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Abstract. Let P denote the set of primes. For a fixed dimension d, Cook–
Magyar–Titichetrakun, Tao–Ziegler and Fox–Zhao independently proved that any
subset of positive relative density of Pd contains an arbitrary linear configuration.
In this paper, we prove that there exists such configuration with the step being a
shifted prime (prime minus 1 or plus 1).

1. Introduction

1.1. History and statement of the result. For a set A ⊂ Z
d, we

define its upper density by d(A) = lim supN→∞
|A∩[1,N ]d|

Nd . We say A is
dense if d(A) > 0. The celebrated Szemerédi theorem [16] states that any
dense subset of the integers must contain arbitrarily long arithmetic pro-
gressions. After Furstenberg’s [8] ergodic theoretic proof of this result ap-
peared, many far-reaching generalizations have been obtained. For example,
Furstenberg–Katznelson [9] proved a multidimensional generalization of Sze-
merédi’s theorem, namely that for any vectors h1, . . . , ht ∈ Z

d, any dense sub-
set of Zd contains a configuration of the form {a+ rh1, . . . , a+ rht} for some
a ∈ Z

d and r ∈ Z nonzero. Bergelson–Leibman [2] generalized Furstenberg–
Katznelson’s result to polynomial configurations. That is to say: Given
vectors h1, . . . , ht ∈ Z

d and polynomials P1, . . . , Pt ∈ Z[x] without constant
terms, any dense subset of Z

d must contain a configuration of the form
{a+ P1(r)h1, . . . , a+ Pt(r)ht} for some a ∈ Z

d and r ∈ Z nonzero.
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In [6] and [7], Frantzikinakis–Host–Kra showed that the “step” r in the
theorems of Furstenberg–Katznelson and Bergelson–Leibman can be taken
to be a shifted prime, i.e. a number of the form p− 1 where p is a prime1,
using what we now term the comparison method. These results were also
proved independently by Wooley–Ziegler [20] (in the polynomial case) and
Bergelson–Leibman–Ziegler [3] (in the multidimensional case).

Let P denote the set of primes. For a set A ⊂ Pd, we define its rela-
tive upper density by dPd(A) = lim supN→∞

|A∩[1,N ]d|
|Pd∩[1,N ]d| . We say A is dense

in Pd if dPd(A) > 0. The Green–Tao theorem [10] states that any dense
subset of P must contain an arbitrarily long arithmetic progression. Tao–
Ziegler [17] generalized this to polynomial configurations, namely any dense
subset of P must contain a configuration {a+ P1(r), . . . , a+ Pt(r)} for
some a, r ∈ Z, r �= 0, where P1, . . . , Pt ∈ Z[x] are given polynomials with-
out constant terms. Regarding multidimensional configurations, Cook–
Magyar–Titichetrakun [4] and Tao–Ziegler [18] independently proved a prime
version of the Furstenberg–Katznelson theorem. That is to say for any
h1, h2, . . . , hk ∈ Z

d, any dense subset of Pd must contain a configuration
{a+ rh1, a+ rh2, . . . , a + rhk} for some a ∈ Z

d and r ∈ Z nonzero. Shortly
after, Fox–Zhao [5] came up with a very short proof of the same result.
Tao–Ziegler and Fox–Zhao’s proofs rely on the program of counting linear
configurations in the primes by Green, Tao and Ziegler [11,13,14]. In con-
trast, Cook–Magyar–Titichetrakun’s [4] proof uses a hypergraph removal
lemma for weighted hypergraphs.

