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We consider a fundamental open problem in parametric Bayesian the-
ory, namely the validity of the formal Edgeworth expansion of the posterior
density. While the study of valid asymptotic expansions for posterior dis-
tributions constitutes a rich literature, the validity of the formal Edgeworth
expansion has not been rigorously established. Several authors have claimed
connections of various posterior expansions with the classical Edgeworth ex-
pansion, or have simply assumed its validity. Our main result settles this open
problem. We also prove a lemma concerning the order of posterior cumulants
which is of independent interest in Bayesian parametric theory. The most
relevant literature is synthesized and compared to the newly-derived Edge-
worth expansions. Numerical investigations illustrate that our expansion has
the behavior expected of an Edgeworth expansion, and that it has better per-
formance than the other existing expansion which was previously claimed to
be of Edgeworth type.

1. Introduction. The Edgeworth series expansion of a density function is a fundamental
tool in classical asymptotic theory for parametric inference. Such expansions are natural re-
finements to first-order asymptotic Gaussian approximations to large-sample distributions of
suitably centered and normalized functionals of sequences of random variables, X1, . . . ,Xn.
Here, n is the available sample size, asymptotic means n → ∞, and first-order means that
the approximation using only the standard Gaussian distribution incurs an absolute approxi-
mation error of order O(n−1/2). The term formal in conjunction with Edgeworth expansions
means that derivation of the expansion begins by expanding the log characteristic function,
and then utilizes Fourier inversion to obtain the corresponding density ([1], page 280). The
coefficients of such expansions are expressed in terms of cumulants of the underlying density,
together with a set of orthogonal basis functions for a suitably general hypothesized function
space for the density being approximated. Asymptotic expansions are said to be valid if the
absolute approximation error incurred, as an order of magnitude in n, by truncating the se-
ries expansion after a finite number of terms, is of the same asymptotic order as the first
omitted term. For a distribution standardized to zero mean and unit variance, the Edgeworth
approximation to a density using the first four moments is given by

(1) e4,n(ϑ) = φ(ϑ)
{

1 + h3(ϑ)κ3/6 + κ4h4(ϑ)/24 − κ2
3h6(ϑ)/72

}

.

Here, ϑ represents a potential value for the random variable, h2(ϑ) = ϑ2 − 1, h3(ϑ) =
ϑ3 − 3ϑ , h4(ϑ) = ϑ4 − 6ϑ2 + 3 and h6(ϑ) = ϑ6 − 15ϑ4 + 45ϑ2 − 15. These polynomi-
als are called Hermite polynomials. The quantities multiplying the Hermite polynomials are
calculated from the difference between the cumulants of the distribution being approximated,
and the distribution forming the basis of the approximation (in this case, the normal). These
cumulant differences are converted using standard formulas for calculating moments from cu-
mulants to form what are called in this manuscript pseudo-moments; these pseudo-moments

Received October 2017; revised March 2019.
MSC2020 subject classifications. Primary 62E20, 62F15; secondary 62F99.
Key words and phrases. Edgeworth expansion, higher-order asymptotics, posterior, cumulant expansion.

1940



EDGEWORTH EXPANSION FOR POSTERIOR DENSITIES 1941

are functions of the original cumulants, which, in turn, can be expressed in terms of the
original moments. These pseudo-moments are examined termwise to retain only those terms
larger than the order of the expected error. We refer to approximations precisely of the form
(1), with these specific Hermite polynomials, and with the coefficients (that is, the pseudo-
moments) calculated from the exact cumulants, which are, in turn, calculated from the exact
moments, as a true Edgeworth approximation.

The validity of the formal Edgeworth expansion is of foundational importance, in the sense
that this implies a certain degree of regularity of the statistical model, and the expansion it-
self offers deeper insights into the finite sample performance of many frequentist inference
procedures, such as those based on the likelihood. Applying standard arguments to justify
term-by-term integration of the truncated Edgeworth expansion for a density yields the cor-
responding Edgeworth approximation for the cumulative distribution function. Such expan-
sions are essential to studying the coverage accuracy of approximate confidence sets, as well
as establishing higher-order relationships between different methods for constructing such
approximate confidence sets. Our understanding of the bootstrap has also been greatly en-
hanced by studying connections with Edgeworth expansions [21].

In contrast to central limit theorems in the frequentist context, the large-sample Gaussian
approximation of the posterior distribution of a suitably centered and normalized parameter is
typically justified using a Bernstein–von Mises theorem. Such theorems establish stochastic
convergence of the total variation distance between the sequence of posterior distributions
and an appropriate Gaussian distribution, where stochastic convergence is with respect to
the true distribution from which samples are independently drawn. The exact form depends
on the centering statistic and its corresponding variance estimate. For lucid discussions, see
van der Vaart ([46], Chapter 10), and Ventura and Reid [47]. Reid [39] gives background on
asymptotic techniques for various types of statistical inference, including Bayesian inference.

Somewhat surprisingly, the validity of formal Edgeworth expansion for the Bayesian pos-
terior density has not previously been established. This is less surprising when the challenging
nature of this problem is understood. The term valid in the context of posterior expansions
means that, when approximating the posterior by truncating the series, the absolute error
is uniformly of the proper order on a set of parameter values whose posterior probability
does not go to zero. While some authors have studied related expansions, or made claims
about the similarity of such expansions to classical Edgeworth expansions, to our knowledge
there is no existing proof of the validity of the formal Edgeworth series expansion for pos-
terior distributions. Apart from formal Edgeworth expansion validity being of foundational
importance, we note that approximate posterior inference through higher-order asymptotics
remains of interest in parametric Bayesian theory; see, for example, Ruli, Sartori and Ven-
tura [40] or Kharroubi and Sweeting [30]. Other approximate Bayesian inference procedures,
such as variational Bayes, or approximate Bayesian computation, have become popular due to
their ability to circumvent computationally expensive Markov chain Monte Carlo procedures.
Higher-order asymptotics offers another route to approximate Bayesian inference which, in
many settings of practical interest, can be extremely accurate and inexpensive to implement.

To establish validity of the formal Edgeworth expansion for a density, it is required to
show that the coefficients in the expansion, that is, the cumulants of the statistical functional
which is being approximated, are of the proper asymptotic order to ensure that the terms of
the expansion have the claimed orders as powers of n−1/2. This entails formally proving that
power series expansions for those cumulants are valid.

