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ABSTRACT: We apply the topological classification theory using
chiral symmetry to graphene nanoribbons (GNRs). This approach
eliminates the requirement of time-reversal and spatial symmetry in
previous Z2 topology theory, resulting in a Z classification with the
conventional Z index in a new vector-formed expression called “chiral
phase index” (CPI). Our approach is applicable to GNRs of arbitrary
terminations and any quasi one-dimensional chiral structures,
including magnetism. It naturally solves a recent experimental puzzle
of junction states at a class of asymmetric GNR junctions. We
moreover derive a simple analytic formula for the CPI of armchair
GNRs. Since this approach enables access to electron spin behavior,
based on the CPI, we design a novel GNR with periodic localized
moments and strong spin−spin exchange coupling.
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Topology classification theory has broadly been applied to
explain many physical phenomena such as quantum Hall

insulators,1−5 quantum spin Hall insulators,6,7 topological
insulators, and superconductors.8−12 However, the power of
topology theory has not been as widely used in quasi one-
dimensional (1D) systems. The recently developed bottom-up
molecular precursors technique enables the synthesis of
atomically precise graphene nanoribbons (GNRs).13−16

These structurally precise 1D materials, with different
structures, have been predicted to possess band gaps due to
quantum confinement and interaction effects,17,18 while
graphene is a semimetal. Since the discovery of distinct
topological phases in GNRs,19 topology classification in GNRs
has proven to be highly successful in predicting the emergence
of topological in-gap states localized at the boundaries and
junctions of such GNRs.19−22 However, for example, the
topological origin of the observed robust junction states
between a bearded termination of armchair GNRs23 (AGNRs)
and of the formation of a metallic 5-sawtooth-GNRs (5-
sGNRs) based on in-gap states24 between segments of AGNRs
is still unclear. In the former kind of junctions [Figure 1c], as
spatial symmetry in the commensurate unit cell on both sides
of the junction does not exist, the previous Z2 topology theory
based on spatial symmetry19 loses its predictive power. To
overcome this conceptual issue, we utilize the topology
classification theory using chiral symmetry11,12,25,26 and apply
this approach to GNRs. Chiral symmetry generally exists in a
honeycomb structure of similar atoms if the second-nearest-
neighbor interaction can be neglected. As discussed below, we
note that spatial and time-reversal symmetries can exist exactly

in many 1D structures (even with a strong second-nearest-
neighbor interaction); however, chiral symmetry can be used
as an excellent approximate symmetry for GNR structures,
especially when other symmetries do not exist.
Mathematically, chiral symmetry for a system with

Hamiltonian H refers to having an operation Γ satisfying11

H H , 1, 11 2= −Γ Γ ΓΓ = Γ =− † (1)

The operation Γ does not depend on any specific spatial
coordinates, and thus it can easily be preserved when a crystal
system is terminated at a boundary. Chiral symmetry exists in
bipartite lattices, in which the system can be divided into two
sublattices, A and B, such that after an appropriate energy shift
there are only nonzero interaction matrix elements between
basis functions on the different sublattices. For such a system,
eq 1 is satisfied by using an atomic-site orbital basis and setting
Γ to a diagonal matrix with matrix elements equal to 1 for the
A sublattice part and −1 for the B sublattice part. Graphene is
a bipartite lattice system within a tight-binding formalism, with
only first-nearest-neighbor hopping included. Within this spirit,
we may analyze the electron topological properties of GNRs
orany other approximate bipartite 1D structures, using chiral

Received: September 1, 2020
Revised: December 7, 2020
Published: December 15, 2020

Letterpubs.acs.org/NanoLett

© 2020 American Chemical Society
197

https://dx.doi.org/10.1021/acs.nanolett.0c03503
Nano Lett. 2021, 21, 197−202

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
C

A
LI

FO
R

N
IA

 B
ER

K
EL

EY
 o

n 
O

ct
ob

er
 6

, 2
02

1 
at

 1
9:

22
:4

3 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jingwei+Jiang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Steven+G.+Louie"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.nanolett.0c03503&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03503?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03503?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03503?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03503?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03503?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/nalefd/21/1?ref=pdf
https://pubs.acs.org/toc/nalefd/21/1?ref=pdf
https://pubs.acs.org/toc/nalefd/21/1?ref=pdf
https://pubs.acs.org/toc/nalefd/21/1?ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.nanolett.0c03503?ref=pdf
https://pubs.acs.org/NanoLett?ref=pdf
https://pubs.acs.org/NanoLett?ref=pdf


symmetry, and treat subsequently small second-nearest-
neighbor or other chiral-symmetry-breaking effects perturba-
tively.
To derive the bulk index for the GNRs and other bipartite

quasi-1D systems, we use a first-nearest-neighbor tight-binding
model and follow the standard Fermion-projector method.11,12