In [15], Wolf and the second author “completed the square” by proving a
hybrid of Tao–Ziegler [17] and Wooley–Ziegler’s [20] results, namely that in
polynomial configurations {a+ P1(r), . . . , a+ Pt(r)} in dense subsets of the
primes, one can require the step r to be of the form p− 1 (or p+ 1), where
p is prime. Their proof relies on the comparison method of Frantzikinakis–
Host–Kra. In this paper, we complete another square by showing that the
step r in the multidimensional result of Cook–Magyar–Titichetrakun, Tao–
Ziegler and Fox–Zhao can also be taken to be of the form p− 1 or p+ 1. To
be precise, we will prove the following:

Theorem 1.1. Let A ⊆ Pd be of positive relative upper density. Then for

every h1, . . . , hk ∈ Z
d, there exists a ∈ Z

d and p ∈ P such that a+(p−1)h1,
. . . , a+ (p− 1)hk ∈ A. The same is true if we replaced p− 1 by p+ 1.

In fact, we are able to find a lower bound for the number of such config-
urations. Again, simple examples show that P − 1 and P + 1 are the only
translates of the primes having this property.

1 The same result is true with p+ 1 in place of p− 1. Simple counterexamples show that these
are the only translates of the primes enjoying this property.
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1.2. Proof strategy. In [15], the authors used Tao–Ziegler’s theorem
on polynomial configurations in the primes as a black box and employed
Frantzikinakis–Host–Kra’s comparison method. In the current situation,
our implementation of the comparison method is less straightforward due
to different kinds of averages being considered. Our proof relies on Tao–
Ziegler’s [18] weighted Furstenberg correspondence principle, which we now
recall. With the setup as in Theorem 1.1, Tao and Ziegler constructed a
measure preserving system (X,B, μ, (Th)h∈Zd) and a set E ∈ B such that for
m ∈ N, the expression

(1) μ
(
Tmh1

E ∩ · · · ∩ Tmhk
E
)

essentially captures the density of homothetic copies of {h1, . . . , hk} in A.
The existence of m that makes (1) positive is then guaranteed by the
Furstenberg–Katznelson theorem [9]. The whole idea is reminiscent of that of
Furstenberg [8] when proving Szemerédi’s theorem, in which he constructed
a system and a set arising from a dense subset of Z (instead of Pd).

To show the step of the configurations found in [18] can be restricted
to shifted primes, one is tempted to use the Franzikinakis–Host–Kra’s com-
parison method. However, this approach does not produce configurations
as desired. In contrast to the measure built in [8], the measure in [18] con-
tains an extra average on a parameter r (see Section 2.4). Hence with this
approach, we end up with configurations of the form

(2) a+mrh1, . . . , a+mrhk

with m = p− 1 for some prime p and some r ∈ Z which we have no control
of. The appearance of r arises from the use of Varnavides’ trick [19].

Instead, to prove Theorem 1.1, we first use Furstenberg and Katznelson’s
theorem to fix an m that makes (1) positive. Only after that, the compari-
son method is implemented, taking advantage of the additional average. As
a result, we can obtain configurations as (2) with r = (p− 1)/m for some
prime p. This produces the desired result.

Remark 1.2. We remark that Fox–Zhao’s proof [5] also uses Varna-
vides’ trick. While their proof is very simple, the number of configurations
it provides is too small for our purpose. Therefore, we have to resort to the
methods of Tao–Ziegler [18], and this shows that the results in [18] are not
completely superseded by [5].

The detailed proof will be presented in Section 3 contingent upon Propo-
sition 3.1, which is proved in Section 4. In the next section, we set up the
notation and necessary background.

MULTIDIMENSIONAL CONFIGURATIONS IN THE PRIMES 3
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2. Preliminaries

2.1. Notations. For N ∈ N, let [N ] denote the set {1, 2, . . . ,N}. For
a finite set S and a function f : S → R, let En∈Sf(n) denote the average
1
|S|

∑
n∈S f(n).

For two functions f, g : N → R, by writing f(n) � g(n), we mean there
is a constant c > 0 such that |f(n)| ≤ cg(n) for all n ∈ N.

Let on→∞(1) or o(1) denote a function that goes to 0 as n tends to
infinity.

Let ωn be a function growing slowly with n (to be determined later).
Then we define

Wn =
∏

p≤ωn,p∈P

p.