The existing results concerning validity of cumulant expansions are all within the sampling
distribution framework, and as such are not applicable to the Bayesian setting. Numerous au-
thors have studied expansions for posterior moments, but such results do not actually imply
that the corresponding cumulants are of the proper asymptotic order. Edgeworth expansion
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relies on proper order for cumulants of the variable under investigation, after dividing by its
standard deviation. These cumulants for the standardized variable are known as invariant cu-
mulants, and demonstrating their proper order is more delicate than demonstrating the proper
order for the underlying moments. As an example, consider the relationship between the pos-
terior variance σ 2 and the fourth central moment μ′

4. In order for the formal Edgeworth ex-
pansion to have the proper asymptotic behavior, μ′

4σ
−4 −3 = O(1/n), and so μ′

4 = σ 4O(1).
However, the converse—that μ′

4 = σ 4O(1) implies μ′
4σ

−4 − 3 = O(1/n)—does not hold.
Hence bounds on the moments (even for central moments) cannot guarantee proper size of
the invariant cumulants. Results exploring the parameter centered at something only approx-
imating the posterior mean (e.g., the maximum likelihood estimator), and standardized by
something other than the exact posterior standard deviation (e.g., an approximation based on
the Fisher information) will not ensure proper order for the invariant cumulants.

In this paper, we make several novel contributions. First, we prove the validity of the
formal Edgeworth series expansion of the posterior density and distribution function. This
requires us to prove a lemma concerning the asymptotic order of posterior cumulants, which
is of independent interest, and appears to be the first rigorously established general result of
this type. We also synthesize the relevant literature on posterior expansions, giving rigorous
explanations of how existing Edgeworth-type expansions are not actually formal Edgeworth
expansions. Finally, we provide a numerical illustration of our results.

2. Background.

2.1. Posterior expansions. Before proceeding, we note that one could consider either an-
alytic or stochastic expansions for posterior densities. For an analytic expansion, the observed
data sequence is viewed as a subsequence of a given, fixed infinite sequence of realizations.
Deriving analytic expansions amounts to showing that the posterior has certain asymptotic
properties for a given, well-behaved infinite sequence of observations. The stochastic expan-
sion viewpoint asserts that such well-behaved sequences occur with probability tending to
one, with respect to the true data generating probability distribution. In this paper, we con-
sider analytic approximations for a given well-behaved infinite sequence of observations,
though it would be possible to give analogous stochastic versions where O(·) terms are re-
placed by corresponding Op(·) terms; see Sweeting [43] and Kass, Tierney and Kadane [29].

Within the existing literature on posterior expansions, there have been several dominant
approaches to obtaining approximations of posterior quantities. A common starting point is
to express the posterior mean or density as a ratio of two integrals. Expansions for the nu-
merator and denominator separately, which may be truncated and integrated to yield integral
approximations, can yield valid expansions for the posterior quantity through formal division
of the numerator and denominator expansions. One approach which heavily emphasizes Tay-
lor expansion is found in Johnson [27, 28] and Ghosh, Sinha and Joshi [20]. The expansions
given by Bertail and Lo [3] are similar to these earlier papers, though the latter authors con-
sider centering at the posterior mean or posterior mode rather than the maximum likelihood
estimator, and find that this can be advantageous from a second-order efficiency standpoint.
Bertail and Lo [3] also claim that their expansions are Edgeworth expansions, but this is not
correct.

The second and more popular approach to deriving posterior expansions is to apply
Laplace’s method to approximate the respective integrals, and then use the ratio of these
approximations; see Lindley [33, 34], Davison [13], Tierney and Kadane [44]. Validity of
Laplace expansions for posterior densities is considered in Kass, Tierney and Kadane [29].
We explore the Edgeworth alternative because the resulting approximation is more easily in-
terpreted in terms of the first few moments of the true posterior distribution, and because,
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conceptually, exploration of the Edgeworth expansion fills a hole in the range of rigorously-
demonstrated applications.

Another well-established method of posterior expansions utilizes Stein’s identity; see,
for instance, Woodroofe [54, 55], Weng [49], Weng and Tsai [51] and Weng [50]. In this
paradigm, Weng [50] claimed to have established an Edgeworth expansion for the posterior
density. Compared to other expansions, Weng’s approach most closely resembles the final
form of an Edgeworth expansion in that it is expressed in terms of moments, but it is not a
formal Edgeworth expansion, and its structure is actually quite different from an Edgeworth
expansion, as we show below.

From a formal Edgeworth series perspective, existing posterior expansions are centered
at the wrong place, typically either the maximum likelihood estimator or true parameter
value, instead of the posterior mean or something which is approximating the posterior
mean. As noted by DasGupta ([10], Section 20.8), the maximum likelihood estimator and
posterior mean are closely related. Suppose that one observes a sequence of observations
X(n) = (X1, . . . ,Xn), each of which are identical copies of a random variable X whose dis-
tribution Pθ depends on a scalar parameter θ . Write Pθ0 for the distribution corresponding to
the true value θ0 under which each component of X(n) is generated. Let E(θ |X(n)) denote
the posterior mean under some prior density, and let θ̂n be the maximum likelihood esti-
mator for θ based on X(n). Under standard regularity conditions, E(θ |X(n)) − θ̂n, and also
n1/2(E(θ |X(n)) − θ̂n) converge in Pθ0 -probability to zero. Therefore,

(2) E
(

θ |X(n)) − θ̂n = op

(

n−1/2)

under Pθ0 . The effects of centering in the wrong place are examined in Section 4. In particular,
we discuss the expansions given by Weng [50] and Hartigan [22]. These two expansions
are not Edgeworth series expansions, but for reasons explained in Section 4, these can be
considered to have the closest relationship to our formal Edgeworth expansions.

It may appear strange to the reader that we are claiming the Edgeworth expansion for
the posterior has not been established as valid, even under regularity conditions common
in the literature. After all, there is the celebrated posterior Bartlett correction of Bickel and
Ghosh [6], and the conventional derivation of the validity of the Bartlett correction requires a
valid Edgeworth expansion. Some authors, for example, Chang and Mukerjee [9], refer to the
Bickel and Ghosh regularity conditions on the Bayesian model specification ([6], page 1078),
as Edgeworth assumptions. Indeed, Bickel and Ghosh [6] simply assume that an Edgeworth
expansion exists, but not only do not provide a proof of validity of the Edgeworth approx-
imation, but, in fact, do not make explicit whether the approximation they conjecture is of
the standard Edgeworth form of a Gaussian approximation modified by the appropriate ex-
pression involving invariant cumulants, times the appropriate Hermite polynomial. Related to
the approach of Bickel and Ghosh [6], some authors use an expansion for the log likelihood
at the maximum likelihood estimate to obtain a posterior expansion which has some struc-
ture resembling an Edgeworth expansion; see Datta and Mukerjee ([11], equation (2.2.19)).
As with other expansions mentioned above, this is not an Edgeworth expansion for several
reasons. First, it is not derived by formal expansion of the posterior characteristic function.
Second, the centering is at the maximum likelihood estimate, not the posterior mean. Third,
the first correction term is a linear one, which vanishes in an Edgeworth expansion. More-
over, the coefficients are not cumulants of the posterior. We further note that in Bickel and
Ghosh [6] and Datta and Mukerjee ([11], Lemma 4.2.1), an approximation is given for the
posterior characteristic function of the log likelihood ratio statistic. DiCiccio and Stern [14]
consider approximation of the posterior moment generating function of this statistic. All of
these expansions rely on regularity conditions which amount to assuming the validity of
the Edgeworth expansion, though none of these papers contain proofs, nor do they actually
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use formal Edgeworth expansions in their arguments. A lucid discussion of frequentist and
Bayesian Bartlett correction, and where the assumption of validity of Edgeworth expansions
is essential, is found in DiCiccio and Stern [15].

