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Predominance of non-adiabatic effects in zero-point
renormalization of the electronic band gap
Anna Miglio1,7, Véronique Brousseau-Couture 2,7, Emile Godbout2, Gabriel Antonius3,4,5, Yang-Hao Chan3,4, Steven G. Louie 3,4,
Michel Côté 2, Matteo Giantomassi1 and Xavier Gonze 1,6✉

Electronic and optical properties of materials are affected by atomic motion through the electron–phonon interaction: not only
band gaps change with temperature, but even at absolute zero temperature, zero-point motion causes band-gap renormalization.
We present a large-scale first-principles evaluation of the zero-point renormalization of band edges beyond the adiabatic
approximation. For materials with light elements, the band gap renormalization is often larger than 0.3 eV, and up to 0.7 eV. This
effect cannot be ignored if accurate band gaps are sought. For infrared-active materials, global agreement with available
experimental data is obtained only when non-adiabatic effects are taken into account. They even dominate zero-point
renormalization for many materials, as shown by a generalized Fröhlich model that includes multiple phonon branches, anisotropic
and degenerate electronic extrema, whose range of validity is established by comparison with first-principles results.
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INTRODUCTION
The electronic band gap is arguably the most important
characteristic of semiconductors and insulators. It determines
optical and luminescent thresholds, but is also a prerequisite for
characterizing band offsets at interfaces and deep electronic levels
created by defects1. However, accurate band gap computation is a
challenging task. Indeed, the vast majority of first-principles
calculations relies on Kohn–Sham Density-Functional Theory (KS-
DFT), valid for ground state properties2, that delivers a theoreti-
cally unjustified value of the band gap in the standard approach,
even with exact KS potential3–5.
The breakthrough came from many-body perturbation theory,

with the so-called GW approximation, first non-self-consistent
(G0W0) by Hybertsen and Louie in 19866, then twenty years later
self-consistent (GW)7 and further improved by accurate vertex
corrections from electron-hole excitations (GWeh)8. The latter
methodology, at the forefront for band-gap computations,
delivers a 2–10% accuracy, usually overestimating the experi-
mental band gap. GWeh calculations are computationally very
demanding, typically about two orders of magnitude more than
G0W0, itself two orders of magnitude more time-consuming than
KS-DFT calculations, roughly speaking.
Despite being state-of-the-art, such studies ignored completely

the electron–phonon interaction. The electron–phonon interac-
tion drives most of the temperature dependence of the electronic
structure of semiconductors and insulators, but also yields a zero-
point motion gap modification at T= 0 K, often termed zero-point
renormalization of the gap (ZPRg) for historical reasons.
The ZPRg had been examined 40 years ago, by Allen, Heine and

Cardona (AHC)9,10 who clarified the early theories by Fan11 and
Antoncik12. Their approach is, like the GW approximation, rooted
in many-body perturbation theory, where, at the lowest order, two
diagrams contribute, see Fig. 1, the so-called “Fan” diagram, with

two 1st-order electron–phonon vertices and the “Debye–Waller”
diagram, with one 2nd-order electron–phonon vertex. In the
context of semi-empirical calculations, the AHC method was
applied to Si and Ge, introducing the adiabatic approximation, in
which the phonon frequencies are neglected with respect to
electronic eigenenergy differences and replaced by a small but
non-vanishing imaginary broadening10. It was later extended
without caution to GaAs and a few other III–V semiconductors13,14.
In this work, we present first-principles AHC ZPRg calculations

beyond the adiabatic approximation, for 30 materials. Comparing
with experimental band gaps, we show that adding ZPRg
improves the GWeh first-principles band gap, and moreover, that
the ZPRg has the same order of magnitude as the G0W0 to GWeh
correction for half of the materials (typically materials with light
atoms, e.g., O, N ...) on which GWeh has been tested. Hence, the
GWeh level of sophistication misses its target for many materials
with light atoms, if the ZPRg is not taken into account. By including
it, the theoretical agreement with direct measurements of
experimental ZPRg is improved. This also demonstrates the crucial
importance of phonon dynamics to reach this level of accuracy.
Indeed, first-principles calculations of the ZPRg using the AHC