For −Wn < b < Wn coprime to Wn, define the W -tricked von Mangoldt
function as

ΛWn,b(m) =
φ(Wn)
Wn

Λ′(Wnm+ b)

where Λ′ is the modified von Mangoldt function

Λ′(m) =

{
logm if m ∈ P

0 otherwise.

2.2. Furstenberg Z
d-system. Let X = 2Z

d

= {B : B ⊆ Z
d}. Let B

be the σ-algebra on X which is generated by basic cylinder sets {B ∈ X :
b ∈ B} for some b ∈ Z

d. This space has an Z
d-action (Th)h∈Zd defined by

ThB = B + h for all h ∈ Z
d and B ∈ X . Then (X,B, (Th)h∈Zd) is a topolog-

ical Zd-system, which we call the Furstenberg Z
d-system.

2.3. The Furstenberg–Katznelson theorem. To provide a uniform
lower bound for the number of desired configurations, we will utilize the fol-
lowing uniform version of the Furstenberg–Katznelson theorem by Bergelson,
Host, McCutcheon and Parreau.

Theorem 2.1 [1, Theorem 2.1(ii)]. For any k and for any δ > 0, there
exists a constant c(δ, k) > 0 depending only on δ and k such that the follow-
ing holds. For any k commuting measure preserving transformations T1, . . . ,
Tk of a probability measure space (X,B, μ) and any A ∈ B with μ(A) = δ,
there exists a positive integer n such that μ(T−n

1 A ∩ · · · ∩ T−n
k A) > c(δ, k).

2.4. Summary of Tao and Ziegler’s construction. Our proof re-
lies heavily on the proof of Tao and Ziegler [18]. Since many detailed con-
structions in that proof will be used, we summarize them here for the con-
venience.

A. N. LE and T. H. LÊ4
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From now on we fix a dimension d, as well as a dense subset A ⊆ Pd.
There exists a δ > 0 and a sequence Nn going to infinity as n → ∞ such that

|An| ≥ δ |P ∩ [Nn]|d

where An = A ∩ [Nn]d. By deleting a small number of elements from An

(and reducing δ accordingly), we may assume An ∈ [δ′Nn, (1− δ′)Nn]d for
some 0 < δ′ < 1/2. Note that in [18], the authors only removed the primes
in [0, δ′Nn]. The reason for this removal is to make sure when n is large
enough, all primes in An are coprime to Wn. Then they used the pigeonhole
principle to choose b1, . . . , bd satisfying (6) later. Here, for our purpose, we
also delete the primes in [(1− δ′)Nn,Nn]. It is because later, we will need
to shift the variable a in An. This deletion makes sure the shift does not
move a out of [Nn].

Let ωn � log log logNn be a sufficiently slowly growing function which
will be chosen later. Define Wn =

∏
p≤ωn,p∈P

p as in Section 2.1. For −Wn <

b1, . . . , bd < Wn coprime to Wn, denote b = (b1, . . . , bd) ∈ Z
d. Define N ′

n =
�Nn/Wn
 and

(3) A′
n =

{
a ∈ [N ′

n]
d : Wna+ b ∈ An

}
Let Mn = o(N ′

n) be a sequence of natural numbers. For a ∈ A′
n and r ∈

[Mn], let Ba,r,n = {b ∈ Z
d : a+ rb ∈ A′

n}. For finite set Ω ⊆ Z
d and n ∈ N,

define a measure μΩ,n on the Furstenberg Z
d-system X by

μΩ,n = Ea∈[N ′

n]d Er∈[Mn]δBa,r,n

d∏
i=1

∏
ci∈Ωi

ΛWn,bi(ai + cir)

where Ωi is the projection of Ω on the i-th coordinate, a = (a1, a2, . . . , ad)
and δ is the delta mass, i.e.

