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Abstract

Among the most successful methods for sparsifying deep (neural) networks are
those that adaptively mask the network weights throughout training. By examining
this masking, or dropout, in the linear case, we uncover a duality between such
adaptive methods and regularization through the so-called “η-trick” that casts both
as iteratively reweighted optimizations. We show that any dropout strategy that
adapts to the weights in a monotonic way corresponds to an effective subquadratic
regularization penalty, and therefore leads to sparse solutions. We obtain the effec-
tive penalties for several popular sparsification strategies, which are remarkably
similar to classical penalties commonly used in sparse optimization. Considering
variational dropout as a case study, we demonstrate similar empirical behavior
between the adaptive dropout method and classical methods on the task of deep
network sparsification, validating our theory.

1 Introduction

In machine learning, it is often valuable for models to be parsimonious or sparse for a variety of
reasons, from memory savings and computational speedups to model interpretability and general-
izability. Classically, this is achieved by solving a regularized empirical risk minimization (ERM)
problem of the form

minimize
w

Lpwq ` λΩpwq, (1)

where L is the data-dependent empirical risk and Ω is a sparsity-inducing regularization penalty.
Ideally, Ωpwq is equal to }w}0 :“ # ti : wi ‰ 0u or a function of }w}0 [6], in which case an
appropriately chosen λ balances the trad-eoff between the suboptimality of L and the sparsity of
the solution. However, the use of }w}0 directly as a penalty is difficult, as it makes local search
impossible, so alternative approaches are necessary for high-dimensional problems. The classical
solution to this is to relax the problem using a smooth surrogate Ω that approximates }w}0 [5, 18].

When we know the regularization penalty Ω, we can understand the types of solutions they encourage;
however, many popular methods for sparsifying deep (neural) networks do not appear to fit the form
(1). For example, variational dropout [25, 29], “`0 regularization” [26], and magnitude pruning [41]
are the only methods compared in a recent large-scale study by Gale et al. [15], and all achieve
sparsity by adaptively masking or scaling the parameters of the network while optimizing the loss
function in w. Although these methods are well-motivated heuristically, it is unclear how to make
a principled choice between them aside from treating them as black boxes and comparing their
empirical performance. However, if these methods could be cast as solutions to a regularized ERM
problem, then we could compare them on the basis of their regularization penalties.
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Figure 1: Sparsity-inducing behavior in regularized ERM (1) can be understood by considering the properties of
the regularization penalty. Our analysis enables the computation and comparison of the effective regularization
penalties of the adaptive dropout sparsity methods in Table 2. (We arbitrarily set λ “ 1 unless otherwise
specified.) Both VARIATIONALDROPOUT [29] and HARDCONCRETE (called “`0 regularization”) [26] bear
strong resemblance to classical penalties. Left: Separable penalties (excluding HARDTHRESH) as a function of
weight magnitude. Right: Penalty of a unit-norm k-sparse w defined by wj “ 1?

k
1 tj ď ku.

We show that, in fact, these sparsity methods do correspond to regularization penalties Ω, which we
can obtain, compute, and compare. As we show in Figure 1, these penalties bear striking resemblance
to classical sparsity-inducing penalties such as the LOGSUM [9] penalty and the minimax concave
penalty (MCP) [40]. More broadly, we analyze adaptive dropout methods, which apply the dropout
technique of Srivastava et al. [31] with adaptive parameters. By considering adaptive dropout in
the linear setting, we uncover a duality between adaptive dropout methods and regularized ERM.
We make this connection via the “η-trick” [4], a tool with a long history of application in sparse
optimization via iteratively reweighted least squares (IRLS) (see the history presented by Daubechies
et al. [11]).

We prove that all adaptive dropout methods whose amount of dropout varies monotonically with the
magnitudes of the parameters induce an effective subquadratic (and hence sparsity-inducing [5])
penalty Ω. This further supports the experimental evidence that such methods excel at inducing
sparsity. We also demonstrate how to use our result to determine the effective penalty for adaptive
dropout methods, using as examples the sparsity methods listed above as well as the standout
method [3], which has an effective penalty on the layer activations, rather than the parameters,
explaining why standout sparsifies activations. We then numerically compute the effective penalties1

and plot them together in Figure 1.

We validate our new theory by applying variational dropout on the task of deep network sparsification,
and we show that the performance is similar to non-dropout methods based on the same effective
penalty. This suggests that not only is considering the effective penalty a sound means for comparing
sparsity methods, but also that classical regularized ERM is itself an effective means for inducing
sparsity in deep networks and serves as a valuable tool for future work on deep network sparsity.

For theoreticians, this work provides a general framework for obtaining the effective regularization
penalty for adaptive dropout algorithms, enabling regularized ERM analysis tools to be applied to
these methods. For practitioners, this work enables the application of classical regularization intuition
when choosing between sparsifying approaches. For methods developers, this work provides a strong
baseline against which new adaptive dropout methods should be compared: the effective penalty Ω.

2 Background

Notation. We denote the extended reals and the non-negative reals by R “ R Y t´8,8u and
R` “ r0,8q, respectively. The operator diag p¨q takes a vector and returns a matrix with that vector
along the diagonal entries or takes a matrix and returns the same matrix with all non-diagonal entries
set to zero. The matrix J denotes a matrix of all ones. We denote element-wise multiplication
and exponentiation by d; i.e., ru d vsj “ ujvj and rUdpsij “ Upij . Division of vectors and
scalar functions of vectors denote element-wise operations. Order statistics of the magnitudes of

1Our code is available at https://github.com/dlej/adaptive-dropout.
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elements in a vector u P Rd are denoted by upjq such that |up1q| ě |up2q| ě . . . |updq|. The function
σ : RÑ r0, 1s denotes the sigmoid σptq “ 1{p1` e´tq.

2.1 Dropout as Tikhonov Regularization

We can understand adaptive dropout methods by breaking them down into two components: the
regularizing effect of dropout itself and the effect of adaptively updating the dropout-induced regular-
ization. For the former, it is well-known [36, 35, 31, 29] that dropout induces Tikhonov-like regular-
ization for standard binary and Gaussian dropout. The same result holds more broadly given a second
moment condition, which we need in order to be able to consider methods like HARDCONCRETE “`0
regularization” [26]. In general, we use the term dropout to refer to methods that mask or scale the
weights w by independent “mask” variables s „ MASKpαq with sampling parameters α P r0, 1sd.
We also assume that the masks are unbiased (i.e., that E rsjs “ 1), and that E

“

s2j
‰

“ α´1
j . Note

that with the independence assumption, this implies that Covpsq “ diag pαq
´1
´ I. Both standard

unbiased binary dropout, where sj take value α´1
j with probability αj and 0 otherwise, as well as

Gaussian dropout with sj „ N
`

1, α´1
j ´ 1

˘

satisfy these assumptions.

