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Abstract—Compressed sensing (CS) is a signal processing
technique that enables the efficient recovery of a sparse high-
dimensional signal from low-dimensional measurements. In the
multiple measurement vector (MMV) framework, a set of signals
with the same support must be recovered from their corresponding
measurements. Here, we present the first exploration of the MMV
problem where signals are independently drawn from a sparse,
multivariate Poisson distribution. We are primarily motivated by
a suite of biosensing applications of microfluidics where analytes
(such as whole cells or biomarkers) are captured in small volume
partitions according to a Poisson distribution. We recover the
sparse parameter vector of Poisson rates through maximum likeli-
hood estimation with our novel Sparse Poisson Recovery (SPoRe)
algorithm. SPoRe uses batch stochastic gradient ascent enabled by
Monte Carlo approximations of otherwise intractable gradients.
By uniquely leveraging the Poisson structure, SPoRe substantially
outperforms a comprehensive set of existing and custom baseline
CS algorithms. Notably, SPoRe can exhibit high performance even
with one-dimensional measurements and high noise levels. This
resource efficiency is not only unprecedented in the field of CS
but is also particularly potent for applications in microfluidics
in which the number of resolvable measurements per partition
is often severely limited. We prove the identifiability property of
the Poisson model under such lax conditions, analytically develop
insights into system performance , and confirm these insights in
simulated experiments. Our findings encourage a new approach
to biosensing and are generalizable to other applications featuring
spatial and temporal Poisson signals.

Index Terms—Compressed sensing, sparse recovery, Poisson,
maximum likelihood, Monte Carlo methods, microfluidics.
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I. INTRODUCTION

A S DATA increasingly informs critical decision-making,
efficient signal acquisition frameworks must keep pace.

Modern signals of interest are often high-dimensional but can
be efficiently recovered by exploiting their underlying structure
through signal processing. The field of compressed sensing
(CS), reviewed in [1], [2], focuses on the recovery of sparse
signals from fewer measurements than the signal dimension.
Concretely, anN -dimensional signal x∗ with at most k nonzero
entries (in which case x∗ is said to be k-sparse) can be re-
covered from a measurement vector y acquired by M < N
sensors. The sensors’ linear responses to entries of x∗ define
a sensing matrixΦ such that, compactly, y = Φx∗. Recovering
x∗ from y is known as the single measurement vector (SMV)
problem [3]–[6]. In the multiple measurement vector (MMV)
problem [7]–[9], D measurements are captured in an M ×D
matrix Y in order to recover X∗, an N ×D signal matrix. X∗

is jointly sparse such that only k rows contain at least some
nonzero elements. CS has been applied extensively in imag-
ing [10]–[12] and communications [13]–[15] and only recently
in biosensing [16]–[19].
Emerging microfluidics technologies in the field of biosens-

ing motivate a new MMV framework. With microfluidics, a
single sample can be split into D small-volume partitions
such as droplets or nanowells with D on the order of 103 to
107 [20]. Microfluidic partitioning captures individual analytes
(e.g. cells [21], [22]; genes [23]; proteins [24], [25]; etc.) in
partitions, and analyte quantities across partitions are known to
follow a Poisson distribution [26], [27]. The common method to
detect a library of analyteswith largeN is to either dilute samples
or split samples into more partitions such that the Poisson distri-
butions reduce to either empty or single-analyte capture, i.e., that
columns ofX∗ satisfy‖x∗

d‖ ∈ {0, 1} [22], [28]. This assumption
motivates a straightforward N -class classification problem for
each non-empty partition, but it necessitates clear separation
between classes even under noise, some prior knowledge of
sample concentration, and the generation of many wasteful,
empty partitions. We hypothesize that CS could generalize the
signal recovery strategy when samples are sparse, a common
characteristic of biological samples. For example, samples may
contain only a few microbes or mutations of interest among
many possibilities [29], [30].
We propose the following generally applicable framework

for the MMV problem with Poisson signals (MMVP). Let
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Fig. 1. The multiple measurement vector (MMV) problem with Poisson
signals (MMVP) with one sensor group and noiseless measurements. White
squares are zeroes and darker colors represent larger values. Each column x∗

d
of X∗ is drawn from a Poisson distribution governed by the 2-sparse λ∗ (i.e.,

xd∗
i.i.d.∼ Poisson(λ∗)).

each signal x∗
d be drawn independently from a multivariate

Poisson distribution parametrized by the N -dimensional, k-
sparse vector λ∗. That is, x∗

n,d ∼ Poisson(λ∗
n) are independent.

This framework should not be confused with the well-studied
“Poisson compressed sensing” problem in imaging where the
measurement noise, rather than the signal, follows a Poisson
distribution [31], [32]. In contrast to typicalMMVproblems, our
primary goal is to find an estimate λ̂ ≈ λ∗ fromD observations
rather than to estimate X̂. Each signal and measurement pair
(x∗

d, yd) is in one of G different sensor groups, each with its
own sensing matrix Φ(g) such that yd = Φ(g)x∗

d. The group g
associated with each index d is known and deterministic. This
measurement group multiplexing is similar to that found in the
single pixel camera (SPC) [10]; however, in the SPC the x∗

d
are assumed to be equal, whereas in MMVP they are indepen-
dently sampled. In microfluidics, several sensor groups can be
feasibly achieved by forking an input microfluidic channel into
G reaction zones each containing its own set of M sensors.
Note that x∗

d
i.i.d.∼ Poisson(λ∗) regardless of which group it is

in. The statement Y = ΦX∗ is the special case without noise
where G = 1 and is illustrated in Fig. 1. For multiple groups
with X(g)∗ denoting the submatrix of X∗ in group g, Y is the
following concatenation:

Y =
[
Φ(1)X(1)∗ . . . Φ(G)X(G)∗

]
. (1)

A. Contributions and Findings

We present the first exploration of the MMVP problem and
develop a novel recovery algorithmand initial theoretical results.
We take a maximum likelihood estimation (MLE) approach,
treatingY as a set ofD observations from which to infer λ̂. Our
core contributions are 1: the Sparse Poisson Recovery (SPoRe)
algorithm that tractably estimates λ̂ (Section II); 2: theoretical
results on the identifiability of our MMVP model, proving that
MLE can asymptotically recover λ∗ even when M = G = 1
for any k, and insights into MLE performance (Section III);
and3: simulations demonstratingSPoRe’s superior performance
over existing and custom baseline algorithms (Section IV). The
achievable measurement rate in the MMVP model is unprece-
dented in CS, and although we are unable to provide theoretical
guarantees for our algorithm, we analytically derive insights
into the influence of various system parameters and confirm
these insights in our simulated experiments. We find that system

designers should first maximize M and then increase G as
necessary depending on the expected real-world conditions. We
found that usingG > 1 was helpful for cases with high noise or
high

∑
n λ

∗
n.

SPoRe’s strong performance even with extremely low M ∈
{1, 2, 3} under very high measurement noise uniquely enables
sensor-constrained applications in biosensing. Although mi-
crofluidics devices can rapidly generate a large number of par-
titions D at a tunable rate, most optical and electrochemical
sensing modalities that can keep pace are limited in M [20],
[33]. Commonly, fluorescently tagged sensors reveal droplets’
contents rapidly as they flow by a detector, but spectral overlap
generally limitsM to be five or less without highly specialized,
system-specific approaches [34]. High M alternatives such as
various spectroscopic techniques limit throughput, necessitate
additional instrumentation, or complicate workflows [33], [35].
We speculate that these severe restrictions in M may have
forestalled research into CS’s potential role in microfluidics.

