
CAMeleon: Reconfigurable B(T)CAM in Computational RAM

Zamshed I. Chowdhury, Salonik Resch, Hüsrev Cılasun, Zhengyang Zhao, Masoud Zabihi,
Sachin S. Sapatnekar, Jian-Ping Wang and Ulya R. Karpuzcu

{chowh005,resc0059,cilas001,zhaox526,zabih003,sachin,jpwang,ukarpuzc}@umn.edu

University of Minnesota

Minneapolis, Minnesota, USA

ABSTRACT

Embedded/edge computing comes with a very stringent hardware

resource (area) budget and a need for extreme energy efficiency.

This motivates repurposing, i.e., reconfiguring hardware resources

on demand, where the overhead of reconfiguration itself is subject

to the very same tight budgets in area and energy efficiency. Numer-

ous applications running on resource constrained environments

such as wearable devices and Internet-of-Things incorporate CAM

(Content Addressable Memory) as a key computational building

block. In this paper we present CAMeleon ś a novel energy-efficient

compute substrate which can seamlessly be reconfigured to per-

form CAM operations in addition to logic and memory functions.

CAMeleon has a similar level of latency to conventional CAM de-

signs based on SRAM and emerging memory technologies (such as

STT-MTJ, ReRAM and PCM), however, performs CAM operations

more energy-efficiently, consumes less area, and can support tra-

ditional logic and memory functions beyond CAM operations on

demand thanks to its reconfigurability.
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1 INTRODUCTION

Content addressable memory (CAM) is an extensively used func-

tional building block in many mainstream computing systems.

Rather than locating stored data using addresses (as in conven-

tional random access memory, RAM), CAM finds information using
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the content itself ś hence the name. Specifically, upon getting a

search request for a data content, CAM performs the search on

all memory locations simultaneously, and returns the location (or

index) of match, if any.

On a per bit basis, Binary CAM (BCAM) can search for only

two states, i.e., 0 and 1, which Ternary CAM (TCAM) expands to

include also a third don’t care state, i.e., X. This wildcard X makes

searching for a data content, that partially matches with stored data,

possible, and therefore, can generate multiple matches for a single

content search request. In either case, the parallel search capability

enables CAM structures to perform low latency data lookup which

is desired in many contexts, including but not limited to network

devices [1, 11], neuromorphic associative memory [26], big-data an-

alytics [12, 22], pattern recognition [13, 31], data compression [24],

reconfigurable computing [25] and application-specific accelera-

tion [15].

Emergence of edge computing has further increased the range

of applications where parallel content based search is critical to

overall system performance. Examples include object detection [6],

neuromemristive circuits and near-sensor binary deep neural net-

works for edge computing devices [17, 18]. Besides fast CAM search,

operation in resource constrained environments (such as wear-

able devices and Internet-of-Things, IoT) require very low area

and energy consumption. At the same time, constrained hardware

resources make reconfigurability an increasingly desired feature

in these environments [16], to best match dynamically changing

computational demand of the workload, specifically, to deliver the

optimal performance without any waste in area and/or energy by

repurposing hardware resources on demand. However, reconfigura-

tion itself incurs an overhead which can easily become prohibitive

considering the extremely tight budgets in area and energy.

Be it based on traditional CMOS or emerging technologies (STT-

MTJ [10], ReRAM [13, 33] or PCM [27]), typical CAM designs suffer

from either high area overhead or energy consumption (or both).

Moreover, none is practically reconfigurable, hence re-purposing

CAM cells on demand during runtime to perform regular memory

or even logic operations is out of question. On the other hand,

PIM substrates śalready by constructionś can perform logic and

regular memory operations within the same array with minimal

reconfiguration overhead. By exploiting array regularity, adding

CAM operations on top would be an attractive solution as long as

the reconfiguration overhead can be kept at bay1. While various

recent PIM proposals target edge-computing systems [2, 29], none

explores this opportunity.

1Designs that use CAM to perform very restricted and limited number of logic opera-
tions are not considered as PIM enabled CAM architectures in this context.











(= 64). 128 key tiles (64 × 64) are required to store the key dataset.