The Fermion projector is a Hermitian operator defined as

Qk
n

N

nk nk
m

N

mk mk

unocc occ

∑ ∑ψ ψ ψ ψ= | ⟩⟨ | − | ⟩⟨ |
(2)

where |ψnk⟩ stands for Bloch states of band n and wavevector k.
Nunocc is the number of unoccupied bands, and Nocc = Nunocc is
the number of occupied bands. Qk can be understood as a
continuous deformation of the original Hamiltonian in k-space
Hk, which has a gapped spectrum around the charge-neutrality
energy, by moving energies of the occupied bands to −1 and
unoccupied ones to +1, while keeping the eigenvectors
unchanged. Under chiral symmetry, Qk could be brought
into an off-diagonal form using localized site basis (see eq 5
below).
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Combined with the above properties, it was proved that Uk
belongs to a unitary group U(Nocc); the classification is given
by the homotopy group π1(U(Nocc)) = Z, and the bulk index is
the first odd Chern number written as25,26

U
i

Tr U U kCh ( )
2

( ) d1
1DBZ

k k k∫π
= − ∂†

(4)

Although eq 4 has been broadly used in mathematics, it is
inconvenient to use the matrix form to evaluate physical
quantities. Here, we use the properties of the wave functions
under chiral symmetry to bring the bulk index given in eq 4
equivalently into a vector form, which we shall call such bulk
index for reasons below as a chiral phase index (CPI).

From eq 1, a Hamiltonian with chiral symmetry anti-
commutes with the chiral operator Γ of a bipartite lattice. This
brings the following properties to the wave functions.
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− (5)

The subscripts E and −E represent the eigenvalues of the
Hamiltonian H. αnk and βnk are vectors representing the A
sublattice components and the B sublattice components,
respectively. Combining eqs 2−5 and using the orthogonaliza-
tion properties of wave functions (see the Supporting
Information), we derive from eq 4 the CPI.

i
k
jjj

y
{
zzzZ

i
u u kinter d

n occ 1DBZ
nk k nk∫∑

π
= − ⟨ |Γ∂ | ⟩

∈ (6)

Here inter means taking only the intercell part of the above
expression.27 unk is the periodic part of the Bloch states. Using
eq 5, we may write the Z index as

Z
i

kd ( )
n1DBZ occ

nk k nk nk k nk∫ ∑
π

α α β β= − ∂ − ∂
∈

† †

(7)

Eq 7 requires only the knowledge of the occupied wave
functions, rather than full information on the Hamiltonian
matrix, and it is very convenient in calculating the bulk-index
analytically. We want to point out that the CPI is very different
from that of an index obtained with the intercell part of the
Zak phase used in the previous work;19,28,29 namely, the
i n t e r c e l l Z a k p h a s e i s g i v e n b y

( )u u kinter dn occ 1DBZ nk k nk∫∑ ⟨ |∂ | ⟩∈ . The CPI is determined

by the dif ference between the intercell part of the Zak phase
contributed by the A sublattice and that contributed by the B
sublattice rather than the sum of these two parts, and it yields a
Z classification rather than a Z2 classification.
An important general consequence of eq 6 is that the CPI is

fully gauge-invariant (see the Supporting Information) and
only defined for the charge neutrality gap, since chiral
symmetry in the form of eq 3 has been used.