Dropout solves the optimization problem

minimize
w

Es rLpsdwqs (2)

via stochastic optimization such as gradient descent where each iteration performs a partial optimiza-
tion of Lps d wq with a random s. It is most insightful to consider when L is the loss for linear
regression of target variables y P Rn given data X P Rnˆd:

Lpwq “ 1

2n
}y ´Xw}

2
2. (3)

In this case, under our assumptions on s, we recover the known Tikhonov result

Es rLpsdwqs “ Lpwq ` 1

2
wJ

ˆ

´

diag pαq
´1
´ I

¯

d
1

n
XJX

˙

w. (4)

For simplicity, we assume that the data is standardized, or that diag
`

1
nX

JX
˘

“ I, which is
inexpensive to satisfy in practice, but our analysis can be extended to the general case. Under this
assumption, we see that dropout elicits a diagonal Tikhonov regularization with scale diag pαq

´1
´ I.

2.2 The “η-trick”

The second component of adaptive dropout is the adaptive update of the dropout-induced regular-
ization. To understand this, we introduce the so-called “η-trick” [4] applied to the regularization
penalty in (1). By introducing an auxiliary variable η P H Ď Rd`, we can replace Ωpwq with a dual
formulation as a function of η that majorizes Ωpwq and is quadratic in w for fixed η. In other words,
we can find a function f : H Ď Rd` Ñ R such that

Ωpwq “ min
ηPH

1

2

´

wJdiag pηq
´1

w ` fpηq
¯

. (5)

If such a function f exists, then the regularized ERM problem (1) can be rewritten as a joint
optimization in w and η of the dual regularized ERM formulation

minimize
w,η

Lpwq ` λ

2

´

wJdiag pηq
´1

w ` fpηq
¯

. (6)

This joint optimization can be performed, for example, by alternating minimization over w and η. For
linear regression problems, this gives rise to the iteratively reweighted least squares (IRLS) algorithm,
a popular method for sparse recovery [10, 11]. We note that iteratively reweighted `1 schemes have
also held a significant place in sparse optimization [43, 9, 38], but because dropout regularization is
quadratic, we limit our consideration to iteratively reweighted `2 (Tikhonov) regularization like (6).

The simplest example of a penalty Ω that fits the form (5) is Ωpwq “ |w|, for which fpηq “ η, and
it is used in the IRLS formulation of `1 regularization. More broadly, we can consider the class of

3



Table 1: Common regularization penalties have dual formulations that are often straightforward to obtain. See
Table 3 in Appendix A for a more complete table of common penalties along with the derivations.

Penalty Ωpwq fpηq pηjpwq

`1 |wj | ηj |wj |

LOGSUM(ε) [9] log p|wj | ` εq 2 log
´

?
ε2`4ηj`ε

2

¯

´

´?
ε2`4ηj´ε

¯2

4ηj
|wj |p|wj | ` εq

MCP(a, λ) [40]

#

|wj | ´
w2
j

2aλ
, |wj | ď aλ

aλ
2
, |wj | ą aλ

aληj
ηj`aλ

#

aλ|wj |

aλ´|wj |
, |wj | ă aλ

8, |wj | ě aλ

HARDTHRESH(k) [7] 81
 

}w}0 ą k
(

0, H “
 

η : }η}0 ď k
(

81 tj P TOP-kpwqu

functions for which Ω is concave in wd2. These functions are said to be subquadratic, and are known
to have a sparsity-inducing effect [5]. In fact, these are the only functions Ω that can fit this form.
This is because wd2 ÞÑ ´2Ωpwq is the Legendre–Fenchel (LF) transform of ´ηd´1 ÞÑ fpηq, and
thus Ω is concave in wd2. By the Fenchel–Moreau theorem, there is conversely a unique function f
satisfying (5) that is convex in ´ηd´1, which can be obtained by the LF transform. That is, Ω and f
are dual functions. Additionally, for differentiable penalties, the minimizing η given a fixed w is

pηpwq “ p2∇wd2Ωpwqq
d´1

, (7)

which means that if Ωpwq has a closed-form expression, then so does the minimizer pηpwq. The sim-
plicity of this form means that iteratively reweighted Tikhonov regularization is simple to implement
for any differentiable penalty, leading to its popularity.

We enumerate a few penalties along with their dual formulations in Table 1. For separable penalties,
we list the scalar function applied to a single element. Where H is restricted, we include it with fpηq.

Hard Thresholding. Of particular note is HARDTHRESH, the indicator penalty of level sets of }w}0,
which gives rise to the iterative hard thresholding (IHT) algorithm [7]. We remark that to the best
of our knowledge, what we show in Table 1 is the first characterization of IHT as an iteratively
reweighted `2 solution to a regularized ERM problem, rather than as a heuristic algorithm. This
connection is important for understanding the MAGNITUDEPRUNING [41] algorithm.

3 Adaptive Dropout as Iteratively Reweighted Stochastic Optimization

We can now consider an adaptive dropout algorithm [3, 25, 26], which both optimizes the weights
w using dropout and updates the dropout parameters α according to some update rule depending
on w. To facilitate our analysis, we can equivalently consider the algorithm to be updating ηj :“

λ
`

α´1
j ´ 1

˘´1
, which is a monotonic and invertible function of αj , with

αj “
ηj

ηj ` λ
. (8)

An adaptive dropout method could resemble, for example, the following gradient descent strategy
with step size parameter ρ given an update function pη : Rd Ñ H:

wt`1 “ wt ´ ρ∇wL
`

st dwt
˘

, st „ MASKpαtq, αtj “
pηjpw

tq

pηjpwtq ` λ
. (9)

The stochastic update of w corresponds to the expected loss Es rLpsdwqs, but we must also
characterize the η update. We can make the assumption, which we will justify later, that pηpwq is the
minimizer given w of a joint objective function J pw,ηq; if so, there must exist f such that

J pw,ηq “ Es rLpsdwqs `
λ

2
fpηq. (10)

This brings us to our main result, in which we uncover a duality between the adaptive dropout
objective function J pw,ηq and an effective regularized ERM objective function as in (1).
Theorem 1. If L has the form (3) for data X such that 1

ndiag
`

XJX
˘

“ I, then for every λ ą 0
there exists a function f such that pηpwq “ arg minη J pw,ηq if and only if there exists a function Ω

that is concave in wd2 such that

min
ηPH

J pw,ηq “ Lpwq ` λΩpwq. (11)

4



Furthermore, if f exists, then the corresponding Ω is unique, and if Ω exists, then there is a unique
such f that is convex in ´ηd´1.

