
Pre
pri
nt

Towards an Automated Approach for Detecting Architectural
Weaknesses in Critical Systems

Joanna C. S. Santos, Selma Suloglu, Joanna Ye, and Mehdi Mirakhorli
Rochester Institute of Technology

Rochester, NY, USA
{jds5109,sxsvse,jxy1164,mxmvse}@rit.edu

ABSTRACT
Architecture-first approaches are increasingly widely adopted for
addressing resiliency requirements in critical systems. In these ap-
proaches, the system is built from the ground-up to be resilient,
starting with the system’s architecture design. Therefore, it is cru-
cial to ensure that the architecture design is robust, without any
flaws that could compromise the system’s ability to detect, prevent,
react to or recover from adverse conditions, such as cyber-attacks.
In this paper, we describe our ongoing efforts in aiding software
architects in designing cyber-resilient systems by automatically
detecting weaknesses in their architectural models.

CCS CONCEPTS
• Security and privacy → Logic and verification; • Software
and its engineering→ Software architectures; Software veri-
fication; Formal software verification; Systemmodeling lan-
guages.
KEYWORDS
Architectural flaws, Architecture Analysis and Design Language,
Automated Architectural Weaknesses Detection

ACM Reference Format:
Joanna C. S. Santos, Selma Suloglu, Joanna Ye, and Mehdi Mirakhorli. 2020.
Towards an Automated Approach for Detecting Architectural Weaknesses
in Critical Systems. In IEEE/ACM 42nd International Conference on Software
EngineeringWorkshops (ICSEW’20), May 23–29, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3387940.3392222

1 INTRODUCTION
Architecture-first development approaches are increasingly becom-
ing the mainstream for addressing cyber-resiliency concerns in
mission-critical and software-intensive systems [5]. In these ap-
proaches, resiliency is built into the system from the ground up
starting with a robust software architecture design [6, 8]. As a re-
sult, weaknesses in the architecture of a software system can have
a greater impact on the system’s ability to anticipate, withstand,
recover from, and adapt to adverse conditions, stresses, attacks, or
compromises on cyber resources.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392222

Despite the importance of the architecture-first approach for
enhancing and ensuring the cyber-resiliency of critical systems,
existing research in the field has focused on aiding the verification
of a single quality attribute (e.g. safety, security) in an architec-
ture [2, 4, 12, 20, 21]. However, cyber-resiliency is a much broader
concern that involves multiple quality attributes including not only
security but also evolvability, performance, etc [5]. Therefore, aiding
the construction of resilient critical systems requires comprehen-
sive reasoning over the system’s design. In this paper, we articulate
potential research directions in addressing this challenge by creat-
ing an approach that can automatically detect weaknesses in the
design of a cyber-resilient system.

2 A CATALOG OF ARCHITECTURAL
WEAKNESSES

While designing a critical system to fulfill resiliency requirements,
architects can adopt architectural tactics. They are reusable de-
sign mechanisms to detect, resist (withstand), react to, recover
from, and prevent adverse conditions to compromise the system’s
behavior and resources [3, 5]. In our earlier work, we developed
the CAWE catalog (Common Architectural Weaknesses Enumer-
ation) [18]. An entry in the current version of our CAWE catalog
describes an architectural weakness associated with an architec-
tural security tactic adopted in a software system that results in
a vulnerability. Table 1 shows an example of a weakness in the
CAWE catalog (Insufficient Compartmentalization), which is due
to a mistake in the adoption of the Authorize Actors tactic [3]. As
shown Table 1, each entry is composed of several sections, such
as the impacted tactic, the impact type (omission, commission, re-
alization [17, 19]), a description, source code examples, mitigation
techniques, common consequences, and attack patterns. The catalog
currently has 223 weaknesses categorized based on their impact
over 11 security tactics.

2.1 Architectural Tactics for Cyber-resiliency
Our earlier effort in developing the CAWE catalog [18] organized
architectural weaknesses per architectural security tactics. However,
other architectural tactics can also be important for cyber-resilient
systems, such as availability tactics and reliability tactics [3, 5].
Thus, we conduct an extensive literature review of research papers
and technical reports to identify the set of architectural tactics that
are relevant for cyber-resilient systems (we refer to such tactics
as “cyber-resiliency tactics”). We aim to obtain an extensive list
of cyber-resiliency tactics and how they are applied to software
systems (i.e., their roles and properties). Moreover, we identify
the architectural weaknesses associated with them.

https://doi.org/10.1145/3387940.3392222
https://doi.org/10.1145/3387940.3392222

Pre
pri
nt

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Joanna C. S. Santos, Selma Suloglu, Joanna Ye, and Mehdi Mirakhorli

Impacted
Tactic

Name: Authorize Actors
Description: Enforces that agents have the required
permissions before performing certain operations,
such as modify data or access a resource.