(4) δB(S) =

{
1 if B ∈ S

0 otherwise

for any B ⊂ Z
d and S ⊂ X . Let E be the basic cylinder set

E =
{
B ∈ X : 0Zd ∈ B

}
Then for every h1, . . . , hk ∈ Z

d, by definition of the measure μΩ,n, one has

μΩ,n(Th1
E ∩ · · · ∩ Thk

E) =(5)

Ea∈[N ′

n]d Er∈[Mn]

k∏
j=1

1A′

n
(a+ rhj)

d∏
i=1

∏
ci∈Ωi

ΛWn,bi(ai + cir)

MULTIDIMENSIONAL CONFIGURATIONS IN THE PRIMES 5
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In [18], it is shown that we can choose ωn, b1, . . . , bd and Mn such that
ΛWn,bi for 1 ≤ i ≤ d satisfy the linear forms condition (see Proposition 2.2
below) and

(6) lim
n→∞

Ea∈[N ′

n]d 1A′

n
(a)

d∏
i=1

ΛWn,bi(ai) ≥ δ.

Then we define a measure μ on X by

(7) μ = p-lim
l→∞

(
p-lim
n→∞

μ[−l,l]d,n
)

where p-lim is a fixed Banach limit functional, i.e. a linear functional ex-
tending the standard limit functional lim on convergent sequences such that

(8) lim inf
n→∞

xn ≤ p-lim
n→∞

xn ≤ lim sup
n→∞

xn.

It is easy to see that the measure μ is well-defined and is a probability
measure on (X,B). The crucial point is that Tao and Ziegler used the lin-
ear forms condition to prove μ is invariant under Th for all h ∈ Z

d and to
prove the compatibility property ([18, Proposition 2.7]). For h1, . . . , hk ∈ Z

d,
let Ωj be the projection of {h1, . . . , hk} to j-th coordinate and Ω =

∏d
j=1 Ωj .

By definition,

μΩ,n = μ{h1,...,hk},n.

The compatibility property says that if we have Ω′ =
∏d

j=1 Ω
′
j such that

Ωj ⊆ Ω′
j for all 1 ≤ j ≤ d, then

μΩ,n(Th1
E ∩ · · · ∩ Thk

E) = μΩ′,n(Th1
E ∩ · · · ∩ Thk

E) + o(1).

In other words,

(9) μΩ′,n(Th1
E ∩ · · · ∩ Thk

E) = μ{h1,...,hk},n(Th1
E ∩ · · · ∩ Thk

E) + o(1)

as long as Ω′ of the form
∏d

j=1 Ω
′
j and {h1, . . . , hk} ⊆ Ω′.

With the measure μ, one gets (X,B, μ, (Th)h∈Zd) is a measure preserving
Z
d-system. From (6) and (9),

(10) μ(E) = p-lim
n→∞

μ{0},n(E) = p-lim
n→∞

Ea∈[N ′

n] 1A′

n
(a)

d∏
i=1

ΛWn,bi(ai) ≥ δ.

A. N. LE and T. H. LÊ6
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2.5. Linear forms condition. As mentioned earlier, the construction
of the measure μ relies on the following property of W -tricked von Mangoldt
functions called the linear forms condition.

Proposition 2.2. Let d ≥ 1 be a fixed dimension. Let N ′
n be a sequence

of natural numbers going to infinity as n → ∞. Then we can choose se-

quences Mn = o(N ′
n), Hn = o(Mn) and ωn such that the following is true:

Let m,k1, . . . , kd ≥ 0 be natural numbers. For 1 ≤ i ≤ d, 1 ≤ j ≤ ki, let
φi,j : Zd+m → Z be linear forms with integer coefficients and pairwise linearly

independent. One has

(11) Ea∈[N ′

n]d Er∈
∏

m

j=1
Lj,n

d∏
i=1

ki∏
j=1

νi,j,n(φi,j(a, r)) = 1 + o(1)

for all subintervals Lj,n of [−Mn,Mn] of length greater than Hn and νi,j,n =
ΛWn,b for some (b,Wn) = 1.

