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ABSTRACT: Vanadium oxides are strongly correlated materials which display metal— PO2
insulator transitions (MITs) as well as various structural and magnetic properties that
depend heavily on oxygen stoichiometry. Therefore, it is crucial to precisely control oxygen
stoichiometry in these materials, especially in thin films. This work demonstrates a high-
vacuum gas evolution technique which allows for the modification of oxygen
concentrations in VOy thin films by carefully tuning the thermodynamic conditions. We
were able to control the evolution between VO,, V30, and V,0; phases on sapphire )
substrates, overcoming the narrow phase stability of adjacent Magnéli phases. A variety of LV203

annealing routes were found to achieve the desired phases and eventually control the MIT.

The pronounced MIT of the transformed films along with the detailed structural — T
investigations based on X-ray diffraction measurements and X-ray photoelectron

spectroscopy show that optimal stoichiometry is obtained and stabilized. Using this technique, we find that the thin-ilm V—-O
phase diagram differs from that of the bulk material because of strain and finite size effects. Our study demonstrates new pathways to
strategically tune the oxygen stoichiometry in complex oxides and provides a road map for understanding the phase stability of VO
thin films.

KEYWORDS: vanadium oxide thin films, metal—insulator transition, high-vacuum annealing, phase diagram, oxygen stoichiometry,
oxide electronics
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1. INTRODUCTION Vanadium oxides are very sensitive to changes in oxygen
stoichiometry. Vanadium is a multivalent element displaying
oxidation states between V>* and V**, which gives rise to a
series of compounds known as Magnéli (V,0,,_;) and
Wadsley phases (V,0,,,1).” "> The existence of multiple
phases leads to a complicated V—O phase diagram.”*™*°
Furthermore, shrinking them into thin films or other nanoscale
structures is needed to increase their functionality.”” Typically,
the V—O phase diagram is constructed with the thermody-

Metal—insulator transitions (MITs) in oxides have been of
special interest in condensed matter physics"” and technology®
in past decades. Specifically, vanadium oxides (VOy) are
considered very promising materials for next-generation oxide
electronics. For instance, VO, has attracted much attention
owing to its MIT near room temperature (Tyyp ~ 340 K), in
which a large increase in electric resistivity is accompanied by a

structural phase transition (SPT)."”* Additional interest in VO, namic data of bulk samples. However, as the size is reduced,
concerns the possibility of modulating this transition by the increase in the surface-to-volume ratio introduces an
external stimuli.””® The significant change in electrical additional surface energy term in Gibbs-free energy that might
resistivity offers a platform for resistive switching” and affect the thermodynamically stable phase region,zg’29 Despite
neuromorphic computation-'"""* related applications. In decades of research, a comprehensive understanding of thin-
pure and Cr-doped V,0;, the concurrence of metal—insulator, film thermodynamics in the VOy system is still lacking. Most
structural, and magnetic phase transitions has been the subject studies have only focused on the growth of VO, thin films and
of much fundamental research.'*™'® The V,0; phase, as one of the improvement of their MIT properties by thermal
the only two VOy members with a MIT above room annealing.””**™* Other oxides such as V305 which is the
temperature (Tygr ~ 430 K), is an excellent candidate for

use in silicon-based technologies17 and switching device Received: October 12, 2020

applications.lg_20 During this MIT, the lattice structure Accepted: December 9, 2020

remains monoclinic with a change in space group symmetry Published: December 22, 2020

from I2/c to P2/c. The possibility to trigger the MIT without a
significant structural change is of great advantage for V;O;-
based switching devices.
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Figure 1. (a) Schematic illustration of the gas evolution setup used to control the oxygen stoichiometry in VOy. (b) Synthesis pathways in the
thermodynamic phase diagram of VOy thin films. The dashed lines represent the different heating/cooling routes for preparing various phases of

vanadium oxide.

closest Magnéli phase to V,0;, is particularly difficult to
deposit directly because of the narrow range of allowable
oxygen stoichiometry (with an O/V ratio between 1.666 and
1.668 + 0.002).>*** The fabrication of V;O5 film in a recent
work still contains a small amount of V,0; impurities.”> In
general, obtaining high quality thin films of a specific VOy and
understanding the thin film phase diagram remain a
challenging task.