Impact
Type

Commission
Flaw

Weakness

Title: Insufficient Compartmentalization (CWE-653)
Description: The product does not sufficiently compartmentalize
functionality or processes that require different privilege levels, rights, or
permissions. When a weakness occurs in functionality that is accessible
by lower-privileged users, then without strong boundaries, an attack might
extend the scope of the damage to higher-privileged users.
Common Consequences:
• Access Control: The exploitation of a weakness in low-privileged

areas of the software can be leveraged to reach higher-privileged
areas without having to overcome any additional obstacles
o Technical Impact: Gain Privileges or Assume Identity; Bypass

Protection Mechanism.
Demonstrative Example:
Example 1: Single sign-on technology is intended to make it easier for
users to access multiple resources or domains without having to
authenticate each time. While this is highly convenient for the user and
attempts to address problems with psychological acceptability, it also
means that a compromise of a user's credentials can provide immediate
access to all other resources or domains.
Example 2: The traditional UNIX privilege model provides root with
arbitrary access to all resources, but root is frequently the only user that
has privileges. As a result, administrative tasks require root privileges,
even if those tasks are limited to a small area, such as updating user man
pages. Some UNIX flavors have a "bin" user that is the owner of system
executables, but since root relies on executables owned by bin, a
compromise of the bin account can be leveraged for root privileges by
modifying a bin-owned executable.
Potential Mitigations:
• Architecture and Design Phase: Break up privileges between

different modules, objects or entities. Minimize the interfaces
between modules and require strong access control between them.

(…)
 Table 1: An Example of an Entry in the CAWE Catalog

2.2 Formally Specifying Weaknesses
Although the entries in the current version of the CAWE catalog
give a high-level understanding of the nature of architectural weak-
nesses, they are not documented at a level of formalism that can
enable the automated reasoning of an architecture. Hence, we ex-
tend the CAWE catalog to also provide a formal specification for
each entry. We call such formal specifications “CAWE-Models”.
They include the following elements:
— A conceptual graph, that indicates how the weakness occurs in
a system. It has the following elements:

• A set of interrelated architectural roles that are the nodes in
the conceptual graph. Architectural roles correspond to the
components involved in the architectural tactic.

• Expected properties that indicate how a systemwill (mis)behave
in the occurrence of an adversity. They correspond to the
data and control flow between the conceptual roles in a
CAWE-Model. These data and control flow are directed
edges in the conceptual graph.

— Generic formal rules that can be used to detect the weakness
in an architectural model and associated mitigation techniques.

CAWE-Model Examples. To illustrate these formal specifications,
consider the tactics Validate Inputs, Authenticate Actors and Encrypt
Data [3]. Each of these tactics have a total of 39, 29, 38 associ-
ated weaknesses, respectively. Among these weakness there are:
Improper Input Validation (CAWE-20), Missing Authentication for
Critical Function (CAWE-306) and Transmission of Sensitive Data
(CAWE-319) [17–19]. These weaknesses are modeled in concep-
tual graphs as shown in Figure 1. In these graphs, the architectural
roles are depicted with a white background and bold borders. The
“Intermediary” nodes indicate that there can be other elements in be-
tween these tactical components. The conditional flow (i.e., it only

Entry Point

Target

«Generic:
Untrusted Data»

Validator

Intermediary

0..n

Intermediary

0..nX
?

Sensitive Data Source

Public Data Sender

«Generic:
Sensitive Data»

Encryptor

Intermediary

0..n

Intermediary

0..nX
?

Validate Inputs

Improper Input
Validation

(...)
+38 entries

Encrypt Data

Transmission of Sensitive
Data without Encryption

Authenticate Actors

Missing Authentication
for Critical Function

Entry Point

Critical Component

«Generic:
Untrusted Data»

Authenticator

Intermediary

0..n

Intermediary

0..nX
?

