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Abstract—Microgrid systems can provide extensive informa-
tion using their measurement units to the operators. As microgrid
systems become more pervasive, there will be a need to adjust the
information an operator requires to provide an optimized user-
interface. In this paper, a combinatorial optimization strategy
is used to provide an optimal user-interface for the microgrid
operator that selects information for display depending on the
operator’s trust level in the system, and the assigned task.
We employ a method based on sensor placement by capturing
elements of the interface as different sensors, that find an
optimal set of sensors via combinatorial optimization. However,
the typical inverter-based microgrid model poses challenges for
the combinatorial optimization due to its poor conditioning. To
combat the poor conditioning, we decompose the model into its
slow and fast dynamics, and focus solely on the slow dynamics,
which are more well conditioned. We presume the operator is
tasked with monitoring phase angle and active and reactive power
control of inverter-based distributed generators. We synthesize
user-interface for each of these tasks under a wide range of
trust levels, ranging from full trust to no trust. We found
that, as expected, more information must be included in the
interface when the operator has low trust. Further, this approach
exploits the dynamics of the underlying microgrid to minimize
information content (to avoid overwhelming the operator). The
effectiveness of proposed approach is verified by modeling an
inverter-based microgrid in Matlab.

Index Terms—Distributed generator, human automation, in-
verter, microgrid, sensor selection, user interface design

I. INTRODUCTION

Microgrids have gained much attention recently because

they accommodate reliable and sustainable delivery of power

to remote areas and critical power infrastructure. Microgrids

are the main building blocks of smart grids, and will play a

critical role in increasing the resilience of electric power grids.

In a smart power infrastructure, metering and measurement

units and sensors are placed all over the system to monitor
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Fig. 1: Operator and microgrid interface for monitoring the

system measurements as well as sending the required com-

mands.

microgrid in real-time and provide the required information

for the governing microgrid control system as well as the

supervising human operator [1]–[4].

The microgrid control is governed by a hierarchical con-

trol system that consists of primary, secondary, and tertiary

control levels. The microgrid operator oversees the microgrid

interaction with the upstream grid, and determines the specific

setpoints for the highest control hierarchy, i.e., tertiary control

level [5]. With multiple distributed generators (DGs) and loads,

the microgrid operator must maintain situational awareness

over the entire microgrid, including bus angles, active and

reactive power flows from DGs and on the lines, bus voltage

magnitudes, and other variables. During extreme events, the

operator may experience excessive stress which may impair

their decisions in making the right decisions [6], [7].

Information overload is a non-trivial problem, in which the

operator is unable to use any of the displayed information,

because it sheer volume is over-whelming. Hence, we seek to

identify the “right” information for the operator, for different

tasks and scenarios. Selection of information for display to

the operator must facilitate situational awareness, by enabling
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reconstruction and prediction of variables relevant for comple-

tion of a desired task. That is, the information displayed must

be chosen in accordance with the under-lying dynamics of

the microgrid. Further, selection of information is dependent

upon the operator’s current level of trust in the automation.

We presume a feedback linearization structure, in which

the automation accomplishes low-level control necessary to

complete the desired tasks, so that the operator focuses on

high level reference tracking objectives (see Figure 1). An

operator that has a high level of trust in the system would be

amenable to delegating more authority to the automation, and

conversely, an operator with low trust will want to maintain

more directed control and supervision.

The main contribution of this paper is the application of

a technique for synthesis of optimal dynamics-driven user

interfaces that are responsive to the operator’s trust in the

underlying microgrid automation. The theory for this approach

was developed in [8]. However, the typical microgrid model

creates numerical difficulties because microgrid dynamics are

poorly conditioned, making rank calculations necessary for

feedback linear controllers difficult to compute. Hence, we

implement a decomposition into fast and slow dynamics

to improve numerical conditioning, and a user-interface is

designed that optimizes the information an operator needs.

This optimization is assured to produce a minimal amount of

information for the operator to complete the assigned tasks,

while satisfying constraints for situational awareness and trust.

The rest of this paper is organized as follows: Section

II covers the microgrid control systems and introduces the

microgrid model. In Section III, the operator’s tasks are

presented and discussed. The interface design framework is

presented in Section IV, along with our state decomposition.

In Section V, we present our optimization results and discuss

implications for microgrids.

II. PRELIMINARIES OF MICROGRID CONTROL SYSTEM

AND DYNAMICAL MODEL

A. Microgrid Control System

The microgrid control system is implemented through a

hierarchical control structure consisting of primary, secondary,

and tertiary control levels. The role of the primary control is to

facilitate a smooth transition from grid-connected to islanded

mode. Primary control is usually implemented through the

voltage and frequency droop techniques which have a key

role for maintaining voltage and frequency stability of the

microgrid after islanding occurs. The secondary control level

is responsible for voltage regulation and frequency restoration

after the primary control is applied. The secondary control

has a slower response compared to primary control and

is expected to regulate microgrid’s voltage and restore its

frequency in less than a minute. Finally, tertiary control is

utilized to control the active and reactive power flow between

microgrid and upstream grid in the grid-connected mode [5].