B. Previous Work

To the best of our knowledge, theMMVP problem has not yet
been explored, likely owing to the ongoing maturation of mi-
crofluidics and only recent application of CS to biosensing. The
Poisson signalmodel constrains elements ofX to be nonnegative
integers under a set of defined probability mass functions. Some
aspects of this structure have been studied tangentially, but not
the MMVP structure directly.
The core MMV problem only imposes joint sparsity. Early

greedy algorithms for this generalized scenario extend the
classic Orthogonal Matching Pursuit (OMP) algorithm [36]
into OMPMMV [8], simultaneously developed as Simultaenous
OMP (S-OMP) [9]. Generally, OMP-based algorithms itera-
tively build a support set of an estimated sparse solution x̂ (or
X̂) by testing for the correlation between columns of Φ and
the residuals between the measurements and previous estimates.
A suite of greedy algorithms was recently developed that im-
pose nonnegative constraints to a number of MMV approaches
including OMP’s analogues, and the nonnegative extensions
outperformed their generalized counterparts [37].
The application of integer constraints to the SMVproblemhas

proven challenging in the literature. Some theory involving sens-
ing matrix design includes [38], [39], but practical algorithms
have required additional constraints on the possible integers,
e.g., x ∈ {0, 1}N or other finite-alphabet scenarios [14], [40]–
[43]. A recent study verified that these problems, as well as those
with unbounded integer signals, are NP-hard [44]. Algorithms
for the unconstrained integer SMV problem thus apply greedy
heuristics such as OMP-based approaches [45], [46].
Additional structural constraints can also make these prob-

lems tractable. The communications problem of multi-user
detection (MUD), reviewed in [47], bears some similarity to
MMVP. Here, the activity of N users is the signal of interest
and generally follows a Bernoulli model where each user is
active with the same prior probability pa [14]. An alternative
prior with

∑N
n=1 xn,d ∼ Poisson(λ) models the mean number

of total active users in any given signal [48] although the authors
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solely explored an overdetermined system. Applying an MMV
framework to MUD enables underdetermined (M < N ) appli-
cations but has generally assumed that any active user is active
for the entire frame of observation (a row ofX is entirely zero or
nonzero) [49], [50]. Recently, the potency of sensor groups with
a G = 2 system was demonstrated in the MUD context [51].
Despite some similarities to MMVP with an MMV framework
and discrete signals, MUD most fundamentally differs from
MMVP in its utilization of the probabilistic structure of X.
In MUD, the model parameters governing user activities are
assumed and leveraged in recovery ofX, whereas inMMVP, the
model parameters in λ∗ themselves are the target of recovery.
Regardless of the particular structural constraints imposed in

the variants of MMV above, M > k is necessary to recover
X∗ [52]. However, in MMV models where the rows of X∗ are
statistically independent, the simpler task of support recovery
has been proven to be possible below theM > k regime, as low
asM = Ω(

√
k) [53]–[55]. In particular, multiple measurement

sparse Bayesian learning (M-SBL) [53] takes a MLE approach
in a setting very similar toMMVP, but wherex∗

d have aGaussian
distribution rather than Poisson, and thereM = Ω(

√
k) is limit

for sparse support recovery even for D → ∞. In contrast, we
prove that in the MMVP problem, this is improved to M ≥ 1
(i.e., no minimum number of measurements) regardless of k
whenD → ∞, even whenG = 1. Furthermore, theMLE in this
setting recovers λ∗ exactly. We demonstrate empirically that we
can recover λ∗ well for finiteD even for extremely lowM such
as M ∈ {1, 2, 3}.

II. SPARSE POISSON RECOVERY (SPORE) ALGORITHM

A. Notation

We denote by P (·) a probability mass function and by p(·) a
probability density function.We useRN andZN to represent the
N -dimensional Euclidean space and integer lattice, respectively.
We denote by RN

+ and ZN
+ the non-negative restrictions on

these spaces. We use script letters (A,B,...) for sets unless
otherwise described. We use lowercase and uppercase bold-face
letters for vectors and matrices, respectively. We represent their
dimensions with uppercase letters (e.g., X ∈ ZN×D

+ ) that are
indexed by their lowercase counterparts. For example, xn,d is
the element of X in the nth row and dth column, and we use
the shorthands xn and xd to represent the entire nth row and
dth column vectors, respectively. Other lower case letters (a, b,
ε, etc.) may represent variable or constant scalars depending on
context. We use λ∗ andX∗ to refer to the true signal values, and
we denote estimates λ̂ and X̂ with the source of the estimate
(e.g., MLE, SPoRe, baseline algorithm) being implicit from the
context. We use ‖ · ‖ to denote a norm, ‖ · ‖0 for the number of
nonzero elements of a vector, ‖ · ‖1 for the #1 vector norm, ‖ · ‖2
for the Euclidean norm, and ‖ · ‖F for the Frobenius norm. We
also use ‖X‖Rx ! ∑

n maxd |xn,d|, a relaxation of the row #0
quasi-norm defined in [56]. We denote the null space of matrix
A byN (A). As one abuse of notation, for densities of the form
p(y|x), we let the corresponding Φ(g) applied to x and the

relevant noise model be implicit. Also, we let the division of
two vectors represent element-wise division.

B. Algorithm

If the index d is in sensor group g, we say that linear mea-
surements are corrupted by an additive random noise vector bd:

yd = Φ(g)xd + bd. (2)

We let bd be entirely independent (e.g., additive white Gaussian
noise (AWGN), as used in our simulations) or dependent on x.
With xd

i.i.d.∼ Poisson(λ∗), yd are independent across d as well.
The MLE estimate maximizes the average log-likelihood of the
measurements:

λ̂MLE = arg maxλ

D∏

d=1

p(yd|λ) (3)

= arg maxλ
1

D

D∑

d=1

log
∑

x∈ZN
+

p(yd|x)P (x|λ). (4)

Because the infinite sum over x yields an intractable pos-
terior distribution, we cannot apply the popular expectation-
maximization (EM) algorithm [57] to solve this MLE problem.
Instead, our Sparse Poisson Recovery (SPoRe) algorithm (Algo-
rithm 1) optimizes this function with batch stochastic gradient
ascent, drawing B elements uniformly with replacement from
{1, . . ., D} to populate a batch set B. First, note that

∇λP (x|λ) = P (x|λ)
(
x

λ
− 1

)
. (5)

Denoting the objective function from the right-hand side of (4)
as #, the gradient is

∇λ# =
1

B

∑

d∈B

∑
x∈ZN

+
p(yd|x)P (x|λ)x

λ
∑

x∈ZN
+
p(yd|x)P (x|λ) − 1. (6)

With gradient ascent, each iteration updates λ ← λ+ α∇λ#
with learning rateα. However, the summations over all ofZN

+ are
clearly intractable. SPoRe approximates these quantities with
a Monte Carlo (MC) integration over S samples of x, newly
drawn for each batch gradient step from sampling distribution
Q : ZN

+ → R+, such that

∑

x∈ZN
+

p(y|x)P (x|λ) ≈ 1

S

S∑

s=1

p(y|xs)P (xs|λ)
Q(xs)

. (7)

The optimal choice of Q(xs) is beyond the scope of this work,
but we found that Q(xs) = P (xs|λ) simplifies the expression,
is effective in practice, and draws inspiration from the EM
algorithm. In other words, the sampling function is updated at
each iteration based on the current estimate of λ. The gradient
thus simplifies to

∇λ# =
1

B

∑

d∈B

∑S
s=1 p(yd|xs)xs

λ
∑S

s=1 p(yd|xs)
− 1. (8)

Note that if only one x̂d ∈ ZN
+ satisfied p(ycd|x̂d) > 0 for every

yd, the objective #would be concave with λ̂ = 1
D

∑D
d=1 x̂d, i.e.,

the MLE solution ifX∗ were directly observed. Of course, with
compressed measurements and noise, multiple signals may vie
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Fig. 2. Example of MMVP and Sparse Poisson Recovery (SPoRe) with
M < k < N :Φ = [1, 2, 3], λ∗ = [0.5, 0, 0.5], andD = 1000measurements
under additive white Gaussian noise (AWGN) b ∼ N (0,σ2) with σ2 = 0.02.
SPoRe attempts to fit the distribution of measurements directly and finds
λ̂ ≈ [0.45, 0.03, 0.44]. For comparison, the "1-Oracle (see Section IV) min-
imizes the measurement error X̂ = argminX ‖Y −ΦX‖F with X ≥ 0 and∑

n,d
xn,d =

∑
n,d

x∗
n,d as affine constraints. The estimate λ̂ for the "1-

Oracle is then set to the average of the columns of X̂, and in this example,
λ̂ ≈ [0.33, 0.31, 0.31]. The distributions p(y|λ̂) for each estimation method
are compared against the true distribution p(y|λ∗) and the empirical histogram
of the D observations.