Figure 1. AGNR is specified by the number of carbon rows N forming its width, labeled as N-AGNR. (a) Structure of 7-AGNR (bold region) from
the graphene backbone background. a is the length of the lattice vector of graphene. The σ-bond of the edge atoms of GNRs are typically passivated
by hydrogen atoms in experiment. (b) Unit cell of a 7-AGNR with zigzag termination, the rows with two carbon connected by a σ-bond within the
unit cell (connected carbons), and the rows with two carbon not connected by a σ-bond within the unit cell (not connected carbons) are indicated.
This case corresponds to having three rows of not-connecting pairs, Nnotco = 3. (c) An asymmetric junction of 7-AGNR and 9-AGNR with bearded
termination. The corresponding commensurate bulk unit cells for the two segments are shown on the sides, and the 5% isosurface of the wave
function square (blue color) of the in-gap junction state from DFT-LDA calculation is shown in the middle.
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As a gauge-invariant quantity, the CPI is expected to be a
measurable quantity. While the Zak phase in 1D connects with
the modern theory of polarization,30 the CPI can be related to
the difference between the electric dipole moments per unit
cell of the two sublattices. However, a most straightforward
way of measuring CPI would be by counting the number of
topological end states at the end of the system with vacuum.
This quantity is connected to the bulk index (of a unit cell
commensurate to the boundary termination) by using the
bulk-boundary correspondence given in ref 26 as Zbulk = N+ −
N− for a system that is terminated to the right. N+(−) is the
number of zero mode with positive (negative) chirality. States
with positive (negative) chirality localize only on the A (B)
sublattice. (For an AGNR, the convention used here is that, for
any carbon pairs connected by horizontal σσ-bond, the atom
on the left is denoted as sublattice A, and that on the right is
denoted as sublattice B. See Figure 1b.) The number of
protected in-gap end states would be equal to the number of
midgap states of one chirality in excess over the other chirality,
since pairs of states of opposite chirality can interact through
perturbations at the end and move out of the bulk gap. In
short, through the bulk-boundary correspondence, the CPI
contains two pieces of important information at the
termination of the system. First, |Z| gives the number of end
states that are protected by a chiral symmetry, and second,
sgn(Z) gives the chirality of the end states.26 Moreover, the
bulk-boundary correspondence applies when two such bulk
materials with distinct CPIs are joined and topological-
protected junction states are formed. One can show that the
number of topological junction states, as two bulk structures
with bulk index Zbulk

left and Zbulk
right are joined, is N+ − N− = Zbulk

left −
Zbulk
right. The nature of topology classification ensures that these

junction states are immune to any perturbations preserving
chiral symmetry, and they remain qualitatively unchanged
under perturbations violating chiral symmetry that are
relatively small in strength compared to the band gap.
We now obtain an explicit expression for the CPI of AGNRs

with different widths and end terminations using eq 7. The
tight-binding wave functions of the GNRs may be analytically
calculated from a linear combination of graphene’s wave
functions with proper boundary conditions19 (see the
Supporting Information). After the resulting wave functions
are inserted into eq 7, a general formula of the Z index for an
arbitrary AGNR with any commensurate unit cell is derived as
(see the Supporting Information)

Å
Ç
ÅÅÅÅÅÅÅ

Ñ
Ö
ÑÑÑÑÑÑÑZ N

N
3notco= −

(8)

Here N is the total number of rows of carbon atoms forming
the width of the AGNR,17 and Nnotco is the number of rows of
atoms with carbon pairs not connected by σ-bonds within the
specific unit cell that is commensurate to an anticipated
termination. The topless brackets denote the floor function,
which takes the largest integer less than or equal to the value
within the brackets. The definition of connected carbon pairs
(with distance close to a/ 3 ) and unconnected pairs (with
distance close to a3 /2) is shown in Figure 1b. Eq 8 is
deceptively compact and simple, as well as easy to evaluate, yet
an essential finding of the analysis.
With the Z classification using chiral symmetry, the in-gap

junction states localized at the asymmetric junction in Figure 1
formed by bearded termination of 7-AGNR and 9-AGNR

observed in experiment23,24 could now be well-explained. The
bearded 7-AGNR unit cell has Z = −2, while the bearded 9-
AGNR unit cell has Z = −3, giving rise to one protected in-gap
state at the junction as confirmed by our explicit density
functional theory (DFT) calculations within the local-density
approximation (LDA) as implemented in the Quantum
Espresso package.31 Since Zbulk

left − Zbulk
right = +1, the junction

state has amplitudes only on the A sublattice (Figure 1c).
Equation 8 can be applied to AGNRs of any general

termination types that preserve chiral symmetry, not limited to
the common studied zigzag, zigzag′, or bearded types.19 As
shown in Figure 2a, the zigzag termination of 7-AGNR has Z =