Proof. For linear regression under the standardized data assumption, combining the definition of η as
a function of α with (4) makes J pw,ηq of the form (6). Then by the properties of the LF transform2

as discussed in Section 2.2, we obtain the existence and uniqueness of f and Ω.

That is, every subquadratic penalty Ω has a dual formulation via the η-trick and therefore has a
corresponding adaptive dropout strategy. The converse holds as well, provided the dropout update
function pη can be expressed as a minimizer of the joint objective. While this may seem restrictive, if
pη is separable, we have the following general result.

Corollary 2. If pαjpwjq :“
pηjpwjq

pηjpwjq`λ
is a monotonically increasing differentiable function of |wj |,

then there exist separable f and Ω satisfying Theorem 1.

Proof. Because the relationship between α and η is monotonic and invertible, pηjpwjq is also mono-

tonically increasing. Thus, using (7), Ωpwjq “
şw2

j

a
1

2pηptqdt` Ca, for which B
2

pBw2
j q

2 Ωpwjq ď 0.

Therefore, any adaptive dropout method that updates the dropout parameters α monotonically as a
function of the magnitudes of the elements of w is equivalent to regularized ERM with a subquadratic
penalty Ω. It is well-known that sub-quadratic penalties are sparsity-inducing [5], which agrees with
the “rich get richer” intuition that larger wj , which receive larger αj , are penalized less and therefore
are more likely to grow even larger, while conversely smaller wj receive smaller αj and are even
more penalized. Corollary 2 holds generally for the η-trick and is not limited to adaptive dropout.

We emphasize that linear regression is the setting in which Theorem 1 gives an exact duality, but that
we can still expect a similar correspondence more broadly. For instance, Wager et al. [35] showed
that for generalized linear models, dropout elicits a similar effect to (4), albeit with a somewhat more
complex dependence on w and the data. In Section 5, we empirically consider deep networks and
demonstrate that the behavior is very similar between adaptive dropout and algorithms that solve the
effective regularized ERM problem.

4 Several Sparsity Methods and Their Effective Penalties

Armed with the fact that adaptive dropout strategies correspond to regularization penalties, we now
have a way to mathematically compare adaptive dropout methods. Table 2 lists the methods that
we compare and a corresponding characterization of the dual formulation. These methods vary in
their parameterizations, and most do not admit closed-form expressions for their effective penalties.
However, given these characterizations, we can numerically compute the effective penalty and make
a principled comparison, which we plot in Figure 1.

Because some of the methods we consider use slightly different variants of the dropout algorithm, we
first make clear how these fit into our analysis framework.

Reparameterization Tricks. The problem of noise in stochastic gradients, especially when αj is
very small, can limit the applicability of dropout methods for sparsity. One way researchers have found
to reduce variance is through “reparameterization tricks” such as the local reparameterization trick
[36, 25] and the additive noise reparameterization trick [29], both used in VARIATIONALDROPOUT,
which consider alternative noise models without changing the optimization problem.

To consider the MAGNITUDEPRUNING algorithm, we develop another reparameterization trick.
Inspired by the additive reparameterization trick from Molchanov et al. [29], we introduce another
variable v and add the constraint v “ w, under which Lpsdwq “ Lpw ` ps´ 1q d vq. Then for
least squares with standardized data, (4) becomes

Es rLpw ` ps´ 1q d vqs “ Lpwq ` 1

2
vJ

´

diag pαq
´1
´ I

¯

v. (12)

Under this parameterization, we can now use low-variance stochastic optimization for w and deter-
ministic optimization for v, along with a strategy for enforcing the equality constraint v “ w such as

2Results on the LF transform do not apply to functions with discontinuities at t´8,8u, such as ´ηd´1
ÞÑ

fpηq for the `0 and HARDTHRESH(k) penalties, so our theorem does not prove the existence of such functions.
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Table 2: Select sparsity methods and their effective penalty characterizations.

Method Effective Penalty Characterization

STANDOUT pαj ppzjq`q “ σppzjq`q

VARIATIONALDROPOUT fpηq “ 2DKL
`

q η
λ
,wprwq}pprwq

˘

“
ş
η
λ
0

F p
?
t{2q

?
t{2

dt

HARDCONCRETEL0NORM

$

&

%

fprηq “ 2
ř

j σplogpajq ´ β logp´γ{ζqq

rηj “
λErsjs

2

Ers2j s´Ersjs
2 ; sj „ HARDCONCRETEβ,γ,ζpajq

MAGNITUDEPRUNING(k) pηjpwq “ 81 tj P TOP-kpwqu

ADMM [8], thus reducing the overall variance. A simple proximal variable update strategy under this
reparameterization (see Appendix B) gives rise to an adaptive proximal gradient descent algorithm,
which we use to describe the MAGNITUDEPRUNING algorithm.

Biased Masks. It is not uncommon for dropout strategies to use biased masks in the sense that
E rsjs ‰ 1, e.g., for sj „ BERNOULLIpαjq. Under a few mild assumptions on the parameterization
of this distribution, we can consider adaptive dropout in this setting as well. Suppose that µ :“
µpαq “ E rss is an invertible function of α. Define rsj :“ sj{µj , rαj :“ µ2

j{E
“

s2j
‰

, and rw :“ µdw.
Then rs is an unbiased mask, and since sdw “ rsd rw, the expected loss has the same form as in
(4), but with rα and rw in place of α and w. Let rηj :“ λ

`

rα´1
j ´ 1

˘´1
, and suppose there exists a

function ψ such that µj “ ψprηjq, which is true if the mapping between rα and µ is one-to-one. Now
consider the expected dual regularized ERM formulation

minimize
w,η

L pµdwq `
λ

2

´

pµdwq
J

diag prηq
´1
pµdwq ` rfprηq

¯

,

subject to µj “ ψprηjq, @j.

(13)

Thus, an adaptive dropout strategy that jointly optimizes rη and w given s „ MASKpαq solves the
regularized ERM problem for rw, where α is set according to rη.