Remark 2.3. The linear forms condition found in [18, Proposition 2.5]
is slightly weaker than the version presented here in the sense that it is
restricted to linear forms of the form φi,j(a, r) = ai + ψi,j(r) for some lin-
ear forms ψi,j : Zm → Z where a = (a1, . . . , ad). The generalization here is
needed for Proposition 3.1 and its proof is identical to [18, Proof of Theorem
1.4]. We summarize below for completeness.

Proof. First note that the collection of (m,k1, . . . , kd, φi,j) is countable.
Fix an arbitrary enumeration of them. By [12, Theorem 5.1], for M ∈ N,
there exists ω = ω(M) and n(M) such that

(12)
∣∣∣∣Ea∈[N ′

n]dEr∈
∏

m

j=1
Lj,n

d∏
i=1

ki∏
j=1

νi,j,n(φi,j(a, r))− 1
∣∣∣∣ < 1

M

for the first M choices of m, k1, . . . , kd, φi,j as long as Lj,n are subintervals
of [−N ′

n/M,N ′
n/M ] of length greater than N ′

n/M
2 and n ≥ n(M).

We can choose n(M) so that the sequence n(M) is increasing in M .
For M ∈ N and n(M) ≤ n < n(M+1), let ωn = ω(M), Mn = N ′

n/M and Hn =
N ′

n/M
2. These choices satisfy the conclusion of Proposition 2.2. �

2.6. Other tools. Similar to [15], we need the following elementary
lemmas.

Lemma 2.4 (Cauchy–Schwarz). Let A, B be finite sets, f,F be functions

on A and g be a function on A×B. If |f | ≤ F pointwise. Then∣∣Ea∈A,b∈Bf(a)g(a, b)
∣∣2 ≤ Ea∈AF (a)× Ea∈AF (a)|Eb∈Bg(a, b)|2

MULTIDIMENSIONAL CONFIGURATIONS IN THE PRIMES 7
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Lemma 2.5 (van der Corput). Let (xn)n∈Z be complex-valued sequence
satisfying xn = 0 outside of interval [N ]. Then

|En∈[N ]xn|
2 � E|h|<NEn∈[N ]xnxn+h .

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 conditional on a proposition whose
proof will be presented in the next section. Let the setup be as in Section 2.4.
Fix h1, h2, . . . , hk ∈ Z

d. By (7), for every m ∈ N, one has

(13) μ
(
Tmh1

E∩ · · · ∩Tmhk
E
)
= p-lim

l→∞
p-lim
n→∞

μ[−l,l]d,n(Tmh1
E∩ · · · ∩Tmhk

E).

By (9) (compatibility property), if {mh1, . . . ,mhk} ⊆ [−l, l]d, then

p-lim
n→∞

μ[−l,l]d,n
(
Tmh1

E ∩ · · · ∩ Tmhk
E
)

= p-lim
n→∞

μ{mh1,...,mhk},n

(
Tmh1

E ∩ · · · ∩ Tmhk
E
)
.

Therefore, we have
(14)
μ
(
Tmh1

E ∩ · · · ∩ Tmhk
E
)
= p-lim

n→∞
μ{mh1,...,mhk},n

(
Tmh1

E ∩ · · · ∩ Tmhk
E
)
.

Since (X,B, μ, (Th)h∈Zd) is a measure preserving Zd-system and μ(E) = δ>0,
Theorem 2.1 implies that there exist c(δ, k) > 0 and m ∈ N such that

(15) μ(Tmh1
E ∩ · · · ∩ Tmhk

E) > c(δ, k).