theory are very challenging, and only started one decade ago, on
a case-by-case basis15–25 (see the Supplementary Note 3), usually
relying on the adiabatic approximation, and without comparison
with experimental data. An approach to the ZPRg, alternative to
the AHC one, relies on computations of the band gap at fixed,
distorted geometries, for large supercells18,26–33 (see and the
Supplementary Note 3). As the adiabatic approximation is
inherent in this approach, we denote it as ASC, for “adiabatic
supercell”. A recent publication by Karsai, Engel, Kresse and Flage-
Larsen34, hereafter referred to as KEKF, presents ASC ZPRg based
on DFT values, as well as based on G0W0 values for 18 semi-
conductors, with experimental comparison for 9 of them. Both
AHC and ASC methodologies have been recently reviewed35.
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Although the adiabatic approximation had already been
criticized by Poncé et al. in 201524 (Supplementary Note 5) as
causing an unphysical divergence of the adiabatic AHC expression
for infrared-active materials with vanishing imaginary broadening,
thus invalidating all adiabatic AHC calculations except for non-
infrared-active materials, the full consequences of the adiabatic
approximation have not yet been recognized for ASC. We will
show that the non-adiabatic AHC approach outperforms the ASC
approach, so that the predictions arising from the mechanism by
which the ASC approach bypasses the adiabatic AHC divergence
problem for infrared-active materials are questionable. This is
made clear by a generalized Fröhlich model with a few physical
parameters, that can be determined either from first principles or
from experimental data.
Although the full electronic and phonon band structures do not

enter in this model, and the Debye-Waller diagram is ignored, for
many materials it accounts for more than half the ZPRg of the full
first-principles non-adiabatic AHC ZPRg. As this model depends
crucially on non-adiabatic effects, it demonstrates the failure of
the adiabatic hypothesis, be it for the AHC or the ASC approach.
By the same token, we also show the domain of validity and

accuracy of model Fröhlich large-polaron calculations based on
the continuum hypothesis, that have been the subject of decades
of research36–42. Such model Fröhlich Hamiltonian captures well
the ZPR for about half of the materials in our list, characterized by
their strong infrared activity, while it becomes less and less
adequate for decreasing ionicity. In the present context, the
Fröhlich large-polaron model provides an intuitive picture of the
physics of the ZPRg.

RESULTS
Zero-point renormalization: experiment vs. first principles
Figure 2 compares first-principles ZPRg with experimental values.
As described in the “Methods” section, and in Supplementary
Note 2, the correction due to zero-point motion effect on the
lattice parameter, ZPRlatg , has been added to fixed volume results
from both non-adiabatic AHC (present calculations) and ASC
methodologies34. While for a few materials experimental ZPRg
values are well established, within 5-10%, globally, experimental
uncertainty is larger, and can hardly be claimed to be better than
25% for the majority of materials, see Supplementary Note 1. This
will be our tolerance.
Let us focus first on the ASC-based results. For the 16 materials

present in both KEKF and the experimental set described in the
Supplementary Table I, the ASC vs. experimental discrepancy is
more than 25% for more than half of the materials (KEKF KS-DFT
ASC calculations are based on GGA-PBE, except for Si, Ge, GaAs,
and CdSe, where the PBE0 hybrid functional has been used, thus
the better score of Ge and GaAs for ASC calculations than for AHC

calculations might be partly explained by this different KS-DFT
functional). There is a global trend to underestimation by ASC,
although CdTe is overestimated.
By contrast, the non-adiabatic AHC ZPRg (blue full circles) and

experimental ZPRg agree with each other within 25% for 16 out of
the 18 materials. The outliers are CdTe with a 43% overestimation
by AHC, and GaP with a 33% underestimation. For none of these
the discrepancy is a factor of two or larger. On the contrary, in the
ASC approach, several materials show underestimation of the
ZPRg by more than a factor of 2. The materials showing such large
underestimation (CdS, ZnO, SiC) are all quite ionic, while more
covalent materials (C, Si, Ge, AlSb, AlAs) are better described.
Therefore, Fig. 2 clearly shows that the non-adiabatic AHC

approach performs significantly better than the ASC approach.
AHC ZPRg and ASC ZPRg also differ by more than a factor of two
for TiO2 and MgO (see Supplementary Note 3), although no
experimental ZPRg is available for these materials to our
knowledge.
We now examine band gaps. Figure 3 presents the ratio

between first-principles band gaps and corresponding experi-
mental values, for 12 materials. The best first-principles values at
fixed equilibrium atomic position, from GWeh8, are represented, as
well as their non-adiabatic AHC ZPR corrected values.
For GWeh without ZPRg, a 4% agreement is obtained only for

two materials (CdS and GaN). There is indeed a clear, albeit small,
tendency of GWeh to overestimate the band gap value, except for
the 3 materials containing shallow core d-electrons (ZnO, ZnS, and
CdS) that are underestimated. By contrast, if the non-adiabatic
AHC ZPRg is added to the GWeh data (blue dots), a 4% agreement
is obtained for 9 out of the 12 materials (8 if ZPRlatg is not included).
For ZnO and ZnS, with a final 10–12% underestimation, and CdS

with a 5% underestimation, we question the GWeh ability to
produce accurate fixed-geometry band gaps at the level obtained

