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Abstract

This paper presents a hardware prototype and a
framework for a new communication-aware model
compression for distributed on-device inference. Our
approach relies on Knowledge Distillation (KD) and
achieves orders of magnitude compression ratios on a
large pre-trained teacher model. The distributed
hardware prototype consists of multiple student models
deployed on Raspberry-Pi 3 nodes that run Wide ResNet
and VGG models on the CIFARI0 dataset for real-time
image classification. We observe significant reductions in
memory footprint (50%), energy consumption (14%),
latency (33%) and an increase in performance (12x)
without any significant accuracy loss compared to the
initial teacher model. This is an important step towards
deploying deep learning models for IoT applications.

1. Introduction

Running computer vision tasks on edge devices
requires efficient on-device inference due to the real-time
demands; this local processing has also become necessary
to avoid sending private data to the cloud. Given the
memory, power, and computation constraints of a single
edge device, even models compressed with well-known
techniques such as pruning, quantization [1] or KD [2]
need to be distributed in a smart manner among multiple
edge devices in order to minimize the inter-device
communication. Indeed, if done naively, these model
compression techniques can result in high accuracy loss
and/or significant communication increase among the
distributed devices.

To meet the tight memory and power constraints of
edge devices, we rely on a new communication-aware
model compression called Network-of-Neural Networks
(NoNN) [3]. This approach draws from KD and consists
of two major pillars: first, the activation patterns of a
neural network, called teacher, are used to build a network
of filter activations. Second, community detection
techniques are applied to this network to partition the
teacher’s knowledge into simpler functions. These
functions are used to train the individual students to
mimic each partition and hence perform the same task as
the teacher without compromising the accuracy.

Experimental results show that partitioning based on
community detection achieves orders of magnitude
reduction in the number of model parameters, memory
footprint, energy, and latency, with only a negligible
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accuracy loss compared to the original teacher model.

Finally, by creating a software framework, we enable
users to select the teacher and student models for
deploying on a network of edge devices and evaluate
various power/performance trade-offs.

2. Approach

Our framework (Fig.1.) starts with an initial teacher
model that is pre-trained. All filters are extracted from the
teacher’s last convolutional layer (LCONV), and used to
create a network of filter activations. This network is then
used to distribute teacher’s knowledge into disjoint
partitions via community detection [4]. The partitions are
used to train multiple disjoint student models and
distribute teacher’s knowledge. The obtained partitions
may not have the same number of filters, hence our
framework balances the number of partitions learned by
each student so that every student learns approximately
the same number of filters in total. The student models are
carefully selected so they can be deployed on edge
devices while satisfying tight memory (e.g., SO0KB),
power (e.g., 2W), and computational constraints (e.g.,
ARM Cortex-A53)and maintaining teacher’s accuracy at
image classification. The outputs of all students are
merged by a Fully Connected (FC) layer, similar to the
one used by the teacher, to make the final prediction. After
training, each student model is deployed on a single edge
device.

2.1. Teacher partitioning

We suppose that the teacher contains several
convolutional layers and one or more FC layers for
prediction. When passing an image (@) from the
validation set (val) through the teacher network, in the
LCONYV, each f; filter has a certain feature map. By
computing the average value of the feature map which
corresponds to a filter, we obtain the average activity (a;)
for filter f;. The higher the a; value of filter f;, the more
important the filter f; is for classifying image ¢. Using all
val images from a given class, we can detect which filters
matter the most for that class using a; [3].

The framework builds a network with f; filters as nodes
and each two nodes (f;, f;) are connected by a weighted
edge with Fj; = ¥,4,a; aj]la; — a;| as the weight. This
filter activation network is partitioned using community
detection via Activation Hubs (AHs). The AHs are
created in such a manner that they are sparsely
interconnected, resulting in N disjoint partitions [3].
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Fig. 1. Proposed distributed model compression framework for disjoint edge devices
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2.2. Training student models

Our framework currently enables users to choose the
number of desired students (K), and the neural network
model for each student. Each student model needs to be
chosen (or designed by the users) to fit within a single
edge device under given constraints. To train all students
at once, we create a single neural network using the
chosen student model which is replicated K times. All
students have the same model and are connected via a FC
layer. We train this network with a KD-based loss
function such that each student can mimic a certain
partition from the original teacher [3].

2.3. Deploying student models on edge devices

The obtained student models are extracted from the
unified network and compiled independently for
deployment on the destination devices using the Tensor
Virtual Machine (TVM) compiler. After compilation and
deployment, a host device controls the inference process
by sending the images required to be classified, collecting
the outputs of each deployed student and making the final
prediction based on those outputs. The host can be an edge
device or a general-purpose computer.

3. Experimental setup and results

For the teacher model, we have conducted two
experiments: one with the WRN network with a depth of
40 and a widening factor of 4 (WRN40-4), and another
with VGG-19. In both cases we consider FP32 precision
and we use the framework to partition the teacher model.
As student models, we use WRN with a depth 16 and a
widening factor of 1 (WRN16-1) in the first experiment,
and VGG-11 in the second experiment. The results (see
Table I and Table II) are obtained from inferencing 10000
images from the CIFARI10 test dataset on a NoNN with
K = 2 students.

Table I. WRN experimental results

Metrics Teacher | Student | Improvement
Accuracy 96.78% | 95.92% -0.86%
Parameters 8.9M 0.18M 49.89x
Latency [ms] 1878 150 12.44x%
Energy [mJ] | 3430.67 | 238.93 14.36x

We compare the inference process for a teacher
deployed on a RaspberryPi 3B+ (RPi) and a NoNN of two
students deployed on the same device. The number of
parameters, latency, and energy corresponding to the
Student column (in both tables) is measured on one RPi
device to emphasize the impact of the teacher and a
student model deployed on a single RPi.

Table II. VGG experimental results
Metrics Teacher | Student | Improvement
Accuracy 93.00% | 91.47% -1.53%
Parameters 20M 9.2M 2.16x
Latency [ms] 847 414 2.04x
Energy [mJ] | 436.27 | 366.39 1.2x

4. Conclusion

In this paper, we have presented a hardware prototype
and a software framework to compress large teacher
models for distributed power- and latency-constrained on-
device inference at the edge. The student models perform
on-device inference efficiently and deliver real-time
performance while deployed on RPi edge devices.

Our approach demonstrates significant reductions in
memory footprint (50%), energy consumption (14x),
latency (33%) and an increase in performance (12x), while
maintaining the accuracy of the initial teacher model.

Our demonstration consists of a live deployment of the
resulted compressed models on RaspberryPi 3B+ boards
with real-time on-device inference and actual
performance and power measurements.
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