By (14),

p-lim
n→∞

μ{mh1,...,mhk},n

(
Tmh1

E ∩ · · · Tmhk
E
)
> c(δ, k)

This means

(16) μ{mh1,...,mhk},n

(
Tmh1

E ∩ · · · ∩ Tmhk
E
)
> c(δ, k)− o(1)

By (5), the inequality (16) implies
(17)

Ea∈[N ′

n]dEr∈[Mn]

k∏
j=1

1A′

n
(a+ rmhj)

d∏
i=1

∏
ci∈Ωi

ΛWn,bi(ai + cir) > c(δ, k)− o(1)

where Ωi ⊂ Z is the projection of the set Ω = {mh1, . . . ,mhk} on the i-th
coordinate.

The following proposition is our version of the comparison method.

A. N. LE and T. H. LÊ8
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Proposition 3.1. Let everything be as before. Then

Er∈[Mn]
(
ΛWn,1(mr)− 1

)
Ea∈[N ′

n]d

k∏
j=1

1A′

n
(a+ rmhj)(18)

×
d∏

i=1

∏
ci∈Ωi

ΛWn,bi(ai + cir) = o(1).

Assume we already had Proposition 3.1. Then (18) together with (17)
imply that

Er∈[Mn]Ea∈[N ′

n]dΛWn,1(mr)
k∏

j=1

1A′

n
(a+ rmhj)

d∏
i=1

∏
ci∈Ωi

ΛWn,bi(ai + cir)(19)

> c(δ, k)− o(1).

Hence for any sufficiently large n, the set A′
n contains a configuration of the

form a+ rmh1, . . . , a+ rmhk with Wnmr+1 ∈ P . This is equivalent to say-
ing that An contains Wna+ b+Wnmrhj for 1 ≤ j ≤ k with Wnmr ∈ P−1.
This finishes our proof of Theorem 1.1 for the step being p− 1 for some
p ∈ P . For the case p+ 1, simply replace ΛWn,1(mr)− 1 by ΛWn,−1(mr)− 1
in Proposition 3.1. The rest of the proof remains the same.

In fact, (19) gives us a lower bound for number of the pairs (ã, p) ∈ [Nn]d
× [WnmMn + 1] satisfying p ∈ P and ã+ (p− 1)hj ∈ A for all 1 ≤ j ≤ k.
This number is not less than the number of pairs (a, r) ∈ [N ′

n]
d × [Mn] such

that Wnmr + 1 ∈ P and a+mrhj ∈ A′
n. By (19), the latter is greater than

(20)

(c(δ, k)−o(1))×
MnN

′d
n

log(WnmMn+1) log
∑

d

i=1
|Ωi|Nn

×
( Wn

φ(Wn)

)1+
∑

d

i=1
|Ωi|

.

Since N ′
n = �Nn/Wn
 and Wn = o(log(Mn)), we get (20) is equal to

(21) (c(δ, k)− o(1))×
MnN

d
n

logMn log
∑

d

i=1
|Ωi|Nn

×
W

1−d+
∑

d

i=1
|Ωi|

n

φ(Wn)1+
∑

d

i=1
|Ωi|

.

4. Proof of Proposition 3.1

The rest of our paper is devoted to proving Proposition 3.1. The strategy
is similar to [15, Proposition 1] which in turn is inspired by the method in
[6,7]. The idea here is that after a finite number of applications of Cauchy–
Schwarz and van der Corput, the left hand side of (18) is bounded by an
expression consisting entirely of W -tricked von Mangoldt functions. This
expression then tends to zero by the linear forms condition.

MULTIDIMENSIONAL CONFIGURATIONS IN THE PRIMES 9
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4.1. A toy example. To illustrate the ideas of the proof, we first work
with the following special case. The proof of the general case is not much
different.

In this model case, we take d = 2, h1 = (1, 1) and h2 = (2, 1). Then the
projection of Ω = {h1, h2} onto the first coordinate is Ω1 = {1, 2} and onto
the second coordinate is Ω2 = {1}. We need to show:

Er∈[Mn](ΛW,1(mr)− 1)E(a1,a2)∈[N ′

n]2 1A′

n
((a1 +mr, a2 +mr))(22)

×1A′

n
((a1 + 2mr, a2 +mr))

×ΛW,b1(a1 +mr)ΛW,b1(a1 + 2mr)ΛW,b2(a2 +mr) = o(1).