2.2. Validity and formal Edgeworth expansions for sampling distributions. In the fre-
quentist context, asymptotic expansions and their components are studied with respect to the
sampling distribution of the relevant statistical functional, under hypothetical repeated sam-
pling. Wallace [48] provided the conventional notion of validity for an asymptotic expansion.
Suppose each element in a sequence of functions {gn}n≥1 is approximated by any partial
sum of a series

∑∞
j=0 n−j/2Aj (y), where the Aj (·) do not depend on n. If for some function

Cr(y), not depending on n, the absolute errors satisfy
∣

∣

∣

∣

∣

gn(y) −
r

∑

j=0

n−j/2Aj (y)

∣

∣

∣

∣

∣

≤ n−(r+1)/2Cr(y),

then the asymptotic expansion is said to be valid to r terms. If the constant Cr(y) does not
depend on y, then the asymptotic expansion is called uniformly valid in y. Hence, validity
requires that the absolute error in the approximation, using any partial sum, is of the same
order of magnitude as the first neglected term.

Consider a scalar random variable X with characteristic function γX(t) = E exp(itX), and
denote by X(n) = (X1, . . . ,Xn) a sequence of independent and identically distributed copies
of X. Suppose that it is required to approximate the density gn(y) of Yn = n1/2s(X1, . . . ,Xn)

for some scalar-valued function s(·), such that Yn is a centered and scaled statistic possessing
an asymptotically standard normal distribution to first order. The formal Edgeworth expan-
sion of the density gn(y) is derived according to the following steps; see, for example, Jensen
([26], Section 1.5), McCullagh ([35], Chapter 5), Hall ([21], Chapter 2) or Kolassa ([31],
Chapter 3). First, Taylor expands the cumulant generating function of Yn, logγYn(t), in a
neighborhood of zero, |t | < cn1/2 for some c > 0. Next, expand the Fourier inversion integral
over the region |t | < cn1/2. Then obtain a bound on the inversion integral over the region
|t | > cn1/2. If Yn satisfies the assumptions of the smooth function model ([21], Section 2.4),
then one can follow the program in the references above to rigorously establish the validity of
the Edgeworth expansion for gn(y). Other standard references for Edgeworth series expan-
sions include Feller [16], Bhattacharya and Ghosh [4], Bhattacharya and Rao [5] and Ghosh
[17].

To ensure that the formal Edgeworth series expansion for the density of Yn is valid in the
sense of Wallace [48], it is required that the j th cumulant of Yn, denoted by κj,n, is of order
n−(j−2)/2, and may expanded in a power series in n−1:

(3) κj,n = n−(j−2)/2(

cj,1 + n−1cj,2 + n−2cj,3 + · · ·
)

, j ≥ 1.

Since Yn is centered and scaled so that κ1,n = E(Yn) → 0 and κ2,n = var(Yn) → 1, then
c1,1 = 0 and c2,1 = 1. When the function s is the sum of its arguments, the cumulants of Yn

are the invariant cumulants of X; that is, they are the cumulants of X adjusted for rescaling
of Yn to unit standard deviation; the cumulants are adjusted by dividing by the appropriate
power of the second cumulant. The origins of this result in the frequentist, repeated sampling
setting can be traced to the combinatorial arguments of James [23, 24], James and Mayne
[25] and Leonov and Shiryaev [32]. The interested reader is referred to Withers [52, 53],
McCullagh ([35], Chapter 2), Hall ([21], Chapter 2), Mykland [36], Kolassa [31] and Stuart
and Ord ([42], Chapters 12 and 13), for more details about cumulant expansions.

It is also of interest to integrate the Edgeworth series expansion of the density of Yn to
obtain an Edgeworth expansion for its corresponding distribution function. Analogously to
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the density setting, this expansion is desired to be valid for fixed j as n → ∞, and the re-
mainder should be of the stated order uniformly in y. Sufficient regularity conditions ([21],
Section 2.2), for the validity of this expansion to order j are that E(|X|j+2) < ∞ and

(4) lim sup
|t |→∞

∣

∣γX(t)
∣

∣ < 1.

The latter condition is known as Cramér’s condition.

2.3. Conditional expansions and posterior expansions. Since the posterior is a condi-
tional density, it is natural to ask if an expansion for the posterior could be obtained by writ-
ing the posterior as a ratio of the joint density of (θ,X(n)) and the marginal density of X(n),
and then taking the ratio of expansions for the numerator and denominator. This approach can
be used in the frequentist sampling distribution framework concerning expansions for con-
ditional densities. Specifically, after deriving Edgeworth expansions for the numerator and
denominator, formal division of these series expansions yields what is referred to as a direct-
direct Edgeworth expansion for the conditional density ([2], Chapter 7). Proving validity for
these direct-direct expansions requires the analogous proofs of validity for expansions of con-
ditional cumulants, which are in general very difficult. Such direct-direct expansions are not
the same as a direct expansion of a conditional density, but the bigger obstacle to their util-
ity is that they are non-Bayesian in nature. Standard sampling distribution arguments do not
apply when deriving an Edgeworth expansion for the posterior density of ϑn = (θ − θ0)/σ ,
where θ0 and σ are the posterior expectation and standard deviation. Both of these quantities
depend on the data, and hence on n. In particular, in this posterior setting, one does not have
independent and identically distributed θs, but rather a single θ . Furthermore, posterior infer-
ence is conditional on a single data set, without appealing to repeated sampling arguments.
An obvious point worth emphasizing is that the consideration of increasingly larger sample
sizes is not the same as considering hypothetical repeated sampling. As discussed above, we
are assuming that the data represent a subsequence from a fixed infinite sequence, rather than
repeated random samples from a probability distribution.