In this study, we achieved control over oxygen stoichiometry
in vanadium oxide thin films using a high-vacuum gas
evolution system. The experimental setup is shown in Figure
la. (See the Experimental Section for more details) We first
sputtered VO, or V,0; thin films on sapphire (a-AlLO;)
substrates and then placed the samples in the center of a high
vacuum tube furnace for heat treatment using high purity
oxygen. A similar technique has been used to control oxygen
deficiency in high-temperature superconducting YBa,Cu;0,_x
samples.‘%’37 Starting from single-phase VO, or V,0; films, we
are able to transform the initial material into a different VOy
film by carefully following a controlled route in the partial
oxygen pressure (PO,)—temperature (T) diagram (Figure
1b.). Various routes were tested to optimize the purity and
enhance the MIT properties of the resulting compound. After
treatment, the resulting phases were investigated using X-ray
diffraction (XRD), reciprocal space mapping (RSM), X-ray
photoelectron spectroscopy (XPS), and transport measure-
ments. We show that our technique can provide excellent
control over a wide range of temperatures and oxygen partial
pressures down to high vacuum conditions, allowing us to
minimize the effect of other gases or contaminations and
increase the reproducibility of desired phases. This offers
significant advantages over normal thermal oxidation/reduc-
tion methods using a gas mixture with a limited vacuum range
(>0.01 Torr).>® The precision of our method is shown by
obtaining single-phase V;O; thin films with pronounced MIT
despite their extremely narrow phase stability range. We are
thus able to modulate the MITs between different phases and
construct a detailed vanadium—oxygen phase diagram for thin
VOy films.

2. EXPERIMENTAL SECTION

2.1. Thin-Film Growth. Single-phase VO, and V,0; thin films
were deposited on 7 X 12 mm? (012) r-cut or (001) c-cut sapphire
(a-ALO;) substrates using RF magnetron sputtering from a V,0;
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target. As described in previous studies,”*' the growth of VO, was
done at a substrate temperature of 520 °C in an environment of Ar/
O, mixture (8% O,) at 3.7 mTorr. The V,0j thin films were prepared
at a 700 °C substrate temperature in an environment of ultrahigh
purity Ar (>99.999%) at 8 mTorr.

2.2. Gas Evolution System. A high-vacuum oxygen annealing
method was developed to synthesize complex oxide thin films with
controlled oxygen stoichiometry. The experimental setup is shown in
Figure la. The base pressure of the system is ~1 X 1077 Torr. Thin
film samples were placed in the center of a Lindberg/Blue M 1200 °C
tube furnace for heat treatment under different oxygen atmospheres.
The PO, was measured using a residual gas analyzer equipped with a
quadrupole mass spectrometer (UHV to 10™* Torr) and two
capacitance manometers (107 to 1000 Torr). A MKS series 245
pressure/flow control valve, a variable leak valve, and a solenoid valve
were used to carefully control the PO,. High-purity oxygen
(>99.99%) was introduced into the annealing chamber using the
computer-controlled metal-seated valve. This gas evolution setup
provides a wide pressure range (UHV to 1000 Torr) and allows for
the continuous variation of PO, under high vacuum conditions.

2.3. Evolution of V,0; Phase into VO,. Oxidation of as-
deposited V,05/AL,04 (r-cut) thin films with 7S nm thickness was
performed in the gas evolution system by continuously controlling
PO, and T. The annealing conditions were chosen according to the
known bulk vanadium—oxygen phase diagram.”*™*¢ By carefully
following thermodynamically stable paths, different oxidation states of
vanadium could be obtained from V,0;. At the start of route I (A —
B — C — B — A) (see Figure 1b), PO, was fixed to 1 X 107° Torr,
and the temperature was ramped up to 500 °C at a heating rate of 10
°C/min. After reaching 500 °C, the PO, was continuously increased
along (B — C) in order to keep the sample in the potentially stable
region of the VO, phase in the PO,—T diagram. The sample was then
annealed at 600 °C for 3 h with PO, ~ 7 x 107* Torr (at point C in
Figure 1b). After reaching thermodynamic equilibrium, both PO, and
T were reduced at a cooling rate of 6 °C/min along the return path
(C — B). After reaching 500 °C, the sample was then quenched to
room temperature by transferring it to the load lock.