From now on, for simplicity, we write W instead of Wn. Likewise, we
will assume m = 1 since doing so significantly simplifies the notation while
not affecting the proof.

For n ∈ N and a = (a1, a2) ∈ Z
2, define following functions:

• ν(n) = ΛW,1(n).
• ν1,1(a) = ΛW,b1(a1) and ν1,2(a) = ΛW,b2(a2).
• ν2,1(a) = ΛW,b1(a1) and ν2,2(a) = 1.
• θ1(a) = ν1,1(a)ν1,2(a).
• θ2(a) = ν2,1(a)ν2,2(a).
Note that the way we define νi,j (i, j = 1, 2) depends on the set {h1, h2}.

Since the second coordinate of h2 coincides with the second coordinate of h1,
we define ν2,2(a) = 1. On the other hand, if they did not coincide, we would
define ν2,2(a) = ΛW,b2(a2).

The left hand side of (22) becomes

(23) Er∈[Mn](ν(r)− 1)Ea∈[N ′

n]2

2∏
j=1

1A′

n
(a+ rhj)θj(a+ rhj).

As discussed in Section 2.4, the way we truncate An (hence A′
n) allows us

to shift a+ rh1 to a. Hence (23) is equal to
(24)
Ea∈[N ′

n]2 1A′

n
(a)θ1(a)Er∈[Mn](ν(r)−1)1A′

n
(a+(h2 − h1)r)θ2(a+(h2−h1)r).

By Cauchy–Schwarz inequality, the square of previous expression is at most

Ea∈[N ′

n]21A′

n
(a)θ1(a)Ea∈[Nn]621A′

n
(a)θ1(a)(25)

×
∣∣Er∈[Mn](ν(r)− 1)1A′

n
(a+ (h2 − h1)r)θ2(a+ (h2 − h1)r)

∣∣2
Observe that

Ea∈[N ′

n]2 1A′

n
(a)θ1(a) ≤ Ea∈[N ′

n]2θ1(a) = 1 + o(1)
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where the last equality follows from the linear forms condition. Hence up to
a factor of 1 + o(1), (25) is at most

(26) Ea∈[N ′

n]2θ1(a)
∣∣Er∈[Mn](ν(r)−1)1A′

n
(a+(h2−h1)r)θ2(a+(h2−h1)r)

∣∣2
By van der Corput’s lemma, the previous expression is at most (up to a
multiplicative constant)

Ea∈[N ′

n]2θ1(a)Er∈[Mn],|s1|<Mn
(ν(r)− 1)(ν(r+ s1)− 1)(27)

×1A′

n
(a+ (h2 − h1)r)θ2(a+ (h2 − h1)r)

×1A′

n
(a+ (h2 − h1)r + (h2 − h1)s1)θ2(a+ (h2 − h1)r + (h2 − h1)s1).

By shifting a+ (h2 − h1)r to a, the previous expression is equal to

Ea∈[N ′

n]21A′

n
(a)θ2(a)1A′

n
(a+ (h2 − h1)s1)θ2(a+ (h2 − h1)s1)(28)

× Er∈[Mn],|s1|<Mn
(ν(r)− 1)(ν(r+ s1)− 1)θ1(a+ (h1 − h2)r).

We now move everything that does not depend on r outside of the average
on r. Extra caution should be made here. At first glance, we may leave
θ1(a+ (h1 − h2)r) inside since it seemingly depends on r. However, as h1 −
h2 = (−1, 0)

(29) θ1(a+ (h1 − h2)r) = ν1,1(a1 − r)ν1,2(a2).