Fig. 1 Lowest-order diagrams for the contribution of the
electron–phonon interaction to the zero-point renormalization
of the gap ZPRg. a Fan diagram, with two first-order screened
electron–phonon vertices; b Debye-Waller diagram, with one
second-order screened electron–phonon interaction vertex.

Fig. 2 Absolute values of first-principles band gap renormalization
ZPRg compared with experimental ones. Blue full circles: present
calculations, using non-adiabatic AHC, based on KS-DFT ingredients;
red empty triangles: adiabatic supercell KS-DFT results 34. Dashed
lines: limits at which the smallest of both ZPR is 25% smaller than
the largest one (note that the scales are logarithmic). For
consistency, the computed lattice ZPRlatg were added to both ASC
and AHC. The majority of non-adiabatic AHC-based results fall
within the 25% limits, while this is not the case for ASC-based ones.
See numerical values in Supplementary Table II.
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for the other materials, due to the presence of rather localized 3d
electrons in Zn and 4d electrons in CdS.
As a final lesson from Fig. 3, we note that for 4 out of the 12

materials (SiC, AlP, C, and BN), the ZPRg is similar in size to the
G0W0 to GWeh correction, and it is a significant fraction of it also
for Si, GaN and MgO. As mentioned earlier, GWeh calculations are
much more time-consuming than G0W0 calculations, possibly
even more time-consuming than ZPR calculations (although we
have not attempted to make a fair comparison). Thus, for materials
containing light elements, first row and likely second row (e.g.,
AlP) in the periodic table, GWeh calculations miss their target if
not accompanied by ZPRg calculations. Variance and accuracy of
G0W0 calculations is discussed in the litterature43.
Supplementary Table V gathers our full set of ZPR results,

beyond those present in the ASC or experimental sets. It also
includes 10 oxides, while the experimental set only includes three
materials containing oxygen (ZnO, MgO, and SrTiO3), and there
are none in KEKF ASC set. The ZPRg of the band gap for materials
containing light elements (O or lighter) is between −157meV
(ZnO) and −699 meV (BeO), while, relatively to the experimental
band gap, it ranges from −4.6% (ZnO) to −10.8% (TiO2). This can
hardly be ignored in accurate calculations of the gap.

Generalized Fröhlich model
We now come back to the physics from which the ZPRg originates,
and explain our earlier observation that the ASC describes
reasonably well the more covalent materials, but can fail badly
for ionic materials. We argue that, for many polar materials, the
ZPRg is dominated by the diverging electron–phonon interaction
between zone-center LO phonons and electrons close to the band
edges, and the slow (non-adiabatic) response of the latter: the
effects due to comparatively fast phonons are crucial. This was
already the message from Fröhlich36 and Feynman37, decades
ago, initiating large-polaron studies. However, large-scale assess-
ment of the adequacy of Fröhlich model for real materials is
lacking. Indeed, the available flavors of Fröhlich model, based on
continuum (macroscopic) electrostatic interactions, do not cover
altogether degenerate and anisotropic electronic band extrema or
are restricted to only one phonon branch, unlike most real
materials44–47.
In this respect, we introduce now a generalized Fröhlich model,

gFr, whose form is deduced from first-principles equations in the
long-wavelength limit (continuum approximation), see Supple-
mentary Note 5. Such model covers all situations and still uses as
input only long-wavelength parameters, that can be determined

either from first principles (Supplementary Note 6) or from
experiment (Supplementary Note 7). We then find the corre-
sponding ZPRg from perturbation theory at the lowest order,
evaluate it for our set of materials, and compares its results to the
ZPRg obtained from full first-principles computations. The
corresponding Hamiltonian writes (see Supplementary Note 5
for detailed explanations):

Ĥ
gFr ¼ Ĥ

gFr
el þ Ĥ

gFr
ph þ Ĥ

gFr
EPI ; (1)

with (i) an electronic part

Ĥ
gFr
el ¼

X
kn

k2

2m�
nðk̂Þ

ĉþknĉkn; (2)

that includes direction-dependent effective masses m�
nðk̂Þ, gov-

erned by so-called Luttinger parameters in case of degeneracy,
electronic creation and annihilation operators, ĉþkn and ĉkn, with k
the electron wavevector and n the band index, (ii) the multi-
branch phonon part,