Similarly, by following route II (A - B — C — D), the oxygen
stoichiometry in as-deposited V,0; can be modified, leading to a
transformation into a higher oxidation state. After a 3 h reaction at
600 °C (point C), the sample was cooled down to room temperature
under continuous oxygen flow at PO, ~ 7 X 107* Torr. As will be
discussed later, this method produces high-quality VO, thin films with
sharp MITs. The ability to continuously and gradually control both
PO, and T is important for maintaining thermodynamic equilibrium
in the thin film sample at all times so as to prevent the formation of
possible secondary phases during the process.

https://dx.doi.org/10.1021/acsami.0c18327
ACS Appl. Mater. Interfaces 2021, 13, 887—896
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Figure 2. Formation of VO, phase from a V,0j thin film on a (012) r-cut sapphire substrate. (a) Resistance vs temperature of vanadium oxide thin
films under various oxidation conditions. After annealing, the thin films showed a sharp VO, MIT at ~340 K. (b) Room-temperature XRD scans
for vanadium oxide films. The different diffraction spectra correspond to the V,0; phase (as-deposited) and the VO, phase (annealed following
route I or route IT). The crystallographic orientation of the VO, film was (200), which points along ~40° to the surface normal (y ~ 40°). The
angle () denotes the degree between the surface normal and the diffraction plane. AFM images (1 X 1 ym?) showing the surface morphology of
the (c) as-deposited film, (d) (route I)-annealed film, and (e) (route II)-annealed film. The scale bar is 200 nm for all images. RSM of (f) (route I)-
annealed and (g) (route II)-annealed VO, films. Q; denotes the out-of-plane orientation (012) of ALO;.

2.4, Evolution of V,0; Phase into V;0;. For the oxidation
reaction of V,0; into V305, we used a similar procedure. At the start
of route Il (E — H — I), the as-deposited V,0,/A1,0; (c-cut) film
with a thickness of approximately 100 nm was mounted on the tube
furnace and the PO, was fixed to ~4 X 107° Torr. The temperature
was then increased from RT to 800 °C at a rate of 10 °C/min (E —
H). From point H, both the PO, and temperature (T) were
continuously increased along the possible stable region for V;0;. The
thin film was then annealed for 3 h at 838 °C with PO, ~ 8 x 107*
Torr (at point I). After reaching phase equilibrium, both PO, and T
were continuously reduced along the return route (I — H) at a
cooling rate of 6 °C/min, and the sample was quenched from 800 °C
to room temperature along the return path (H — E). In the case of
V,0;/AL0; (r-cut) film, we performed the same experiment: the 100
nm film was annealed following route III. The annealing time was 3 h
at point I in the first round and increased to 6 h for the second round.

2.5. Evolution of VO, Phase into V,0;. In order to understand
the phase stability of VO,, the as-deposited VO,/ALO; (r-cut) films
with a thickness of 7S nm were heat-treated under two different
thermodynamic paths: route IV (E - F — E) and route V (E > G —
E). At the start of route IV, the temperature was increased at a rate of
10 °C/min to 550 °C under PO, ~ 4 X 10~ Torr. The annealing
time was optimized to 12 h. After the reduction reaction, the sample
was rapidly quenched in order to prevent the formation of other
Magnéli phases that might occur during a slow cooling process.
Similarly, along thermodynamic route V, the sample was stabilized at
838 °C for 12 h (point G) and also rapidly quenched to room
temperature.

