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Abstract—Ridge-like regularization often leads to improved
generalization performance of machine learning models by mit-
igating overfitting. While ridge-regularized machine learning
methods are widely used in many important applications, direct
training via optimization could become challenging in huge
data scenarios with millions of examples and features. We
tackle such challenges by proposing a general approach that
achieves ridge-like regularization through implicit techniques
named Minipatch Ridge (MPRidge). Our approach is based
on taking an ensemble of coefficients of unregularized learners
trained on many tiny, random subsamples of both the examples
and features of the training data, which we call minipatches. We
empirically demonstrate that MPRidge induces an implicit ridge-
like regularizing effect and performs nearly the same as explicit
ridge regularization for a general class of predictors including
logistic regression, SVM, and robust regression. Embarrassingly
parallelizable, MPRidge provides a computationally appealing
alternative to inducing ridge-like regularization for improving
generalization performance in challenging big-data settings.

Index Terms—Ridge-like regularization, implicit regulariza-
tion, ensemble learning

I. INTRODUCTION

Ridge-like regularization often leads to improved general-

ization error by mitigating overfitting, and it is used explicitly

in a wide variety of learning frameworks including support

vector machines (SVM), kernel learning, and deep learning.

However, directly training explicitly ridge-regularized learn-

ers could become challenging in various data scenarios, for

instance: i) optimizing the ridge-regularized objective func-

tion can become computationally intractable with millions of

examples and features; ii) the full training data are stored in

distributed databases with each node having access to only a

subset of examples and/or features; and iii) the training data

suffer from a large degree of missingness.

Recently, the topic of implicit regularization has attracted

much attention, and researchers have shown that it is possible

to obtain models of lower complexity without explicitly apply-

ing regularization during training in certain scenarios [1, 2, 3].

In particular, [4] showed that a large ensemble of indepen-

dent ordinary least squares (OLS) predictors that are trained

using random submatrices of the training data can achieve

the optimal ridge regression risk under mild assumptions.

In addition, another line of work reveals that the dropout

technique combined with stochastic gradient descent in deep

learning can induce ridge-like regularization in the context of

generalized linear models (GLMs) [5].
In this work, we tackle the aforementioned challenges of ap-

plying ridge-regularized machine learning methods in big-data

settings by proposing a general approach named Minipatch

Ridge (MPRidge). Inspired by [4], MPRidge is an ensemble

of the parameter coefficients of unregularized learners trained

on many tiny, random subsamples of both the examples and

features of the training data (Sec. II). We empirically show

that MPRidge elicits an implicit ridge-like regularizing effect

(Sec. III). In particular, while no explicit regularization is

applied during training, we empirically demonstrate that the

resulting predictor of the MPRidge ensemble performs nearly

the same as the explicitly ridge-regularized predictor fit using

the entire training data in terms of in-sample and out-of-sample

risk for a general class of predictors including the logistic re-

gressor, SVM classifier, and robust regressor. Additionally, we

empirically show that MPRidge can largely recover the entire

regularization path of parameter coefficients for the explicitly

ridge-regularized counterpart. Because training unregularized

learners on many tiny subsets of data in parallel has major

computational advantages, MPRidge provides a computation-

ally efficient alternative to inducing ridge-like regularization

in big-data scenarios where direct training of explicitly ridge-

regularized learners via optimization could be challenging.

II. METHOD

A. Minipatch Ridge (MPRidge)

Fig. 1. A. Simultaneous random subsampling of examples (rows in red)
and features (columns in yellow) without replacement from the original data
matrix yields a “minipatch” (orange). B. The same minipatch in A is a random
submatrix of the data matrix after a permutation. C. Minipatch learning is an
ensemble of learners trained on many random minipatches.