to “explain” any single measurement, but SPoRe’s key strength
is that it jointly considers independent measurements to directly
estimate λ̂.
We note that for finite samples, since the MC integration

occurs inside a logarithm, the stochastic gradient is biased.
However, since it converges in probability to the true gradient,
we can expect results comparable to SGD with an unbiased
gradient for sufficiently large S [58].
Fig. 2 illustrates key concepts of SPoRe and MMVP with

a small example where M = G = 1 and λ∗ = [0.5, 0, 0.5] for
which we can numerically compute p(y|λ) for various λ. The
measurements yd are effectively drawn from an underlying
mixture distribution depending on the noise; e.g., under AWGN,
yd follows a Gaussian mixture. The weights on each mixture
component are controlled byλ. In simulated recovery, SPoReas-
signsweights to themixture via λ̂ according to the distribution of
measurements, coming close to the true underlying distribution.
In contrast, an #1-Oracle (Section IV)which represents best-case
performance for a standard, convex sparse recovery process fails
becauseM < k as shown by its error in λ and illustrated by the
difference in the distributions. Moreover, by usingΦ = [1, 2, 3],
many x will map to the same y. While CS theory generally
focuses on conditions for unique or well-spaced projections of
k-sparse signals (e.g., the restricted isometry property, RIP [5]),
we demonstrate that such restrictions are unnecessary inMMVP.
By accounting for the latent Poisson distribution in the signals,
SPoRe succeeds even whenM < k.
Algorithm 1 summarizes the implementation details of

SPoRe. Even though λ ∈ RN
+ , we enforce λ ≥ ε by clipping

(ε = 10−3 in our simulations) to maintain exploration of the
parameter space. Note that in (8), gradients can become very
large with finite sampling as some elements of λ approach
zero. We found that rescaling gradients to maximum norm γ

Algorithm 1: Sparse Poisson Recovery (SPoRe).

Input: λ(0), B, S, γ, α, ε
1: λ ← λ(0)

2: i = 0
3: repeat
4: DrawB columns ofY uniformly with replacement
5: Draw S new samples from Q(xs)
6: δ ← α∇λ#(λ) " (8)
7: if ‖δΓ‖2 > γ then
8: δ ← γ

‖δΓ‖2 δ " Rescale gradient step
9: end if

10: λn ← max(λn + δn, ε)
11: until stopping criterion met
12: return λ

helps stabilize convergence. For rescaling, we consider only
the subvector δΓ of the α-scaled gradient δ, defining indices
n ∈ Γ ⊆ {1, . . ., N} if λn + δn > ε. This restriction ensures
that rescaling is solely based on the indices still being optimized,
excluding those clipping to ε.
For our stopping criterion, we evaluate a moving average of λ̂

for convergence.We also track themedian of p(yd|λ) for d ∈ B,
accounting for stochasticity in likelihood approximations and
batch selections such that we may reduce α if no improvements
in the median have been seen within a patience window and
terminate if α is reduced five times. We conducted all experi-
ments on commodity personal computing hardware. Ultimately,
recoveryof λ̂ takes a fewminutes on a single core for the problem
sizes we consider (M ≤ 15,N ≤ 50), and SPoRe can be easily
parallelized in the future for faster performance.

C. Practical Considerations

Within an iteration, we found that using the same S = 1000
samples for all d ∈ B helped to vectorize our implementation
to dramatically improved speed over sampling S times for
each drawn yd. This simplification had no noticeable influence
on performance. While we found random initializations with
a small offset λ(0) ∼ Uniform(0, 1) + ν (with ν = 0.1) to be
effective in general, we encountered a numerical issue when
under low-variance AWGN. Even though AWGN results in
nonzero probabilities everywhere, p(yd|xs) may numerically
evaluate to zero for all drawn samples in low-noise settings.
These zeros across all samples result in undefined terms in
the summation over d ∈ B in (8). SPoRe simply ignores such
undefined terms, but when this numerical issue occurs for all of
B, SPoRe takes no gradient step. With very low noise and large
N dampening the effectiveness of randomsampling, SPoRemay
stop prematurely as it appears to have converged. This problem
did not arise with larger noise variances where even inexact
samples pushed λ̂ in the generally appropriate direction until
better samples could be drawn (recall that Q(x) = P (x|λ̂) at
each iteration). Nonetheless, we decided to set λ(0) = ν for
consistency across all simulated experiments. We speculate that
setting λ(0) to a small value helped encourage sampling sparse

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 29,2023 at 22:10:44 UTC from IEEE Xplore.  Restrictions apply. 



2392 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

x’s in early iterations to help find xs with nonzero p(yd|xs),
bypassing the numerical issue altogether.

III. THEORY AND ANALYSIS

The summation over x inside the logarithm of the objec-
tive function complicates the precise analysis of our SPoRe
algorithm. However, we can consider the asymptotic MMVP
problem as D → ∞ and its MLE solution to gain insight into
the superior recovery performance of SPoRe. In this setting, we
obtain the powerful result that λ∗ is exactly recoverable even
when M = G = 1 under a simple null space condition on Φ.
We then characterize the loss in Fisher Information for MMVP
and show how losses accruewith the increase of signals that map
to the samemeasurements, an effect that increaseswithk. Lastly,
we derive insights into the influence of sensor groups through
a small-scale analysis. From a system design standpoint, we
find that designers should first increase M as much as feasible
and then increase G as needed. All proofs can be found in the
Appendix.

A. Identifiability of MMVP Models

Our primary theoretical result is that the asymptotic MLE of
theMMVPproblem is exactly equal toλ∗ as long as a simple null
space condition onΦ is satisfied. This result improves upon the
M = Ω(

√
k) limitations of correlation-aware support recovery

methods [53], [55], placing no restrictions on k and M . The
reason for this improvement is that Φ transforms an integer
lattice rather than a linear subspace such that the resultingmodel
is still identifiable.
Identifiability refers to the uniqueness of the model parame-

ters that can give rise to a distribution of observations. A model
P = {p(·|λ) : λ ∈ RN

+} is a collection of distribution functions
which are indexed by the parameter λ; in the MMVP problem,
each choice of Φ and noise give rise to a different model P .
Through an optimization lens, if our model is identifiable, then
λ∗ is the unique global optimum of the data likelihood asD →
∞. Recall that p(y|λ) =

∑
x∈ZN

+
p(y|x)P (x|λ), meaning that

we can interpret this model as each sensor group consisting of
a mixture whose elements’ positions are governed by Φ(g)x,
distributions by the noise model, and weights by P (x|λ). We
focus in this analysis on G = 1, since as D → ∞, at least one
sensor group contains infinite measurements. If the correspond-
ingΦ(g) satisfies the conditionswe describe here, then themodel
is identifiable. Formally:
Definition 3.1 (Identifiability): The model P is identifiable if

p(y|λ) = p(y|λ′) ∀y ⇒ λ = λ′ for all λ,λ′ ∈ RN
+ .

The identifiability of mixtures is well-studied [59], [60]; if a
mixture is identifiable, themixtureweights uniquely parametrize
possible distributions. For finitemixtures, a broad set of distribu-
tions includingmultivariate exponential andGaussian have been
proven to be identifiable [61]. A finite case may manifest in re-
alistic MMVP systems where measurements y must eventually
saturate; all sensors have a finite dynamic range of values they
can capture. In the most general case, p(·|λ) is a countably infi-
nite mixture. Although less studied, countably infinite mixtures
are identifiable under some classes of distributions [62]. The

AWGN that we use in our simulations is identifiable for both the
finite and countably infinite cases. Characterizing the full family
of noise models that are identifiable under countably infinite
mixtures is beyond the scope of this work. Our contribution
is that given a noise model that yields identifiable mixtures,
equal mixture weights induced by λ and λ′ imply λ = λ′. We
prove the sufficiency of the following simple conditions on Φ
for identifiability:
Theorem 3.2 (Identifiability of Mixture Weights): Let b be

additive noise drawn from a distribution for which a countably
infinite mixture is identifiable. IfN (Φ) ∩RN

+ = {0} andφn 4=
φn′ ∀n, n′ ∈ {1, . . . , N} with n 4= n′, then P is identifiable.