Ĥ
gFr
ph ¼

X
qj

ωj0ðq̂Þâþqj âqj ; (3)

with direction-dependent phonon frequencies ωj0ðq̂Þ, phonon
creation and annihilation operators, âþqj and âqj , with q the
phonon wavevector and j the branch index, and finally (iii) the
electron–phonon interaction part

Ĥ
gFr
EPI ¼

X
qj;kn0n

ggFrðqj; kn0nÞĉþkþqn0 ĉknðâqj þ âþ�qjÞ: (4)

The k and q sums run over the Brillouin zone. The sum over n and
n0 runs only over the bands that connect to the degenerate
extremum, renumbered from 1 to ndeg. The generalized Fröhlich
electron–phonon interaction48,49 is

ggFrðqj; kn0nÞ ¼ i
q
4π
Ω0

ð 1
2ωj0ðq̂ÞVBvK

Þ1=2 q̂:pjðq̂Þ
ϵ1ðq̂Þ

´
P
m
sn0mðk̂0Þðsnmðk̂ÞÞ�:

(5)

This expression depends on the directions k̂, q̂, and k̂0

(k0 ¼ k þ q), but not explicitly on their norm (hence only long-
wavelength parameters are used), except for the 1

q factor. The
electron–phonon part also depends only on few quantities:
the Born effective charges (entering the mode-polarity vectors
pj), the macroscopic dielectric tensor ϵ∞, and the phonon
frequencies ωj0, the primitive cell volume Ω0, the Born-von
Karman normalization volume VBvK corresponding to the k and
q samplings. The s tensors are symmetry-dependent unitary
matrices, similar to spherical harmonics. Equations (1)–(5) define
our generalized Fröhlich Hamiltonian. Although we will focus on
its T= 0 properties within perturbation theory, such Hamiltonian
could be studied for many different purposes (non-zero T,
mobility, optical responses ...), like the original Fröhlich model,
for representative materials using first-principles or experimental
parameters.
The conduction band ZPRgFrc can be obtained with a perturba-

tion treatment (Supplementary Note 5), giving

ZPRgFrc ¼ �
X
jn

1ffiffiffi
2

p
Ω0ndeg

Z
4π
dq̂ðm�

nðq̂ÞÞ1=2

´ ðωj0ðq̂ÞÞ�3=2 q̂:pjðq̂Þ
ϵ1ðq̂Þ

� �2

:

(6)

A similar expression exists for the valence band ZPRgFrv . The few
material parameters needed in Eq. (6) can be obtained from
experimental measurements, but are most easily computed from
first principles, using density-functional perturbation theory with
calculations only at q= Γ (e.g., no phonon band structure

Fig. 3 Ratio between first-principles band gaps and experimental
ones64. First-principles results without electron–phonon interaction8

are based on G0W0 (diamonds) or on GWeh (squares). Blue full
circles are the GWeh results to which AHC ZPRg and lattice ZPRlatg
have been added, while empty red circles are the GWeh results to
which only AHC ZPRg was added. GWeh usually overshoots, while
adding the electron–phonon interaction gives better global agree-
ment. See numerical values in Supplementary Table III.
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calculation). Eq. (6) can be evaluated for all band extrema in our
set of materials, irrespective of whether the extrema are located at
Γ or other points in the Brillouin Zone (e.g., X for the valence band
of many oxides, with anisotropic effective mass), whether they are
degenerate (e.g., the three-fold degeneracy of the top of the
valence band of many III–V or II–VI compounds), and irrespective
of the number of phonon branches (e.g., 3 different LO
frequencies for TiO2, moreover varying with the direction along
which q→ 0).
Figure 4 compares the band gap ZPR from the first-principles

non-adiabatic AHC methodology and from the generalized
Fröhlich model. The 30 materials can be grouped into five sets,
based on their ionicity: 11 materials containing oxygen, rather
ionic, for which the Born effective charges and the ZPR are quite
large, 6 materials containing chalcogenides, also rather ionic, 4
materials containing nitrogen and 5 III-V materials, less ionic, and 4
materials from group-IV elements, non-ionic, except SiC.
For oxygen-based materials, the ZPR ranges from 150meV to