Each microgrid can be also supervised and controlled by the

microgrid operator that oversees the microgrid interaction with

Fig. 2: Structure of an inverter-based microgrid [9]

.

Fig. 3: Individual DG diagram, a closer view of each DG

inverter and its control loops.

the upstream grid and determines the specific setpoints for the

highest control hierarchy, i.e., tertiary control level.

B. Microgrid Dynamical Model

The microgrid model includes the dynamics of distribution

generators, lines, and loads. A typical microgrid system was

modeled with three distribution generators (DGs), two lines,

and two loads. We consider a microgrid structure from [9]

redrawn in Figure 2. The individual DG inverter block diagram

are shown in Figure 3, based on the model we use from [9].

1) Inverter-based DG Model: The individual inverter-based

DG model is comprised of the internal power, voltage, and

current controllers as well as an output inductor-capacitor (LC)

filter and output coupling inductance as seen in Figure 3,

details are provided in [9]. The DG inverter model can be

described by the following equation

ẋinvi = AINV iΔxinvi +BINV iΔvbDQi

+BiwcomΔwcom
(1)

where

Δxinvi = [Δδi ΔPi ΔQi Δφdi Δφqi

Δγdi Δγqi Δildi Δilqi

Δvodi Δvoqi Δiodi Δioqi]
�.

(2)

The matrices AINV i, BINV i, and Biwcom from equation (1)

are given in [9]. In equation (1) the first three state variables

are phase angle Δδi, active power ΔPi, and reactive power

ΔQi. The state variables for the voltage controller are Δφdi

and Δφqi. The current controller state variables are Δγdi and

Δγqi. Then the output inductor currents are Δildi and Δilqi.
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The last states are the output voltage and output current of the

DG inverter, Δvodi, Δvoqi, and Δiodi, Δioqi, respectively.

2) Network Model: The network model, consisting of two

lines, is described by the following equations for direct and

quadrature components of current of the line connecting nodes

j and k.

i̇lineD = −rline

Lline
ilineD + wilineQ + 1

Lline
vbDj

− 1
Lline

vbDk

i̇lineQ = −rline

Lline
ilineQ − wilineD + 1

Lline
vbQj

− 1
Lline

vbQk

(3)

where ilineD and ilineQ represent the bus current, and vbD
and vbQ represent the bus voltage. The line resistance is

represented by rline, Lline is the line inductance, and ω is

the line frequency.

3) Load Model: An resistive/inductive load model is chosen

to represent each of the two loads on the microgrid, and is

described by

i̇loadD = −rload

Lload
iloadD + wiloadQ + 1

Lload
vbD

i̇loadQ = −rload

Lload
iloadQ − wiloadD + 1

Lload
vbQ

(4)

where iloadD and iloadQ represent the load current, and vbD
and vbQ represent the load voltage. Then rload represents the

load resistance, Lload represents the load inductance, and ω is

the frequency.

4) Comprehensive Microgrid Model: The comprehensive

inverter-based microgrid dynamical model is composed of the

inverter, network, and load dynamics and is described by

ΔẋMG = AMGΔxMG +BMGuMG (5)

where ΔxMG = [ΔxT
INV ,ΔiTlineDQ,ΔxT

loadDQ]
T . States

xINV , ilineDQ, and iloadDQ represent the DG, line, and

load dynamics in the D-Q reference frame, respectively. The

matrices AMG and BMG (5) are extracted from [9]. The term

uMG includes the frequency and voltage droop references of

all DGs as described in [9].

III. MICROGRID OPERATOR TASKS DESCRIPTION

We consider three tasks, namely, (1) DG inverter phase

angle monitoring, (2) active power monitoring, and (3) reactive

power monitoring. Within each task we consider sub-tasks

that depend on which DG is chosen. These tasks have been

selected because they are are all critical in maintaining a

healthy microgrid system.

Within each task, we consider that the microgrid operator

may have different levels of trust in the system. Trust levels

can range from full trust to no trust, along a graded scale

which can be correlated with known metrics to assess trust.

The operator’s trust levels may be dependent on their previous

experience in working with a microgrid, their disposition, as

well as ongoing, scenario dependent factors. For example, a

novice operator may be less willing to fully trust the system,

whereas an expert may be comfortable using less information,

and relying on the automation as needed.