Thenull space condition essentially says that anynonzero vec-
tor in N (Φ) must contain both positive and negative elements.
Many practicalΦ satisfy this constraint (e.g., anyΦwith at least
one strictly negative or positive row). The second condition is
trivial: no two columns of Φ can be identical. We also obtain a
separate sufficient condition, thatΦ drawn from any continuous
distribution results in identifibiablity.
Corollary 3.3 (Identifiability with Random Continuous Φ):

Let b be additive noise drawn from a distribution for which a
countably infinite mixture is identifiable. If the elements of Φ
are independently drawn from any continuous distribution, then
P is identifiable.
We emphasize the general result of Theorem 3.2, since dis-

crete sensing is common in biomedical systems. For example,
sensors are often designed to bind to an integer number of known
target sites and yield “digital” measurements [26], [63]. Discrete
Φ can give rise to what we call collisions. Formally:
Definition 3.4 (Collisions and Collision Sets): Let Φ ∈

RM×N be a sensing matrix applied to signals x ∈ ZN
+ . A col-

lision occurs between x and x′ when Φx = Φx′. A collision
set for an arbitrary u ∈ ZN

+ is the set Cu = {x : Φx = Φu;x ∈
ZN
+}.
If the distribution from which b is drawn is fixed (e.g.,

AWGN) or a function of Φx, then the mixture weights are the
probability mass of each collision set. Let the set of collision
sets be U with Cu ∈ U being an arbitrary collision set.

p(y|λ) =
∑

Cu∈U
p(y|x ∈ Cu)P (Cu|λ) (9)

P (Cu|λ) =
∑

x∈Cu

P (x|λ). (10)

The weights of the mixture elements are governed by P (Cu|λ).
Given a noise model that yields identifiable mixtures, the same
distribution of observations y implies that the mixture weights
are identical, i.e. P (Cu|λ) = P (Cu|λ′) ∀u. We prove that
P (Cu|λ) = P (Cu|λ′) ∀u implies λ = λ′, which implies the
identifiability of P under both the conditions of Theorem 3.2
and Corollary 3.3.
Our proofs are based on the existence and implications of

single-vector collison sets Cx = {x}. When (9) holds,u indexes
both the mixture elements and the collision sets. In the general
case where b is dependent on x and not simply Φx, signals
participating in the same mixture element may have different
noise distributions. These differences can only further subdivide
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collision sets and leaves single-vector collision sets unaffected.
Thus, our results also cover the general noise case.

B. Fisher Information of MMVP Measurements

While identifiability confirms that λ∗ is a unique global
optimumof theMLEproblemgiven infinite observations, Fisher
Information helps characterize estimation of λ∗ asD increases.
The Fisher Information matrix I is the (negative) Hessian of
the expected log-likelihood function at the optimum λ∗, and it
is well-known that under a few technical conditions the MLE
solution is asymptotically Gaussian with covariance I−1/D.
Intuitively, higher Fisher Information implies a “sharper” op-
timum that needs fewer observations for stable recovery. For
direct observations of Poisson signals x∗

d rather than yd, I is
diagonal with In,n = 1/λ∗

n. In MMVP with observations of
noisy projections (yd), I and its inverse are difficult to analyze.
We can, however, instead characterize the reduction in In,n in
MMVP caused by the noisy measurement of x∗

d and derive an
insight that we empirically confirm in Section IV-D. Concretely,
elements of I follow

Ii,j = E
[(

∂

∂λ∗
i

log p(y|λ∗)

)(
∂

∂λ∗
j

log p(y|λ∗)

)]
. (11)

We denote the shorthand wx ! p(y|x)P (x|λ) and note that∑
x wx = p(y|λ). Following a similar derivation for the partial

derivatives in (8), it can be shown that the general expression for
diagonal elements In,n is

In,n =

∫ (∑
x wxxn∑
x wxλ

∗
n

− 1

)2(∑

x

wx

)
dy. (12)

In the ideal scenario, we observe x∗
d directly such that

I ideal
n,n =

∑

x

P (x|λ)
(
xn

λn
− 1

)2(∫
p(y|x)dy

)
. (13)

It can be easily shown that (13) reduces to the canonical 1/λ∗
n.

The integration of p(y|x) evaluates to one, but we can manipu-
late it algebraically to re-express the quantity as

I ideal
n,n =

∫ ∑

x

[
wx

(
xn

λn
− 1

)2]
dy. (14)

Let I loss
n ! I ideal

n,n − In,n and let
∑

(x,′χ) denote the sum over all
pairs of signals x,′ χ ∈ ZN

+ . Expanding Equations (12) and (14)
and simplifying yields

I loss
n =

1

λ∗
n
2

∫ (∑

x

wxx
2
n − (

∑
x wxxn)2∑

x wx

)
dy

=
1

λ∗
n
2

∫
1∑
x wx

( ∑

∀x,′χ
wx′wχ(x

′
n − χn)

2

)
dy. (15)

Note that I loss
n is non-negative such that In,n ≤ I ideal

n,n and
that pairs of signals with x′

n 4= χn can contribute to I loss
n . Also

note that, wx′wχ = p(y|x′)p(y|χ)P (x′|λ∗)P (χ|λ∗) and that
P (x|λ∗) > 0 only when supp(x) ⊆ supp(λ∗). Thus, the Fisher
Information is only reduced over the direct Poisson observation
case when there are pairs of signals that are well-explained by
the same y and by the same λ∗. Clearly, λ∗ with higher k will
result in more of such pairs, and we empirically confirm this

influence of k on Fisher Information in Section IV-D. Although
further precise analysis via Fisher Information is challenging,
we provide deeper analysis of the special case of the MMVP
problemwith smallλ through a different lens in the next section.

C. Small Scale Analysis

With identifiability, we know that λ∗ uniquely maximizes the
expected log-likelihood. However, because SPoRe uses stochas-
tic gradient ascent to optimize the empirical log-likelihood, it
will typically achieve a λ̂ that is near but not equal to λ∗.
We therefore wish to understand how the neighborhood of λ∗

changes given the parameters of the problem. The natural way to
do this for MLE problems is to consider the Fisher Information
matrix as in the previous section, but the presence of a sum inside
the logarithm makes analysis difficult. Instead, we consider a
particular λ̃ near λ∗ that solves an optimization related to the
original likelihood maximization problem. To further simplify
the setting, we consider the “small scale” case where

∑
n λ

∗
n is

small enough that there is almost never a casewhere
∑

n x
∗
n > 1.

We emphasize that although this setting is simple, the MLE
approach can still drastically outperform a trivial solution such
as λ̂ = E[x̂], where x̂ = arg maxxp(y|x), since with sufficient
noise, x̂ 4= x∗ with arbitrary probability (Section IV-B).
At the small scale, the distribution of each x∗

n becomes
Bernoulli with parameter λn, and the probability that x∗

n = 1
and x∗

n′ = 1 for n 4= n′ vanishes. Let n∗ ! (the first nonzero
index of x∗, 0 if none), which has a categorical distribution
with parameter λ∗. We abuse notation so that φ0 = 0, λ∗

0 is the
probability that n∗ = 0, and

∑N
n=0 λ

∗
n = 1. Applying Jensen’s

inequality to the log-likelihood for the conditional expectation
given n∗, we obtain

E
[
log

N∑

n=0

p(y|n)λn

]
≤ En∗

[
log

N∑

n=0

Ey|n∗ [p(y|n)]λn

]
.

(16)

Call the right-hand side of this inequality the Jensen bound.
This Jensen bound via the logarithm has the attractive property
of having a gradient that is equal to a first-order Taylor approx-
imation of the gradient of the original likelihood.1 To see this,
consider the partial derivatives for a single λn:

E
[

p(y|n)
∑N

n′=0 p(y|n′)λn′

]
≈ En∗

[
Ey|n∗ [p(y|n)]

∑N
n′=0 Ey|n∗ [p(y|n′)]λn′

]
.

(17)

Thus,we can expect the optimizer of the Jensenbound to be close
toλ∗ (this is particularly true asmeasurement noise vanishes and
the bound becomes tight).
In the casewhereG = 1 under AWGN,we have the following

result characterizing the solution of the Jensen bound.
Proposition 3.5: If y ∼ N (φn∗ ,σ2I) and

K =

(
exp

{
− 1

4σ2
‖φn − φn′ ‖22

})N

n,n′=0

(18)

1The Taylor expansion is of f(u, v) = u/v, for which a first-order approxi-
mation yields E[U/V ] ≈ E[U ]/E[V ] for random variables U , V .
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is invertible, then the maximizer λ̃ of the Jensen bound satisfies

λ̃ ∝ K−1

(
λ∗

K−1(s− µ)

)
. (19)

where s ∈ ∂‖λ̃‖1 and for all n, µn ≥ 0 and µnλ̃n = 0.
In the case where all entries of λ̃ are positive, s− µ = 1.