700meV, and the gFr model captures this very well, with less than
25% error, with only one exception, BeO. The chalcogenide
materials are also reasonably well described by the gFr model,
capturing at least two-third of the ZPR. Globally their ZPR is
smaller (note the logarithmic scale).
For the nitride materials and for SiC, the gFr captures about 50%

of the quite large ZPR (between 176meV and 406 meV). The
adequacy of the gFr model decreases still with the III–V materials
and the three non-ionic IV materials. In the latter case, the
vanishing Born effective charges result in a null ZPR within the gFr
model (these three materials are omitted from Fig. 4).
For the oxides and chalcogenides, the ZPR is thus dominated by

the zone-center parameters (including the phonon frequencies),
and the physics corresponds to the one of the large-polaron

picture37, namely, the slow electron motion is correlated to a
phonon cloud that dynamically adjusts to it. This physics is
completely absent from the ASC approach. Even for nitrides, the
gFr describes a significant fraction of the ZPR.
A perfect agreement between the non-adiabatic AHC first-

principles ZPR and the generalized Fröhlich model ZPR is not
expected. Indeed, differences can arise from different effects: lack
of dominance of the Fröhlich electron–phonon interaction in
some regions of the Brillouin Zone, departure from parabolicity of
the electronic structure (obviously, the electronic structure must
be periodic so that the parabolic behavior does not extend to
infinity), interband contributions, phonon band dispersion, incom-
plete cancellation between the Debye–Waller and the acoustic
phonon mode contribution.
It is actually surprising to see that for so many materials, the

generalized Fröhlich model matches largely the first-principles
AHC results. Anyhow, as a conclusion for this section, for a large
number of materials, we have validated, a posteriori and from first
principles, the relevance of large-polaron research based on
Fröhlich model despite the numerous approximations on which it
relies.

DISCUSSION
We focus on the mechanism by which the AHC divergence of the
ZPR in the adiabatic case for infrared-active materials24 is avoided,
either using the ASC methodology or using the non-adiabatic AHC
methodology. As Fröhlich and Feynman have cautioned us36,37,
and already mentioned briefly in previous sections, the dynamics
of the “slow” electron is crucial in this electron–phonon problem.
In the ASC approach, the bypass of this divergence can be

understood as follows, see Fig. 5a. Consider a long-wavelength
fluctuation of the atomic positions, frozen in time. At large but
finite wavelength, the potential is periodically lowered in some
regions of space and increased in some other regions of space, in
an oscillatory manner with periodicity ΔL∝ 1/q, where q is the
small wavevector of the fluctuation, see Fig. 5a “LO phonon
potential” part. Without such long-wavelength potential, the

Fig. 4 Zero-point renormalization of the band gap: comparison
between first-principles AHC values and generalized Fröhlich
model. See Eq. (6). Data for 27 materials are represented. Non-ionic
group IV materials are omitted. The markers identify materials of
similar ionicity: oxides (purple circles), other II–VI materials contain-
ing S, Se, or Te (yellow squares), nitrides (green diamonds), other III-V
materials, containing P, As, or Sb (dark blue triangles), and group IV
material SiC (light blue hexagon). Dashed lines: limits at which the
smallest of both ZPR is 25% smaller than the largest one. Dotted
lines: limits at which the Fröhlich model ZPR misses, respectively,
50% and 67% of the AHC values (note that the scales are
logarithmic). See numerical values in Supplementary Table V.

Fig. 5 Schema of the long-wave phonon-induced potential and
corresponding electronic wavefunction. Real part (oscillating with
lattice periodicity) and envelope are represented. a Adiabatic case,
b non-adiabatic, time-dependent case. In the non-adiabatic case, the
electron does not have the time to adjust to the change of potential,
see text.
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electron at the minimum of the conduction band has a Bloch type
wavefunction, with an envelope phase factor characterized by the
wavevector kc multiplying a lattice-periodic function. Its density is
lattice periodic. With such long-wavelength potential, as a
function of the amplitude of the atomic displacements, the
corresponding electronic eigenenergy changes first quadratically
(as the average of the lowering and increase of potential for this
Bloch wavefunction forbids a linear behavior except in case of
degeneracy), but for larger amplitudes, it behaves linearly, as the
electron localizes in the lowered potential region and the
minimum of the potential is linear in the amplitude of the atomic
displacements. This is referred to as “nonquadratic coupling”32. A
wavepacket is formed, by combining Bloch wavefunctions with
similar lattice periodic functions but slightly different wavevectors
(kc, kc+ q, kc− q, etc), coming from a small interval of energy
Δϵ0∝ q2∝ 1/(ΔL)2, see Fig. 5a “Wavefunction” part. This nonqua-
dratic effect is actually illustrated in Fig. 4 of ref. 23 (see the frozen-
phonon eigenvalues), as well as in Fig. 2 of ref. 32.
By contrast, in the time-dependent case, as illustrated in Fig. 5b,

