
 

Abstract 
This paper presents a hardware prototype and a 

framework for a new communication-aware model 
compression for distributed on-device inference. Our 
approach relies on Knowledge Distillation (KD) and 
achieves orders of magnitude compression ratios on a 
large pre-trained teacher model. The distributed 
hardware prototype consists of multiple student models 
deployed on Raspberry-Pi 3 nodes that run Wide ResNet 
and VGG models on the CIFAR10 dataset for real-time 
image classification. We observe significant reductions in 
memory footprint (50×), energy consumption (14×), 
latency (33×) and an increase in performance (12×) 
without any significant accuracy loss compared to the 
initial teacher model. This is an important step towards 
deploying deep learning models for IoT applications. 
1. Introduction 
Running computer vision tasks on edge devices 

requires efficient on-device inference due to the real-time 
demands; this local processing has also become necessary 
to avoid sending private data to the cloud. Given the 
memory, power, and computation constraints of a single 
edge device, even models compressed with well-known 
techniques such as pruning, quantization [1] or KD [2] 
need to be distributed in a smart manner among multiple 
edge devices in order to minimize the inter-device 
communication. Indeed, if done naively, these model 
compression techniques can result in high accuracy loss 
and/or significant communication increase among the 
distributed devices. 
To meet the tight memory and power constraints of 

edge devices, we rely on a new communication-aware 
model compression called Network-of-Neural Networks 
(NoNN) [3]. This approach draws from KD and consists 
of two major pillars: first, the activation patterns of a 
neural network, called teacher, are used to build a network 
of filter activations. Second, community detection 
techniques are applied to this network to partition the 
teacher’s knowledge into simpler functions. These 
functions are used to train the individual students to 
mimic each partition and hence perform the same task as 
the teacher without compromising the accuracy.  
Experimental results show that partitioning based on 

community detection achieves orders of magnitude 
reduction in the number of model parameters, memory 
footprint, energy, and latency, with only a negligible 

accuracy loss compared to the original teacher model.  
Finally, by creating a software framework, we enable 

users to select the teacher and student models for 
deploying on a network of edge devices and evaluate 
various power/performance trade-offs.  
2. Approach 
Our framework (Fig.1.) starts with an initial teacher 

model that is pre-trained. All filters are extracted from the 
teacher’s last convolutional layer (LCONV), and used to 
create a network of filter activations. This network is then 
used to distribute teacher’s knowledge into disjoint 
partitions via community detection [4]. The partitions are 
used to train multiple disjoint student models and 
distribute teacher’s knowledge. The obtained partitions 
may not have the same number of filters, hence our 
framework balances the number of partitions learned by 
each student so that every student learns approximately 
the same number of filters in total. The student models are 
carefully selected so they can be deployed on edge 
devices while satisfying tight memory (e.g., 500KB), 
power (e.g., 2W), and computational constraints (e.g., 
ARM Cortex-A53)and maintaining teacher’s accuracy at 
image classification. The outputs of all students are 
merged by a Fully Connected (FC) layer, similar to the 
one used by the teacher, to make the final prediction. After 
training, each student model is deployed on a single edge 
device.  
 Teacher partitioning 
We suppose that the teacher contains several 

convolutional layers and one or more FC layers for 
prediction. When passing an image (𝜑) from the 
validation set (val) through the teacher network, in the 
LCONV, each 𝑓! filter has a certain feature map. By 
computing the average value of the feature map which 
corresponds to a filter, we obtain the average activity (𝑎!) 
for filter 𝑓!. The higher the  𝑎! value of filter 𝑓!, the more 
important the filter 𝑓! is for classifying image 𝜑. Using all 
val images from a given class, we can detect which filters 
matter the most for that class using 𝑎! [3].  
The framework builds a network with 𝑓! filters as nodes 

and each two nodes (𝑓! , 𝑓") are connected by a weighted 
edge with 𝐹!" = ∑ 𝑎!#$% 𝑎"|𝑎! − 𝑎"| as the weight. This 
filter activation network is partitioned using community 
detection via Activation Hubs (AHs). The AHs are 
created in such a manner that they are sparsely 
interconnected, resulting in 𝑁 disjoint partitions [3].  
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 Training student models 
Our framework currently enables users to choose the 

number of desired students (𝐾), and the neural network 
model for each student. Each student model needs to be 
chosen (or designed by the users) to fit within a single 
edge device under given constraints. To train all students 
at once, we create a single neural network using the 
chosen student model which is replicated 𝐾 times. All 
students have the same model and are connected via a FC 
layer. We train this network with a KD-based loss 
function such that each student can mimic a certain 
partition from the original teacher [3].  
 Deploying student models on edge devices 
The obtained student models are extracted from the 

unified network and compiled independently for 
deployment on the destination devices using the Tensor 
Virtual Machine (TVM) compiler. After compilation and 
deployment, a host device controls the inference process 
by sending the images required to be classified, collecting 
the outputs of each deployed student and making the final 
prediction based on those outputs. The host can be an edge 
device or a general-purpose computer. 
3. Experimental setup and results 
For the teacher model, we have conducted two 

experiments: one with the WRN network with a depth of 
40 and a widening factor of 4 (WRN40-4), and another 
with VGG-19. In both cases we consider FP32 precision 
and we use the framework to partition the teacher model. 
As student models, we use WRN with a depth 16 and a 
widening factor of 1 (WRN16-1) in the first experiment, 
and VGG-11 in the second experiment. The results (see 
Table I and Table II) are obtained from inferencing 10000 
images from the CIFAR10 test dataset on a NoNN with 
𝐾 = 2  students. 
 

Table I. WRN experimental results 
Metrics Teacher Student Improvement 
Accuracy 96.78% 95.92% -0.86% 
Parameters 8.9M 0.18M 49.89× 
Latency [ms] 1878 150 12.44× 
Energy [mJ] 3430.67 238.98 14.36× 
 

We compare the inference process for a teacher 
deployed on a RaspberryPi 3B+ (RPi) and a NoNN of two 
students deployed on the same device. The number of 
parameters, latency, and energy corresponding to the 
Student column (in both tables) is measured on one RPi 
device to emphasize the impact of the teacher and a 
student model deployed on a single RPi. 
 

Table II. VGG experimental results 
Metrics Teacher Student Improvement 
Accuracy 93.00% 91.47% -1.53% 
Parameters 20M 9.2M 2.16× 
Latency [ms] 847 414 2.04× 
Energy [mJ] 436.27 366.39 1.2× 

4. Conclusion 
In this paper, we have presented a hardware prototype 

and a software framework to compress large teacher 
models for distributed power- and latency-constrained on-
device inference at the edge. The student models perform 
on-device inference efficiently and deliver real-time 
performance while deployed on RPi edge devices.  
Our approach demonstrates significant reductions in 

memory footprint (50×), energy consumption (14×), 
latency (33×) and an increase in performance (12×), while 
maintaining the accuracy of the initial teacher model. 
Our demonstration consists of a live deployment of the 

resulted compressed models on RaspberryPi 3B+ boards 
with real-time on-device inference and actual 
performance and power measurements.  
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Fig. 1. Proposed distributed model compression framework for disjoint edge devices 