2.6. Characterization. Room-temperature #—260 XRD and RSM
were used to characterize the lattice structure and its relation to the
substrate structure using a Rigaku SmartLab X-ray diffractometer with
Cu Ka radiation (4 = 1.54 A). Atomic force microscopy for room-
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temperature surface characterization was performed using a Veeco
scanning probe microscope. The scan area of each of the films was
fixed to 1 X 1 um* X-ray photoelectron spectroscopy (XPS) was
carried out using a Kratos AXIS Ultra DLD XPS instrument equipped
with an Al X-ray source and a 165 mm electron energy hemispherical
analyzer. All the spectra were calibrated to the strongest O 1s
component at 530.0 eV.*>** Samples were cleaned by Ar ion beam (4
keV) sputtering for 12 s prior to the measurements to remove the
surface layer contamination. The N 1s, C 1s, and O 1s peaks and the
V 2p peak were constantly monitored to prevent the peak distortion
and the change in the oxidation state of vanadium ions.*”*’ Shirley
background was used for the peak fitting. Temperature-dependent
electrical transport measurements using a standard four-point probe
configuration were performed using a Lakeshore TTPX probe station
with a Keithley 6221 current source and a Keithley 2182A
nanovoltmeter.

3. RESULTS AND DISCUSSION

3.1. V,05 to VO,. Figure 2a shows the electrical transport
of V,05/AL0; (r-cut) thin films before and after different gas
evolution treatments. The R—T curve of as-deposited V,0;
shows a sharp MIT at Ty ~ 160 K, with at least 6 orders of
magnitude change in the electrical resistance and a 10 K
thermal hysteresis between the heating and cooling branches.
The single-phase growth of the V,0; thin film on r-cut
sapphire is confirmed by the XRD scan shown in Figure 2b.
The scattering intensity of V,0; is much stronger than
sapphire when the X-ray was aligned with the V,0; peak.
There are three out-of-plane diffraction peaks corresponding to
(012), (024), and (036) corundum V,0; phases. X-ray

https://dx.doi.org/10.1021/acsami.0c18327
ACS Appl. Mater. Interfaces 2021, 13, 887—896
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Figure 3. Formation of the V305 phase from a V,0; thin film on a (001) c-cut sapphire substrate. (a) Resistance as a function of temperature of the
V,0; film and the resulting V505 film. The MIT temperature (Tyyr) of V305 is ~ 417 K. (b) Room-temperature XRD scans. Evolution of different
peaks corresponding to the V,0; phase (as-deposited) and the V30 phase (annealed following route IIT). Preferred crystallographic orientations of
the V505 film were (020), (202), and (400). AFM images revealed the surface morphology of (c) as-deposited film and (d) (route IIT)-annealed
film. (e) X-ray RSM of the resulting V505 film. Q, denotes the out-of-plane orientation (001) of ALO; (perpendicular to the film surface).

measurements on similar films*' suggest that V,0; grows
epitaxially along the crystallographic orientation of the (012)
sapphire substrate. By following the annealing process (route
I) in the PO,—T phase diagram (Figure 1b), this film was
transformed into VO,, with 3 orders of magnitude MIT at
Tyar ~ 340 K (Figure 2a). Interestingly, this MIT was
significantly improved and enhanced by following route II. The
resulting VO, phase was confirmed by RSM (see Figure 2fg).
The absence of diffraction peaks from other Magnéli phases
indicates the formation of single-phase VO, films.

Figure 2b shows the XRD spectra for (route I)-annealed and
(route II)-annealed samples. XRD patterns for samples
subjected to both routes clearly show the diffraction peak at
37.1°, corresponding to the (200) plane of the VO, monoclinic
structure. The resulting VO, films still exhibit the preferred
orientation with the (200) plane pointing at ~40° to the
surface normal (y ~ 40°), while for the directly sputtered VO,
films on r-cut sapphire, the (200) plane is parallel to the
substrate surface (y ~ 0°) (Figure 4b). The formation of a
tilted (200) plane indicates the lack of well-aligned epitaxial
layers and the appearance of disorder at the VO,/Al,O;
interface, as present in many oxide heterostructures.”” It
should be noted that there are structural similarities between
rutile VO, and corundum V,0;. Previous studies have shown
that through a common parent structure with a hexagonal-
close-packing arrangement, VO, and V,0; may be derived
from each other through a well-defined symmetry-breaking
mechanism along the [001] direction of corundum V,0; and

the [100] of rutile VO,.*’ It is thus unlikely that the formation
of VO, from V,0; would be randomly oriented.