Each key (and query) is divided into 8 (= 128/16) segments of 16-bit

length. For reduction, 16 (64× 64) reduction tiles are required (each

reduction tile reduces 64 key words). The total memory footprint

is ∼ 72 KB (∼ 57% is used during CAM operations) ś the entirety

of which is available to be used as a regular CRAM array.

Logic gate configuration: The (default) #inputs to CRAM NOR

gates is 8 (corresponding to a good trade-off between overall per-

formance and reliability of logic operations), and each key tile

performs two such logic operations in sequence (since 16 key bits

are stored in each column of key tiles) before feeding a 2-input

CRAM AND gate.

Table 2: Technology Parameters.

Parameter CLP CHP CHPA FLP FHP

MTJ Type Interfacial PMTJ

MTJ Diameter (𝑛𝑚) 45 10

TMR (%) 133 500

RA Product (Ω𝜇𝑚2) 5 1

𝐼𝑐𝑟𝑖𝑡 (𝜇𝐴) 40 90 180 0.79 10

Switch. Latency (𝑛𝑠) 3 1 0.3 1 0.3

𝑅𝑃 , 𝑅𝑃 , 𝑅𝑇𝑟𝑎𝑛𝑠. (𝐾Ω) 3.15, 7.34, 1 12.7, 76.39, 1

Baselines for comparison: To quantify the performance improve-

ment of CAMeleon, 8 state-of-the-art baseline TCAM designs are

selected, with different device technologies, including SRAM, STT-

MTJ, ReRAM and PCM [3, 8, 9, 13, 19, 21, 30, 32]. The numbers

reported for the baselines and CAMeleon exclude encoder over-

head at the output.

5 EVALUATION

5.1 Performance analysis

Fig. 9 provides the energy/search/bit and latency/search characteri-

zation (normalized to [3]; the lower the better). Overall, CAMeleon

with CLP consumes less energy than STT-MTJ- [21], ReRAM- [13,

19] and PCM-based [9] designs.With future (projected)MTJ-variants

(FLP and FHP), the energy consumption reduces even further and

CAMeleon outperforms all baselines. The baselines with STT-MTJ,

ReRAM and PCM use the memory devices to only store CAM data,

unlike CAMeleon which also performs computation (i.e., CAM

search) with the memory devices ś making CAMeleon more sensi-

tive to device technology parameters.

On the latency front, performance of CAMeleon is dominated

by the switching latency of the STT-MTJ devices. Due to longer

switching latency of CLP, CAMeleon-CLP suffers from the longest

search latency across the board. As MTJ variants (CHP, CHPA,

FLP and FHP) exhibit increasingly lower latency, CAMeleon recov-

ers latency significantly, e.g., by a decrease of 8.1× from CLP to

CHPA. Although the baselines outperform CAMeleon in terms of

search latency, it comes with a significant energy (e.g., [21] con-

sumes 5.5× more energy than CAMeleon-CLP) and area penalty

(e.g., [32] uses 5× more transistors/cell than CAMeleon). Table 3

compares all baselines and CAMeleon in terms of area overhead

(#Transistors/cell). The SRAM-based baseline [3], while consuming

less energy than most baselines, suffers from a high area overhead

(16T/cell) ś making it difficult to fit in a tight area budget imposed

by embedded/edge hardware. CAMeleon, on the other hand, has

smaller area footprint than most baselines, except for [9], [19]

and [13] which have similar or slightly smaller footprint at the

expense of higher energy consumption, e.g., [13] consumes 25.8×

more energy than CAMeleon-CLP. Considering the finely tuned

dedicated sense amplifiers for CAM search ś required by all these

baselines (in addition to read sense amplifiers), CAMeleon is even

more area efficient.

In summary, CAMeleon outperforms a wide-range of baselines,

in terms of area or energy (or both), while maintaining a comparable

search latency. CAMeleon, in BCAM mode, exhibits similar energy

(∼ 0.1% less than corresponding TCAM numbers) on average.

[3] [9] [30] [21] [32] [8] [19] [13] CLP CHP CHPA FLP FHP
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Figure 9: Energy and latency comparison (normalized

to [3]).