Our proposed approach is based on taking many tiny,

random subsamples of both the examples and features of the
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training data simultaneously. We call these random subsamples

“minipatches”, as illustrated in Fig. 1. This term is reminiscent

of patches in imaging processing and minibatches commonly

used in machine learning. While random sampling of the

training data has been extensively used in ensemble learning

techniques (e.g., Random Forest (RF) [6], Bagging [7, 8],

Boosting [9], Random Patch [10]), we are following up on [4]

to specifically investigate the implicit ridge-like regularization

properties elicited by aggregating learners trained on many

random minipatches for a general class of learners.

Leveraging the idea of minipatches, we propose and de-

velop the Minipatch Ridge (MPRidge) method—a general

meta-algorithm that can be employed with a wide range

of learners. MPRidge is summarized in Algorithm 1. Here,

L(·;β) denotes an unregularized loss function with parameter

coefficient vector β whose specific form depends on the

learning task at hand. For instance, L could be the logistic loss

or hinge loss (i.e., SVM) for classification tasks. In essence,

MPRidge trains K unregularized learners independently on K
random minipatches in parallel and subsequently produces an

ensemble estimator β̂ens for the learner parameter coefficients

by aggregating unregularized estimates over these minipatches.

Algorithm 1: Minipatch Ridge (MPRidge)

Input: (y,X) ∈ R
N × R

N×M , η = n
N

∈ (0, 1),
α = m

M
∈ (0, 1), K.

for k = 1, 2, . . . ,K do // In parallel

1) Subsample n examples Ik ⊂ {1, . . . , N} and m features
Fk ⊂ {1, . . . ,M} uniformly at random without replacement
to obtain a minipatch (yIk ,XIk,Fk

) ∈ R
n × R

n×m;

2) Train an unregularized learner on the minipatch:

{β̂(k)
j }j∈Fk

= argmin
βFk

∈Rm
L((yIk ,XIk,Fk

);βFk
)

3) Set β̂
(k)
j = 0,∀j ∈ {1, . . . ,M} \ Fk;

end
Compute ensemble estimator β̂ens ∈ R

M :

β̂ens =
1

K

K∑
k=1

β̂
(k)

Output: β̂ens.

B. Practical Considerations

Our MPRidge method mainly has two tuning hyperparam-

eters: the example subsampling ratio η ∈ (0, 1) and the

feature subsampling ratio α ∈ (0, 1). Our empirical studies in

Sec. III suggest that the feature subsampling ratio α controls

the amount of implicit ridge-like regularization induced by

MPRidge. In fact, there appears to be an one-to-one corre-

spondence between α and the tuning hyperparameter for the

corresponding explicitly regularized counterpart. Therefore, α
can be chosen in data-driven manners such as cross-validation.

Similar to findings in [4], the performance of MPRidge doesn’t

seem to depend on the amount of example subsampling η
provided that η well exceeds the sample complexity of the

unregularized learner L, so we focus our attention on the effect

of α. Last but not least, our empirical results reveal that setting

K = 1000 is sufficient for most problems.

C. Advantages & Possible Extensions

Embarrassingly parallelizable, MPRidge has major com-

putational advantages, especially in big-data settings where

direct training of the corresponding explicitly ridge-regularized

learner via optimization could be challenging. In addition

to computational advantages, MPRidge provides statistical

benefits as it implicitly induces ridge-like regularizing effects

to help achieve better generalization performance. We look to

further investigate the statistical benefits of MPRidge theoret-

ically in future work.

Furthermore, unavailability of the full training data poses

another set of challenges to applying machine learning meth-

ods in some big-data scenarios. Such situations can arise when,

for instance, i) only a subset of the training data can fit in the

computer memory at a time; ii) the training data is stored in

distributed databases with each node having access to only a

subset of both the examples and features; and iii) the training

data itself has a large amount of missingness. Because the

training of MPRidge only relies on subsets of the training data,

MPRidge is well-suited to eliciting ridge-like regularization

implicitly in these settings. We save the investigation of such

extensions for future work.

III. EMPIRICAL STUDIES

In this section, we empirically demonstrate that our pro-

posed MPRidge method induces an implicit ridge-like regu-

larizing effect and it performs nearly the same as the explicitly

ridge-regularized counterpart fit using the entire training data

in terms of both in-sample and out-of-sample risks for a variety

of learners including the robust regressor and SVM classifier.