K has values of one along the diagonal and smaller values off
the diagonal, so it mimics the identity matrix. Clearly, as K →
I, λ̃ → λ∗. However, given nonzero σ2, K is bounded away
from I. Furthermore, since it is impossible to find a set of more
than M + 1 equidistant points in RM , the off-diagonal values
of K will differ when M < N , introducing distortion in the
transformation.
However, even if M < N , if y is a measurement from a

random sensor group, then the effect of this distortion can be
mitigated such that λ̃ is a reliable estimator ofλ∗ from a support
recovery perspective:
Theorem 3.6: If y ∼ N (φ(g)

n∗ ,σ2I), g is distributed uni-

formly, and φ(g)
n

i.i.d.∼ N (0, I), then ifG → ∞ and all elements
of themaximizer λ̃ of the Jensen bound are stricly positive, there
exist c1 ≥ 0, c2 ∈ R such that λ̃n = c1λ

∗
n + c2 for 1 ≤ n ≤ N .

If λ̂ has the same rank ordering as λ∗, the exact support
can be recovered. Therefore, we expect an increase in G to
improve performance in tasks such as support recovery. From
this result, however, we expect gains due to increasing G to be
less immediate than those due to increasingM (and indeed, we
see this in our simulations in Section IV-C). To see this, contrast
the asymptotic nature of Theorem 3.6 in G with the fact that
for a finite choice of M (specifically M = N ) we can select
all φn equidistant (or that for M even smaller we can select Φ
satisfying a RIP with some acceptable distortion) and obtain the
same reliability result.

IV. SIMULATIONS

In this section, we present comparisons of SPoRe against
existing and custombaseline algorithms and followwith focused
experimentation on SPoRe’s performance and limitations. For
most baseline algorithms that find an estimate X̂, we set their
estimates λ̂ = 1

D

∑D
d=1 x̂d, i.e., the canonical Poisson MLE

if X∗ were observed directly. For a performance metric, we
chose cosine similarity between λ̂ and λ∗ as it captures the
relative distribution of elements of the solutionwhichwe believe
is most useful to a user in biosensing applications. Although
comparisons of cosine similarity mask differences in magni-
tude, estimates with high cosine similarity also exhibited low
mean-squared error in our experience (results not shown). We
plot cosine similarity alone for brevity. In all simulations, we
useAWGNand setφ(g)

m,n
i.i.d.∼ Uniform(0, 1) sincemany sensors

are restricted to nonnegative measurements. For each parameter
combination, we evaluate over 50 trials in which we draw new
Φ(g) and λ∗ for each trial. Due to high performance variability
for some baseline algorithms, all error bars are scaled to ± 1

2
standard deviation for consistency and readability.

A. Comparison Against Existing Baselines

With no existing algorithm designed for Poisson signals, we
compare against a number of algorithms with various relevant
structural assumptions. We compare against both greedy and
convex optimization approaches. First, we useDCS-SOMP [64],
a generalization of the common baseline Simultaneous Orthog-
onal Matching Pursuit (S-OMP) [9] that assumes no structure
and greedily solvesMMVproblems for any value ofG. Next, we
use NNS-SP and NNS-CoSaMP [37], two greedy algorithms for
nonnegative MMV CS motivated by subspace pursuit (SP) [65]
and compressive sampling matching pursuit (CoSaMP) [66]
which exhibited the best empirical performance in [37]. For
integer-based recovery, we use PROMP [45], an SMV algorithm
for unbounded integer sparse recovery, to recover an estimate
for each signal x̂d. We also use two support recovery algo-
rithms with M = Ω(

√
k) measurement rates: M-SBL [53] and

a convex, #1-based variance recovery algorithm [54]. Support
recovery is generally not quantitative and appears tomake cosine
similarity an inappropriate metric for comparison. However,
these algorithms produce an estimate of the variance of x∗

n,
which equalsλ∗

n for the Poisson distribution, making them coin-
cidentally reasonable baseline approaches for MMVP directly.
For comparison against best-possible performance of the

baselines and to avoid hyperparameter search where possible
(for regularization weights, stopping criteria, etc.), we arm the
baselines with relevant oracle knowledge of λ∗ or X∗. While
NNS-SP and NNS-CoSaMP require k as an input, we also
give DCS-SOMP and PROMP, algorithms that iteratively and
irreversibly select support elements, knowledge of k and have
them stop after k elements have been chosen. Additionally, we
created three oracle-enabled convex algorithms that minimize∑G

g=1 ‖Y −Φ(g)X(g)‖F under norm constraints with oracle
knowledge of the value of the norm. The #1 norm is commonly
used as a penalty for convex solvers to encourage sparsity
in sparse recovery. Our #1-Oracles include SMV and MMV
versions, where in the SMV case, Y is collapsed to a single
vector by summing

∑
d yd, and a vector x̂ is recovered from

which λ̂ = x̂/D. The #1-Oracle SMV and #1-Oracle MMV are
both given

∑
n,d x

∗
n,d. In [56], ‖X‖Rx is suggested as a better

alternative for MMV, so that our Rx-Oracle is given ‖X∗‖Rx.
In the support recovery algorithm from [54], the vector of
sample variances (Var(xn))Nn=1 is recovered under a constraint
on

∑
n Var(xn). Because we provide the sum of variances,

we call this method the
∑

Var-Oracle. We also enforce non-
negativity of the optimization variables in all convex problems,
which we solve using the convex optimization package CVX
in Matlab [67], [68]. We use no oracle knowledge for M-SBL,
but we use the same initialization as for SPoRe and run its fixed
point update until convergence.
From Fig. 3(a), we see the crucial result that the M < k

regime is only feasible with SPoRe, while conventional CS
algorithms, both SMV andMMV, fail. Such a result is expected;
generally speaking, CS algorithms seek to minimize measure-
ment error (‖Y −ΦX‖F ) while constraining the sparsity of
the recovered solution. CS theory focuses on M > k since if
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Fig. 3. Performance of SPoRe vs. compressed sensing baseline algorithms over 50 trials. Common settings unless otherwise specified are M = 10, k = 3,
N = 20,D = 100,G = 1,

∑
n
λ∗n = 2. (a) Performance as a function ofM , with σ2 = 10−6 for comparison in an effectively noiseless setting. (b) Performance

as a function of AWGN variance, with M = 10. (c) Performance as a function of
∑

n
λ∗n, with σ2 = 10−2 andM = 10.

M < k, M × k submatrices of Φ yield underdetermined sys-
tems in general. In other words, there simply cannot be unique
k-sparse minimizers of measurement error alone with M < k,
so the conventional CS problem is not well-posed, unlike in
the MMVP problem. Support recovery algorithms M-SBL and
the

∑
Var-Oracle exhibit improved performance over other CS

baselines as M decreases, but SPoRe remains far superior as
M → 1. Next, in Fig. 3(b), we setM = 10, a regimewheremost
baselines performed nearly perfectly according to (Fig. 3(a)),
and we increased the AWGN variance. We see that even in the
conventional regimeofN > M > k, SPoRe exhibits the highest
noise tolerance which reflects the fact that its leverage of the
Poisson assumption minimizes its dependence on accurate mea-
surements. Lastly, however, in Fig. 3(c), SPoRe has the unique
disadvantage of struggling to recover cases with high

∑
n λ

∗
n.

We observed that as
∑

n λ
∗
n increases, SPoRe’s finite sampling

results in few to no gradient steps taken as “good” samples
with nonzero (numerically) p(y|xs) were drawn increasingly
rarely, and SPoRe mistakenly terminates. Under AWGN, larger
λ∗
n raises the signal-to-noise ratio but can paradoxically com-

promise SPoRe’s performance. If M 6 k is a practical design
choice, practitioners should consider existingMMV approaches
if
∑

n λ
∗
n may be highly variable.