«Type:
Credentials»

(...)
+37 entries

(...)
+28 entries

Co
nc

ep
tu

al
 G

ra
ph

Co
nc

ep
tu

al
 G

ra
ph

Co
nc

ep
tu

al
 G

ra
ph

Figure 1: Conceptual Graphs for Three Weaknesses

flows if a condition is true) is modeled as dashed arrows whereas
data flows are modeled as full arrows. For instance, the Critical
Component is only accessed if the identity check performed by the
Authenticator had succeeded.

The first conceptual graph (from left to right) models a case
where the critical system does not correctly validate external in-
puts (either because an untrustworthy input bypassed the valida-
tion — connection highlighted in red with an “X” on it — or the
system lacked a Validator component). The second graph models
a scenario in which the system leaks sensitive data due to lack
of encryption before transmission (either caused by a bypass or
missing an Encryptor element). The third graph concerns the lack
(or bypass) of the Authenticator.

For each conceptual graph, we have a set of formal rules written
in the Resolute language [9]. They capture how the system needs
to be designed to prevent the weakness. Listing 1 contains the top-
level rule for the CAWE-20 which claims that (i) the system has a
Validator component and (ii) all inputs to Target elements are
properly validated before use. The claims (i) and (ii) are further
verified in sub-claims that we do not show due to space constraints.

1
2
…

11
12
13
14
15
16
17
…

64
65
66
67
68
69
70
71
72
73
…

90
91
92
93
94
95
…

191
192
193
194
195
196
197

package AOCS
public
 (...)
 with Achilles;
 process AOCSprocessing
 features
 sensored_attitude: in data port dataaocs::GYR_data;
 sun_direction: in data port dataaocs::FSS_data;
 reference_torque: out data port dataaocs::RW_data;
 telecommand: in data port dataaocs::telecommand {Achilles::role => EntryPoint;};
 (...)
 end AOCSprocessing;

 process implementation AOCSprocessing.others
 subcomponents
 ACF: thread software_aocs::Attitude_Control_Function {Achilles::role => Target;};
 OCF: thread software_aocs::Orbit_Control_Function {Achilles::role => Target;};
 TCP: thread software_aocs::Telecommand_Processing {Achilles::role => CriticalComponent;};
 TMP: thread software_aocs::Telemetry_Processing {Achilles::role => SensitiveDataSource;};
 FDR: thread software_aocs::Failure_Detection_Isolation {Achilles::role => Target;};
 ME: thread software_aocs::Manoeuvre_Execution {Achilles::role => Target;};
 (...)
 end AOCSprocessing.others;

 system implementation AOCS_Subsystem.impl
 subcomponents
 main: process AOCSprocessing.others;
 cpu: processor Leon_Processor;
 (...)
 annex resolute {**...........
 ..prove(check_cawe319(this)).
 .prove(check_cawe20(this)) .
 ..prove(check_cawe306(this)).
 **};.........................
 end AOCS_Subsystem.impl;
end AOCS;

1
2
3

check_cawe20(s: system) <=
 ** "The system " s " correctly validate all inputs (CAWE-20)" **
 system_has_validator(s) andthen all_targets_receive_validated_inputs(s)

Listing 1: Generic Formal Rules for CAWE-20

3 DETECTING AWEAKNESS (CAWE)
Our architecture-first approach for detecting architectural weak-
nesses relies on the CAWE-Models described in the previous section.
Our assumption is that a software architect selects a CAWE-Model
while performing architecture analysis and then traces it to the
system’s architecture (modeled using AADL or SysML) to find an
architectural problem. However, in practice, manually mapping
such conceptual graphs to an architecture model is very difficult
without appropriate tool support. Therefore, it is important that
architects have a tool to automatically detect architectural tactics
adopted in the system as well as trace and map a CAWE-Model
associated with those tactics to the model. The existence of such a
mapping between a CAWE-Model and elements in the architectural
design indicates the presence of an architectural weakness. To fulfill
this need, our technique is developed as a plug-in to architectural
modeling IDEs and it performs three major steps: (i) annotation of
the system components which implement a tactic; (ii) embedding
the formal rules from CAWE-Models into the annotated models; and

Pre
pri
nt

Towards an Automated Approach for Detecting Architectural Weaknesses in Critical Systems ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

(iii) analysis of the augmented models to determine if an instance
of a weakness exists in the system. These steps are detailed below.

3.1 Architectural Models Annotation
As previously mentioned, we assume that architects had created
architectural models and provided them as inputs to our technique.
To detect weaknesses, we first identify the components that are used
for implementing a given architectural tactic as well as their specific
roles. We refer to these components involved in the implementation
of an architectural tactic as “tactical components” .