the wavepacket will require a characteristic time Δτ, to form or to
displace. This will be given by the Heisenberg uncertainty relation,
Δϵ0Δτ≳ �h, hence Δτ≳ �h/Δϵ0∝ ΔL2. For long wavelengths, the
characteristic time diverges. As soon as Δτ is larger than the
phonon characteristic time τph ~ 1/ωLO, the “slow” electron will lag
behind the phonon, and the static or adiabatic picture described
above is no longer valid.
In all adiabatic approaches, either AHC or ASC, the electron is

always supposed to have the time to adjust to the change of
potential, in contradiction with the time-energy uncertainty
principle. Furthermore, the adiabatic AHC approach only considers
the quadratic region for the above-mentioned dependence of
eigenvalues with respect to amplitudes of displacements. This
results in a diverging term24. At variance with the AHC case, the
ASC approach samples a whole set of amplitudes, including
the onset of the asymptotic linear regime, in which case the
divergence does not build up. However, this ASC picture does not
capture the real physical mechanism that prevents the divergence
to occur, the impossibility for the electron to follow the phonon
dynamics, that we have highlighted above. By contrast, such
physical mechanism is present both in the non-adiabatic AHC
approach and in the (generalized) Fröhlich model: the “slow”
electron does not follow adiabatically (instantaneously) the atomic
motion. The divergence of the adiabatic AHC is indeed avoided in
the non-adiabatic picture by taking into account the non-zero
phonon frequencies.
Thus, the ASC avoids the adiabatic AHC divergence for the

wrong reason, which explains its poor predictive capability for the
more ionic materials emphasized by Fig. 2. To be clear, we do not
pretend the nonquadratic effects are all absent, but the non-
adiabatic effects have precedence, at least for materials with
significant infrared activity, and the nonquadratic localization
effects will be observed only if the electrons have the time to
physically react. The shortcomings of the ASC approach are further
developed in the Supplementary Discussion. As a consequence of
such understanding, all the results obtained for strongly infrared-
active materials using the adiabatic frozen-phonon supercell
methodology should be questioned.
For non-infrared-active materials, the physical picture that we

have outlined, namely the inability of slow electrons to follow the
dynamics of fast phonons, is still present, but does not play such a
crucial role: the electron–phonon interaction by itself does not
diverge in the long-wavelength limit as compared to the infrared-
active electron–phonon interaction, see Eq. (5), only the denomi-
nator of the Fan self-energy diverges, which nevertheless results in
an integrable ZPR24. In such case, neglecting non-adiabatic effects,
as in the ASC approach, is only one among many approximations
done to obtain the ZPR.

Beyond the discovery of the predominance of non-adiabatic
effects in the zero-point renormalization of the band gap for many
materials, in the present large-scale first-principles study of this
effect, we have established that electron–phonon interaction
diminishes the band gap by 5% to 10% for materials containing
light atoms like N or O (up to 0.7 eV for BeO), a decrease that
cannot be ignored in accurate calculations of the gap. Our
methodology, the non-adiabatic Allen-Heine-Cardona approach,
has been validated by showing that, for nearly all materials for
which experimental data exists, it achieves quantitative agree-
ment (within 25%) for this property.
We have also shown that most of the discrepancies with respect

to experimental data of the (arguably) best available methodology
for the first-principles band-gap computation, denoted GWeh,
originate from the first-principles zero-point renormalization: after
including it, the average overestimation from GWeh nearly
vanishes. There are some exceptions, materials in which transition
metals are present, for which the addition of zero-point
renormalization worsens the agreement of the band gap. For
the latter materials, we believe that the GWeh approach is not
accurate enough.