1, and the “bullet” termination of 9-AGNR has Z = −1. When
terminated to the vacuum, one in-gap end state exists at the
termination of each structure. Nevertheless, the two corre-
sponding bulk structures belong to different classes because of
the opposite signs of the CPI. Two topologically protected
junction states should occur when these two structures are
joined, as confirmed by a DFT-LSDA calculation (Figure 2b).
A simple physical understanding of why these two in-gap
localized states do not hybridize significantly with each other at
the junction and move out of the gap is that they are localized
on the same sublattice. Any interaction allowing hopping
between the same sublattice would have to break chiral
symmetry. In principle, for physical AGNR junctions, there
may be a small energy splitting between the two junction states
due to second-nearest-neighbor hopping. Our DFT-LSDA
results show that such a splitting due to the breaking of chiral
symmetry is minimal in this case.
Remarkably, if the electron spin degree of freedom is

considered, the junction states depicted in Figure 2b would
couple to each other ferromagnetically if one can arrange for

Figure 2. (a, left) A 7-AGNR with zigzag termination is shown; the
unit cell commensurate with the termination has three rows of
unconnected carbons pairs, and Z = 1. (a, right) A bullet termination
of 9-AGNR is shown. Its commensurate unit cell has two rows of
unconnected carbons pairs, and Z = −1. (b) Joining the two
structures in (a) results in a junction with ΔZ = 2, giving rise to two
in-gap junction states. The 5% isosurface of the wave function square
of the two junction states from a DFT-LSDA (LSDA = local-spin-
density approximation) calculation is shown in blue. Here only the
occupied spin-up states are shown. One state localizes in the 7-AGNR
region; the other localizes in the 9AGNR region.
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the atomic structure of such a junction to have locally a
sublattice imbalance of two carbon atoms, according to Lieb’s
theorem.32 And if such junctions were repeated into a 1D
superlattice, a 1D ferromagnetic spin chain would form. The
inset in Figure 3a illustrates the unit cell of such a superlattice

we designed. Since each superlattice unit cell has a sublattice
imbalance of two atoms, we have a net magnetization of 2 bohr
magnetons per unit cell. As normally the onsite Coulomb U is
small in strength compared to the hopping term t in a π-orbital
system, we use a mean-field calculation to manifest the effect of
a Hubbard model considered in Lieb’s theorem. Here we
perform a DFT-LSDA calculation and find that the magnet-
ization is mainly contributed by the two occupied symmetry-
protected junction states (Figure 3), in agreement with the
conclusion of our topology theory and Lieb’s theorem. Since

the direct exchange coupling J between two electron spins is
proportional to their wave function overlap, having the two
states mainly localized near the same junction is expected to
give rise to a strong exchange coupling. To analyze the
magnetic properties of such a chain, we map the LSDA results
to those of a 1D Ising model Hamiltonian with two spins per
unit cell.

H J s s J s s
i

i z i z i z i z1 1 2 2 2 1,1∑= ̂ ̂ + ̂ ̂+
(9)

where i denotes the unit cell index. To extract the coupling
strengths J1 and J2 from first-principles calculations, we
consider three different spin configurations shown in Figure
4b and perform DFT-LSDA studies. The three configurations
correspond to states with total energy per unit cell of J J1

4 1
1
4 2+ ,

J J1
4 1

1
4 2− − , and J J1

4 1
1
4 2− , respectively. Using the total energy

differences from our first-principles calculations under con-
strained LSDA, we obtain J1 = −87 meV/ℏ2 and J2 = −30
meV/ℏ2, making them parameters for a stronger ferromagnetic
(FM) 1D system compared to what has been achieved
before.33 Since exchange coupling decays exponentially with
distance,19 we estimate the second-nearest neighbor exchange
to be around −6 meV/ℏ2 and can be ignored in our model.
Because of thermal fluctuation effects, it is known that there

is no long-range magnetic order at finite temperature in 1D
structures with isotropic spin interactions, according to the
Mermin-Wagner theorem.34 Thus, the meaningful quantity
one should consider is the spin−spin correlation length. As a
rough estimate of this quantity, we may use a canonical
ensemble of 1D Ising model with partition function.