A major obstacle to proving validity of posterior Edgeworth expansions is the issue of the
cumulant orders. In the sampling distribution framework, there are well-known results con-
cerning the relationship between conditional and unconditional cumulants, but these results
are unfortunately of no use in the posterior framework. In particular, Brillinger [8] estab-
lished a theorem which permits computation of unconditional cumulants from conditional
cumulants; see also Speed [41] and McCullagh ([35], Section 2.9 and Section 5.6). However,
there is no converse to Brillinger’s theorem, and even if there were, one must still overcome
the issue that θ is a single random variable, rather than a sequence of independent and iden-
tically distributed random variables.

Due to the challenges just mentioned, there are no general results about posterior cumu-
lants available in the literature. Pericchi, Sansó and Smith [37] give some specific results
regarding the form of the cumulant generating function only relevant to exponential families.
Hartigan ([22], page 1145) alluded to the order of posterior cumulants, but was not precise
about how such orders could be shown.

3. Main results. We consider expansions for the posterior distribution of the scalar-
valued quantity ϑn = (θ − θ0)/σ , for θ0 and σ the posterior expectation and standard de-
viation. It is assumed throughout that an appropriate Bernstein–von Mises theorem holds for
the sequence of posterior distributions of ϑn. Many asymptotic normality results appear in the
literature; cf. van der Vaart ([46], Chapter 10), or Ghosh and Ramamoorthi ([19], Chapter 1).
Since our goal is to prove validity of the Edgeworth expansion in some generality, we do not
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discuss all of the conditions needed for the various specific Bernstein–von Mises theorems
to hold. Our treatment of regularity conditions focuses on those conditions of particular rel-
evance to the validity of the formal Edgeworth expansion. Our results assume that a suitable
asymptotic normality result holds for the posterior distribution of ϑn.

The first step in our analysis is to prove that the invariant posterior cumulants admit a
valid power series expansion, establishing that the coefficients in the Edgeworth series ex-
pansion will have the correct asymptotic order. We then prove validity of the expansion for
the posterior density and distribution function, respectively.

3.1. The order of posterior cumulants. Given a sequence X(n) = (X1, . . . ,Xn) of n ran-
dom variables which, conditional on the value of a scalar random parameter θ taking values in
a set � ⊂ R, are independent and identically distributed according to density f (x|θ), define
Ln(θ;x) = ∏n

i=1 f (xi |θ) to be the likelihood function. Here, x represents the observations
of the sequence X(n). Denote the log likelihood function by ℓn(θ) ≡ ℓn(θ;x). Assume that,
prior to observing the data, the uncertainty about θ is described by a prior density function
π(θ). The posterior density of θ is defined as

f (θ |x) = π(θ)
∏n

i=1 f (xi |θ)
∫

� π(θ)
∏n

i=1 f (xi |θ) dθ
= Ln(θ;x)π(θ)

∫

� Ln(θ;x)π(θ) dθ
.

Throughout, we suppress the dependence on x when there is no chance of confusion.

LEMMA 1. Assume that the likelihood function has a single global maximizer θ̂n. Define

the average log likelihood ℓ̄n(θ) = ℓn(θ)/n, and assume that ℓ̄n and the log prior density have

six continuous derivatives in a neighborhood of the form θ̂n ± ǫ for ǫ independent of n, and

such that ℓ̄n(θ) < ℓ̄n(θ̂n)−δ for θ /∈ (θ̂n −ǫ, θ̂n +ǫ), and assume that the second derivative of

the average log likelihood is bounded away from zero on this neighborhood. Assume further

that, for a sufficient number of observations, the posterior distribution is proper, and has six

finite moments. Then the invariant cumulant of θ of order j , defined to be the cumulant of

order j of (θ − θ0)/σ , and denoted by κj , is O(n(2−j)/2) for j ∈ {3,4,5}. Here, θ0 and σ are

the expectation and standard deviation of the posterior distribution, respectively.

PROOF. Arguments in the first half of this proof hold for log likelihood functions and
log prior densities with varying numbers of derivatives; denote this number by k, and until
specified otherwise, it might, but need not be, 5. We have phrased this assumption in slightly
more generality than is necessary, in order to facilitate future derivations of higher-order
expansions. Our regularity conditions imply (2); hence there exists N (potentially dependent
on the sample) so that for n ≥ N , |θ0 − θ̂n| < ǫ/2, and so continuous derivatives to order k

exist for ℓ̄n(θ) and the log prior density at θ0. Hence the log prior has an expansion

−
k

∑

j=0

hj (θ − θ0)
j/j ! + Q†(

θ†)

(θ − θ0)
k+1/(k + 1)!,

and the log likelihood has an expansion

−n

[

k
∑

j=0

gj (θ − θ0)
j/j ! + Q∗(

θ∗)

(θ − θ0)
k+1/(k + 1)!

]

,

where the coefficients gj and hj may be calculated from derivatives of the log likelihood
and log prior, respectively. Here, Q†(θ) and Q∗(θ) are the standard Taylor series remainder
terms, calculated from the derivatives of order k + 1 of the log prior density and average
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log likelihood, respectively, evaluated at parameter values θ† and θ∗ intermediate between θ0
and θ .

The log posterior can be expressed as

(5)
k

∑

j=0

pj (θ − θ0)
j/j ! +

[

nQ∗(θ) + Q(θ)
]

,

where pj = −hj − ngj . The first term p0 may be chosen to make the approximate posterior
integrate to 1. Since θ† and θ∗ are functions of θ , the error terms Q†(θ†) and Q∗(θ∗) may be
taken as bounded for θ ∈ (θ̂n − ǫ/2, θ̂n + ǫ/2). The choice of θ0 ensures that p1 = O(n1/2).

Let ω(θ) be the polynomial resulting from retaining only terms of order k and smaller in
the power series for exp(

∑k
j=3 pj (θ − θ0)

j ). Let μ∗ represent the extended Laplace approx-
imation to the posterior moments; that is,

μ∗
j =

∫ ∞

−∞
exp(p0) exp

(

1

2
(θ − θ0)

2p2

)

θ jω(θ) dθ.