A. DG Phase Angle Monitoring

We presume the microgrid operator monitors the phase

angles (δi) of DG2 and DG3 with respect to DG1 as the

reference phase angle, separately, to ensure that they are within

stables ranges. If one of them violates the stable ranges, this

can be considered as sign of microgrid instability and remedial

actions would be required to push the microgrid back to a

stable operating condition. In the microgrid dynamical model

discussed in the previous subsection, we assume that DG1 is

the reference DG, and the phase angle of all other DGs are

compared with respect to the phase angle of DG1.

B. DG Active Power Monitoring

The next class of tasks is related to active power (Pi)

monitoring of each DG. The microgrid operator monitors the

active power of each DG, to evaluate the total amount of gen-

eration available in the microgrid. The available active power

(or real power) generation in a microgrid can play a critical

role in providing microgrid frequency stability and ensures the

reliable supply of power to the microgrid’s customers.

C. DG Reactive Power Monitoring

The final class of tasks related to the reactive power (Qi) of

a grid system. The microgrid operator monitors the reactive

power of each of the DGs to evaluate the total amount of

reactive power generation available in the microgrid. The

available reactive power generation in a microgrid can play

a critical role in the microgrid voltage stability.

IV. USER INTERFACE DESIGN VIA SENSOR SELECTION

A. MIMO Input-Output Linearization for LTI Systems

An approach was developed in [8] to pose the user-interface

design problem as a combinatorial optimization problem,

based on methods for sensor selection. For the system (14),

consider an output

y = CSx (6)

with output matrix CS , a matrix whose rows consist of

the elements si ∈ S , such that the total number of outputs

associated with CS is p = |S|. We denote the set of all sensors

as S = {s1, · · · , s|S |} for a finite |S | ∈ N.

We presume that MIMO feedback linearization is used for

control, with the same outputs as are available in the interface.

In brief, given an output matrix CS , we construct a similarity

transform PS ∈ R
n×n,[

ξ(t)
η(t)

]
= PSx(t) =

[
TS
T⊥
S

]
x(t) (7)

that results in observable states ξ(t) ∈ R (TS) and un-

observable states η(t) ∈ R (
T⊥
S
)
. The observable states are

synonymous with those sensors presented in the interface. The
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linear transformation TS is defined using Tsi for some si ∈ S ,

as

Tsi =

[
si (s

�
i A0)

�
(s�i A

2
0)

�
. . . (s�i A

γ(si)−1
0 )

�
]�

, (8)

TS = basis

(
R
([

T�
s1 T�

s2 . . . T�
s|S|

])�)
, (9)

where γ : S → N[1,n] is the relative degree of the MISO

system with the single output s�i x(t), and R(·) is the range

space operator. By (8), R(TS) is the state subspace spanned

by the outputs characterized by y(t) = CSx(t) and its higher

derivatives.

B. Fast-slow dynamics

One of the major challenges in implementing the approach

above is the numerical ill-conditioning of the microgrid model

(28). Every possible set of sensors leads to a different feedback

linearized controller, and requires calculations of the rank

of (8). Rank operations are known to be non-numerically

robust to ill conditioned system matrices. Before proceeding

with the approach described, the model is first simplified and

transformed, to mitigate the numerical challenges associated

with the required rank calculation.

As described in the previous section, the microgrid dynam-

ical model is formulated using d-q reference frame theory. In

this model, the reference frame of DG1 is being considered

to be the common reference frame. As such, the phase angle

of DG1 is always constant and equal to zero. The DG1 phase

angle is the first state variable in (5). In order to avoid an

unwanted pole at the origin, without loss of generality, (5)

can be rewritten as

Δẋ′
MG = A′

MGΔx′
MG +B′

MGuMG (10)

where x′
MG is extracted by removing the first element of

xMG; A′
MG is derived by removing the first row and column

of AMG; B′
MG is derived by removing the first row of BMG.

The condition number of the model described by (5) was

1.4409e22, but the simplified model (10) has condition number

1.4357e13.

We then employ an approach described by Kokotovic and

Haddad [10] to separate equation (10) into two time scales,

corresponding slow and fast modes of the system.

ẋ = A11x+A12z +B1u (11)

μż = A21x+A22z +B2u (12)

As in [10], when the positive singular perturbation param-

eter μ is presumed to be very small, (12) becomes

0 = A21x̄+A22z̄ +B2ū (13)

Hence, for A22 that is invertible, a substitution of (z̄) into

(11) results in the simplified dynamics

˙̄x = A0x̄+B0ū (14)

Task Matrices CStask

Phase Angle Active Power Reactive Power

DG1 – eT1 eT2
DG2 eT13 eT14 eT15
DG3 eT26 eT27 eT28

TABLE I: We consider task matrices, for each task, where

ei ∈ R
38 represents the coordinate vector, with a value 1 in its

ith element and zero values elsewhere. All tasks are functions

of the approximate slow dynamics (17).

where

A0 = A11 −A12A22
−1A21 (15)

B0 = B1 −A12A22
−1B2 (16)

We apply this approach to equation (10), such that

A′
MG =

[
A11 A12

A21 A22

]
and B′

MG =

[
B1

B2

]
.