Z e
s

H s( )

ai

ai∑= β

{ }

− { }

(10)

The spin−spin correlation length, defined as a = −R/
ln⟨sαisα, i+R⟩, where R is the distance between two spins and can
be calculated analytically by treating the spins classically.
Evaluating the expectation value and expressing it as a function
of the coupling strengths and temperature, we have35

Figure 3. (a) Computed DFT-LSDA band structure of a periodic
GNR spin chain structure (unit cell shown by insert). Top of the
occupied bands is set at zero. The in-gap bands (in window −0.1−0.3
eV) are nearly flat, indicating negligible hopping between neighboring
junction states. A spin splitting of 0.2 eV occurs between oppositely
oriented spin bands; the two majority-spin (spin-up) bands are
occupied, leaving their spin-down counterparts empty. Each unit cell
has 2 bohr magnetons of magnetization. (b) The isosurface at 5% of
the wave function square of the two occupied junction states at k = Γ
is shown (blue color). One is localized in the 9-AGNR region, while
the other is localized in the 7-AGNR region.

Figure 4. (a) Schematic of a 1D GNR spin chain (Figure 3) and exchange interactions (J1 and J2). (b) Three different spin configurations are
considered in first-principles DFT-LSDA calculations to extract the exchange coupling parameters. (c) Spin−spin correlation length (in unit of
lattice vector and log scale) as a function of temperature from a classical canonical ensemble of 1D Ising model.
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a
J J

2
ln( tanh ) ln( tanh )1 2β β

= −
| | + | | (11)

where β = 1/kBT. The temperature dependence of the
correlation length in this model is plotted in Figure 4c. At 3
K (at which low temperature Scanning Tunneling Microscope
(STM) measurements typically are done), the spin correlation
length is expected to be at the tens-of-nanometers scale.
Although constraining the spin direction in an Ising model
would overestimate the spin−spin correlation length, the
spin−spin correlation length would still be over tens of
nanometers, considering a classical Heisenberg model.36 The
strong coupling strength and long correlation length of such
designed GNRs should open up applications to spin qubits37

and spin-dependent transport38 through nanostructures.
As a final remark, we point out that the present classification

theory, together with our simple analytic expression for Z of
AGNRs, could be applied generally to generate a variety of
spin configurations. One could design junctions with arbitrary
numbers of coupled localized spin states, and, by controlling
how the junctions are connected, either FM or anti-FM
coupling between junctions could be realized. The theory may
also be applied to other 1D chiral structures, such as the 1D
chiral GNRs, which could be synthesized.39

■ METHOD

First-principles DFT calculations in the local-density approx-
imation and local spin-density approximation are done using
the Quantum Espresso packages.31 A supercell geometry is
used with a 15 Å vacuum spacing applied to each of the
nonperiodic directions of the nanoribbons to avoid interaction
between replicas. The atomic geometry of the junction and
spin chain structure is fully relaxed, until all components of the
forces on each atom are smaller than 0.01 eV/Å. Scalar
relativistic and norm-conserving pseudopotentials of C and H
are used.31

After this paper was written and submitted to the arXiv, we
became aware of another work on the arXiv40 that also uses
chiral symmetry to classify 1D bipartite models.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03503.

Topology classification using chiral symmetry and spin
correlations in graphene nanoribbons. Deriving the
chiral phase index. Proving gauge-invariant of CPI.
General bulk-index formula for the case of AGNRs.
Isosurface of spin-down states of a periodic spin-chain.
Stability of the electronic structure upon charge doping
for a sawtooth AGNR spin-chain structure (PDF)

■ AUTHOR INFORMATION

Corresponding Author
Steven G. Louie − Department of Physics, University of
California, Berkeley, California 94720, United States;
Materials Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States;
orcid.org/0000-0003-0622-0170; Phone: +1-510-642-

1709; Email: sglouie@berkeley.edu

Author
Jingwei Jiang − Department of Physics, University of
California, Berkeley, California 94720, United States;
Materials Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States;
orcid.org/0000-0002-0949-4401

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.nanolett.0c03503

Author Contributions
S.G.L. conceived and directed the research, and J.J. developed
the analytic chiral topological index for GNRs and carried out
the calculations.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We acknowledge helpful discussions with F. Zhao, Z. L. Li, M.
Wu, and T. Cao. This work is supported by Office of Naval
Research MURI under Award No. N00014-16-1-2921 (top-
ology theory) and by the National Science Foundation DMR-
1926004 (LSDA simulations and spin physics analysis).
Computational resources were provided by the Department
of Energy at Lawrence Berkeley National Laboratory’s NERSC
facility, the National Science Foundation through XSEDE
resources at NICS, and through Frontera computing project at
the Texas Advanced Computing Center under Award No.
OAC-1818253.

