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We investigate the possibility that radio-bright active galactic nuclei (AGN) are responsible for the
TeV–PeV neutrinos detected by IceCube. We use an unbinned maximum-likelihood-ratio method, 10 yr of
IceCube muon-track data, and 3388 radio-bright AGN selected from the Radio Fundamental Catalog. None
of the AGN in the catalog have a large global significance. The two most significant sources have global
significance of ≃1.5σ and 0.8σ, though 4.1σ and 3.8σ local significance. Our stacking analyses show no
significant correlation between the whole catalog and IceCube neutrinos. We infer from the null search that
this catalog can account for at most 30% (95% C.L.) of the diffuse astrophysical neutrino flux measured by
IceCube. Moreover, our results disagree with recent work that claimed a 4.1σ detection of neutrinos from
the sources in this catalog, and we discuss the reasons of the difference.
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I. INTRODUCTION

The TeV–PeV diffuse astrophysical neutrinos detected
by IceCube [1–6] have opened a new window for astro-
physics [7–21] and provide a new high-energy-particle
source for elementary particle physics [22–45]. However,
the origin of these neutrinos remains a mystery, albeit one
that is thought to be related to the origin of high- and
ultrahigh-energy cosmic rays [46–51], which still remains
obscure. In the past decade, significant efforts have been
made to search for the sources of these astrophysical
neutrinos [52–59]. A few sources were found to be very
likely TeV–PeV neutrino emitters, including TXS 0506þ
056 [60,61] and NGC 1068 [58]. The blazar TXS 0506þ
056was found to have a 3σ (global significance) spatial and
temporal association with a high-energy muon-track event
induced by a ∼300 TeV neutrino [61]. This led to the
discovery of a neutrino flare between 2014 and 2015 from
the location of TXS 0506þ 056, showing 3.5σ global
significance [60]. Note that these two measurements are
statistically independent. The Seyfert II galaxy NGC 1068
showed an excess of 2.9σ (global significance) in the time-
integrated source searches using 10 yr of IceCube data [58].
Still, the majority of the diffuse astrophysical neutrinos

remain largely unexplained. Many different types of
sources have been proposed and searched with data,
including gamma-ray bursts [62–68], gamma-ray blazars
[69–73], choked jet supernovae [74,75], pulsar wind
nebulae [76], etc. However, none of these searches found
a strong correlation. For example, motivated by theoretical

considerations [77–79] and TXS 0506þ 056 [60,61],
searches for high-energy neutrino emission from gamma-
ray blazars were implemented [69,70,73]. However, they
were found to contribute at most ∼20% to the diffuse
neutrino flux. (See also Ref. [71] for a general discussion.)
On the other hand, it has been shown that there exist high-
energy neutrino sources hidden in GeV–TeV gamma rays
[80–82]. Otherwise, the gamma rays from all the transparent
sources would overshoot the isotropic diffuse gamma-ray
flux measured by Fermi Large Area Telescope [83].
Therefore, other categories of sources must be investigated,
including those not characterized by gamma rays.
Recently, the possibility that radio-bright AGN with

strong parsec-scale cores are associated with IceCube neu-
trino events has been considered [84,85]. The 3388 radio-
bright AGN that were used for the analysis form a complete
catalog and were selected from the Radio Fundamental
Catalog [86], which collects very-long-baseline interferom-
etry (VLBI) observations since 1980. These radio-bright
AGNhave very diverse gamma-ray properties. In Ref. [84], a
3.1σ significance was found when 56 muon-track events
(>200 TeV) from 2009 to 2019 were considered. In
Ref. [85], a pretrial p-value sky map published by the
IceCube Collaboration [87] was found to have a 3σ corre-
lation with radio-bright AGN. The sky map was obtained
from the analysis of muon-track data between 2008
and 2015. The combination of the two analyses yields a
4.1σ-significance detection [85]. Moreover, the sources with
stronger X-band (≃8 GHz) flux densities show more sig-
nificant correlations, implying that the X-band flux could be
an indicator of TeV–PeV neutrino emission.
In this paper, we revisit the correlation between