METHODS
First-principles electronic and phonon band structures
Calculations have been performed using ABINIT50 with norm-conserving
pseudopotentials and a plane-wave basis set. Supplementary Table I
provides calculation parameters: plane-wave kinetic cut-off energy,
electronic wavevector sampling in the BZ, and largest phonon wavevector
sampling in the BZ. For most of the materials, the GGA-PBE exchange-
correlation functional51 has been used and the pseudopotentials have
been taken from the PseudoDojo project52. For diamond, BN-zb, and AlN-
wz, results reported here come from a previously published work24, where
the LDA has been used, with other types of pseudopotentials.
The calculations have been performed at the theoretical optimized

lattice parameter, except for Ge for which the gap closes at such
parameter, for GaP, as at such parameter the conduction band presents
unphysical quasi-degenerate valleys, and for TiO2, as the GGA-PBE
predicted structure is unstable53. For these, we have used the experimental
lattice parameter. The case of SrTiO3 is specific and will be explained later.
Density-functional perturbation theory54–56 has been used for the

phonon frequencies, dielectric tensors, Born effective charges, effective
masses, and electron–phonon matrix elements.

First-principles calculations of zero-point renormalization
We first detail the method used for the AHC calculations. In the many-body
perturbation theory approach, an electronic self-energy Σ appears due to
the electron–phonon interaction, with Fan and Debye–Waller contribu-
tions at the lowest order of perturbation35:

ΣknðωÞ ¼ ΣFankn ðωÞ þ ΣDWkn : (7)

The Hartree atomic unit system is used throughout (�h=me= e= 1). An
electronic state is characterized by k, its wavevector, and n, its band index,
ω being the frequency. These two contributions correspond to the two
diagrams presented in Fig. 1.
Approximating the electronic Green’s function by its non-interacting KS-

DFT counterpart without electron–phonon interaction, gives the standard
result for the T= 0 K retarded Fan self-energy35:

XFan
kn

ðωÞ ¼ 1
Nq

XBZ
qj

X
n0

j k þ qn0h jHð1Þ
qj knj ij2

´
1� f kþqn0

ω� εkþqn0 � ωqj þ iη
þ f kþqn0

ω� εkþqn0 þ ωqj þ iη

� �
:

(8)

In this expression, contributions from phonon modes with harmonic
phonon energy ωqj are summed for all branches j, and wavevectors q, in
the entire Brillouin Zone (BZ). The limit for infinite number Nq of
wavevectors (homogeneous sampling) is implied. Contributions from
transitions to electronic states k þ qn0h j with KS-DFT electron energy εkþqn0

and occupation number f kþqn0 (1 for valence, 0 for conduction, at T= 0 K)
are summed for all bands n0 (valence and conduction). The Hð1Þ

qj is the
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self-consistent change of potential due to the qj-phonon35. Limit of this
expression for vanishing positive η is implied. For the Debye-Waller self-
energy, ΣDWkn , we refer to the litterature21,35.
In the non-adiabatic AHC approach, the ZPR is obtained directly from

the real part of the self-energy, Eq. (7), evaluated at ω= εkn
35:

ZPRAHCkn ¼ <eΣknðω ¼ εknÞ: (9)

If the adiabatic approximation is made, the phonon frequencies ωqj are
considered small with respect to eigenenergy differences in the
denominator of Eq. (8) and are simply dropped, while a finite η, usually
0.1 eV, is kept. With a vanishing η, the adiabatic AHC ZPR at band edges
diverges for infrared-active materials, see Supplementary Note 5.
Summing the Fan and Debye-Waller self-energies, and working also with

the rigid-ion approximation for the Debye-Waller contribution delivers the
non-adiabatic AHC ZPR, given explicitly in Eqs. (16) and (17) of ref. 24. We
do not work with the approach called dynamical AHC, also mentioned in
this work24. It corresponds to Eq. (166) of ref. 35. Both non-adiabatic and
dynamical AHC ZPR flavors were studied e.g., in ref. 23, but the comparison
with the diagrammatic quantum Monte Carlo results for the Fröhlich
model, see e.g., Fig. 1 of ref. 25, is clearly in favor of the non-adiabatic AHC
approach. Actually, this also constitutes a counter-argument to the claim
by Cannuccia and Marini17, that band theory might not apply to carbon-
based nanostructures. The cumulant expansion results for the spectral
function25 demonstrates that the dynamical AHC spectral function is
unphysical, with only one wrongly placed satellite. The physical content of
the present non-adiabatic AHC theory, focusing on the crucial role of the
LO phonons, is very different from the physical analysis based on the
dynamical AHC theory17.
The imaginary smearing of the denominator in the ZPR computation is