The AFM images demonstrate the differences in surface
morphology and roughness between the as-deposited V,0;
(Figure 2c), (route I)-annealed film (Figure 2d), and (route
II)-annealed film (Figure 2e). The root-mean-square rough-
ness extracted from Figure 2c—e was 5.62, 6.22, and 8.29 nm,
respectively. The original V,0; film prepared by sputtering
reveals a relatively smooth surface. The quenching process
along route I results in a bigger grain size (~190 nm assuming
a spherical shape) of the VO, film. It is this (route I)-annealed
VO, film that exhibits a smaller width in the hysteresis loop
appearing in the R—T curve at the MIT (Figure 2a).
Consequently, our results suggest that the hysteresis loop at
the MIT broadens with decreasing grain size.""* Earlier
reports show that smaller grains lead to a high density of grain
boundaries, resulting in a decrease in the magnitude of the
resistivity change across the MIT.*® Alternatively, the larger
resistance switching ratios and smaller grains (~75 nm)
observed in the (route II)-annealed VO, film suggest that the
change in the electrical resistance cannot be solely due to a
grain size effect. Oxygen stoichiometry must also play a role in
the MIT behavior of VO,. The activation energy (E,) of the
VO, insulating state (T < 310 K) can be estimated from the
linear fitting of the ratio In R(T)/(1/k,T), as R(T) = R, exp
(E,/k,T). The results obtained from (route I)-annealed and
(route II)-annealed VO, are ~191 and ~259 meV,
respectively. Quenching the (route I)-annealed VO, film
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Figure 4. Formation of the V305 phase from a V,0j5 thin film on a (012) r-cut sapphire substrate. (a) Resistance as a function of temperature for a
V,0; film: as-deposited film (cyan); after annealing for 3 h at point I (purple); and after annealing for additional 6 h at point I (blue). (b)
Comparison of the normalized R(T) for V;0j films on r-cut sapphire (blue) and c-cut sapphire (red). The black dashed lines mark the Ty for the
two different samples. (c) XRD measurements of samples after time-annealed V,0; thin film following route III. The preferred crystallographic
orientation of the resulting V305 film was (310), which points along ~17° to the surface normal (¥ ~ 17°). (d) AFM images revealing the surface
morphology and (e) X-ray RSM of the resulting V505 film. Q, denotes the out-of-plane orientation (012) of AlL,O; (perpendicular to the film

surface).

under relatively low PO, is likely to increase the density of
defects and promote oxygen loss. These vacancies may dope
the VO,, thus increasing the free carriers and reducing the
resistive change across the MIT.*** A detailed phase stability
diagram (Figure 7.) also shows that annealing the sample at
600 °C with a low oxygen pressure will result in oxygen-
deficient VO,_, phases.

3.2, V,0;3 to V;0;. Because of the numerous possible
oxidation states, vanadium oxides are very sensitive to changes
in the oxygen content. Here, we show that oxidation of V,0;
to form V;O; can be achieved on c-cut and r-cut sapphire by
slightly increasing the PO, at ~840 °C. Figure 3a displays the
temperature-dependent electrical transport of a V,0; film
grown on c-cut sapphire before and after the gas evolution
treatment. The R—T curve of the as-deposited V,0; film shows
a suppressed MIT with only a slight resistance variation. We
note that this V,0; sample was grown under the same
conditions as the one shown in Figure 2a, which shows a much
more pronounced MIT. This suppression of the MIT in V,0;
grown on c-cut sapphire had been previously attributed to the
strain and microstructural effects between the thin film and
substrate.””" The lattice parameters and the ¢/a ratio of our
epitaxial c-cut V,0; thin film are ~2.81 (a = b =498 A; ¢ =
14.01 A). This ratio is consistent with the reported value of c-
cut V,0; with unusual metal—insulator—metal behavior.*’ In
previous work, we have shown that the SPT and MIT were
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robustly coupled to each other.'® Therefore, it is likely that the
SPT in our V,0j sample is highly dependent on the a- and c-
axis deformation as well. This leads to the suppression of the
MIT. The XRD pattern in Figure 3b shows that the corundum
V,0; film is highly oriented with the (001) c-cut sapphire
substrate. By annealing this film along route III (Figure 1b), we
were able to transform it into a single-phase V;O; film with an
MIT of more than 1 order of magnitude at Ty ~ 417 K. The
smooth MIT behavior above room temperature together with
the absence of thermal hysteresis in R(T) are signs of a second-
order phase transition, as reported before.'®*"