these radio-bright AGN and the TeV–PeV astrophysical
neutrinos detected by IceCube. We use 10 yr of IceCube
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muon-track data (April 2008 to July 2018) [88,89],
made publicly available just recently, and an unbinned
maximum-likelihood-ratio method [52,53,90,91]. The
method, which has been extensively used for analyzing
IceCube data [52,53,69,70,73,76], takes into account the
information provided by every single event. It is also
widely used in other types of astroparticle measurements
(e.g., Refs. [92–95]). The conclusion of our analysis is that
there is no significant correlation between IceCube neu-
trinos and these 3388 radio-bright AGN. Our null search
suggests that no more than 30% of the IceCube neutrino
flux may have come from these sources.
This paper is organized as follows. In Sec. II, we describe

the radio-bright AGN (Sec. II A) and the 10 yr of IceCube
muon-track data (Sec. II B). Section III discusses the
unbinned maximum-likelihood-ratio method used for our
analysis. Section IV shows the results for both the analysis
that searches for neutrino emission from every source
location in the catalog (Sec. IVA) and the analysis stacking
all the sources together for the correlation with all-sky
neutrinos (Sec. IV B). We also compare our results with
previous work (Sec. IV C). We conclude in Sec. V.

II. DATA

A. Radio-bright AGN catalog from VLBI observations

The radio-bright AGN used in this work are selected
from the Radio Fundamental Catalog [86] in the Astrogeo
database [96]. The Radio Fundamental Catalog collects

archival VLBI flux densities at several frequencies between
2 and 22 GHz as well as precise positions with milliarc-
second accuracies for more than 105 compact radio sources.
It uses all available VLBI observations under absolute
astrometry and geodesy programs since April 11, 1980.
The catalog is regularly updated with more sources and
more observations per source. In this work, we use the
version “rfc_2019c,” which comprises 16466 objects.
Moreover, as in Ref. [84], we obtain a complete catalog

of radio-bright AGN by selecting the sources in the Radio
Fundamental Catalog with X-band (≃8 GHz) flux densities
larger than 0.15 Jy. This gives us 3388 sources, with the
total X-band flux density ≃1518 Jy. This is the only deep
statistically complete catalog that can be obtained from the
Radio Fundamental Catalog (see Ref. [84] for details).
Moreover, these radio-bright AGN have very diverse
gamma-ray properties. Figure 1 shows the distribution of
the 3388 sources on the celestial sphere. Their locations are
nearly isotropic.

B. Neutrino data from IceCube

The IceCube Neutrino Observatory detects neutrinos by
detecting the Cherenkov photons emitted by relativistic
secondary charged particles from neutrino interactions in
and outside the detector [97,98]. Two basic kinds of event
topologies are formed in the detector. One is an elongated
track formed by muons due to their low energy-loss rate in
matter. The other is a shower which looks like a round and
big blob formed by electrons (electromagnetic shower) or

FIG. 1. Distributions of the 3388 radio-bright AGN (red) and 1134450 neutrino events (blue) used in this work on the celestial sphere.
The sky map is in the equatorial coordinate system, with the horizontal and vertical axes representing right ascension (RA) and
declination (Dec), respectively. To IceCube, the upper half (Dec > 0°) is the northern sky (seen through Earth), while the lower half
(Dec < 0°) is the southern sky. The neutrino events are shown as numbers in 360 × 180 of RA × sinðDecÞ bins, so that all the bins have
the same solid angle. See Sec. II for details.
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hadrons (hadronic shower). The track events have a better
angular resolution (as good as <1°) while worse energy
resolution (∼200% at ∼100 TeV) than the shower events
(∼10°–15° and ∼15% above 100 TeV) [99]. Therefore, the
track events are suited to search for point sources.
There are two kinds of track events, through-going and

starting tracks. The through-going tracks are those with
parent neutrinos that have interacted outside the detector,
while inside for starting tracks. Overall, the through-going
tracks have better angular resolution and ∼10 times larger
effective area than that of starting tracks [56].
The data released by the IceCube Collaboration span

from April 2008 to July 2018 [88,89]. The same data have
been used in IceCube’s 10-yr time-integrated neutrino
point-source search [58]. In total, there are 1134450
muon-track events. The information for each track is
provided. These 10 yr of data can be grouped into five
samples corresponding to different construction phases
of IceCube, including (i) IC40, (ii) IC59, (iii) IC79,
(iv) IC86-I, and (v) IC86-II–IC86-VII. The numbers in
the names represent the numbers of strings in the detector
on which digital optical modules are deployed.
There are two main features in the new dataset that are