0.01 eV, except for SiC, where 0.001 eV is used. Other technical details are
similar to previous studies by some of ours24,25.
The dependence of the electronic structure on zero-point lattice

parameter corrections is computed from

ZPRlatkn ¼ εknðfRT¼0
i gÞ � εknðfRfix

i gÞ; (10)

where the lattice parameters fRfix
i g minimize the Born-Oppenheimer

energy without phonon contribution, while fRT¼0
i g minimizes the free

energy that includes zero-point phonon contributions, see Supplementary
Note 2.
At variance with the AHC approach, in the ASC the temperature-

dependent average band edges (here written for the bottom of the
conduction band) are obtained from

hεcðTÞi ¼ Z�1
I

X
m

expð�βEmÞhεcim; (11)

where β= kBT (with kB the Boltzmann constant), T the temperature, ZI the
canonical partition function among the quantum nuclear states m with
energies Em (ZI ¼

P
m expð�βEmÞ), and hεcim the band edge average taken

over the corresponding many-body nuclear wavefunction. At zero Kelvin,
this gives an instantaneous average of the band edge value over zero-point
atomic displacements, computed while the electron is NOT present in the
conduction band (or hole in the valence band) thus suppressing all
correlations between the phonons and the added (or removed) electron.

Convergence of the calculations
As previously noted24,25, the sampling of phonon wavevectors in the
Brillouin zone is a delicate issue, and has been thoroughly analyzed in Sec.
IV.B.2 of ref. 24. In particular, for infrared-active materials treated with the
non-adiabatic effects, at the band structure extrema, a N�1=3

q convergence
of the value is obtained. We have taken advantage of the knowledge
acquired24 to accelerate the convergence by three different methodolo-
gies. In the first one, we fit the N�1=3

q behavior for grids of different sizes,
and extrapolate to infinite Nq. In the second one, we estimate the missing
contribution to the integral around q= 0, at the lowest order, see
Supplementary Methods B, using ingredients similar to those needed for
the generalized Fröhlich model, except the effective masses. For ZnO and
SrTiO3, a third correcting scheme, further refining the region around the
band edge with an extremely fine grid, is used.

The special case of SrTiO3

While phonons in most materials in this study are well addressed within the
harmonic approximation, this is not the case for SrTiO3. This material is
found in the cubic perovskite structure at room temperature, and undergoes

a transition to a tetragonal phase below 150 K, characterized by tilting of the
TiO6 octahedra57. Within our first-principles scheme in the adiabatic
approximation, the cubic phase remains unstable with respect to tilting of
the octahedra. Quantum fluctuations of the atomic positions actually play a
critical role in stabilizing the cubic phase at high temperature58, as well as
suppressing the ferroelectric phase at low temperature59,60.
Since SrTiO3 is however a material for which large polaron effects are

clearly identified46, we decided to study it as well. We addressed the
anharmonic stabilization problem using the state-of-the-art TDep metho-
dology61. We used VASP molecular dynamics to generate 40 configurations
in a 2 × 2 × 2 cubic cell of STO at 300 K, producing 20,000 steps with 2 fs
per step and sampling the 40 configurations out of the last 5000 steps.
Then we computed the forces with ABINIT and performed TDep
calculations with the ALAMODE code62. Our calculation stabilizes the
acoustic phonon branches and yields a phonon band structure in good
agreement with experimental data.

Sources of discrepancies between experiment and theory
The anharmonic corrections to phonon frequencies are not the only
reasons for potential differences between the experimental ZPRg and our
non-adiabatic AHC ZPRg values. The following phenomena may also play a
role: (1) the rigid-ion approximation18,21; (2) the nonquadratic behavior of
the eigenenergies with collective displacements of the nuclei, in reference
to the ASC32; (3) the reliance on GGA-PBE eigenenergies and eigenfunc-
tions, instead of more accurate (e.g., GW) ones29,34; (4) self-trapping effects,
overcoming the quantum fluctuations, yielding small polarons63. There is
still little knowledge about each of these effects when correctly combined
to predict the ZPRg beyond the AHC picture.
As an example, in KEKF34, the difference between the ASC-PBE and the

ASC-GW was argued to be only a few meV, but a more careful look at their
values show that it is often bigger than 10% of the ASC-PBE. Unfortunately,
the convergence of the ASC-GW results with respect to supercell size could
not be convincingly achieved by KEKF34. It remains to be seen whether a
non-adiabatic AHC treatment based on GW matrix elements would differ
by such relative ratio, see the Supplementary Discussion. Altogether, it
would be hard to claim more than 25% accuracy with respect to
experimental data, from our non-adiabatic AHC ZPRg calculations.
Together with the experimental uncertainties, this explains our choice
for the 25% accuracy comparative limit used in Fig. 2.

DATA AVAILABILITY
The numerical data used to create all the figures in the main text have been collected
in the Supplementary Tables.
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