Moreover, we empirically show that MPRidge can largely

recover the entire regularization path of parameter coefficients.

A. Synthetic Data

1) Data Generation: For the following empirical studies,

we consider the autoregressive Toeplitz design for the data

matrix X ∈ R
N×M : the M -dimensional feature vector follows

a N (0,Σ) distribution, where Σij = ρ|i−j| with ρ = 0.6. Such

design represents a range of realistic data scenarios commonly

found in machine learning applications. The M -dimensional

parameter coefficient vector β is generated from N (0, 1
M IM ).

Here, IM denotes the M × M identity matrix. To simulate

various learning tasks, we consider the following outcome

vectors y ∈ R
N :

• Linear regression: generate y = Xβ+ ε where the noise

vector (ε1, . . . , εN ) is IID N (0, 1).
• Regression with outliers: randomly pick N/2 examples

to be outliers. For the ith outlier example, generate yi =
xT
i β+εi with εi ∼ N (0, 100). For the ith inlier example,

generate yi = xT
i β + εi with εi ∼ N (0, 1).

• Classification: for the ith example, generate

yi ∼ Bernoulli(
exp (xT

i β)

1+exp (xT
i β)

), ∀i = 1, . . . , N .
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Fig. 2. For both linear regression (A1, A2) and regression with outliers (B1, B2) from Scenario I, MPRidge attains nearly the same out-of-sample risk as the
explicitly ridge-regularized counterpart: in A1 and B1, the α- and λ-axes are aligned based on in-sample risk, so that Rens, in (green dot) aligns perfectly with
Rridge, in (blue triangle). This results in the out-of-sample risk Rens, out (purple dot) also aligning approximately with Rridge, out (red triangle). Additionally,
MPRidge largely recovers the corresponding regularization path, as shown in A2 and B2. This suggests that our MPRidge method elicits ridge-like regularizing
effects implicitly.

For each of the learning tasks above, we consider two

scenarios: Scenario I with N = 2000 examples and M = 100
features; and Scenario II with N = 10000 examples and

M = 500 features. For both scenarios, we split the data set into

60% training data and 40% test data via stratified sampling,

if applicable.

2) Results: We train our MPRidge meta-algorithm with

various unregularized loss functions L(·;β) for the different

learning tasks described above (see Table I). In particular, we

compare our MPRidge employed with unregularized loss L
with its explicitly ridge-regularized counterpart in terms of pre-

diction risks and regularization path of coefficient estimates.

For instance, for the linear regression task, the explicitly ridge-

regularized counterpart is the ridge regressor, so on and so

forth. Software implementations from Scikit-learn [11]

are used for all explicitly ridge-regularized methods.

TABLE I
SUMMARY OF LOSS FUNCTIONS L(·;β) EMPLOYED WITH MPRIDGE.

Task Loss Function L((yi,xi);β)

Linear regression Least-square loss (yi − xT
i β)2

Regression with outliers Huber loss

{
(yi − xT

i β)2, if |yi − xT
i β| < δ

2δ|yi − xT
i β| − δ2,O.W.

Classification Logistic loss −yix
T
i β + log (1 + exp (xT

i β))

Classification Hinge loss max{0, 1− yix
T
i β}

Our qualitative results for both linear regression and re-

gression with outliers tasks from Scenario I are shown in

Fig. 2. In the top row (A1, B1), we compare the in-sample risk

Rens, in(α) (out-of-sample risk Rens, out(α)) of our MPRidge

method for a sequence of feature subsampling ratio α ∈ (0, 1)
against the in-sample risk Rridge, in(λ) (out-of-sample risk

Rridge, out(λ)) of the explicitly ridge-regularized counterpart for

a sequence of its tuning hyperparameter λ ∈ R+. Larger values

of λ indicate larger amounts of explicit ridge regularization.