The presence of a single-phase polycrystalline structure is
confirmed by RSM, as shown in Figure 3e. The axis Q, points
along the out-of-plane orientation (001) for the AlO;
substrate. Figure 3b shows six diffraction peaks at 26 = 36.0,
38.5, 38.9, 76.2, 82.3, and 83.4° corresponding to the (020),
(202), (400), (040), (404), and (800) planes in VO,
respectively.”” All the observed peaks shifted slightly to higher
values of 20 (i.e., the d-spacing for each plane is contracted)
with respect to the bulk values. This implies that residual
strains were induced in the film after recrystallization. If
annealing was interrupted before complete transformation,
crystalline V,0; and V30 phase coexistence could be
observed. The AFM image of the as-deposited V,0; film
(Figure 3c) indicates a relatively smooth film surface with 0.72
nm RMS roughness. The resulting V305 film shown in Figure
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3d has a much rougher surface with 13.1 nm RMS roughness.
Furthermore, the grain structure is highly irregular after the
treatment, as suggested by the XRD and RSM data.

Figure 4a demonstrates the electrical transport of a V,0;
film on r-cut sapphire before and after gas evolution treatments
along route III. After annealing at point I for 3 h, we observe
an increase in the resistance in the metallic states and a
reduction of the magnitude of the hysteresis. However, the
large MIT at Ty ~ 150 K indicates that the major phase of
the film is still V,0;. The formation of a pure V304 phase is
achieved by a second annealing process for additional 6 h along
route III. The R(T) starts showing a smooth MIT above room
temperature (Tygr ~ 404 K) without thermal hysteresis. A
comparison of R—T curves of V;0; films grown on c-cut (001)
and r-cut (012) Al,O; substrates is shown in Figure 4b. Both
samples reveal an MIT of more than 1 order of magnitude. For
ease of comparison, the results were normalized by the metallic
state resistance (R,qx). As the transformed V;0; films were
polycrystalline, it is likely that the strain in the different grains
is highly inhomogeneous. Different sapphire substrates will
generate different dislocations and strain. Because of the
numerous grain orientations, it is quite challenging to precisely
quantify the strain in the polycrystalline thin film. By
comparing the lattice spacings in V305 grown on r-cut and
c-cut oriented sapphire, the structural distortion can still be
estimated. Compared with the c-cut V;Oj thin film, the relative
strains for the (100), (010), and (001) planes of V30/r-cut
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sapphire are considerably more compressed (Ad, g9 ~ —0.71%;
Adyyy ~ 0.03%; Adgy ~ —2.1%). It is likely that a larger
compressive strain leads to a lower Ty as found in a previous
study, which has shown that Tyyr in V305 decreases with
pressure.”® The strain generated from the sapphire substrates
and the difference in microstructure and grains might lead to
the 14 K variation in Tyyy. Figure 4c shows the evolution of
the crystalline structure for the V,0; film. After 3 h of
annealing, the intensity of the diffraction peaks decreased, but
the thin film still remained as corundum V,0;. On the other
hand, the second, lengthier annealing time (6 h) allowed for a
complete transformation into V;Os. Besides the out-of-plane
sapphire peaks, several in-plane V;O; peaks can be found using
RSM. For instance, one diffraction peak from the V;0; (310)
plane was found at y ~ 17° (Figure 4c,e). The RMS roughness
of the transformed V;0; film is 4.21 nm (Figure 4d).