■ ABBREVIATIONS
GNRs, graphene nanoribbons
CPI, chiral phase index
1D, one-dimensional
AGNRs, armchair graphene nanoribbons
5-sGNRs, 5-sawtooth GNRs
DFT, density functional theory
LDA, local-density approximation
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FM, ferromagnetic
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(40) Guzmań, M.; Bartolo, D.; Carpentier, D. Geometry and
Topology Tango in Chiral Materialsarxiv[cond-mat.str-el], February
7, 2020, 2002.02850, ver. 1, https://arxiv.org/abs/2002.02850
(accessed 2020-11-23).

Nano Letters pubs.acs.org/NanoLett Letter

https://dx.doi.org/10.1021/acs.nanolett.0c03503
Nano Lett. 2021, 21, 197−202

202

https://dx.doi.org/10.1063/1.531675
https://dx.doi.org/10.1063/1.531675
https://dx.doi.org/10.1103/PhysRevB.78.195125
https://dx.doi.org/10.1103/PhysRevB.78.195125
https://dx.doi.org/10.1063/1.3149481
https://dx.doi.org/10.1021/nn401948e
https://dx.doi.org/10.1021/nn401948e
https://dx.doi.org/10.1038/nature09211
https://dx.doi.org/10.1038/nature09211
https://dx.doi.org/10.1038/nature17151
https://dx.doi.org/10.1038/nature17151
https://dx.doi.org/10.1021/acsnano.6b06405
https://dx.doi.org/10.1021/acsnano.6b06405
https://dx.doi.org/10.1103/PhysRevLett.97.216803
https://dx.doi.org/10.1103/PhysRevLett.97.216803
https://dx.doi.org/10.1103/PhysRevLett.99.186801
https://dx.doi.org/10.1103/PhysRevLett.119.076401
https://dx.doi.org/10.1103/PhysRevLett.119.076401
https://dx.doi.org/10.1103/PhysRevLett.119.076401
https://dx.doi.org/10.1021/acs.nanolett.8b03416
https://dx.doi.org/10.1021/acs.nanolett.8b03416
https://dx.doi.org/10.1021/acs.nanolett.8b03416
https://dx.doi.org/10.1038/s41586-018-0376-8
https://dx.doi.org/10.1038/s41586-018-0376-8
https://dx.doi.org/10.1038/s41586-018-0375-9
https://dx.doi.org/10.1038/s41586-018-0375-9
https://dx.doi.org/10.1126/science.aay3588
https://dx.doi.org/10.1126/science.aay3588
https://dx.doi.org/10.1088/1367-2630/12/6/065010
https://dx.doi.org/10.1088/1367-2630/12/6/065010
https://dx.doi.org/10.1103/PhysRevB.95.035421
https://dx.doi.org/10.1103/PhysRevB.95.035421
https://dx.doi.org/10.1021/acs.nanolett.8b03417
https://dx.doi.org/10.1021/acs.nanolett.8b03417
https://dx.doi.org/10.1103/PhysRevB.84.195452
https://dx.doi.org/10.1103/PhysRevB.84.195452
https://dx.doi.org/10.1103/RevModPhys.66.899
https://dx.doi.org/10.1103/RevModPhys.66.899
https://dx.doi.org/10.1088/0953-8984/21/39/395502
https://dx.doi.org/10.1088/0953-8984/21/39/395502
https://dx.doi.org/10.1103/PhysRevLett.62.1927.5
https://dx.doi.org/10.1038/s41586-018-0154-7
https://dx.doi.org/10.1038/s41586-018-0154-7
https://dx.doi.org/10.1103/PhysRevLett.17.1133
https://dx.doi.org/10.1103/PhysRevLett.17.1133
https://dx.doi.org/10.1103/PhysRevLett.17.1133
https://dx.doi.org/10.1103/PhysRevLett.100.047209
https://dx.doi.org/10.1103/PhysRevLett.100.047209
https://dx.doi.org/10.1038/nphys544
https://dx.doi.org/10.1038/nphys544
https://dx.doi.org/10.1088/1742-6596/193/1/012100
https://dx.doi.org/10.1088/1742-6596/193/1/012100
https://dx.doi.org/10.1021/acsnano.6b05269
https://dx.doi.org/10.1021/acsnano.6b05269
https://arxiv.org/abs/2002.02850
pubs.acs.org/NanoLett?ref=pdf
https://dx.doi.org/10.1021/acs.nanolett.0c03503?ref=pdf