Because ν1,2(a2) does not depend on r, we move it outside of the average on
r. Thus (28) is equal to

Ea∈[N ′

n]21A′

n
(a)θ2(a)1A′

n
(a+ (h2 − h1)s1)θ2(a+ (h2 − h1)s1)ν1,2(a2)(30)

× Er∈[Mn],|s1|<Mn
(ν(r)− 1)(ν(r+ s1)− 1)ν1,1(a1 − r).

By Cauchy–Schwarz inequality and van der Corput’s lemma again, the
square of above equation is at most (up to a multiplicative constant)

Ea∈[N ′

n]2,r∈[Mn],|s1|<Mn,|s2|<|Mn|(ν(r)− 1)(ν(r+ s1)− 1)(ν(r+ s2)− 1)(31)

× (ν(r+s1+s2)−1)ν2,1(a1)ν2,1(a1+s1)ν1,2(a2)ν1,1(a1−r)ν1,1(a1−r−s2).

Expanding out the last expression, we see that it is equal to a sum and
difference of 16 averages of the form (11). Since no two forms in (31) are
linearly dependent, each of these 16 averages is equal to 1+ o(1) by the linear
forms condition. Therefore (31) is equal to o(1). This finishes the proof of
the special case.
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4.2. The general case. We now prove Proposition 3.1 in its full gen-
erality. Define ν = ΛW,1 as before. For 1 ≤ j ≤ k and 1 ≤ i ≤ d, define
νj,i : Zd → R by

(32) νj,i(a) =

{
ΛW,bi(ai) if hj,i �= hl,i ∀1 ≤ l < j

1 otherwise.

Then define θj =
∏d

i=1 νj,i.
We need to show

(33) Er∈[Mn](ν(r)− 1)Ea∈[N ′

n]d

k∏
j=1

1A′

n
(a+ rhj)θj(a+ rhj) = o(1).

As in the toy example, we perform the following steps:
(1) Shift a.
(2) Move everything that does not depend on r outside of the average

on r.
(3) Apply Cauchy–Schwarz inequality.
(4) Bound 1A′

n
θj by θj .

(5) Apply van der Corput’s lemma.
After k iterations, we get the following expression:

Ea∈[N ′

n]d,r∈[Mn],|s1|<Mn,...,|sk|<Mn

∏
R⊆[k]

(
ν

(
r +

∑
l∈R

sl

)
− 1

)
(34)

×
k∏

j=1

d∏
i=1

∏
R⊆Rj,i

νj,i

(
ai + (hj,i − hk,i)r +

∑
l∈R

(hj,i − hl,i)sl

)

where Rj,i = {1 ≤ l ≤ k : hl,i �= hj,i}. Again, this expression is a sum and
difference of 22k

averages of the form (11). In order to invoke the linear
forms condition, it suffices to verify that no two forms appearing in (34) are
linearly dependent.

Firstly, those forms appearing in ν are independent from one another
because the appearance of s1, s2, . . . , sk in each form is corresponding to a
subset R of [k]. They are also independent from the forms in νj,i because ai
appears in νj,i, but not in ν.

Secondly, for i1 �= i2 and any j1, j2 (not necessarily distinct), the forms
appearing in νj1,i1 and νj2,i2 are independent because ai1 appears in νj1,i1
while ai2 appears in νj2,i2 .

For a fixed i, if (hl,i − hk,i)r = (hj,i − hk,i)r for some l < j, then hl,i =
hj,i. By the way we define νj,i, this would force νj,i = 1. Hence if νj,i �= 1,

A. N. LE and T. H. LÊ12
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(hl,i − hk,i)r �= (hj,i − hk,i)r. This implies the forms appearing in νj,i are
independent from the forms appearing in νl,i for all l < j.

And lastly, for fixed i and j, the forms appearing in νj,i are independent
from one another because each form is in one-to-one correspondence with a
subset of Rj,i. �
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merédi’s theorems, J. Amer. Math. Soc., 9 (1996), 725–753.

[3] V. Bergelson, A. Leibman, and T. Ziegler, The shifted primes and the multidimen-
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