different from the previously released 3 yr of data from
June 2010 to April 2012 [88,89]. First, the reconstructed
directional uncertainty assumes a lower limit of 0.2° in
order to avoid unaccounted-for uncertainties and to ensure
no single event dominates the likelihood analysis. Second
is the given up time, which contains lists of time periods of
good runs for each season.
Figure 1 shows the distribution of the muon-track

events on the celestial sphere in the equatorial coordinate
system. The distribution is shown as numbers in 360 ×
180 of RA × sinðDecÞ bins, so that all the bins have the
same solid angle. More events came from the northern sky
(upper half; Dec > 0°) than the southern sky (lower half;
Dec < 0°), because the latter has a higher energy threshold
to the events to reduce the contamination from atmos-
pheric muons [88]. For the southern sky, the events are
nearly evenly distributed. For the northern sky, there are
more events, as it is closer to Dec ¼ 0° because of the
absorption of neutrinos by Earth. For more details, see
Refs. [88,89].

III. ANALYSIS FORMALISM

Our analysis uses an unbinned maximum-likelihood-
ratio method [52,53,90,91]. The likelihood function is
given by the product of probability density functions
(PDFs) of each muon-track event (indexed by i) in the
five data samples (indexed by k):

LðnsÞ ¼
Y
k

Y
i∈k

�
nks
Nk

Ski þ
�
1 −

nks
Nk

�
Bk
i

�
; ð1Þ

where ns is the total number of events from the source(s)
combining all five samples, which is to be fit in our
analysis, and Nk is the total number of events in sample k.
The Ski and B

k
i are the signal and background PDFs of event

i in the sample k, representing the probability of the event
coming from the source(s) or background, respectively.
Note the k in the superscript is not an exponent but an
index. Moreover, nks is the number of expected signal events
coming from sample k, which is determined by

nks ¼ fk × ns; ð2Þ

where fk is the expected fractional contribution from
sample k, given by Eqs. (6) and (7).
We calculate the background PDFs directly from data.

For each sample, given the Dec δi of an event, the
background PDF is determined by the relative number
of events in δi � 3° divided by the solid angle. We do not
use events with jδij > 87° (account only for ≃0.1% of the
sky and the total events). The calculated background PDFs
have precision of less than 2% for most directions. The
dependence on RA is negligible because IceCube, located
at the South Pole, has a nearly uniform acceptance in RA.
Figure 2 shows the RA-integrated background PDFs.

They are consistent with the distribution of muon-track
events in Fig. 1 (see also Sec. II B).

FIG. 2. RA-integrated background PDF for different phases of
IceCube, as labeled. Shown are IC40 (≃1-yr exposure, 36900
events), IC59 (≃1-yr exposure, 107011 events), IC79 (≃1-yr
exposure, 93133 events), IC86-I (≃1-yr exposure, 136244
events), and IC86-II–IC86-VII (≃6-yr exposure, 761162 events).
The left half is the northern sky, while right half the southern sky
with respect to IceCube.
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The signal PDF is expressed as a 2D symmetric Gaussian
spatial distribution:

Skij ≡ Skðx⃗i; σi; x⃗jÞ ¼
1

2πσ2i
exp

�
−
Dðx⃗i; x⃗jÞ2

2σ2i

�
; ð3Þ

where x⃗i and x⃗j are the coordinates of the event i and source
j on the celestial sphere, respectively, and Dðx⃗i; x⃗jÞ is the
angular distance between them. Here, σi is the uncertainty
of the reconstructed direction of the track (much larger than
the scattering angle between the incoming neutrino and the
outgoing muon [54]). We do not include the energy part of
the signal PDF because of lower statistics in the published
smearing matrices [88,89]. However, our analysis is sensi-
tive to different neutrino spectrum through the energy- and
zenith-dependent effective area [88,89].

For the case of multiple sources, the signal PDF is a
weighted sum of the signal PDFs (Skij) of all the sources,
indexed by j [52,53]:

Ski ¼
P

jwj;modelwk
j;accS

k
ijP

jwj;modelwk
j;acc

; ð4Þ

where the wj are weighting factors which are proportional
to the number of expected events from source j. The wk

j;acc

reflects the detector’s acceptance, which is proportional to
the convolution of detector effective area (Ak

eff ) and
neutrino spectrum:

wk
j;accðδjÞ ∝ tk ×

Z
Ak
effðEν; δjÞEΓ

νdEν; ð5Þ

where δj is the Dec of the source, tk the total detector up
time of the sample k, Eν neutrino energy, and Γ the spectral
index of the signal neutrinos, which is assumed to be the
same for all the sources.
The wj;model describes the expected relative number of

events due to the intrinsic properties of the sources, as
discussed in Sec. IV B 1.