Our technique will have a user-friendly interface that allows
the system’s engineers to manually annotate their architectural
models. Specifically, the engineer can adjust three types of meta-
data to these annotations: (i) the tactics being implemented, (ii)
where they are implemented (the components), and (iii) what is
the role of each of these components in the tactic. As a result of
this first step, we obtain an annotated version of the architectural
models provided as input to the technique. The annotated version
explicitly indicates which components implement an architectural
tactic (tactical components) and their roles. For AADL, we create
a property set file containing the definitions of the annotations and
rules which can be imported to the architectural model. For SysML,
the tags are created as standard UML stereotypes in the format ≪
tactic.role ≫ (e.g. ≪ Authorization.EntryPoint ≫).

3.2 Embedding Rules into the Models
After obtaining the annotated architectural model, we need to iden-
tify the subset of CAWE-Models from our CAWE catalog that ap-
plies to the system being analyzed. For this purpose, we enumer-
ate all architectural tactics adopted by the system by parsing the
annotated model. Subsequently, we query all the CAWE-Models
associated with these adopted architectural tactics. Lastly, we insert
the rules from these CAWE-Models into the architectural model.

3.3 Resolute-Based Model Checkers
Our approach to automatically detect architectural weaknesses is
built on top of the Resolute Environment [9], which is an open-
source language and tool for creating assurance cases. Resolute
allows its users to define claims which can be verified by analyzing
the underlying architectural model. Our approach uses the rules
embedded in the previous step and performs an analysis of the
system’s properties to verify whether the weakness exists. When
an architectural weakness is detected, we notify the developer and
share the vulnerability location in the model. Furthermore, our
technique will also share fix recommendations based on the list of
mitigation techniques documented in our catalog of architectural
weaknesses (CAWE catalog).

4 CASE STUDY
We conducted an exploratory study on top of an Attitude and Or-
bit Control System (AOCS) [7], which is a system for controlling
satellites. A satellite is controlled by a ground station through radio
frequency links. It receives telecommands from the ground station
and it replies with telemetry data (i.e. the satellite’s status and the
data collected by its sensors). The telecommands control many as-
pects of the satellite such as its nominal attitude and nominal orbit.

Figure 2 has a partial AADL model of the AOCS system1, showing
a Telecommand Processing (TCP) thread that processes incoming
telecommands and then computes the nominal attitude, nominal
orbit, manoeuvre command and threshorlds which are forwarded
to the Attitude Control Function (ACF) thread, Orbit Control Func-
tion (OCF) thread, and Manoeuvre Execution (ME) thread, Failure
Detection Isolation (FDR), respectively.

Figure 2: Partial AADL Model Diagram for the AOCS [7, 13]

— Step 1: Annotation of the Architectural Model: Since the
AOCS receives and processes remote commands, the ME, OCF,
FDR, and ACF threads are all involved in the Input Validation tac-
tic [10, 19] and they are the Targets of external inputs. We also
indicate that the main thread’s telecommand port is the system’s
Entrypoint. Moreover, since telemetry data is periodically sent
to the ground station, the Telemetry Processing thread (TMP) is
tagged with the Sensitive Data Source role. Since the TCP thread
processes telecommands from the ground station, it is tagged as
Critical Component to indicate that it can only be accessed after
proper authentication of the ground station. Listing 2 shows the
annotated version of the AOCS’ architectural model (annotations
are highlighted in light yellow). It is worth mentioning that the
architectural model is also modified to import our rules (line 11).
— Step 2: Embedding the Rules from the CAWE-Models: After
generating the model’s annotated version, our technique then infers
that the system may be susceptible to the following weaknesses:
• (CAWE-20) Improper Input Validation: the AOCS has to enforce
that all inputs passed to target components are validated. A lack of
validation could be used by attackers to conduct denial-of-service
attacks or instruct the satellite to misbehave or even crash.
• (CAWE-306) Missing Authentication for Critical Function: the AOCS
has to check the authenticity of the ground station before accepting
remote commands.
• (CAWE-319) Transmission of Sensitive Data without Encryption:
the data generated by the TMP thread and sent to the central com-
puter to be forwarded to the ground station has to be encrypted.

1Due to space constraints we only present in Figure 2 the components under discussion.
The full architectural model is available at [15]

Pre
pri
nt

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Joanna C. S. Santos, Selma Suloglu, Joanna Ye, and Mehdi Mirakhorli

Without encryption, an adversary could eavesdrop the traffic and
gain sensitive information about the satellite.