By “extended Laplace,” we refer to the approximation as implemented by [45].
Let μj = E(θ j |x) denote the true values of these moments. Choose ǫ > 0 to satisfy the

conditions of the lemma such that both
∣

∣log
(

π(θ0)
)

+ nℓ̄n(θ0) − log
(

π(θ)
)

− nℓ̄n(θ)
∣

∣ ≤ p2(θ − θ0)
2/4

and
∣

∣

∣

∣

∣

k
∑

j=3

pj (θ − θ0)
j

∣

∣

∣

∣

∣

≤ p2(θ − θ0)
2/2,

for |θ − θ0| < ǫ. Since the difference between the maximum likelihood estimator and the
posterior expectation is Op(n−1/2), then there exists m such that the posterior based on the
first m observations x∗ gives a proper posterior. Let x† represent the final n−m observations.
There exists δ > 0 such that ℓ̄n−m(θ;x†) < ℓ̄n−m(θ0;x†) − δ for θ ∈ (−ǫ/2, ǫ/2)c, and the
contribution from outside of the interval to the absolute approximation error |μ∗

j − μj | is
bounded by exp(−(n − m)δ). Inside (−ǫ/2, ǫ/2), the contribution to |μj − μ∗

j | is bounded
by

exp
(

−p0 − n

4
(θ − θ0)

2p2

)(

∣

∣nQ∗(θ) + Q(θ)
∣

∣ +
(
∑k

j=3 pj (θ − θ0)
j )k+1

(k + 1)!

)

,

by Kolassa ([31], Theorem 2.5.3), which is O(n−(k+1)/2).
Take k = 5. In this case,

ω(θ) = 1 − p1(θ − θ0) + p2
2(θ − θ0)

2/2 −
(

p3
1 + p3

)

(θ − θ0)
3/6

+
(

p4
1 + 4p3p1 − p4

)

(θ − θ0)
4/24

− (θ − θ0)
5(

p5
1 + 10p3p

2
1 − 5p4p1 + p5

)

/120.

Moments approximated in this way are accurate to O(n−7/2), and cumulants approximated
using standard formulas for producing cumulants from moments ([31], page 10) are accurate
to the same order. Denote the cumulant of θ of order j by βj . The first cumulant is β1 =
−g1g

−1
2 + (g1h2g

−2
2 − h1g

−1
2 )n−1 + O(1/n2). Recall that the gj terms are the coefficients

in the expansion of the average log likelihood about the posterior mean. They are all O(1)

except g1. Since the posterior mean is within O(n−1/2) of the maximum likelihood estimate,
then the choice of θ0 as the posterior mean forces g1 = O(n−1/2). The second cumulant
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is β2 = 1
2g−1

2 n−1 + O(n−2), the third cumulant is β3 = −1
6g3g

−3
2 n−2 + O(n−3) and the

fourth cumulant is β4 = 1
24(3g2

3g−5
2 − g4g

−4
2 )n−3 + O(n−7/2). The most delicate part of

the preceding argument is the calculation of these cumulants, and ensuring that larger terms
cancel to leave a remainder of the proper order. Further technical details used to establish the
orders are provided in the Appendix. The proof is then completed by dividing the cumulants
by the proper power of the second cumulant, β2, which is O(n−1), to see that the quotient is
of the proper order. Specifically, the invariant cumulant of order j , j ≥ 3, is κj = βj/β

j/2
2 .

Since g2 is bounded away from zero, the invariant cumulants of order 3 and 4 are O(n−1/2)

and O(n−1), respectively. Similar calculations show that the invariant cumulant of order 5 is
O(n−3/2). �

REMARK 1. The argument above holds to provide bounds on moments of all orders.
Orders of cumulants are more delicate, since cumulants are expressed in terms of differences
of products of moments, and proper order for cumulants requires that leading terms of the
representation properly cancel. At present, we know of no way to do this except on a case-
by-case basis. This difficulty extends to bounds on invariant cumulants.

REMARK 2. In Section 1, we argued that one cannot bound the cumulants based on the
order of the moments. We are instead bounding cumulants by getting a Laplace expansion
for the moments, and observing that enough leading terms cancel to show that the cumulants
are of the proper order.

REMARK 3. As one would expect, the hj terms, corresponding to coefficients in the
expansion of the log prior about the posterior mean, appear only in terms of order n−1 and
smaller.

REMARK 4. Lemma 1 can easily be extended to multivariate cumulants. In this case,
the condition placing a lower bound on the second derivative of the average log likelihood
should be replaced by requiring that the smallest eigenvalue of the second derivative of the
average log likelihood be bounded away from zero, and the condition on higher derivatives of
the log likelihood is applied componentwise. Theorem 1 extends directly in the multivariate
case. The resulting density approximation can be integrated termwise to give a multivariate
version of Theorem 2.

3.2. Validity of Edgeworth expansion for the posterior density. In this section, we es-
tablish the validity of the formal Edgeworth approximation to the distribution of the stan-
dardized posterior of θ . Define ϑn = (θ − θ0)/σ , with θ0 and σ respectively the posterior
mean and standard deviation of θ . We use the notation ϑ to denote a generic value of ϑn. Let
π(θ |x) represent the posterior density for θ . The density for the standardized parameter ϑn is
π(θ0 + σϑ |x)σ . Let

(6) en(ϑ) = φ(ϑ)
{

1 + h3(ϑ)κ3/6 + κ4h4(ϑ)/24 − κ2
3h6(ϑ)/72 + · · ·

}

represent the formal series formed by dividing the characteristic function ϕ(τ) of ϑn by
exp(ϑ2/2), replacing powers of −τ by Hermite polynomials, and multiplying by the stan-
dard normal density. Here, κj are cumulants of ϑn, and hence the invariant cumulants of θ ;
by Lemma 1, κj satisfies

(7) κj = O
(

n−(j−2)/2)

, 3 ≤ j ≤ 5.
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THEOREM 1. Let A = In ⊆ R
n be a subset of the sample space formed as the prod-

uct of n copies of the same real interval. Choose k ∈ {2,3,4}. Suppose that the following

assumptions hold:

1. The prior is absolutely continuous with respect to Lebesgue measure on the parameter

space.
2. For any x ∈ A, the likelihood function Ln(θ;x) is a measurable function of θ .
3. The posterior is proper, and, for sufficiently large n, has a bounded density and mo-

ments to order 6.
4. For any x ∈ A, the likelihood function has a unique global maximizer θ̂n(x).
5. For any x ∈ A, the log likelihood function ℓn(θ) is k-times differentiable in a neigh-

borhood of θ̂n(x), with average second derivative ℓ′′
n(θ,x)/n bounded away from zero, and

average j th derivative

ℓ(j)
n (θ,x)/n

bounded, for 2 ≤ j ≤ k.

Let ek,n represent (6) truncated to contain only terms with products of invariant cumulants of

the form
∏j

m=1 κrm , such that
∑j

m=1(rm − 2) < k. Then

sup
x∈A

∣

∣ek,n(ϑ) − π(θ0 + σϑ |x)σ
∣

∣ = O
(

n−k/2)

,

uniformly in ϑ and uniformly in x in a compact subset of the sample space, but not relatively.