The fk in Eq. (2) can therefore be calculated by

fk ¼
wk
j;accP
kw

k
j;acc

ð6Þ

for one source or

fk ¼
P

jwj;modelwk
j;accP

k

P
j wj;modelwk

j;acc
ð7Þ

for multiple sources.
The test statistic (TS) of our analysis is

TSðnsÞ ¼ 2 ln
LðnsÞ

Lðns ¼ 0Þ ; ð8Þ

where the denominator is the background or null hypoth-
esis that all the events come from background. The best-fit
number n̂s of signal events is obtained by maximizing the
TS value (TSmax).
If the background hypothesis is true, the probability

distribution for TSmax is approximately a χ2 distribution, i.e.,

PDFðTSmaxÞ ≃ χ21ðTSmaxÞ; ð9Þ

when the number of observations (Nk for our case) is large
(Wilks’ theorem [100]). The subscript “1” is the degree of
freedom of the χ2 distribution, determined by the difference
in the number of free parameters in the signal hypothesis and
background hypothesis. Therefore, the

ffiffiffiffiffiffiffiffiffiffiffiffi
TSmax

p
is a good

approximation of the significance for rejecting the back-
ground hypothesis, as it follows the standard normal dis-
tribution.We also verify in Sec. IV the use ofWilks’ theorem
in our analysis by comparing with simulations.

IV. RESULTS AND DISCUSSIONS

We now present our analysis with the catalog of radio-
bright AGN, using the formalism in Sec. III and 10 yr of
IceCube data. We begin in Sec. IVA by analyzing the
significance of each source location in the catalog. Then,
in Sec. IV B, we study the correlation of all-sky diffuse
astrophysical neutrinos with the whole catalog by stacking
the sources together in the likelihood analysis [Eq. (4)].

FIG. 3. Distribution of maximized TS values for the radio-
bright AGN with n̂s ≥ 0 from our likelihood analysis with 10 yr
of IceCube muon-track data. The error bar is the square root of
the number in each bin. The red dashed line is the best normal
distribution fit, which is proportional to the standard normal
distribution.
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We have checked our analysis code with relevant analyses
in previous work [58,60,61,69,70,73], and we get consis-
tent results. Finally, in Sec. IV C, we compare our result
with previous work [84,85].

A. Single-source analysis

Figure 3 shows the
ffiffiffiffiffiffiffiffiffiffiffiffi
TSmax

p
for radio-bright AGN in the

catalog. We plot it as the number of sources in each
ffiffiffiffiffiffiffiffiffiffiffiffi
TSmax

p
bin, with the error bar given by the square root of the
number. We use a normal distribution to fit the numbers
with error bars. The best fit is consistent with the standard
normal distribution times the number of sources divided by
the number of bins per unit x axis and has a reduced chi
square found to be 0.69. Therefore, the probability density
distribution of

ffiffiffiffiffiffiffiffiffiffiffiffi
TSmax

p
of the sources in this catalog

follows the standard normal distribution. According to
Wilks’ theorem [100] (Sec. III), this means that at the
positions of most sources the background hypotheses are
favored, implying no very strong correlation between
diffuse astrophysical neutrinos and this catalog. This is
further and quantitatively supported by our stacking analy-
sis in Sec. IV B.
Table I lists the five sources with the highest TSmax, from

which we calculate the pretrial (local) p value, plocal, and
the corresponding significance in units of standard normal
deviations. The post-trial (global) p value can be calculated
by pglobal ¼ 1 − ð1 − plocalÞNsrc, from which we get the
post-trial significance. Here the Nsrc is the number of
sources. The source with the highest post-trial significance
is J1306-1718, which has ≃1.5σ (pglobal ¼ 0.074). All the
other sources have post-trial significance less than 1. The
X-band flux densities of the sources with highest local
significance are not high compared to other sources in the
catalog, implying that the X-band flux densities of radio-
bright AGN might not be an indicator of high-energy
emission. Moreover, we do not find anything special about
these sources with high local significance compared to
other sources in the catalog.
To check the pretrial p value (and significance) calcu-

lated fromWilks’ theorem [100], we simulate Nsimu
src (>106)

random source locations on the celestial sphere
following uniform distributions in RA and sin (Dec)
[¼ − cosðzenith angleÞ for IceCube location]. For each
location, we maximize the TS value. The p value of a
real source in the catalog is then determined by the number

of the simulated locations with TSmax larger than that of the
real source (Msimu

src ) divided by Nsimu
src , i.e., Msimu

src =Nsimu
src .