Interestingly, a large difference in the annealing times
required to form V;Os is observed for the two different
substrates, (012) and (001) Al,O,. This indicates that the
crystallographic orientation of the film significantly affects the
thermodynamic kinetics and oxygen diffusion processes. As we
observe from our XRD measurements (Figures 3b and 4c), for
both substrates, in the final stage, the samples only showed
diffraction peaks associated with V305 (aside from the sapphire
peaks) indicating high phase purity.

3.3. VO, to V,0;. In addition to the controlled oxidation of
as-grown V,0; thin films using the gas evolution technique
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and (f) (route II)-annealed film, higher quality VO, phase.

described above, we have also demonstrated and studied the
controlled reduction of as-grown VO, thin films on r-cut
sapphire to study the thin-film phase stability. Figure Sa shows
the electrical transport of a VO, film on an r-cut sapphire both
before and after the gas evolution treatments along route IV.
The R—T curve of as-deposited VO, shows a sharp MIT at
Tyor ~ 340 K, with more than 3 orders of magnitude
resistance change. The single-phase growth of VO, is
confirmed by the XRD scan shown in Figure Sb. Two
reflection peaks corresponding to the (200) and (400) planes
for monoclinic VO, are observed at 26 = 37.1 and 79.0°,
respectively. By following the annealing process (route IV)
shown in Figure 1b, the highly textured VO, film was
transformed into single-phase V,0;, now with 5 orders of
magnitude MIT with Tyyr ~ 145 K (see Figure Sa). This value
of transition temperature Ty ~ 145 K is slightly lower than
the value of the transition temperature Ty ~ 160 K, for the
directly sputtered V,0; film, indicating that there might be a
comparatively higher oxygen concentration in the transformed
V,0; film.** Moreover, we find no significant differences (A20
< 0.035°) in the out-of-plane (012) and in-plane (104) XRD
peaks between directly sputtered V,0; and transformed V,0;
films, ruling out strain effects as a major cause for the decrease
in Tygr. Previous studies on V,0; have shown that a 15 K
variation in Tyyr corresponds to an excess of oxygen
concentration.”>® The presence of an epitaxial V,0; film
was confirmed by XRD (Figure Sb) and RSM scans (Figure
Se). Both in-plane and out-of-plane crystallographic orienta-
tions in V,0; follow the substrate orientations. This indicates
that the structural similarity between corundum V,0; and
Al,O; promotes epitaxial growth during the atomic rearrange-
ment. Therefore, it is reasonable to conclude that the coupling
to the Al,O; substrate plays an important role in determining
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the crystallographic orientations of the transformed film. We
note that this is in contrast with the case of VO, derived from a
V,0; film, which develops a different orientation after gas
evolution compared to the as-grown VO, film. This may be
due to the higher degree of compatibility between the Al,O;
substrate and the isostructural V,0; compared to the rutile
VO,.

For the transformation of as-grown VO, films into single-
phase V,0;, it takes 12 h (point F in the PO,—T diagram
shown in Figure 1b) to reach an equilibrium state. We found
that the as-grown VO, films that were subjected to a shortened
annealing process of only 3 or 6 h along route IV did not
exhibit any clear MIT behavior, and no XRD peaks can be
found. This suggests that thermodynamic equilibrium may not
have been reached in this shorter period of time. However, the
reverse transformation of as-grown V,0; films into single-
phase VO, films requires a shorter annealing time of 3 h. The
discrepancy between these two cases suggests that the phase
evolution mechanisms are also associated with the kinetic and
diffusion processes, which are beyond the scope of this work.
Furthermore, the monoclinic VO, film could also be
transformed into corundum V,0; phase by following an
alternate annealing treatment along route V. This indicates that
point G in Figure 1b is still in the V,0j; stable region. Figure
S¢,d shows the surface morphology of the as-deposited film
and (route IV)-annealed film, respectively. The VO, film
prepared by sputtering shows a textured surface with the RMS
roughness equal to 3.15 nm. The resulting V,0; after the loss
of oxygen shows a relatively rougher surface with roughness up
to 8.35 nm.