B. Comparison Against Integer Baselines: M < k

In the M < k regime, since with high probability we can
bound the elements of X∗, we might expect the discrete nature
of the problem to admit at the least a brute-force solution for
obtaining X̂ that we can use to obtain λ̂. Indeed, if measurement
noise is low, then the integer signal that minimizes measurement
error for yd is likely to be x∗

d. But a finite search space alone has
not enabled integer-constrained CS research to achieve M < k
in general.
One may wonder whether SPoRe is simply taking advantage

of this practically finite search space and, by virtue of MC sam-
pling over thousands of iterations, is effectively finding the right
solution by brute force. To address this possibility, we compare
against an #0-Oracle that is givenk and themaximumvalue inX∗

in order to test all
(N
k

)
combinations of X’s support. For each

combination, it enumerates the (max(X∗) + 1)k possibilities
for each xd and selects x̂d = argminx ‖yd −Φx‖2. Finally,

it returns the k-sparse solution with the lowest minimized mea-
surement error. This algorithm is the only Poisson-free approach
in this section.
Comparing SPoRe and other Poisson-enabled baselines

against the #0-Oracle characterizes the effect of incorporating the
Poisson assumption on recovery performance. An early solution
of ours for tacklingMMVP,whichwe now use as a baseline, was
an alternating optimization framework to update estimates of
X̂ = arg maxXp(X|Y, λ̂) and λ̂ = arg maxλp(λ|Y, X̂). Not-
ing that p(X|Y, λ̂) ∝ p(Y|X)p(X|λ̂), this MAP framework
for solving forX under AWGN with variance σ2 is

X̂ = arg maxX
1

D

D∑

d=1

logP (yd|xd) + log p(xd|λ̂) (20)

= arg maxX
1

D

D∑

d=1

[
− 1

2σ2
‖yd −Φxd‖22

+
N∑

n=1

(
xn,d log λ̂n − logΓ(xn,d + 1)

)]
, (21)

where the Gamma function Γ(·) is the continuous extension
of the factorial (Γ(xn,d + 1) = xn,d!) and is log-concave in
the space of positive reals RN

++. We implemented the clas-
sic branch-and-bound (BB) algorithm [69] to find the optimal
integer-valued solution X̂ of the concave objective. Once an
estimate X̂ is available, the update to λ̂ is also concave with
the closed form solution λ̂ = 1

D

∑
d x̂d. The biconcavity of this

objective function inX andλmakes this approach attractive, but
it is unclear how to best initialize λ̂. We refer to this alternating
baseline algorithm with the prefix “Alt” followed by the method
of initialization. For example, for Alt-Random, we use random
initialization with a small offset (λ̂n ∼ Uniform(0, 1) + 0.1) to
avoid making any particular λn irretrievable from the start.
We also explore a few “guided” initialization processes. The

quantity
∑

n λ
∗
n can hypothetically be estimated from data if

P (xd = 0|λ) is significant and easily estimated fromY. In fact,
quantification in microfluidics often relies on a clear identifica-
tion of empty sample partitions (that is,wherexd = 0) [26]. This
motivates a strategy of relaxing the problem by optimizing X
with a Poisson assumption on the sum of each column

∑
n xn,d

rather than each element of X individually. The
∑

n λ
∗
n-Oracle
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Fig. 4. AWGN tolerance of integer-restricted algorithms over 50 trials with
M = 2, k = 3, N = 10,D = 100, G = 1,

∑
n
λ∗n = 2.

is given
∑

n λ
∗
n and optimizes for P (

∑
n xn,d|

∑
n λ

∗
n) in place

of P (xd|λ̂) in (20). It is straightforward to show that this
objective is also concave. Each estimate x̂d is solved via BB
fromwhich λ̂ = 1

D

∑
d x̂d.We use the

∑
n λ

∗
n-Oracle as its own

baseline and as an initialization to our alternating framework
(Alt-

∑
n λ

∗
n). For the next guided initialization, we again use∑

n λ
∗
n for an unbiased initialization where the first estimate of

λ̂n = (
∑

n′ λ∗
n′)/N for all n (Alt-Unbiased). Finally, we used

the output of SPoRe as an initial value for λ̂ (Alt-SPoRe).
Alt-SPoRe can be understood as a way to use SPoRe to estimate
X̂ if needed.
Fig. 4 illustrates that SPoRe has the greatest tolerance to

measurement noise whereas the #0-Oracle has the least. This
comparison illustrates the value of incorporating the Poisson
assumption in recovery; specifically, the integer and sparsity
structures (perfectly captured by the #0-Oracle) are not suffi-
cient for recovery under measurement noise. The alternating
optimization algorithm’s behavior was unexpected; initializa-
tion (other than with Alt-SPoRe) does not appear to have a
major influence on performance. Surprisingly, comparing Alt-∑

n λ
∗
n versus

∑
n λ

∗
n-Oracle and Alt-SPoRe versus SPoRe,

alternating seems to worsen the performance under high noise.
Our interpretation is that in high noise settings, the ability of
SPoRe to not “overcommit” to a particular solution x̂d may
be especially effective when λ∗ is the signal of interest rather
than X∗. Any given measurement yd may make the specific
estimate x̂d arbitrarily unreliable. In our alternating framework
with x̂d recovered separately for each d, errors on individual
estimates accumulate. SPoRe insteadmakes gradient steps based
on batches of observations, helping it maintain awareness of the
full distribution of measurements.

C. Sparsity and
∑

n λ
∗
n

We empirically tested the limitations of SPoRe’s recovery
performance under very challenging conditions of M = 2,
3 ≤ k ≤ 7,N = 50,σ2 = 10−2.Herewe setD = 1000 to better
reflect the typical capabilities of biomedical systems, whereas
D = 100 in our baseline comparisons was due to our budget
on computational time strained by solving BB for x̂d. From our
analysis and previous simulations, we expect that both k and the

magnitudes of λ∗
n will influence recovery. Fig. 5 probes when

and why SPoRe fails. Fig. 5(a) illustrates SPoRe’s performance
decreaseswith increasingk and

∑
n λ

∗
n. To elucidate the cause of

poor performance, Fig. 5(b) shows SPoRe’s performance under
the same conditions when initialized at the optimum. SPoRe’s
maintenance of high cosine similarity in this case means that in
Fig. 5(a), SPoRe is converging to incorrect optima (or terminat-
ing before convergence). These two figures depict fundamental
limitations of stochastic optimization in a challenging landscape.
Moreover, Fig. 5(c) illustrates that MC gradients decrease in

quality with high
∑

n λ
∗
n and k. In SPoRe, recall that we set a

minimum λ̂n ≥ ε = 10−3 so that nonzero x∗
n have a chance of

being sampled for all n. We keep S fixed as we increase k and∑
n λ

∗
n, and we see that the variance of the gradient increases at

coordinates where λ̂n = ε and λ∗
n = 0. Such an effect accounts

for some drift from the optimum observed in Fig. 5(b) that
increases with k, and we believe that it helps to explain the
inability to converge to the optimum inFig. 5(a). Futurework can
explore alternative techniques for stochastic optimization and
sampling. Practitioners may benefit significantly from reducing∑

n λ
∗
n if faced with limitations in M . In a biosensing context,

these results indicate that given a microfluidics system with
fixed D, having fewer total analytes in the sample (i.e., smaller
D

∑
n λ

∗
n) can counterintuitively improve performance andmay

be particularly important if bothM and G are limited.
However, note in (8) that SPoRe’s gradients are defined by an

average of xs weighted by p(yd|xs). The previous result from
Fig. 3(c) in which SPoRe performed well with

∑
n λ

∗
n ≤ 20

when M = 10 illustrates that limitations of MC sampling may
be offset by improving the ability of p(y|xs) to guide gradients.
In Fig. 6, we explore this notion further for M -constrained
systems by increasing G. One may wonder how increasing
G compares to a CS problem with GM measurements (i.e.,
Φ̄ ∈ RGM×N ). Although λ∗ is fixed across groups, the xd are
random such that there is no reasonable method to directly stack
individual measurements yd from multiple groups. Instead,
we created a new baseline #1-Oracle GM SMV. Denote the
average of measurements and signals in each group g as ȳ(g)

and x̄(g), respectively. Our new baseline stacks all ȳ(g) into one
measurement vector ȳ ∈ RGM andminimizes ‖ȳ − Φ̄λ‖2 with
respect toλgiven

∑
n,d x

∗
n,d andλ ≥ 0. Stackingmeasurements

and sensing matrices implicitly assumes that for each group,
ȳ(g) ≈ Φ(g)λ∗, or that x̄(g) ≈ λ∗ ∀g. It can be easily shown
that the relative errors in these approximations reduce with
increasing D or λ∗.