4.1 Standout

One of the earliest methods to use adaptive probabilities with dropout was the STANDOUT method of
Ba and Frey [3], who proposed to augment a neural network with an additional parallel “standout”
network of the same architecture that controlled the dropout probabilities for each activation, which
they showed results in sparse activations. Interestingly, the authors noted that the method worked
just as well if the standout net was not trained but instead simply copied the weights of the primary
network at each iteration, which fits our adaptive dropout framework.

Consider a single hidden layer neural network with ReLU activations puq` “ max tu, 0u. Denote
the pre-activations from the first layer as z “ W1x. The output of the network is given by py “
wJ2

`

sd pzq`
˘

, where the mask s „ MASK pσpzqq is from the standout network. Now let us
consider the network as a function of the first layer activations pzq`. Using (4) and the fact that
σptq´1 ´ 1 “ e´t, we know that the expected squared loss in this setting is

1

2
Es

”

›

›y ´wJ2 psd pzq`q
›

›

2

2

ı

“
1

2

›

›y ´wJ2 pzq`
›

›

2

2
`

1

2
pzqJ`diag

`

e´z dw2w
J
2

˘

pzq`. (14)

However, terms where zj ă 0 make no contribution to the effective penalty, so we can substitute
pzjq` for zj . This enables us to extract pηppzq`q as in Section 2.1

pηj ppzjq`q “
λepzjq`

rw2s
2
j

. (15)

We note that (15) represents the implicit update of η each iteration as the standout network weights
are copied from the primary network. By Corollary 2, we know STANDOUT is therefore an adaptive
dropout strategy with a subquadratic effective penalty Ω applied to the activations pzq`:

Ωppzq`q “
1

2λ

ÿ

j

ż pzjq
2
`

0

rw2s
2
je
´
?
tdt “

1

λ

ÿ

j

rw2s
2
j

´

1´ ppzjq` ` 1q e´pzjq`
¯

. (16)
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This penalty is a smooth approximation to the `0 penalty, as shown in Figure 1, and thus naturally
sparsifies the activations as W1 is trained. Additionally, λΩppzq`q has no dependence on λ, just as
the adaptive dropout parameter update has no dependence on λ.

4.2 Variational Dropout

Variational Bayes interpretations of dropout arose with the works of Kingma et al. [25] and Gal
and Ghahramani [14], providing an automated means of choosing the dropout parameter through
variational inference. Molchanov et al. [29] later showed that if each weight is allowed to have its
own dropout parameter, VARIATIONALDROPOUT results in sparse solutions.

The authors of VARIATIONALDROPOUT consider maximum a posteriori inference of w using the
improper log-uniform prior, for which pplog |wj |q 9 c or pp|wj |q 9 1{|wj |. This is equivalent to
solving the LOGSUM(0)-regularized ERM problem

minimize
w

Lpwq `
ÿ

j

logp|wj |q. (17)

Obviously, this is minimized by taking w “ 0 for common loss functions, which is uninteresting,
and Hron et al. [20] discuss other issues with the framework. However, VARIATIONALDROPOUT
does not solve the problem in (17), and instead performs inference over a new variable rw, using an
approximate posterior3 qnη,wprwq such that rw “ sdw, where s „ MASKpαq for Gaussian dropout,
having α and η related by (8). Then maximizing the variational lower bound is equivalent to solving

minimize
w,η

Ew rLpsdwqs `
1

n
DKL pqnη,wprwq}pprwqq , (18)

where DKLp¨}¨q is the Kullback–Leibler (KL) divergence. With the choice of the log-uniform prior,
the KL divergence has no dependence on w and is purely a function of η [25]. Hron et al. [20] show
that this quantity can be expressed in terms of Dawson’s integral F puq “ e´u

2 şu

0
et

2

dt:

DKL pqnη,wp rwq}pp rwqq “

ż nη

0

F p
a

t{2q
?

2t
dt, (19)

which we can compute via numerical integration using standard software implementations of F puq.
Clearly then, the Monte Carlo variational Bayes optimization of w and η in VARIATIONALDROPOUT
is an adaptive dropout strategy with λ “ 1

n and fpηq “ 2DKL
`

q 1
λη,w

prwq}pprwq
˘

, and we can
numerically compute the effective penalty Ω. VARIATIONALDROPOUT also uses the additive
reparameterization trick and local reparameterization trick to reduce variance.

As shown in Figure 1, the effective penalty for λ “ 1 is quite similar to the LOGSUM(2) penalty for
λ “ 2. We explore this connection further experimentally in Section 5.

4.3 Hard Concrete “L0 Regularization”

While the desired regularization is typically an `0 penalty, its non-differentiability makes it difficult
to perform gradient-based optimization, which motivates finding smooth approximations to the
`0 penalty. Louizos et al. [26] propose to first consider Lpswq ` λ

2 }sw}0, using the decomposition
sw “ sdw for binary s, where }sw}0 “ }s}0.

We take this opportunity to note that we can consider this problem using adaptive dropout with
fpηq “ Es r}s}0s “

ř

j αj if we use biased masks sj „ BERNOULLIpαjq. Interestingly, when
λ “ 1, the resulting penalty Ω turns out to be equal to the minimax concave penalty [40] MCPp1, 1q,
giving the MCP an additional interpretation as a stochastic binary smoothing of the `0 penalty.

However, Louizos et al. [26] do not solve this problem, but instead choose a distribution for s such
that the random variables s themselves are differentiable with respect to α, allowing them to extract
gradient information for α from L psdwq. They propose the following biased distribution, called
the HARDCONCRETEβ,γ,ζpajq distribution:

zj “ σ pplog uj ´ logp1´ ujq ` log ajq{βq , uj „ UNIFORMr0, 1s (20)
sj “ min t1,max t0, pζ ´ γqzj ` γuu . (21)

3The parameter α from Molchanov et al. [29] is distinct from ours but is related to η by α´1
“ nη.
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They then use as their penalty fprηq “ 2
ř

j Prpsj ą 0q “ 2σplogpajq ´ β logp´γ{ζqq under the
biased dropout reparameterization. The relationships between E rsjs, aj , rαj , and rηj are all invertible,
so we can numerically determine the corresponding penalty Ω.

We plot the resulting penalty in Figure 1 using the default values β “ 2
3 , γ “ ´0.1, ζ “ 1.1 [26].