5.2 Sensitivity analysis

TCAM energy consumption is sensitive to the #wildcard bits in

the search query. Fig. 10 captures the relationship between en-

ergy/search/bit and % of Wildcard bits in varying lengths of query

word (normalized to 25% wildcard share). The energy consumption

decreases, although insignificantly (∼ 1%), with increasing #Wild-

card bits in query. More wildcard bits tend to yield more matches

between {query, key} segment pairsś resulting in lower energy con-

sumption due to AND gates with all logic 1 inputs, which doesn’t

incur switching.
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Figure 10: Sensitivity of CAMeleon to #wildcard bits.

Query length: Energy consumption in CAMeleon depends on

the query length, as well, although insignificantly. Table 4 lists

the energy consumption in CAMeleon when the query length is

varied between 32 and 128 bits (normalized to 128-bit). The energy

consumption (per search per bit) tends to decrease as query length

increases ś indicating good scalability. This is because the dominant

search energy component (gate energy; > 60% of total) does not

scale in proportion to the query length, e.g., gate energy with 64-bit

query is ∼ 1.72× of that with 32-bit query ś resulting in lower

energy/search/bit (vs. 32-bit) for 64-bit query.

Process Variation: The reliability of CAMeleon operations depend

on the correct switching events in CRAM logic operations. High #in-

puts to logic operations could exhibit switching for incorrect input

data. To understand the impact of process variation on CAMeleon



Table 3: CAMeleon TCAM cell comparison against baselines.

Parameter [3] [9] [30] [21] [32] [8] [19] [13] CAMeleon

Device SRAM PCM STT-MTJ STT-MTJ STT-MTJ STT-MTJ ReRAM ReRAM STT-MTJ

Tech. node (nm) 40 22 40 40 40 22 14 45 22

Cell 16T 3T-3R 10T-4M 9T-2M 15T-4M 6T-2M 3T-1R 2T-2R 3T-3M

Word Length (bits) 144 128 144 144 144 256 128 8 128

Logic-capable No Yes

Table 4: Sensitivity to query length.

Query length (#bits) 32 64 128

Energy/search/bit (norm.) 1.29 1.11 1.00

functionality, we considered variation in STT-MTJ and 𝑉𝑁𝑂𝑅 . For

MTJ low resistance (𝑅𝑃 ), we assume a 𝜎 of 10% with 0.1% variation

of TMR (which captures the variability in oxide thickness and sur-

face area), and a 5% standard deviation for𝑉𝑁𝑂𝑅 . Our Monte Carlo

analysis for an 8-input NOR gate, with 10
8 iterations, shows correct

switching behavior ∼ 100% of the time even under our conservative

assumptions. We also introduced incorrect switching behaviour

in this 8-bit NOR gate to output a logic 1 when 7 (instead of all

8) inputs are logic 0 (with default query and key configurations).

Since, in order to get an incorrect match between a {query,key} pair,

all corresponding segments have to yield erroneous match through

such a (faulty) gate (which is very unlikely), there was no erroneous

match in CAM output for the queries.

Gate Width: Higher #inputs results in lower overall CAMeleon la-

tency (more query bits are searched with each logic operation) and

lower energy (which decreases quadratically with #inputs), how-

ever, with increasing probability of incorrect switching behavior,

i.e., error in CAM search output. For example, with 16-input NOR

gate, the latency and energy consumption of CAMeleon reduce

by 1.95× and 3×, respectively, relative to the 8-input gate based

design. Such a rich trade-off space is attractive for approximate

CAM search, which we leave to future work.

6 CONCLUSION

The constrained execution environment in edge and embedded

computing domains, where CAM represents an ubiquitous func-

tional block, requires low-overhead reconfigurability to re-purpose

hardware resources, in order to stay within very tight area and

energy budgets. In this paper we present CAMeleon, a unique re-

configurable hardware solution which fuses spintronic PIM and

(B/T)CAM functionality in a seamless and effective fashion. We

show that CAMeleon can outperform a wide-range of CAM base-

lines, in terms of area or energy consumption (or both), while

maintaining comparable search latency ś and unlike any of the

baselines, while also supporting PIM functionality.
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