We find that the p values calculated from Wilks’ theorem
and simulation are consistent with each other within
uncertainties (≃1=

ffiffiffiffiffiffiffiffiffiffiffiffi
Msimu

src

p
).

B. Stacking analysis

The previous subsection shows that none of the sources
in the catalog show significant neutrino emission, and the
distribution of their TSmax strongly favors the background
hypothesis. In this subsection, we do a stacking analysis
which integrates possible signals from all the sources.
Then, we derive their muon neutrino (νμ þ ν̄μ) flux by

n̂s ¼ 2π
X
k

tk

Z
d sin δ

Z
Ak
effðEν; δÞ

dF
dEν

ðEνÞdEν; ð10Þ

where dFðEνÞ=dEν ¼ Φ0 × ðEν=100 TeVÞΓ and Φ0 is the
flux normalization at 100 TeV. We also compare their flux
with the diffuse astrophysical neutrino flux measured by
IceCube [2,5].

1. Weighting schemes, wj;model

We use twoweighting schemes [Eq. (4)]. For the first, we
assume that the high-energy neutrino fluxes of the sources
are independent of their intrinsic properties. This leads to

wj;model ¼ 1: ð11Þ

For the second scheme, we assume that the high-energy
neutrino fluxes are proportional to the X-band (radio) flux
densities, i.e.,

wj;model ¼ ½X-band flux density�: ð12Þ

This is motivated by the findings in Refs. [84,85] that
sources with higher X-band flux densities contribute more
to the correlation significance and that the significance
increases when a subsample with a higher threshold of
X-band flux density is used. Therefore, in this scheme,
sources brighter in the X band have higher weights in their
contribution to the signal PDF [Eq. (4)].

TABLE I. List of the five sources with highest significance.

IVS name J2000 name X-band flux density (Jy) n̂s TSmax Pretrial p value, significance Post-trial p value, significance

1303-170 J1306-1718 0.208 21.6 16.6 2.28 × 10−5, 4.1σ 0.074, 1.5σ
2245þ 029 J2247þ 0310 0.434 50.8 14.5 7.14 × 10−5, 3.8σ 0.21, 0.8σ
0228-163 J0231-1606 0.162 15.9 9.8 8.90 × 10−4, 3.1σ 0.95, 0
1424þ 240 J1427þ 2348 0.187 38.1 8.9 1.42 × 10−3, 3.0σ 0.99, 0
0958þ 559 J1001þ 5540 0.180 27.2 8.3 2.02 × 10−3, 2.9σ 1.0, 0
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2. Results of the stacking analysis

Figure 4 shows the results of our stacking analysis. For
both panels, our results of all six-flavor neutrino flux
combining all the sources in the catalog are shown in red
(for equal weighting) and blue lines (for X-band flux-
density weighting), each with three different spectral
indices. The choice of the spectral indices is explained
below. Also shown for comparison is the all six-flavor
astrophysical neutrino flux measured by IceCube with
uncertainty [2,5]. Both our results and IceCube measure-
ments assume equal flux for all six flavors.
The left panel shows the TS value as a function of the

energy fluxes at 100 TeV, which is about the median energy
in the IceCube measurement range (see the right panel). If
other energies are chosen, the curves shift only horizontally.
As shown by the plots, none of the cases show significant
correlation between the catalog and IceCube neutrinos. In
fact, all six cases peak at n̂s ¼ 0 with TSmax ¼ 0.
Therefore, we set an upper limit at the 95% confidence

level for each case, relative to the background hypothesis
(ns ¼ 0). According to Wilks’ theorem [100], this corre-
sponds to TS ≃ −3.84. At 100 TeV, this catalog accounts
for at most 27.8% (Γ ¼ −2.00), 10.3% (Γ ¼ −2.53), and
1.7% (Γ ¼ −3.0) for equal weighting and at most 12.6%
(Γ ¼ −2.0), 4.8% (Γ ¼ −2.53), and 0.84% (Γ ¼ −3.0) for
an X-band flux-density weighting.
The right panel in Fig. 4 shows the energy fluxes versus

neutrino energy (Eν). Here the red and blue lines are upper

limits at the 95% confidence level. The hardest spectrum
that we choose, Γ ¼ −2.0, is motivated by the Fermi
acceleration mechanism as well as IceCube’s measure-
ments using 10 yr of muon-track events between a few TeV
and 10 PeV, which gives −2.28þ0.08