4.4 Magnitude Pruning

MAGNITUDEPRUNING [39, 41] is a straightforward way to induce sparsity by zeroing out small
values. Here we specifically refer to the strategy of Zhu and Gupta [41], who eliminate all but the
k largest parameters each iteration. Initially k “ d, and it is decayed as a function of iteration
number until it reaches the desired sparsity level according to a general-purpose pruning schedule.
This is equivalent to IHT [7] (except with decreasing k) and therefore almost surely corresponds
to a proximal gradient variant of adaptive dropout where pαjpvq “ 1 tj P TOP-kpwqu, or pηjpvq “
81 tj P TOP-kpvqu, implemented as in Appendix B.

According to Table 1, the effective penalty is the HARDTHRESH(k) penalty, which we plot in Figure 1.
On a philosophical note, this is by definition the “correct” penalty to use when searching for solutions
with a constraint on the number of nonzeros, since it is the characteristic function of that set of
solutions. The η-trick along with alternating optimization turns this combinatorial search problem
into a sequence of tractable gradient-based (for w) and closed-form (for η) updates. It is therefore no
surprise that Gale et al. [15] observed that this “simple” magnitude pruning algorithm matched or
outmatched the other more sophisticated methods.

5 Empirical Comparison for VARIATIONALDROPOUT

With complex methods such as the adaptive dropout methods we discuss above, it is often difficult
to what drives their success. Under our theory, such methods should be able to be decomposed into
dropout noise-related effects and η-trick effects. Diving further into the VARIATIONALDROPOUT
algorithm, we compare it against other η-trick strategies, examining the effects of dropout noise,
η-trick optimization strategy, and regularization with the underlying penalty.

We apply the methods on the task of sparsifying a LeNet-300-100 network on the MNIST dataset,
a common benchmark for sparsification methods [17, 16, 12]. Experimental details are given in
Appendix C. We compare the following methods. Except for VARIATIONALDROPOUT methods, we
use the LOGSUM penalty.

• VARDROP+LR+AR. VARIATIONALDROPOUT as proposed by Molchanov et al. [29],
using both the local reparameterization trick and the additive reparameterization trick.

• VARDROP+LR. VARIATIONALDROPOUT, using the local reparameterization trick but not
the additive reparameterization trick.

• VARDROP. VARIATIONALDROPOUT with no reparameterization tricks.
• η-TRICK. Joint gradient descent in w and logpηq of (6). This would be equivalent to

VARIATIONALDROPOUT with no noise in linear regression.
• ADAPROX. Proximal gradient descent in w of (6) using η “ pηpwq at each iteration.
• ADATIKHONOV. Gradient descent in w of (6) using η “ pηpwq at each iteration.
• LOGSUM. Gradient descent in w of (1).

We plot the results in Figure 2. With all of the methods compared, we see similar behavior: the
networks become more sparse over time as well as more accurate. In general, the methods appear to
exhibit a sparsity–accuracy trade-off, even when they optimize identical objective functions (consider
VARDROP+LR+AR and VARDROP+LR, or ADAPROX and η-TRICK). This trade-off seems to
be determined by the early iterations, depending on whether the method sparsifies the network
quickly or not. We also observe that the stochastic noise due to dropout in VARDROP leads to very
slow convergence while the variance-reduced VARDROP+LR converges exceedingly similarly to its
non-random counterpart η-TRICK. In addition, VARDROP+LR+AR behaves remarkably similarly
to ADAPROX, which was inspired by the additive reparameterization trick. These results suggests
that the success of VARIATIONALDROPOUT is well explained by interpreting it as optimization of
a dual formulation of a regularized ERM problem. Further, they suggest that the variance due to
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Figure 2: VARIATIONALDROPOUT compared with other η-trick strategies using a LOGSUM penalty.

dropout at best yields similar performance to the non-dropout counterpart and at worst can drastically
slow down convergence. Interestingly, the simple LOGSUM-regularized ERM approach performs as
well as any of the other methods considered, and is nearly identical in behavior to ADATIKHONOV,
suggesting that the sparsification performance of VARIATIONALDROPOUT is entirely due to the
effective LOGSUM penalty.

6 Discussion

Given the duality between adaptive dropout and regularization that we have presented, it is no surprise
that such methods excel at sparsifying deep networks. However, many questions still remain.

For one, is there any benefit to dropout noise itself in adaptive dropout optimization, beyond the
η-trick connection? There are known benefits of standard dropout for deep network optimization
[1, 19, 28, 37], but do these benefits transfer to adaptive dropout strategies? A crucial compo-
nent of VARIATIONALDROPOUT, as demonstrated in Section 5, appears to be that its successful
implementations remove most of the noise due to dropout. On the other hand, methods like HARD-
CONCRETEL0NORM from Louizos et al. [26] exploit the fact that sparse masks yield more efficient
computation, and they do not seem to suffer from variance-related optimization issues even without
taking efforts to mitigate such effects. This could be because they use a biased dropout distribution,
which results in significantly lower variance of stochastic gradients. On the other hand, it is not clear
that dropout noise is necessary to obtain these computational speedups; other methods where the
network is sparse during training, such as MAGNITUDEPRUNING, should have the similar properties.

It is evident from Figure 2 that, even when using the same objective function, the optimization
strategy can have a significant impact on the result. It is beyond the scope of this work to examine the
convergence rates, even for convex problems, of the adaptive algorithms we consider in Section 5,
although many of them can be cast as stochastic majorization-minimization (MM) algorithms, for
which some theory exists [27]. However, for non-convex penalties and losses, such as in sparse deep
network optimization, there are no guarantees about the quality of the solution. It is also not clear what
benefit η-trick optimization provides in this setting, if any. For linear problems it has the advantage
of drastically simplifying implementations of penalized methods by reducing them to successive
least squares problems, but with modern automatic differentiation packages it is straightforward
to implement any differentiable sparsity-inducing penalty. To the best of our knowledge, the only
large-scale comparison of sparsity methods for deep networks is that of Gale et al. [15], and they do
not consider classical penalty-based methods.

We have fully analyzed the adaptive-dropout–regularization duality in the linear regression case, and
we know that the exact correspondence between dropout and Tikhonov regularization does not hold
in other settings. However, good quadratic approximations to the general effective regularization of
dropout have been developed [35, 37], which relate to the Fisher information. These approximations
could be used to develop adaptive sparsification strategies that enjoy the data-sensitive properties of
dropout, such as in logistic regression or deep networks.