Given these potential weaknesses, we embed the CAWE-Model’s
rules into the system’s annotated models for checking the existence
of these weakness (lines 191-195 in Listing 2).

1
2
…
11
12
13
14
15
…
64
65
66
67
68
69
70
71
72
…
90
91
92
93
94
…
191
192
193
194
195
196
197

package AOCS
public
 (...)
 with Achilles;
 process AOCSprocessing
 features
 sensored_attitude: in data port dataaocs::GYR_data;
 telecommand: in data port dataaocs::telecommand {Achilles::role => EntryPoint;};
 (...)
 end AOCSprocessing;
 process implementation AOCSprocessing.others
 subcomponents
 ACF: thread software_aocs::Attitude_Control_Function {Achilles::role => Target;};
 OCF: thread software_aocs::Orbit_Control_Function {Achilles::role => Target;};
 TCP: thread software_aocs::Telecommand_Processing {Achilles::role => CriticalComponent;};
 TMP: thread software_aocs::Telemetry_Processing {Achilles::role => SensitiveDataSource;};
 FDR: thread software_aocs::Failure_Detection_Isolation {Achilles::role => Target;};
 ME: thread software_aocs::Manoeuvre_Execution {Achilles::role => Target;};
 (...)
 end AOCSprocessing.others;
 system implementation AOCS_Subsystem.impl
 subcomponents
 main: process AOCSprocessing.others;
 cpu: processor Leon_Processor;
 (...)
 annex resolute {**...........
 ..prove(check_cawe319(this)).
 .prove(check_cawe20(this)) .
 ..prove(check_cawe306(this)).
 **};.........................
 end AOCS_Subsystem.impl;
end AOCS;

1
2
3

check_cawe20(s: system) <=
 ** "The system " s " correctly validate all inputs (CAWE-20)" **
 system_has_validator(s) andthen all_targets_receive_validated_inputs(s)

Listing 2: Annotated AADL Architecture Model
— Step 3: Resolute-Based Verification The technique detects the
existence of the aforementioned three weakness because: (i) the
AOCS receives telecommands and it does not have a subcomponent
that performs validation (i.e., it matches the CAWE-Model depicted
in Figure 1), (ii) there is not a component for Encrypting data
generated by the TMP thread, and (iii) the architecture lacks an
Authenticator component for checking the ground station’s identity.

5 RELATED WORK
Previous work has proposed methods for facilitating the analysis
and evaluation of a security architecture [11, 16, 22] and techniques
for reverse engineering security design decisions from source code [6].
There are also works that focused on identifying potential threats
and vulnerabilities from the underlying architecture [1, 2, 4, 12, 20,
21, 23]. However, they currently can detect very specific instances
of architectural flaws related to race conditions [1], anomalous
component interactions [23], multi-tier business applications im-
plemented in Java [4] as well as the verification of one single quality
attribute (e.g. safety, security) etc) [2, 12, 20, 21]. Although these
works can aid architects to identify threats and to appropriately
adopt security tactics into a system, such activities may not be
enough to develop cyber-resilient systems. Unlike past research,
our focus is to tackle the resiliency of critical systems, which in-
volves satisfying not only security attributes, but also other quality
attributes crucial for the system to successfully prevent, react to, re-
cover from, and adapt to cyber events. Furthermore, there are works
on creating architectural models that comply to domain-specific
requirements (e.g., avionics) [14, 21], or on creating reusable mod-
eling components [12, 13]. Our approach, however, is intended to
be agnostic to the domain of the critical system.

6 CONCLUSION
In this paper, we outlined our ongoing efforts in developing an
automated architecture-first verification and reasoning of critical
systems. The approach leverage the identification of architectural
tactics used in the system and a set of rules in a catalog of architec-
tural weaknesses. We demonstrated our approach in the context

of an Attitude and Orbit Control system, which demonstrated the
potential for use in practice.

ACKNOWLEDGEMENT
This work is partially supported by Defense Advanced Research
Projects Agency (DARPA) under grant number N660011914009.

REFERENCES
[1] S. Al-Azzani and R. Bahsoon. SecArch: Architecture-level evaluation and testing

for security. In 2012 Joint Working IEEE/IFIP Conference on Software Architecture
(WICSA) and European Conference on Software Architecture (ECSA), pages 51–60.
IEEE, 2012.