−0.09 [3]. The medium
spectrum, Γ ¼ −2.53, is chosen to match IceCube’s mea-
surements using shower events from 16 TeV to 2.6 PeV [5]
(−2.53� 0.07) as well as earlier measurements using both
track and shower events in a similar energy range
(−2.50� 0.09) [2]. The softest spectrum, Γ ¼ −3.0, is
motivated by IceCube’s measurements using high-energy
starting events (>60 TeV deposit energy), which gives
−2.89þ0.20

−0.19 [6].
For the energy flux (EνdF=dEν) integrated from16TeV to

2.6 PeV, at the 95% confidence level, this catalog accounts
for at most 30.6% (Γ ¼ −2.00), 10.3% (Γ ¼ −2.53), and
2.3% (Γ ¼ −3.0) for equal weighting and at most 13.8%
(Γ ¼ −2.0), 4.8% (Γ ¼ −2.53), and 1.1% (Γ ¼ −3.0) for
X-band flux-density weighting.
Overall, the X-band flux-density weighting gives less

correlation significance and neutrino flux, so the X-band
flux densities of radio-bright AGN may not be an indicator
of high-energy emission.
In the stacking analysis above, we choose two well-

motivated weighting schemes. We believe other possibly
well-motivated schemes would not lead to a significant
correlation, because the distribution of

ffiffiffiffiffiffiffiffiffiffiffiffi
TSmax

p
of all the

sources closely follows the standard normal distribution

FIG. 4. Our results of all six-flavor neutrino fluxes combining all the sources in the catalog for the two weighting schemes (red and
blue lines), each with three spectra indices as labeled in each panel. Also shown is all six-flavor diffuse astrophysical neutrino flux
measured by IceCube [2,5] with uncertainties (green band; the three green lines represent lower limits, center value, and upper limits).
Both our results and IceCube measurements assume equal flux for all six flavors. Both panels use the same line styles. Left: TS values as
a function of the energy fluxes at 100 TeV. The black dashed horizontal line shows where we set the upper limits at 95% confidence level
on each case, corresponding to TS ≃ −3.84. Right: the energy fluxes versus neutrino energy. Note in the right panel the red and blue
lines are upper limits at 95% confidence level.
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and none of the sources show a strong global significance
(Sec. IVA).
In Appendix A, we estimate the significance if there

were signal neutrinos from these sources. We do this by
injecting signal neutrinos to the current dataset (Sec. II B)
and performing the same stacking analysis. Our results
show that even a small contribution to the total diffuse
astrophysical neutrino flux from the sources would have
shown significance in our analysis.

C. Comparison with previous work

The correlation between IceCube neutrinos and the same
catalog of radio-bright AGN was previously studied in
Refs. [84,85], the first of which found a 3.1σ correlation
with 56 muon-track events (>200 TeV; 2009–2019). Our
analysis differs from theirs in the followingways:We include
(i) the background component in a more rigorous way
[Eq. (1)], using the background PDF directly calculated
from data, and (ii) a 2D Gaussian term [Eq. (3)] that weights
the events differently in terms of their distance from the
sources instead of using the same weights within certain
circular regions around the source locations. Moreover,
Ref. [85] found a 3σ correlation with a pretrial p-value
sky map calculated from muon-track data from 2008–2015
[87] and 4.1σ after combining the above two analyses. We,
on the other hand, include the information, including
direction and angular error, available for each neutrino event.
Reference [84] found that four sources—1253-055

(3C 279), 2145þ067, 1741-038, and 1730-130 (NRAO
530)—that were among the brightest in the X-band fluxes
drove the significance of their signal. The p value
increased from ≃0.1% to only ≃10% if the four sources
were removed. Our results, however, do not show any
significance from the four sources. In particular, for
3C 279, our analysis yields a local p value of only 0.7,
consistent with 0.63 obtained by IceCube Collaboration
also using the 10 yr of data [58]. We also note that three of
the four sources above, including 3C 279, were within the
enlarged circles (by 0.5°) claimed to take into account
IceCube’s systematic uncertainties. Neither our analysis
nor those done by IceCube (e.g., Refs. [52–61,63–69,76])
use enlarged angular errors.
In the stacking analysis that correlates all the sources

with all-sky muon-track events (Sec. IV B), our results do
not show any significance either. Moreover, our analysis
shows that this catalog of radio-bright AGN could account
for at most 30% (95% confidence level) of the total diffuse
astrophysical neutrino flux, in comparison to an estimated
∼25% contribution found in Ref. [84].