The duality presented in this paper can be the basis of developing more efficient principled sparsifica-
tion schemes as future work. In particular, using penalties that have been proposed in the compressed
sensing literature such as scaled lasso [33], which is adaptive to noise level, or SLOPE [32], which is
shown to be minimax optimal in feature selection, can lead to adaptive dropout schemes with better
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performance in sparsifying deep networks. In addition, analytical tools such as debiasing [23], which
has been used for near-optimal feature selection [22], could be employed to design improved sparsity
methods.
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A Appendix: Dual Forms of Subquadratic Penalties

A.1 Dual Forms for Common Penalties

The full version of the Table 1 is given in Table 3. The dual formulations are derived in the next
sections.

Table 3: Common penalties and their corresponding dual formulations.

Penalty Ωpwq fpηq pηjpwq

`1 |wj | ηj |wj |

`p, p P p0, 2q }w}p }η}q : q “ p
2´p |wj |

2´p}w}
p´1
p

`pp, p P p0, 2q
1
p |wj |

p 1
q η
q
j : q “ p

2´p |wj |
2´p

`0 1 t|wj | ą 0u 21 tηj ą 0u 81 t|wj | ą 0u

ELASTICNET(θ) [42] θ
2w

2
j ` p1´ θq|wj |

ηjp1´θq
2

1´ηjθ
|wj |

|wj |θ`p1´θq

HUBER(ε) [11, 21]
"

1
2εw

2
j `

ε
2 , |wj | ď ε

|wj |, |wj | ą ε
ηj , H “ rε,8q max tε, |wj |u

LOGSUM(ε) [9] log p|wj | ` εq 2 log
´

?
ε2`4ηj`ε

2

¯

´
p
?
ε2`4ηj´εq

2

4ηj
|wj |p|wj | ` εq

SCAD(a, λ) [13]

$

’

&

’

%

|wj |, |wj | ď λ
2aλ|wj |´w

2
j´λ

2

2pa´1qλ , |wj | P pλ, aλs
pa`1qλ

2 , |wj | ą aλ

#

η, ηj ď λ

λ
pa`1qηj´λ
pa´1qλ`ηj

, ηj ą λ

$

’

&

’

%

|wj |, |wj | ď λ
pa´1qλ|wj |
aλ´|wj |

, |wj | P pλ, aλs

8, |wj | ą aλ

MCP(a, λ) [40]

#

|wj | ´
w2
j

2aλ , |wj | ď aλ
aλ
2 , |wj | ą aλ

aληj
ηj`aλ

#

aλ|wj |
aλ´|wj |

, |wj | ă aλ

8, |wj | ě aλ

HARDTHRESH(k) [7] 81 t}w}0 ą ku 0, H “ tη : }η}0 ď ku 81 tj P TOP-kpwqu

A.2 General Strategy

Define gpuq :“ Ωpud
1
2 q for u P Rd` and hpvq :“ fp´vd´1q for v P Rdď0. As mentioned in

Section 2.2, when g is concave, ´2g and h comprise a Legendre–Fenchel conjugate pair, each being
convex functions. That is, the following relationships hold:

´2gpuq “ sup
v

uJv ´ hpvq, hpvq “ sup
u

uJv ` 2gpuq. (22)

We can thus obtain ´2g and h from each other by solving these optimizations. If the functions
are differentiable, the following first-order conditions must hold for the dual pair u˚ and v˚, the
argument and maximizing variable in either equation in (22):

u˚ “ ∇vhpv
˚q, v˚ “ ´2∇ugpu

˚q. (23)

Note that the second condition is equivalent to (7). Once we have characterized g and h, we can
recover Ω and f by considering wd2 “ u and η “ ´vd´1. In the following sections, we use these
properties to obtain the dual forms presented in Table 1. For separable penalties, it suffices to derive
the dual form of the scalar penalty.

A.3 `p for 0 ă p ă 2

This formulation can be found in Lemma 3.1 of Jenatton et al. [24], but we present another derivation
here. First we compute the gradient

gpuq “

˜

ÿ

j

u
p
2
j

¸
1
p

ùñ ∇ugpuq “
1

2
ud

p
2´1

˜

ÿ

j

u
p
2
j

¸
1
p´1

. (24)

The the first-order condition is

v˚ “ ´u˚
d
p´2
2 gpu˚q1´p, (25)
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which gives pηjpwq “ |wj |2´p}w}
p´1
p . Now then

hpv˚q “ ´

˜

ÿ

j

u˚j
p
2

¸

gpu˚q1´p ` 2gpu˚q (26)

“ ´gpu˚qpgpu˚q1´p ` 2gpu˚q (27)

“ gpu˚q. (28)

Since gpazq “
?
agpzq, we can solve (25) for gpu˚q:

gpu˚q “ g

˜

ˆ

´v˚

gpu˚q1´p

˙d 2
p´2

¸

(29)

“ gpu˚q
p´1
p´2 g

´

p´v˚q
d 2
p´2

¯

(30)

ùñ gpu˚q
1

2´p “

˜

ÿ

j

ˆ

´
1

vj

˙

p
2´p

¸
1
p

(31)

ùñ hpv˚q “

˜

ÿ

j

ˆ

´
1

vj

˙

p
2´p

¸

2´p
p

. (32)

Thus, fpηq “ }η}q for q “ p
2´p .

A.4 `pp for 0 ă p ă 2

First we compute the derivative

gpuq “
1

p
u
p
2 ùñ g1puq “

1

2
u
p
2´1. (33)

Then the first-order condition is

v˚ “ ´u˚
p´2
2 , (34)

which gives pηpwq “ |w|2´p. We also have u˚ “ ´v˚
2
p´2 , which gives us

hpv˚q “ ´p´v˚q
2
p´2`1

`
2

p
p´v˚q

p
p´2 (35)

“
2´ p

p

ˆ

´
1

v˚

˙

p
2´p

. (36)

Thus, fpηq “ 1
q η
q for q “ p

2´p .