PROOF. Let λ(τ) =
∫ ∞
−∞ Ln(θ)π(θ) exp(iθτ ) dθ . The characteristic function for θ is

then λ(τ)/λ(0), and the characteristic function for ϑn = (θ − θ0)/σ is

(8) ϕ(τ) = λ
(

n1/2τ
)

exp
(

−n1/2θ0τ i
)

/λ(0).

The Riemann–Lebesgue theorem, using Assumption 3 above, indicates that |λ(τ)| ≤
C′

n/|τ | for C′
n = 2

∫ ∞
−∞ Ln(θ)π(θ) dθ ; see Billingsley ([7], Theorem 26.1). Furthermore, by

Assumption 3, there exist m and C1 and C2 such that

(9)
∫ ∞

−∞

∣

∣λ(τ)
∣

∣

m
dτ ≤ C1 and hence

∣

∣ϕ(τ)
∣

∣ ≤ C2/
(

n1/2|τ |
)

;

C1 and C2 are calculated from the minimal sample yielding a bounded density, and are not
dependent on n. Then the Fourier inversion of ϕ to obtain ek,n(ϑ) as the posterior density
of ϑn is performed by first expanding ϕ in τ near 0. The Fourier inversion integral results
approximately in ek,n.

More formally, let γn(ζ ) =
∫ ∞
−∞ exp(iζϑ)ek,n(ϑ) dζ , for ek,n(ϑ) defined in (6). In parallel

with the development of Feller ([16], Section XVI.2), the posterior density for ϑn is given by

(10)
1

2π

∫ ∞

−∞
exp(−iζϑ)ϕ(ζ ) dζ,

and the difference between the true posterior density and the Edgeworth series approximation
of (6) is bounded by

(11)

1

2π

∫ ∞

−∞
exp(−iζϑ)

∣

∣ϕ(ζ ) − γn(ζ )
∣

∣dζ

= 1

2π

∫

(−δn1/2,δn1/2)
exp(−iζϑ)

∣

∣ϕ(ζ ) − γn(ζ )
∣

∣dζ

+ 1

2π

∫

(−δn1/2,δn1/2)c
exp(−iζϑ)

∣

∣ϕ(ζ ) − γn(ζ )
∣

∣dζ.
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In (11), we bound the difference between the target and the approximation, on the charac-
teristic function scale, as represented by the left of (11), and break the range of integration
into two parts, as on the right. As discussed by Kolassa ([31], Section 3.7), the first of these
integrals is bounded by 1

2π

∫ ∞
−∞ exp(−iζϑ)p(ζ, n)/nk/2 dζ , for p(ζ,n) a polynomial in ζ

and 1/n1/2. This polynomial has coefficients that depend on derivatives of the log likelihood,
and so the error is uniformly of the proper order. This polynomial is constructed in even
powers of ζ and with positive coefficients, so as to make absolute values unnecessary. Note
that result (9) applies to γn(ζ ) as well as to ϕ(ζ ); choose the resulting constants m∗ ≥ m,
C∗

1 ≥ C1 and C∗
2 ≥ C2. These together show that the second integral in (11) is bounded by

(C∗
2/(δn1/2))n−m∗

C∗
1n/δ, which is geometrically small. �

REMARK 5. To elaborate on which terms are retained for various values of k, when
k = 2, the term involving κ3 times a Hermite polynomial and no other invariant cumulant
is retained, because j = 1 and r1 = 3, and when k = 3, the term involving κ4 and a Hermite
polynomial and no other invariant cumulant is retained, because j = 1 and r1 = 4. Also when
k = 3, the term involving κ2

3 times a Hermite polynomial and no other invariant cumulant is
retained, because j = 2 and r1 = r2 = 3.

REMARK 6. Assumption 3 requires that the posterior is proper, but not necessarily that
the prior is proper. As is well known ([18], page 106), the Bernstein–von Mises theorem
holds even if the prior is improper, provided that there exists an n0 such that the posterior of
θ given (x1, . . . , xn0) is proper for almost every realization of (x1, x2, . . . , xn0).

3.3. Validity of Edgeworth expansion for the posterior distribution function. By assum-
ing that the prior is a density, and that the likelihood is continuously differentiable, we ac-
tually have more smoothness than is required for Cramér’s condition (4) to hold. However,
as noted above, the extra smoothness implied by these assumptions is necessary to prove the
validity of the cumulant expansions in Lemma 1.

THEOREM 2. Under the assumptions of Theorem 1, define the Edgeworth approximation

to the posterior cumulative distribution function of ϑ as

(12) Ek,n(ϑ) = �(ϑ) − φ(ϑ)
{

h2(ϑ)κ3/6 + κ4h3(ϑ)/24 − κ2
3h5(ϑ)/72 + · · ·

}

.

The absolute error incurred in using (12) to approximate the distribution function of ϑn is of

order O(n−3/2), uniformly in ϑ and uniformly in x in a compact subset of the sample space,
but not relatively.

PROOF. As noted by Kolassa ([31], equation (48)), the error in applying (12) to approx-
imate the posterior distribution function is given by the left-hand side of (11), modified by
dividing the integrand by |ζ |, in this case with a density. By the previous application of the
Riemann–Lebesgue theorem, the modified integral representing error converges absolutely,
and is multiplied by the proper power of the sample size. �

4. Relationship to existing Edgeworth-type expansions. Weng [50] provides an
asymptotic expansion for the posterior distribution of a parameter indexing a statistical
model, given n observations which are independent and identically distributed condition-
ally on the parameter value, and assuming certain regularity conditions, by centering the
distribution at the maximum likelihood estimate, and scaling the difference between a poten-
tial parameter value and the estimate by the second derivative of the log likelihood evaluated
at the maximum likelihood. This produces an asymptotic expansion valid to O(n−(s+1)/2),
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and uses 3s − 1 terms. For example, when approximating the posterior CDF, the approxima-
tion with error O(n−3/2) uses s = 2, and hence uses five terms, including the leading term
represented by the normal cumulative distribution function. This expansion includes Hermite
polynomials to order 5, as is found in the standard Edgeworth expansion presented by, for
example, McCullagh [35]. However, since the maximum likelihood estimate is not the same
as the posterior expectation, the leading term in the Weng approximation does not match the
target distribution as well as one centered at the true posterior expectation. This lack of match
leads to a more complicated expansion. Furthermore, the example Weng presents provides
finite sample performance that is inferior to that generally expected from an approximation
with asymptotic error O(n−3/2), as we illustrate in Section 5.