V. CONCLUSIONS

High-energy astrophysical neutrinos provide a crucial
window to study our Universe [7–21] and fundamental
physics [22–45]. Fully opening the window necessitates the

knowledge of their origins, for which we know little at
present. Encouraging results including TXS 0506þ 056
[60,61] and NGC 1068 [58] have been obtained
after dedicated searches by the IceCube Collaboration
[52–54,56,58]. However, the majority of the diffuse astro-
physical neutrinos remain unexplained, while some types
of sources are being excluded as dominant neutrino
emitters [62–76,101]. Therefore, more types of sources
should be considered, including those not characterized by
high-energy electromagnetic emission [80–82].
In this paper, we investigate the possibility that radio-

bright AGN contribute to the high-energy astrophysical
neutrinos. We use an unbinned maximum-likelihood-ratio
method [52,53,90,91] and recently published IceCube
muon-track data for 10 yr of observation [88,89]. The
3388 radio-bright AGN form a complete catalog [84] and
are selected from the Radio Fundamental Catalog [86],
which collects VLBI observations since 1980 (Sec. II A).
These sources show very diverse gamma-ray properties.
The data comprise 1134450 muon-track events in five
different construction phases of IceCube from 2008 to
2018, which have different instrumental response functions
(Sec. II B). The unbinned likelihood method (Sec. III) takes
into account the information of every single event and is
extensively used by IceCube Collaboration [52–59] and
extensively used other astroparticle experiments (e.g.,
Refs. [92–95]).
Our results are as follows. From our analysis which

investigates every source location (Sec. IVA), we do not
find any source with large global significance. The two
sources with the highest TSmax have global significance of
only ≃1.5σ and 0.8σ despite local significance of ≃4.1σ
and 3.8σ (Table I). Our calculated

ffiffiffiffiffiffiffiffiffiffiffiffi
TSmax

p
of all the

sources follow the standard normal distribution (Fig. 3),
which implies that the background hypothesis is
favored, implying that these radio-bright AGN might
not be strong high-energy neutrino emitters. This is
further and quantitatively supported by our stacking
analysis in Sec. IV B.
Our stacking analysis (Sec. IV B), which seeks a

correlation between the neutrinos and the sources, does
not find a signal (Fig. 4, left). All the scenarios we
considered have their TS values peak at zero with zero
best-fit signal event. These null results allow upper limits
(95% confidence level) to be placed on the contribution
of these sources to the energy flux of the all-sky diffuse
astrophysical neutrinos measured by IceCube [2,5]
(Fig. 4, right). In the equal-weighting scheme that
assumes high-energy neutrino emission is independent
of the sources’ intrinsic properties, these radio-bright
AGN account for at most 30.6% between 16 TeV and
2.6 PeV. In the X-band flux-density weighting that
weights to the sources by their X-band brightness, these
radio-bright AGN account for at most 13.8%. We believe
other possibly well-motivated schemes would not lead to

SEARCH FOR HIGH-ENERGY NEUTRINO EMISSION FROM … PHYS. REV. D 103, 123018 (2021)

123018-7



a significant correlation, as the distribution of
ffiffiffiffiffiffiffiffiffiffiffiffi
TSmax

p
of

all the sources closely follows the standard normal
distribution and none of the sources show strong global
significance (Sec. IVA).
Moreover, our results show that the X-band flux

densities of radio-bright AGN might not be an indicator
of high-energy neutrino emission because (i) the highest
significant sources (some are shown in Table I) do not
have higher X-band flux densities compared to the
other sources in the catalog, and (ii) from the stacking
analysis, the X-band flux-density weighting gives even
lower upper limits on the sources’ neutrino flux than the
equal weighting.
The discovery prospects of high-energy neutrino sources

keep increasing rapidly with more and more data to be
collected by IceCube [2], KM3NeT [102], Baikal-GVD
[103], P-One [104], and especially IceCube-Gen2 (about
10 times bigger than IceCube) [105,106]. The improve-
ments include statistics, energy range, flavor information,
better reconstructions (especially angular resolution), and
better sensitivities to certain parts of the sky. Meanwhile,
other sources and catalogs in otherwavelengths should also
be tested, including those that do not show strong GeV–
TeV gamma-ray emission [80–82].
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APPENDIX A: SIGNIFICANCE OF THE
STACKING ANALYSIS WITH INJECTED