[2] M. Almorsy, J. Grundy, and A. S. Ibrahim. Automated software architecture
security risk analysis using formalized signatures. In 2013 35th International
Conference on Software Engineering (ICSE), pages 662–671. IEEE, 2013.

[3] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley Professional, 3rd edition, 2012.

[4] B. J. Berger, K. Sohr, and R. Koschke. Extracting and analyzing the implemented
security architecture of business applications. In 17th European Conference on
Software Maintenance and Reengineering (CSMR), pages 285–294. IEEE, 2013.

[5] D. Bodeau and R. Graubart. Cyber resiliency design principles. MITRE, 2017.
[6] M. Bunke and K. Sohr. An architecture-centric approach to detecting security

patterns in software. In International Symposium on Engineering Secure Software
and Systems, pages 156–166. Springer, 2011.

[7] V. Cechticky, G. Montalto, A. Pasetti, and N. Salerno. The AOCS framework.
European Space Agency-Publications-ESA SP, 516:535–540, 2003.

[8] Q. Feng, R. Kazman, Y. Cai, R. Mo, and L. Xiao. Towards an architecture-centric
approach to security analysis. In 13th Working IEEE/IFIP Conference on Software
Architecture (WICSA), pages 221–230, 2016.

[9] A. Gacek, J. Backes, D. Cofer, K. Slind, and M. Whalen. Resolute: An assurance
case language for architecture models. In Proceedings of the 2014 ACM SIGAda
Annual Conference on High Integrity Language Technology, pages 19–28, New
York, NY, USA, 2014. ACM.

[10] M. Hafiz, P. Adamczyk, and R. E. Johnson. Growing a pattern language (for
security). In Proceedings of the ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, Onward! 2012, pages
139–158, New York, NY, USA, 2012. ACM.

[11] S. T. Halkidis, N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides. Architectural
risk analysis of software systems based on security patterns. IEEE Transactions
on Dependable and Secure Computing, 5(3):129–142, 2008.

[12] T. Heyman, R. Scandariato, and W. Joosen. Reusable formal models for secure
software architectures. In 2012 Joint Working IEEE/IFIP Conference on Software
Architecture (WICSA) and European Conference on Software Architecture (ECSA),
pages 41–50. IEEE, 2012.

[13] J. Hugues. AADLib: a library of reusable AADL models. Technical report, SAE
Technical Paper, 2013.

[14] M. Munoz. Space systems modeling using the architecture analysis & design
language (AADL). In 2013 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), pages 97–98. IEEE, 2013.

[15] OpenAADL/AADLib. Library of AADL models.
https://github.com/OpenAADL/AADLib. (Accessed on 01/20/2020).

[16] J. Ryoo, R. Kazman, and P. Anand. Architectural analysis for security. IEEE
Security & Privacy, (6):52–59, 2015.

[17] J. C. S. Santos, A. Peruma, M. Mirakhorli, M. Galster, J. V. Vidal, and A. Sejfia.
Understanding software vulnerabilities related to architectural security tactics:
An empirical investigation of chromium, php and thunderbird. In 2017 IEEE
International Conference on Software Architecture (ICSA), pages 69–78. IEEE, 2017.

[18] J. C. S. Santos, K. Tarrit, and M. Mirakhorli. A catalog of security architec-
ture weaknesses. In 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW), pages 220–223, April 2017.

[19] J. C. S. Santos, K. Tarrit, A. Sejfia, M. Mirakhorli, and M. Galster. An empirical
study of tactical vulnerabilities. Journal of Systems and Software, 2018.

[20] L. Sion, K. Tuma, R. Scandariato, K. Yskout, and W. Joosen. Towards automated
security design flaw detection. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering Workshop (ASEW). IEEE, 2019.

[21] D. Stewart, M. W. Whalen, D. Cofer, and M. P. Heimdahl. Architectural modeling
and analysis for safety engineering. In International Symposium on Model-Based
Safety and Assessment, pages 97–111. Springer, 2017.

[22] E. Taspolatoglu and R. Heinrich. Context-based architectural security analysis.
In 13th Working IEEE/IFIP Conference on Software Architecture (WICSA), pages
281–282, 2016.

[23] E. Yuan and S. Malek. Mining software component interactions to detect security
threats at the architectural level. In Software Architecture (WICSA), 2016 13th
Working IEEE/IFIP Conference on, pages 211–220. IEEE, 2016.