We now demonstrate that Weng’s approximation has an error that is equivalent to that
of our approximation; these calculations also demonstrate the differences between the two
approximations. Weng’s approximation for the posterior distribution function of ϑ̃n = (θ −
θ̂n)/σ̂ , where θ̂n is the maximum likelihood estimate and σ̂ is the square root of the observed
information evaluated at θ̂n, is of the form

P
[

(θ − θ̂ )/σ̂ < ϑ̃n|x
]

= �(ϑ̃n) −
3s
∑

i=1

qi−1(ϑ̃n)φ(ϑ̃n)ci,

for qi Hermite polynomials, and ci constants given by Stein’s lemma. Weng [50] shows that
this approximation holds uniformly for ϑ̃n ∈ R.

Hartigan [22] also provides an approximation to the posterior, in this case to the density,
and obtains an approximation of a similar form. This approximation is also about a center
other than the posterior expectation; in this case, the expansion is in the neighborhood of a
true parameter value. We use the notation of Hartigan [22] to further clarify the distinction
between our approximation and that of Weng [50].

Suppose data X1, . . . ,Xn is observed, with observations independent and identically dis-
tributed, conditional on a scalar parameter θ , with common log density g(xi |θ) and log prior
density h(θ). Let ωj =

∫

� θ j exp(h(θ) + ∑n
i=1 g(xi |θ)) dθ ; these quantities depend on the

data. The posterior expectation is then ω1/ω0. Take s = 2; then Weng’s approximation to the
posterior distribution function is

�(ϑ̃n) + φ(ϑ̃n)
{

c1 + ϑ̃nc2 +
(

ϑ̃2
n − 1

)

c3 +
(

ϑ̃3
n − ϑ̃n

)

c4

+
(

ϑ̃5
n − 10ϑ̃3

n + 15ϑ̃n

)

c6
}

,

and to the density is

w(ϑ̃n) = φ(ϑ̃n) − φ(ϑ̃n)
{

ϑ̃nc1 +
(

ϑ̃2
n − 1

)

c2 +
(

ϑ̃3
n − ϑ̃n

)

c3 +
(

ϑ̃4
n − 6ϑ̃2

n + 3
)

c4

+
(

ϑ̃6
n − 15ϑ̃4

n + 45ϑ̃2
n − 15

)

c6
}

,

uniformly (in θ ) to O(n−3/2). Then the expectation associated with this density approxima-
tion is −c1, the variance associated with this approximation is 1 − c2

1 − 2c2, and the approx-
imation to the density d(ρ) of ρ = (θ − θ̂n)/σ̂ − c1 satisfies

(13) d(ρ) = w
(

ρ
(

1 − c2
1 − 2c2

)1/2 − c1
)(

1 − c2
1 − 2c2

)1/2 + O
(

n−3/2)

.

Weng [50] notes that

(14) c1, c3 = O
(

n−1/2)

, c2, c4, c6 = O
(

n−1)

.

Expanding w(ρ(1 − c2
1 − 2c2)

1/2 − c1)(1 − c2
1 − 2c2)

1/2 in terms of powers of n1/2, and
bounding errors using, for example, Kolassa ([31], Theorem 2.5.3), one can exhibit w(ρ(1 −
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c2
1 − 2c2)

1/2 − c1)(1 − c2
1 − 2c2)

1/2 of the form

(15)
φ(ρ) − φ(ρ)

{

ρc∗
1 +

(

ρ2 − 1
)

c∗
2 +

(

ρ3 − ρ
)

c∗
3 +

(

ρ4 − 6ρ2 + 3
)

c∗
4

+
(

ρ6 − 15ρ4 + 45ρ2 − 15
)

c∗
6
}

,

for constants c∗
j satisfying (14), and furthermore, c∗

1 = c∗
2 = 0. Hence (13) is an Edgeworth

expansion to O(n−3/2).

REMARK 7. We have given two proofs of the validity of Edgeworth expansion of the
posterior. The first is a direct proof for the formal Edgeworth expansion (Theorem 1), while
the second is not a formal Edgeworth expansion, but rather shows how to correct Weng’s
expansion due to using the wrong center. As the above arguments demonstrate, one can ob-
tain an Edgeworth-type expansion by centering at the maximum likelihood estimate θ̂n and
correcting. Such an expansion could have the same form as an Edgeworth series, but would
not be a formal Edgeworth expansion, and would require additional work to compute the
correction factors c∗

1, . . . , c
∗
6 in (15).

REMARK 8. We have used the Laplace approximation of the cumulants only to show
that they are of the correct asymptotic order. It is not necessary to use the Laplace approxi-
mation for implementation of the expansion. In practice, any sufficiently accurate estimator
of the posterior moments could be used to implement the Edgeworth expansion. One ap-
proach is given by Hartigan [22]. Another is to use the constants given by Weng and adjust
them accordingly.

REMARK 9. Weng’s expansion is actually more similar to a Gram–Charlier expansion
of the posterior, not an Edgeworth expansion. Weng ensures that the pseudo-moments are of
the correct order, but not the cumulants. For example, in her displayed equation (45), the set
J2 (corresponding to the n−1 term in the expansion) includes the sixth Hermite polynomial
and its multiplier. For an Edgeworth expansion, this term is discarded.

REMARK 10. The proof of Weng [50] applies to distributions of manifest variables with
no conditions limiting discreteness. Continuity in this case is ensured by the continuity of the
prior. This application in the case of highly discrete manifest distributions carries over to our
result. Contrast this with frequentist expansions, which require control of or correction for
discreteness. Note further that we do not require the priors to be proper; we require instead
that for sufficiently large data sets, the posterior be proper.

REMARK 11. Furthermore, standard frequentist Edgeworth approximations have the un-
desirable property that the density approximation need not be positive, and consequently the
distribution approximation need not be nondecreasing, or even confined to the interval [0,1].
Our new application to posteriors shares this drawback. This drawback is related to the in-
ability of the Edgeworth expansion to achieve uniform relative error: the first omitted term is
a multiple of a Hermite polynomial, and this polynomial is unbounded for unbounded values
of the ordinate.

5. Examples. Consider a random variable having a binomial distribution, X ∼ Bin(θ, n)

with a beta prior, θ ∼ Beta(a, b). Suppose that a = 0.5, b = 4.0, n = 5 and x = 2. This
example was previously considered by Weng [50] who, using Stein’s identity, derived an
asymptotic expansion using up to 40 moments. This is an ideal example for illustrating the
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FIG. 1. Density approximation of Weng [50].

performance of posterior expansions, because the sample size is small, and the normal ap-
proximation is inaccurate, due to the skewness in the posterior. As pointed out by a referee,
in this example the renormalized Laplace approximation is exact.