SIGNAL EVENTS

Here we show that if the 3388 sources in the catalog
contributed to the diffuse astrophysical neutrino flux
observed by IceCube, our analysis would have returned
a significant detection. We do not include the simulation
uncertainties.
We start with the total diffuse astrophysical neutrino

flux measured by IceCube [2,5], which is about
dFðEνÞ=dEν ¼ Φ0 × ðEν=100 TeVÞ−2.53, where Φ0 ¼
4.98 × 10−18 GeV−1 cm−2 s−1 sr−1 is the flux normalization
at 100 TeV. We then get the number of neutrinos Nν at
different energies and declinations (¼ zenith angles − 90°
for IceCube location) in each phase of IceCube by

Nk
νðEν; δÞ ≃ 2πtkAk

effðEν; δÞEν
dF
dEν

ðEνÞ; ðA1Þ

where k labels different phases or data samples of IceCube,
just as in Sec. III.
Next, we assign these neutrinos to the 3388 sources with

the same weight. For each neutrino with energy Eν, we use
the instrumental response functions for different phases of
IceCube [PDFkðσjEνÞ] provided by Ref. [89] to determine
its possible angular error σ. Then, the possible angular
distance between the event and its assigned source is
obtained by smearing the direction of the event by a 2D
symmetric Gaussian distribution with σ. We mix these fake
signal events with the true events in each data sample
discussed in Sec. II B.
Finally, we do a stacking analysis in the equal-

weighting scheme just as in Sec. IV B. We get the
TSmax for different fluxes of injected neutrinos, charac-
terized by f × FðEνÞ, where f is the fraction of the
astrophysical neutrino flux in Eq. (A1). The background
PDFs are unchanged.
Figure 5 shows the

ffiffiffiffiffiffiffiffiffiffiffiffi
TSmax

p
(≃ significance) versus f.

The significance increases linearly with the injected signal
events because of the relation, significance ∝ NS=

ffiffiffiffiffiffiffi
NB

p
,

where NS and NB are numbers of signal and background
events, respectively. The figure shows that even a small f
would have provided a significant signal in our analysis. In
fact, an f ¼ 15% contribution to the total flux would have
given a ∼3σ signal, and a 25% contribution would have
shown ∼5σ. Note that 2σ corresponds to ∼10% contribu-
tion, which is consistent with our upper limit in the case of
equal weighting and Γ ¼ −2.53 from our stacking analysis
(Sec. IV B).

FIG. 5. Significance (≃
ffiffiffiffiffiffiffiffiffiffiffiffi
TSmax

p
) from our stacking analysis

versus fraction of total astrophysical neutrino flux that we inject
to these sources. See the text for details.
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APPENDIX B: RESULTS WITH PREVIOUSLY
RELEASED 2010–2012 DATA

This work initially used previously released 3 yr of
IceCube muon-track data [107] (June 2010–May 2012)
until the 10 yr of data were released [88,89]. Here we
present the results using the former dataset as a comparison.
This dataset corresponds to IC79, IC86-I, and IC86-II in the
newly released dataset except for a few differences as
discussed in Sec. II B.
Figure 6 shows the result. None of the scenarios show a

large significance. The highest peak has only TSmax ≃ 0.48.
When we change this dataset to the corresponding IC79,
IC86-I, and IC86-II in the new dataset, the highest peak
lowers to TSmax ≃ 0.15 (not shown in the figure), possibly
because the events that originally have angular errors of
less than 0.2° were set to be 0.2° in order to avoid
unaccounted-for uncertainties and to ensure no single event
dominates the likelihood analysis [89]. The constraints on
the fluxes are weaker due to fewer statistics. We do not
show the case of Γ ¼ −2.0 in the equal-weighting scheme,
because it overshoots the astrophysical neutrino spectrum
measured by IceCube [2,5] at higher energies.
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