A.5 Elastic Net

First, we compute the derivative

gpuq “
θ

2
u` p1´ θq

?
u ùñ g1puq “

θ

2
`

1´ θ

2
?
u
. (37)

The first-order condition is

v˚ “ ´θ ´
1´ θ
?
u˚

, (38)

which is bounded by v˚ ď ´θ. From this we obtain pηpwq “ |w|
|w|θ`p1´θq . We also have

?
u˚ “

1´θ
´v˚´θ . This gives us

hpv˚q “
v˚p1´ θq2

p´v˚ ´ θq2
`

θp1´ θq2

p´v˚ ´ θq2
`

2p1´ θq2

p´v˚ ´ θq
(39)

“
p1´ θq2

p´v˚ ´ θq
. (40)

Thus, fpηq “ ηp1´θq2

1´ηθ for η ď 1
θ .
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A.6 Huber

As usual, first we compute the derivative

gpuq “

"

1
2εu`

ε
2 ,

?
u ď ε

?
u,

?
u ą ε

ùñ g1puq “

#

1
2ε ,

?
u ď ε

1
2
?
u
,
?
u ą ε

. (41)

The first-order condition is

v˚ “ ´min

"

1

ε
,

1
?
u˚

*

, (42)

which is bounded by v˚ ě ´ 1
ε . This gives us pηpwq “ max tε, |w|u. For v˚ ě ´ 1

ε ,
?
u˚ “ ´ 1

v˚ , so

hpv˚q “
1

v˚
´ 2

1

v˚
“ ´

1

v˚
. (43)

Thus, fpηq “ η for η ě ε.

A.7 Log Sum

First, we compute the derivative

gpuq “ logp
?
u` εq ùñ g1puq “

1

2
?
up
?
u` εq

. (44)

Then the first-order condition is

v˚ “ ´
1

?
u˚p
?
u˚ ` εq

. (45)

This gives us pηpwq “ |w|p|w| ` εq. Rewriting the above as a quadratic equation in
?
u˚, we have

p
?
u˚q2 ` ε

?
u˚ `

1

v˚
“ 0, (46)

which gives the inverse mapping
?
u˚ “

b

ε2´ 4
v˚
´ε

2 . Thus we get

hpv˚q “
v˚

4

˜

c

ε2 ´
4

v˚
´ ε

¸2

` 2 log

¨

˝

b

ε2 ´ 4
v˚ ` ε

2

˛

‚. (47)

Thus, fpηq “ 2 log

ˆ?
ε2`4η`ε

2

˙

´ 1
4η

´

a

ε2 ` 4η ´ ε
¯2

.

A.8 SCAD

The SCAD penalty as presented by Fan and Li [13] uses the regularization scaling λ as a parameter,
so first we factor it out:

λΩpwq “ λ

$

’

&

’

%

|w|, |w| ď λ
2aλ|w|´w2

´λ2

2pa´1qλ , |w| P pλ, aλs
pa`1qλ

2 , |w| ą aλ

. (48)

We then compute the derivative

gpuq “

$

’

&

’

%

?
u,

?
u ď λ

2aλ
?
u´u´λ2

2pa´1qλ ,
?
u P pλ, aλs

pa`1qλ
2 ,

?
u ą aλ

ùñ g1puq “

$

’

&

’

%

1
2
?
u
,

?
u ď λ

a
2pa´1q

?
u
´ 1

2pa´1qλ ,
?
u P pλ, aλs

0,
?
u ą aλ

.

(49)
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This gives us the first order condition and in turn pη:

v˚ “

$

’

&

’

%

´ 1?
u˚
,

?
u˚ ď λ

´ a

pa´1q
?
u˚
` 1
pa´1qλ ,

?
u˚ P pλ, aλs

0,
?
u˚ ą aλ

(50)

ùñ pηpwq “

$

’

&

’

%

|w|, |w| ď λ
pa´1qλ|w|
aλ´|w| , |w| P pλ, aλs

8, |w| ą aλ

. (51)

Now when
?
u˚ ď λ, v˚ ď ´ 1

λ , and when
?
u˚ P pλ, aλs, v˚ P p´ 1

λ , 0s. In the first case,
?
u˚ “ ´ 1

v˚ , and in the second,
?
u˚ “ aλ

1´pa´1qλv˚ . Therefore,

hpv˚q “

$

&

%

1
v˚ ´

2
v˚ , v˚ ď ´ 1

λ

a2λ2v˚

p1´pa´1qλv˚q2 `
2aλ

´

aλ
1´pa´1qλv˚

¯

´ a2λ2

p1´pa´1qλv˚q2
´λ2

pa´1qλ , v˚ ą ´ 1
λ

(52)

“

#

´ 1
v˚ , v˚ ď ´ 1

λ
a2pa´1qλ3v˚`2a2λ2

p1´pa´1qλv˚q´a2λ2
´λ2

p1´pa´1qλv˚q2

pa´1qλp1´pa´1qλv˚q2 , v˚ ą ´ 1
λ

(53)

“

#

´ 1
v˚ , v˚ ď ´ 1

λ
λpa2´a2pa´1qλv˚´p1´pa´1qλv˚q2q

pa´1qp1´pa´1qλv˚q2 , v˚ ą ´ 1
λ

(54)

“

#

´ 1
v˚ , v˚ ď ´ 1

λ
λpa2´1`pa´1qλv˚q
pa´1qp1´pa´1qλv˚q , v˚ ą ´ 1

λ

(55)

“

#

´ 1
v˚ , v˚ ď ´ 1

λ
λpa`1`λv˚q
1´pa´1qλv˚ , v˚ ą ´ 1

λ .
(56)

From this we obtain

fpηq “

#

η, η ď λ

λ pa`1qη´λ
pa´1qλ`η , η ą λ.

(57)

A.9 MCP

As with SCAD, we first factor out the λ from the penalty:

λΩpwq “ λ

#

|w| ´ w2

2aλ , |w| ď aλ
aλ
2 , |w| ą aλ

. (58)

We then compute the derivative

gpuq “

"?
u´ u

2aλ ,
?
u ď aλ

aλ
2 ,

?
u ą aλ

ùñ g1puq “

#

1
2
?
u
´ 1

2aλ ,
?
u ď aλ

0,
?
u ą aλ

. (59)

Our first-order condition is

v˚ “

#

´ 1?
u˚
` 1

aλ ,
?
u˚ ď aλ

0,
?
u˚ ą aλ

, (60)

from which we obtain

pηpwq “

#

aλ|w|
aλ´|w| , |w| ă aλ

8, |w| ě aλ
. (61)
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We have the inverse mapping
?
u˚ “ aλ

1´aλv˚ , which gives us

hpv˚q “
a2λ2v˚

p1´ aλv˚q2
`

2aλ

1´ aλv˚
´

aλ

p1´ aλv˚q2
(62)

“
aλpaλv˚ ` 2p1´ aλv˚q ´ 1q

p1´ aλv˚q2
(63)

“
aλ

1´ aλv˚
. (64)

From here, we directly obtain fpηq “ aλη
η`aλ .