The optimal tuning hyperparameters that result in the lowest

out-of-sample risk are denoted with a vertical dashed line at

(α∗, λ∗). In the bottom row (A2, B2), we display a subset

of the regularization path, or coefficient estimates over the

sequence of tuning hyperparameters, for our MPRidge method

and its explicitly ridge-regularized counterpart. For both learn-

ing tasks, we clearly see that our MPRidge method achieves

nearly the same prediction risk (both in-sample and out-of-

sample) as the explicitly ridge-regularized counterpart and

largely recovers the corresponding regularization path. These

observations suggest that our MPRidge method implicitly

elicits ridge-like regularization even though no regularization

is explicitly applied to the loss functions during training.

Additionally, there appears to be an one-to-one correspondence

between the feature subsampling ratio α and the tuning

hyperparameter λ for the explicitly ridge-regularized method.

Specifically, a smaller α corresponds to a larger λ, signifying

a larger amount of implicit ridge-like regularizing effect for

MPRidge. The results for logistic loss and hinge loss are

similar and are not included due to the page limit.

Quantitative results of various learning tasks for both Sce-

nario I and II are summarized in Table II. Here, we report

the largest absolute difference for in-sample risk, out-of-

sample risk, and coefficient estimates between MPRidge and

the explicitly ridge-regularized counterpart at their respective

optimal tuning hyperparameters. Note that the optimal α∗ and

optimal λ∗ are independently determined for the respective

method. Clearly, we see that our MPRidge method performs

nearly the same as its explicitly ridge-regularized counterpart

across both scenarios for a range of commonly used learners
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TABLE II
RESULTS OF VARIOUS LEARNING TASKS FOR SCENARIO I & II.

Loss Function |Rens,in(α
∗)−Rridge,in(λ

∗)| |Rens,out(α∗)−Rridge,out(λ
∗)| ||β̂ens(α

∗)− β̂ridge(λ
∗)||∞

Scenario
I

Least-square 0.00152 0.00006 0.00546
Huber 0.00001 0.05360 0.04732

Logistic 0.00025 0.00046 0.00865
Hinge 0.09410 0.04726 0.13034

Scenario
II

Least-square 0.00339 0.00006 0.00258
Huber 0.02615 0.05867 0.02284

Logistic 0.00117 0.00047 0.00820
Hinge 0.09697 0.05072 0.08414

including the logistic regressor, SVM classifier, and robust

regressor. These results suggest that our MPRidge can achieve

approximately the same optimal prediction risks (both in-

sample and out-of-sample) and coefficient estimates as its

explicitly ridge-regularized counterpart by eliciting implicit

ridge-like regularization.

B. Real Data Examples

We further demonstrate the performance of MPRidge using

data from the ROSMAP study [12], which is a clinical-

pathological study of Alzheimer’s disease (AD). Specifically,

we consider a regression task with the numeric cognition score

as the outcome and a classification task with the clinician’s

diagnosis as the outcome; a subset of the gene expression

via RNASeq data are used as features in both cases. Even

though no distributional assumptions are made on the real data,

MPRidge still exhibits ridge-like behavior, as shown in Fig. 3.

Fig. 3. Real gene expression via RNASeq data are used as features. A.
Regression with the cognition score as the outcome; MPRidge employs the
least-square loss as the unregularized base learner. B. Binary classification
with the clinician’s diagnosis (AD versus non-AD) as the outcome; MPRidge
uses the hinge loss as the unregularized base learner. Both real data examples
show a near-match in out-of-sample risks, especially at (α∗, λ∗) which
denotes the matched parameter pair minimizing out-of-sample risk.

IV. CONCLUSIONS

We have developed MPRidge, which is a general meta-

algorithm that can be employed to implicitly yield ridge-

like regularization for a general class of machine learning

methods including the SVM classifier and robust regressor.

Parallelizable and flexible, MPRidge provides an appealing

alternative to direct training of explicitly ridge-regularized

methods in challenging big-data scenarios. In future works, we

look to investigate the theoretical properties of MPRidge so

as to better understand the underlying mechanisms that impart

such implicit ridge-like behavior.
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