Weng’s expansion, for the density of θ , is given in Figure 1. This figure should be com-
pared with Figure 2, showing our posterior Edgeworth approximation for the posterior density
of θ . Note that the standard Edgeworth approximation, with four moments, behaves better
than the Stein’s identity approach using 40 moments. To understand this phenomenon, con-
sider the formal Edgeworth derivation due to Davis [12] and presented by McCullagh [35].
When constructing an approximation of a density f around a baseline density g, obtain the

FIG. 2. Edgeworth approximation of the posterior density.
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FIG. 3. Absolute error of density approximations.

formal series

f (x) = g(x)

∞
∑

j=0

hj (x)μ∗
j/j !,

where the functions hj are ratios of derivatives of g to g itself. The coefficients μ∗
j rep-

resent the results of calculating differences in cumulants between f and g, and applying
the standard relationship giving moments from cumulants to these cumulant differences. In
this manuscript, we refer to such coefficients as pseudo-moments. Standard Edgeworth ap-
proximation techniques and the method of Weng [50] use as g a normal density; standard
Edgeworth approximations use g with mean and variance matching f . When applying Edge-
worth techniques to a posterior, then the standard approach is to match the mean and variance.
Weng [50] uses instead the maximum likelihood estimate and its usual standard error, and so
convergence is slower.

Figure 3 displays the absolute error the normal approximation, and the Edgeworth approx-
imation of the posterior density.

As a second example, we consider inference on failure rate. Proschan [38] presents data on
times between failures of airplane air conditioner data, which he argues is well approximated
by an exponential distribution with a rate depending on the aircraft. We examine data from
plane 1. These six failure times had the sum 493. Below are highest posterior density regions,
and normal and Edgeworth approximations to them, for the failure rate (in inverse hours), us-
ing a gamma prior with expectation 100 hours and standard deviation 50 hours (see Table 1).

APPENDIX

Here, we provide additional technical details used in the proof of Lemma 1. The exponen-
tiated log posterior of (5) is

(16)

C exp
(

−δp1 − 1

2
δ2p2 − 1

6
δ3p3 − 1

24
δ4p4 − 1

120
δ5p5

− 1

720
δ6p6 − 1

5040
δ7p7 + O

(

δ8)

)

,
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TABLE 1
Approximations for the failure rate example

Highest posterior True posterior
Method density interval probability

Normal (0.01290,0.02766) 0.7612
Edgeworth (0.01208,0.02630) 0.7511
True (0.01207,0.02626) 0.7500

for δ = θ − θ0. Expanding the terms in the exponent of order 3 and higher,

p̃(θ) = Ce− 1
2 δ2p2

(

1 − δp1 + δ2

2
p2

1 − δ3

6

(

p3
1 + p3

)

+ δ4

24

(

p4
1 + 4p3p1 − p4

)

− δ5

120

(

p5
1 + 10p3p

2
1 − 5p4p1 + p5

)

+ δ6

720

(

p6
1 + 20p3p

3
1 − 15p4p

2
1 + 6p5p1 + 10p2

3 − p6
)

(17)

− δ7

5040

(

p7
1 + 35p3p

4
1 − 35p4p

3
1 + 21p5p

2
1

+
(

70p2
3 − 7p6

)

p1 − 35p3p4 + p7
)

)

+ E(δ).

Forcing p̃ to integrate to 1 yields

C = 24

√

2

π
p

7/2
2

(

p6
1 + 6p2p

4
1 + 20p3p

3
1 + 24p2

2p
2
1 − 15p4p

2
1 + 24p2p3p1

+ 6p5p1 + 48p3
2 + 10p2

3 − 6p2p4 − p6
)−1

.

The quantity E(δ) satisfies |E(δ)| ≤ K1δ
8, for K1 independent of δ. This bound follows from

the order of error in (17), and Theorem 2.5.3 of Kolassa [31].
Integrals of (17) times powers of

√
n(θ − θ0) give moments accurate to O(n−4). Let μ̃j =

∫

θ j p̃(θ) dθ . Hence μ̃1, μ̃2, μ̃3 and μ̃4 approximate the first four posterior moments of θ to
O(n−2).

Integration yields

μ̃1 = −
C

√

π
2

24p
9/2
2

(

p7
1 + 6p2p

5
1 + 35p3p

4
1 +

(

24p2
2 − 35p4

)

p3
1

+ 3(20p2p3 + 7p5)p
2
1 +

(

48p3
2 − 30p4p2 + 70p2

3 − 7p6
)

p1

+ 24p2
2p3 − 35p3p4 + 6p2p5 + p7

)

,

μ̃2 =
C

√

π
2

24p
9/2
2

(

7p6
1 + 30p2p

4
1 + 140p3p

3
1 + 3

(

24p2
2 − 35p4

)

p2
1

+ 6(20p2p3 + 7p5)p1 + 48p3
2 + 70p2

3 − 30p2p4 − 7p6
)

,

μ̃3 = −
C

√

π
2

8p
11/2
2

(

3p7
1 + 14p2p

5
1 + 105p3p

4
1 + 5

(

8p2
2 − 21p4

)

p3
1
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+ 7(20p2p3 + 9p5)p
2
1 +

(

48p3
2 − 70p4p2 + 210p2

3 − 21p6
)

p1

+ 5p3
(

8p2
2 − 21p4

)

+ 14p2p5 + 3p7
)

,

μ̃4 =
C

√

π
2

8p
11/2
2

(

21p6
1 + 70p2p

4
1 + 420p3p

3
1 + 15

(

8p2
2 − 21p4

)

p2
1

+ 14(20p2p3 + 9p5)p1 + 48p3
2 + 210p2

3 − 70p2p4 − 21p6
)

.

Substituting pk = ngk + h1, using the rules giving cumulants from moments β1 = μ̃1,
β2 = μ̃2 − μ̃1

2 and β3 = μ̃3 − 2μ̃1μ̃2 + 2μ̃1
3 and β4 = μ̃4 − 3μ̃2

2 − 6μ̃4
1 − 4μ̃3μ̃1 + 12μ̃2

1μ̃2,
give

β1 = −g1

g2
+ g1h2 − g2h1

g2
2n

+ O

(

1

n2

)

.

The choice of θ0 as the posterior mean implies that g1 = 0 and, therefore,

β2 = 1

2ng2
+ O

(

1

n2

)

,

β3 = − g3

6g3
2n2

+ O

(

1

n3

)

,

β4 = 3g2
3 − g2g4

24g5
2n3

+ O

(

1

n4

)

.
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