Although increasing D is feasible in microfluidics, it gener-
ally corresponds with a reduction in λ∗ since a sample’s total
analyte content is fixed. Therefore, in Fig. 6, we focus on the
influence of the magnitude of λ∗. In Fig. 6(a), we used the most
challenging settings from Fig. 5 with k = 7 and

∑
n λ

∗
n = 10.

As expected from our analysis in Section III-C, larger choices
of M make SPoRe much more effective per sensor group, but
near perfect recovery is achievable even withM = 1. However,
note that the new oracle baseline performs almost identically to
SPoRe, with SPoRe exhibiting a modest advantage only when
GM is comparable to or less than k. When we reduce

∑
n λ

∗
n to
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Fig. 5. SPoRe’s performance and behavior as a function of k and
∑

n
λ∗n over 50 trials. Common settings unless otherwise specified are M = 2, N = 50,

D = 1000, G = 1, σ2 = 10−2. (a) Performance when initialized with standard λ̂ = 0.1. (b) Performance when initialized with λ̂ ≈ λ∗, specifically λ̂n =

max{ε,λ∗n}. (c) Average variance of partial derivatives for indices n /∈ supp(λ∗) evaluated at λ̂ ≈ λ∗.

Fig. 6. Performance of SPoRe (solid) vs. "1-Oracle GM SMV (dashed) as a
function of G. Common settings are k = 7,N = 50,D = 1000, σ2 = 10−2.
(a) Comparison with

∑
n
λ∗n = 10, motivated by Fig. 5(a). (b) Comparison

with
∑

n
λ∗n = 1.

1 in Fig. 6(b), the assumption that x̄(g) ≈ λ∗ becomes far less
valid. As a result, the performance improvement with SPoRe is
dramatic. For instance,what SPoRe achieveswithM = 1 is only
matched by the oracle baseline when M = 3. For applications
in which x̄(g) ≈ λ∗ and GM > k, practitioners could consider
reformulating the recovery problem as a standard CS problem.
However, SPoRe is uniquely suited for systems with GM < k
and is the best generalized approach for applicationswith smaller
λ∗ or D.

D. Efficiency

For system design, it is helpful to know how many observa-
tions D are necessary and sufficient for stable estimation of
λ̂. Such insight is often derived from the analysis of Fisher
Information I. Recall that for direct observations of Poisson
signals x∗

d, the ideal case, the MLE solution λ̂n =
∑

d x
∗
n,d/D

is an efficient estimator and achieves the Cramér–Rao bound
such that var(λ̂n) = λ∗

n/D.
In Section III-B, we derived the reduction in In,n from

MMVP measurements and found reason to expect that the
reduction increases with k. Here, we empirically characterize
this effect (Fig. 7). The matrix I is evaluated at λ∗, so we
only consider n ∈ supp(λ∗). In MMVP, the variance of λ̂n will
depend on Φ and n, but by redrawing random Φ and λ∗ over

Fig. 7. Comparison of average variance of λ̂n from SPoRe versus the ideal
Cramér–Rao (CR) bound as a function of D over 50 trials with n ∈ supp(λ∗),
λ∗n = 1,M = 2,N = 50, G = 20, σ2 = 10−2.

50 trials, we hope to smooth out these dependencies and capture
the broader effect of low dimensional projections. For a concise
comparison considering n ∈ supp(λ∗), we set all λ∗

n = 1, pool
all of λ̂n across all trials, and compute a single average variance
for each k andD. Because the Fisher Information describes the
optimization landscape near the optimum, we chose parameter
settings (M = 2, G = 20) based on our results in Fig. 6(a) to
be confident that SPoRe is arriving near the optimum and the
estimation variance is not confounded by poor estimates.
Fig. 7 shows a noticeable increase in the estimation variance

and verifies that this deviation from the ideal bound is expo-
nentially worsened in k. However, we argue that the variance
quickly becomes negligible at reasonable D for practical pur-
poses. Practitioners could consider the necessary precision of
estimation and the maximum expected k for an application,
increase D as needed, and worry little about the influence of
noisy measurements in low dimensions.

V. DISCUSSION

We have found that the structure in the MMVP problem
can be easily exploited for substantial improvements in signal
recovery. While compressed sensing of arbitrary integer signals
has proven challenging in the past, Poisson constraints not only
make the recovery problem tractable, but even significantly
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easier. Most inverse problems necessitate constraints that make
the signal-to-measurement transformations nearly isometric: in
compressed sensing, these manifest as restrictions on Φ, noise,
and the relationship betweenM ,N , and k. In MMVP, recovery
of λ∗ is theoretically possible under very lax conditions on
Φ (Theorem 3.2) and practically achievable as shown in our
simulations.
In practice, our new SPoRe algorithm exhibits high perfor-

mance even under deliberately challenging circumstances of
high noise and M < k. Here, recovery with G = 1 appears
particularly feasible even with noisy measurements if

∑
n λ

∗
n

is small. Because the log-likelihood is not concave, SPoRe’s
gradient ascent approach is not theoretically guaranteed to find
a global optimum since local optimamay exist. However, if they
exist, we speculate that SPoRe is naturally poised to evade these
traps due to stochasticity in its gradient steps from both batch
draws and MC integrations.
We noted a few scenarios in which SPoRe’s MC sampling

appears to cause issues with convergence or early termination
that are generally associated with increases in k and

∑
n λ

∗
n.

We anticipate that further increases in N may also contribute
to these effects. While k and N are entirely determined by
the application, system designers can reduce

∑
n λ

∗
n by in-

creasing the spatial or temporal sampling rate. In microfluidics,
this adjustment translates to either generating more (smaller)
partitions D given a fixed sample volume or diluting a sample
prior to partitioning. Our initial implementation of SPoRe uses
S = 1000, can easily runonpersonal computers, and is sufficient
for systems with N < 102. This scale is appropriate for most
applications in biosensing, and future work with parallelized
or adaptive sampling strategies could improve the reliability of
recovery for larger systems. Moreover, we found that increasing
M andG appear to mitigate poor performance due to excessive
sampling noise.
To date, CS implementations with lowM and high G, based

on our notation, reformulate the acquired measurements into
a canonical CS problem with GM measurements [10]. As we
discussed in Section IV-C, this reformulation implicitly assumes
that the average signal in every group (x̄(g)) is approximately
λ∗. However, this assumption fails in biosensing in two common
scenarios: the total number of analytes in a typical samplemaybe
small, or the sensing mechanism may impose restrictions onD.
In such cases, SPoRe is the superior approach allowingM < k,
achieving high performance even withM = 1 under high noise.
In this work, we found practical limits on the sparsity level k that
we could accurately solve, hence the “S” in SPoRe, but future
research should explore the conditions needed for the reliable
recovery of non-sparse signals. High performance in this regime
would inspire new methods in biosensing for the analysis of
heterogeneous samples with many types of cells.
The ability to recover signals in MMVP, even in the ex-

treme case of M = G = 1, is unprecedented in CS and offers
a new paradigm for sensor-constrained applications. The cur-
rent state-of-the-art method for achieving similar efficiency in
microfluidics is to essentially guarantee single-analyte capture
for classification by substantially increasing the sampling rate,

whereas our MMVP framework is not reliant on such an in-
tervention. Increasing G can make SPoRe reliable under harsh
conditions, is straightforward with microfluidics, and offers a
potent alternative to increasing the sampling rate. For example,
diluting to a tolerable concentration is challenging with samples
of unknown content such as in diagnostics applications, and in-
creasingD either delays results or necessitates high throughput
measurement acquisition which may not be feasible depending
on the nature of the sensors. Our group is continuing research
in CS-based microbial diagnostics [18] by working towards
an in vitro demonstration of MMVP-based diagnostics with
microfluidics.
Our initial theoretical and empirical results show the promise

ofMMVP, but there aremany directions for further research. For
instance, theoretical results that precisely relateM ,N ,D, k, λ∗

and noise such as in a recovery guarantee would be highly valu-
able. Moreover, SPoRe can accept any signal-to-measurement
model p(y|x). While we have proven identifiability under linear
mappings with common noise models, SPoRe can be easily
applied with any application-specific model2 even if proving
identifiability of the Poisson mixture is difficult. With growing
interest in microfluidics, SPoRe’s promising performance in the
MMVP problem warrants further research to ensure that the
statistical assumptions underlying these new technologies are
leveraged to their full potential.