XPS was used to track the valence state of the as-deposited
and annealed thin films on the (012) sapphire substrate
described above. The binding energy (BE) calibration was
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done for the O 1s peak at 530 eV."”*” Shirley background was
used for the peak fitting. The V 2p spectra in the range of
510—526 eV show the spin—orbit splitting peak of V 2p;,, and
V 2p), (Figure 6a). Only one component V(III) centered at
515.6 €V was used for the as-deposited V,0; spectrum (Figure
6b), as the peak shape is symmetric (V 2p;, at $15.6 eV for +3
valence state).”® The energy difference between O 1s and V
2ps), is 14.4 eV, well in the range of the reported value for
single crystals.”® With increasing oxygen content in thin films,
the position of the V 2p,, peak shifts from V(III) at 515.6 to
516.0 eV. Similar behavior was reported previously for single
crystals.”®>” We find an increase in the V 2p BE from V,0,
(as-deposited film) to V,0; (route IV-annealed film), V;0q
(route Ill-annealed film), VO, (route I-annealed film), and
VO, (route Il-annealed film). Each V 2p;, peak can be
deconvoluted into V(III) and V(IV) states centered at 515.6
and 516.3 eV, respectively (V 2p5, at 516.3 eV for +4 valence;
BE difference between O 1s and V 2p;,, ~ 13.7 eV).>® The
fitting area of V 2p;,, could be used to track the oxidation
states of vanadium ions. The estimated V(III)/V(IV) ratio in
the V305 thin film is 66.5:33.5% (Figure 6c). The valence state
of vanadium is around +3.34, which is close to the theoretical
value of +3.3. On the other hand, the (route I)-annealed film
(VO, phase) contains higher oxygen vacancies and shows a
higher V(III) component in Figure 6e. This confirms that
quenching the VO, under relatively low PO, will lead to
oxygen loss. It should be noted that the (route II)-annealed
VO, film still shows a small portion of V(III) charge, indicating
that there are still some oxygen vacancies in this transformed
VO, film near the surface. It is thus possible to achieve higher
quality VO, thin films under higher PO, annealing conditions.

Our technique can provide excellent control over a wide
range of temperatures and oxygen partial pressures, allowing us
to explore a more complete picture of thin-film phase diagram.
It is worth noting that the V—O phase diagram (Figure 7) we
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Figure 7. V—O phase diagram for a thin film. Circles represent the
tested annealing conditions.

obtain starting from 100 nm V,0; is substantially different
from the bulk V—O phase diagram.”*~?® At the present stage,
among all the Magnéli phases, the only thin film we could
obtain in the pure form was V;O;. It is possible to fabricate
other Magnéli-phase thin film using our technique despite their
extremely narrow phase stability range. Moreover, starting
from 10 nm ultrathin films, despite tens of trials, we could not
obtain the V;O; phase under the same annealing conditions.
These differences in conditions as compared to those of the
bulk phase diagram may be due to variations in nanoscale
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surface energy and the lattice interaction with the substrate.
This may also explain the differences in the required annealing
time found for sapphire substrates of different orientations (c-
cut and r-cut), as described above.

4. CONCLUSIONS

In summary, we have developed a high-vacuum gas evolution
technique that allows for the precise modification of oxygen
stoichiometry in VOy thin films. Using temperature-dependent
electrical transport measurements, XRD, RSM, and XPS, we
show that optimal oxygen stoichiometry is obtained in each of
the transformed films. Based on our technique, the
thermodynamic phase diagram can be well-defined and
elucidated for the V—O system when scaling down the VOy
from the bulk into a thin film form. Our results may play an
important role in improving and controlling the transport
properties across the MIT in oxide-based devices. It may open
a new way to synthesize exotic or Magnéli phase oxide films,
which cannot be directly grown by standard deposition
techniques. We hope our work will encourage the use of gas
evolution methods in other complex oxide systems.
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