = D1 (a + (ho — ha)r)fa(a + (ho — ha)r)|?
Observe that
Eaeinig2 1a, (a)b1(a) < Eqepny201(a) = 14 o(1)
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where the last equality follows from the linear forms condition. Hence up to
a factor of 1+ o(1), (25) is at most

(26) Eqern:)201(a)| Erepas, (v(r) — 1)1ag (at (ha — ha)r)8a(a+ (ho —hy)r)|?

By van der Corput’s lemma, the previous expression is at most (up to a
multiplicative constant)

(27) Eaein;1201(0) Ereiag, ] s, <ar, (V(r) = D(v(r + 51) — 1)
><1A;1 (a + (hQ - hl)T)GQ(a + (hQ — hl)T)
XlA;l(a + (hQ — hl)T + (hQ — hl)Sl)eg(a + (hQ — hl)T + (hQ — hl)sl).

By shifting a + (he — h1)r to a, the previous expression is equal to

(28) Eae[Né]zlA%(a)eg(a) 1A;1(a + (hg — hl)sl)eg(a + (hg — hl)sl)
X IE3re[Mn],|sl|<Mn(V(7”) — )(v(r+s1) = 1)01(a+ (hy — ho)r).

We now move everything that does not depend on r outside of the average
on r. Extra caution should be made here. At first glance, we may leave
01(a+ (hy — ho)r) inside since it seemingly depends on r. However, as hy —
hy = (_17 0)

(29) O1(a+ (h1 — ho)r) = vi1(a1 — r)vi2(az).

Because v 2(az) does not depend on r, we move it outside of the average on
r. Thus (28) is equal to

(30) Eueinv:2lar (a)f2(a)lar (a+ (ha — hi)s1)02(a + (ha — h1)s1)v12(az2)
X Erepar, ) s <, V(1) = D(w(r +s1) = Draa(ar — 7).

By Cauchy—Schwarz inequality and van der Corput’s lemma again, the
square of above equation is at most (up to a multiplicative constant)

(31) Eag[nij2re[Mo)fs| <M 5ol < |0, V(1) = D) ((r + s1) = 1)(v(r + s2) — 1)

X (v(r+s1+s2)—1)vaa(ar)ve1(ar +s1)vr2(az)vii(ar —r)vi (e —r— s2).

Expanding out the last expression, we see that it is equal to a sum and
difference of 16 averages of the form (11). Since no two forms in (31) are
linearly dependent, each of these 16 averages is equal to 14 0(1) by the linear
forms condition. Therefore (31) is equal to o(1). This finishes the proof of
the special case.
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12 A.N.LE and T. H. LE
4.2. The general case. We now prove Proposition 3.1 in its full gen-
erality. Define v = Ay as before. For 1 <j <k and 1 <i <d, define
Vjg: 7% — R by
AWb.(ai) if hi; #h; VI<Il<j
32 .. — sV 75 ’ —
(32) vji(a) {1 otherwise.

Then define 6; = Hl 1 Vi
We need to show

k
(33) Ere[Mn}(V(T) — 1)Ea€[N;]d H 1A§z (a + rhj)Hj(a + Thj) = 0(1).
j=1

As in the toy example, we perform the following steps:
(1) Shift a.
(2) Move everything that does not depend on r outside of the average

.
(3) Apply Cauchy—Schwarz inequality.

(4) Bound 14 6; by 6;.

(5) Apply van der Corput’s lemma.

After k iterations, we get the following expression:

(34) Eoe[N?]4,re (M), |51]< M., 51| < Mo H <V (7’ + Z Sz> — 1>

RC[K] IER
k

d
X H ]:[ l_‘[ v, Z< a; + (h],z - hk,i)r + Z(h]’l — hl’i)sl>

j=1i leR

where R;; = {1 <1 <k:hy;# hj;}. Again, this expression is a sum and
difference of 22" averages of the form (11). In order to invoke the linear
forms condition, it suffices to verify that no two forms appearing in (34) are
linearly dependent.

Firstly, those forms appearing in v are independent from one another
because the appearance of s, so, ..., s in each form is corresponding to a
subset R of [k]. They are also independent from the forms in v;; because a;
appears in v;;, but not in v.

Secondly, for i; # is and any ji, jo (not necessarily distinct), the forms
appearing in v;, ;, and v}, ;, are independent because a;, appears in vj, ;,
while a;, appears in v}, ;,.

For a fixed 4, if (h;; — hgi)r = (hji — hgi)r for some [ < j, then hy; =
hj. By the way we define v;;, this would force v;; = 1. Hence if v;; # 1,
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(hii — hgi)r # (hji — hgi)r. This implies the forms appearing in v;; are
independent from the forms appearing in v;; for all [ < j.

And lastly, for fixed ¢ and j, the forms appearing in v;; are independent
from one another because each form is in one-to-one correspondence with a
subset of R;;. [
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