APPENDIX

A. Proof of Theorem 3.2

We use a direct proof, assuming P (Cu|λ) = P (Cu|λ′) ∀u
and proving the resulting implication λ = λ′. Let z(x) ∈ ZN be
such that x+ z(x) ∈ Cx. By Definition 3.4, x+ z(x) ∈ ZN

+ and
z(x) ∈ N (Φ).

Lemma A.1: If N (Φ) ∩RN
+ = {0}, and P (C0|λ) =

P (C0|λ′), then
∑

n λn =
∑

n λ
′
n.

Proof: The null space condition on Φ means that C0 =
{0}; there is no vector z(0) that satisfies 0+ z(0) ∈ ZN

+ other
than z(0) = 0. Therefore, P (C0|λ) = P (C0|λ′) ⇒ e−

∑
n λn =

e−
∑

n λ′
n ⇒

∑
n λn =

∑
n λ

′
n. #

We now turn our attention to the one-hot collision sets. Let ej
denote the jth standard basis vector. By Definition 3.4, Cej =
{x : Φx = φj ,x ∈ ZN

+}. For Cej that contain only ej , we have
the following result:
Lemma A.2: If N (Φ) ∩RN

+ = {0} and Cej = {ej}, then
λj = λ′

j .
Proof: The restriction on C1j means P (C1j |λ) =

P (C1j |λ′) ⇒ λje−
∑

n λn = λ′
je

−
∑

n λ′
n . Applying Lemma A.1

yields λj = λ′
j . #

By similar arguments to Lemmas A.1 and A.2, we can prove
Corollary III.3 under the assumption that there are no collisions
instead of the null space condition. When the elements of Φ
are independently drawn from continuous distributions, the col-
lision of any particular x and x′ occurs with probability zero.

2Our full code base is available at https://github.com/pavankkota/SPoRe with
instructions on how to implement SPoRe with custom models.
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Since ZN
+ × ZN

+ is countably infinite, there are no collisions
almost surely. As such, Cej = {ej}∀j, and therefore λ = λ′.
For the conditions in Theorem III.2, the following Lemma

states the existence of at least one j satisfying Cej = {ej}:
Lemma A.3: If N (Φ) ∩RN

+ = {0} and φn 4= φn′ ∀n, n′ ∈
{1, . . ., N} with n 4= n′, then ∃ j such that Cej = {ej}.

Proof: If Cej = {ej}, then ! z(ej) 4= 0. DefineP as the num-
ber of one-hot collision sets that contain more than just ej , and
note that P ≤ N . Without loss of generality, let us say that Cej

for j ∈ {1, . . ., P} meet this condition. Lemma A.3 effectively
says that P < N , such that N − P > 0 one-hot collision sets
contain only ej . We proceed with a proof by contradiction by
assuming P = N .
By our null space condition, z(ej) must contain both positive

and negative integers. There are two additional conditions on
nontrivial z(ej). First, because ej + z(ej) ∈ ZN

+ , the only neg-

ative component of z(ej) is z
(ej)
j = −1. To see this, if z(ej)

i

for i 4= j were negative, then ej + z(ej) would be negative at
index i, and if z(ej)

j were less than −1, then ej + z(ej) would
be negative at index j. Second, z(ej)’s positive elements must
total to at least 2. A single positive element of z(ej)

i = 1 would
imply that φi = φj , violating a condition on Φ.

WithP = N , let us concatenate the z(ej) column vectors into
a matrix for visualization.

Z =





−1 z(e2)
1 . . . z(eN )

1

z(e1)
2 −1 . . . z(eN )

2
...

...
. . .

...

z(e1)
N z(e2)

N . . . −1




. (22)

Note that each column z(ej) in this matrix is symbolic for any
vector that satisfies the conditions we described. All columns of
Z are inN (Φ). Any linear combination of vectors inN (Φ) are
in N (Φ). Let S represent a subset of indices of the columns of
Z and let zS ! ∑

j∈S z
(ej).

First, let S = {1, . . . , N}. Because all off-diagonal compo-
nents in Z are nonnegative and because zS must have one
negative value, one of the rows ofZmust be entirely zero except
for the−1 on the diagonal. Note the ordering of the columns inZ
is arbitrary, so without loss of generality, let this be the first row.
Now, let’s say that S = {2, 3, . . . , N}. The same logic holds: at
least one row must contain all zeros except for the −1. With-
out loss of generality, we can set [Z]2,3, [Z]2,4, . . . [Z]2,N = 0.
Repeating this process, we get a lower triangular matrix:

Z =





−1 0 0 . . . 0

z(e1)
2 −1 0 . . . 0

z(e1)
3 z(e2)

3 −1 . . . 0
...

...
...

. . .
...

z(e1)
N z(e2)

N z(e3)
N . . . −1





. (23)

However, examining the final column, we see that z(eN ) is a
vector of all zeros and one −1, such that it cannot be in N (Φ),
proving Lemma A.3 by contradiction. #

Proof: Proof of Theorem 3.2: Lemma A.3 confirms P < N ,
meaning that we can form the concatenated matrix of zej vec-
tors:

Z =





−1 0 . . . 0

z(e1)
2 −1 . . . 0
...

...
. . .

...

z(e1)
P z(e2)

P . . . −1
...

...
. . .

...

z(e1)
N z(e2)

N . . . z(eP )
N





. (24)

Let us now apply P (CeP |λ) = P (CeP |λ′). For all x ∈ CeP ,

N∏

n=1

λxn
n

xn!
−

N∏

n=1

λ′
n
xn

xn!
= 0, (25)

( ∏

∀i>P

λxi
i

xi!

)(
λxP
P

xP !
− λ′

P
xP

xP !

)
= 0, (26)

where Lemma A.1 (
∑

n λn =
∑

n λ
′
n) yields the first equality,

and Lemma A.2 (all λi = λ′
i ∀i > P ) yields the second equality

when combined with the fact that xi = 0 for i < P due to (24).
The only x ∈ CeP with xP 4= 0 is eP which simplifies (26) to
λP = λ′

P .
Now we have λi = λ′

i ∀i > P − 1. Following the same argu-
ments, we can start from P (CeP−1 |λ) = P (CeP−1 |λ′) and arrive
at λP−1 = λ′

P−1. Applying this repeatedly ultimately yields
λ = λ′, proving Theorem 3.2.

B. Proof of Proposition 3.5

Proof: By straightforward integration,

Ey|n∗ [p(y|n)] ∝ exp

{
− 1

4σ2
‖φn − φn∗‖22

}

︸ ︷︷ ︸
!κ(n,n∗)

. (27)

Therefore, given the constraints ‖λ‖1 ≤ 1 and λn ≥ 0, the first-
order KKT condition is

En∗

[
κ(n∗)

〈κ(n∗),λ〉

]
= cs− µ, (28)

where κ(n∗) = (κ(n, n∗))Nn=0, s ∈ ∂‖λ‖1, c ≥ 0, and µn ≥ 0.
By complementary slackness, µnλn = 0 for all n. Because K
is symmetric, we can rewrite the above as

K

(
λ∗

Kλ

)
= cs− µ, (29)

where the fraction represents element-wise division. Solving for
λ and rescaling µ, we obtain the desired expression.

C. Proof of Theorem 3.6

Proof: Let κg be defined the same as κ from (27) with φ(g)
n .

Then again by straightforward integration,

κ̃(n, n∗) ! Eg [κg(n, n
∗)] (30)
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=






1 n = n∗,
(

2σ2

2σ2+1

)M/2
n 4= n∗, 0 ∈ {n, n∗},

(
σ2

σ2+1

)M/2
n 4= n∗, 0 /∈ {n, n∗}.

(31)

Let K̃ = (κ̃(n, n′))Nn,n′=0, and let K̂ = (κ̃(n, n′))Nn,n′=1 be the

sub-matrix of K̃ excluding n = 0. Then

K̂ = (1− a)I+ aJ, (32)

where a = ( σ2

σ2+1 )
M/2 and J is a matrix of all ones. Leveraging

the block matrix inverse, we observe that we have the form

K̃−1 =

[
1

1−aI+ bJ c1

c1T d

]
, (33)

assuming the final column corresponds to n = 0, for some
scalars b, c, and d. Using the formula from Proposition 3.5 and
the fact that s− µ = 1 by assumption, we conclude that for
n > 0, λ̃n ∝ λ∗

n + C for some C. Rote algebra verifies that the
constant of proportionality is non-negative. #
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