A.10 `0

The `0 penalty is not differentiable. However, it is separable, and in one dimension we have

gpuq “ 1 tu ą 0u . (65)

Thus ´2g is convex since its epigraph is a convex set. For u “ 0, ´2g has a supporting line with
slope ´8, and elsewhere with slope 0. Thus we have the relationship v˚ “ ´81 tu˚ “ 0u, which
yields pηpwq “ 81 t|w| ą 0u. The mapping u˚ ÞÑ v˚ is not invertible, so we consider two cases of
v˚:

hpv˚q “

"

0, v˚ “ ´8

supuą0 uv
˚ ` 2gpuq, v˚ ą ´8

(66)

“ 21 tv˚ ą ´8u . (67)

We thus conclude that fpηq “ 1 tη ą 0u.

A.11 Hard Threshold

For this penalty, we begin with the pηpwq that yields the IHT algorithm when w is optimized by a
gradient step. This corresponds to

pηjpwq “ 81 tj P TOP-kpwqu . (68)

We thus seek to find a penalty that yields such an pη. In interest of mathematical preciseness, let us
define, given a ą 0 and m P rds, the set

Sm´a :“ Conv ptv : vj P t´a, 0u ,# tj : vj “ ´au ě muq , (69)

where ConvpAq is the convex hull of the set A. Similarly define
sSm´a :“ Conv ptv : vj P r´8,´as Y t0u ,# tj : vj ď ´au ě muq , (70)

and lastly define

pSm´a :“
 

v : vj ď v1j @j for some v1 P Sm´a
(

. (71)

Note that Sm´a Ď sSm´a Ď pSm´a and that pSm´a is also a convex set. Now consider

hapvq “ 81
 

v R sSd´k´a

(

. (72)

This function is convex as it has a convex epigraph. Its Legendre–Fenchel transform is given by

h˚apuq “ sup
v

uJv ´ hapvq (73)

“ sup
vP sSd´k

´a

uJv (74)

ď sup
vP pSd´k

´a

uJv (75)

“ sup
vPSd´k

´a

uJv , (76)
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where inequality holds because sSd´k´a Ď pSd´k´a the final equality holds by definition of pSd´k´a . Clearly,
the inequality is equality since Sd´k´a Ď sSd´k´a . Now consider that for any v P Sd´k´a ,

ř

j vj ď

´pd ´ kqa and vj ě ´a @j. We can choose at most k elements of v to be zero, so to achieve the
supremum we must choose them at the largest elements of u. That leaves then that the remaining
elements must be ´a, so we have

h˚apuq “ ´a
ÿ

jąk

upjq. (77)

With corresponding v˚j “ ´a1 tj R TOP-kpu˚qu. Now, taking a Ñ 8 for v˚, ha, and h˚a we can
determine η, f , and Ω. First, as desired,

ηjpwq “ lim
aÑ8

´p´a1 tj R TOP-kpwquq´1 (78)

“ 81 tj P TOP-kpwqu . (79)

Then, since hapvq is infinite for v R sSd´k´a and zero for v P sSd´k´a , we have fpηq “ 0 with

H “ lim
aÑ8

 

η : ´ηd´1 P sSd´k´a

(

(80)

“ tη : }η}0 ď ku . (81)

Lastly, we have

Ωpwq “ lim
aÑ8

´2h˚apw
d2q (82)

“ 81 t}w}0 ą 0u . (83)

B Adaptive Dropout with Additive Reparameterization

In Algorithm 1 we present one scheme for implementing adaptive dropout using an additive reparam-
eterization via a two-pass proximal update of the variables w and v. This method is equivalent to an
adaptive proximal stochastic gradient descent with the adaptive Tikhonov penalty.

Algorithm 1: Adaptive Dropout with Additive Reparameterization

Input: Differentiable L : Rd Ñ R, pη : Rd Ñ H, λ ą 0, pρtqTt“1, w0, α0.
Output: wT .
w0,2

“ w0.
for t “ 1, 2, . . . , T do

Draw st „ MASKpαt´1
q.

wt,1
“ wt´1,2

´ ρt∇wL
`

wt´1,2
` pst ´ 1q d vt´1,2

˘

.
vt,1 “ wt,1.
ηt “ pηpvt,1q.
vt,2 “

`

ρtλdiag
`

ηt
˘´1

` I
˘´1

vt,1.
wt,2

“ vt,2.
αtj “

ηtj
ηtj`λ

@j P rds.

end

C Experimental Details

We use the PyTorch [30] and skorch [34] libraries to implement deep network methods. On an Nvidia
980 Ti GPU, the experiment runs in about an hour. We randomly divide the MNIST training set into
training and validation sets with an 80/20 split. For methods involving optimization in logpηq, we
optimize instead in logpsηq for sη “ η{λ, as Molchanov et al. [29] do. We initialize with logpsηjq “ 5.
For the VARDROP methods, we use the dual penalty fpsηq and implement the methods using code
provided by the authors [2]. For other methods, we simply use the LOGSUM(2) penalty (based on
Figure 1) applied to η directly, along with a larger value of λ to account for the implicit attenuation
of the Tikhonov regularization due to dropout with the cross-entropy loss. For all methods, we use
the Adam optimizer with a linear decay to 0 of the initial learning rate. The initial learning rate is set
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to be 10´4, but for a few methods this failed to converge to a sparse solution, so we increased it to
10´3. For VARDROP, convergence was quite slow; running for a longer number of epochs, however,
does continue to improve the sparsity. Running for 1000 epochs, for example, gets the fraction of
nonzeros down to around 0.1, at a slight expense of accuracy.

We measure sparsity using the same method as Molchanov et al. [29]: we count the values of
sη such that σpsηjq ă 0.05, and we zero out the corresponding wj when applying the network to
a validation/test sample. For η-TRICK, we observed that while the parameters w were indeed
converging to sparse solutions, the η parameters were not, resulting in a mismatch of the actual
sparsity of the network and our reported score; to remedy this, we apply a very small penalty of
λ ¨ 10´3 logpsηq, which did not seem to compromise network accuracy.

Table 4: Hyperparameters and final results for sparsification of LeNet-300-100.

Method λ Learning Rate Test Error Fraction of Nonzeros

VARDROP+LR+AR 1
60,000 10´4 3.21% 0.024

VARDROP+LR 1
60,000 10´3 1.41% 0.088

VARDROP 1
60,000 10´3 1.54% 0.595

η-TRICK 10´3 10´3 2.16% 0.051
ADAPROX 10´3 10´4 2.94% 0.028
ADATIKHONOV 10´3 10´4 2.88% 0.018
LOGSUM 10´3 10´4 2.93% 0.019
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