The slow mode of (10) is described by the first 38 states,

related to the DG inverters of the system, and the fast mode

describes the dynamics of last 8 states, related to the lines and

loads. We then substitute (14) following (15-16) to obtain

Δ ˙̄x′
MG = A′

MG0
Δx̄′

MG +B′
MG0

ūMG, (17)

a reduced model with 38 states as compared to 47 in the initial

model (5). The condition number of AMG0 is 1.5135e11.

C. Task selection

A task is presumed to be characterized by linear combi-

nations of the state, meaning that the task can be succinctly

captured via a task matrix, CStask
∈ R

|Stask|×n associated with

Stask ∈ 2S .

We note that the selected tasks are functions solely of the

state of the slow dynamics, so the reduced model (17) is

sufficient to capture the tasks of interest. We construct task

matrices for each of the tasks and subtasks described in Section

3.

D. Combinatorial optimization for sensor selection

For a given task CStask
, we seek to design a user-interface

CS that satisfies, in order of importance:

1) Necessary conditions for situation awareness,

2) Compatibility with the user’s trust in the automation, and

3) Conciseness.

These properties represent human factors that are key for

effective human-automation interaction. The first constraint

takes into account the limitations of the human operator and

the complexity of the task; the second requires that more

information is provided to the user when the user’s trust in the

automation is low, and vice versa; the third constraint prevents

high cognitive load associated with excessive data.

The goal is to find a user-interface that satisfies these

criteria, given the underlying dynamics of the system. The
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problem is stated as the following combinatorial optimization

problem:

minimize
S∈2S

|S| (conciseness) (18a)

subject to S ∈ Ssit-aware (situation awareness) (18b)

S ∈ Strust (trust) (18c)

and can be reduced as in [8] to

minimize
S∈2S

|S|
subject to Γ(S) = Γ(S ∪ Stask)

Γ(S) ≥ ktrust

(19)

with user-information index Γ(S) = R(TS) = rank(TS). The

user information index Γ(S) characterizes the dimensions of

ξ(t) and η(t), since ξ(t) ∈ R
Γ(S) and η(t) ∈ R

n−Γ(S). The

observable dynamics ξ(t) are translated to the user-interface,

and the unobservable dynamics η(t) are hidden. We seek to

delegate as much control to the automation as the operator

can tolerate, by reducing ξ(t) and therefore increasing η(t),
as allowed by the dynamics and the human factors constraints.

The trust level ktrust could correspond to different trust met-

rics [11]. Questionnaire-based trust metrics [12]–[14] employ

a summative assessment of trust. For example, the SHAPE

Automation Trust Index [12] evaluates trust as a percentage

(ranging from 0% (no trust) to 100% (full trust). Such a metric

could be transformed to our trust level scale, ranging from

Γ(S ) (low trust) to 1 (high trust), respectively, to determine

the trust level ktrust for a given user and circumstance.

Solutions to (19) are computationally tractable because the

user-information index, Γ(S), is a submodular and monotone

increasing function [8], [15]. For calculations here, we employ

an implementation that was used to evaluate an interface for

the IEEE 118-bus [8]. This implementation invokes constraint

programming in combination with a careful enumeration

framework that uses binary variables to succinctly represent

various sensor combinations. This helps prevent full enumer-

ation of the entire sensor space.

For low levels of trust, constraint programming is used

to solve (19) over a reduced solution space and assures an

optimal solution. For high levels of trust, a greedy algorithm is

employed for submodular optimization to solve (19), resulting

in a suboptimal solution. Similarly, for trust levels in between,

a submodular optimization problem is solved to suboptimality

with known bounds.

V. OPTIMIZATION RESULTS

This optimization problem strives to provide the minimal

amount of information to an operator while ensuring that that

the operator has enough information to complete the task.

The information the operator requires to successfully complete

their tasks at each trust level should not be overwhelming or

force the operator to rely on complex calculations. Doing so

may result in the operator losing awareness of the automation

and can lead to significant problems.

We implemented the optimization algorithm in MATLAB,

running on a standard desktop computer. The computation

Computation Time (s)

Method Avg. Max Min

Constraint Programming 0.1874 0.1874 0.1874

Submodular Optimization 0.1901 0.2294 0.1548

TABLE II: Computation timetable for phase angle monitor-

ing of DG2. Constraint programming was implemented for

ktrust = 1, and submodular optimization for ktrust = 2
through ktrust = 38.

times for the optimizations were all fast, the slowest compu-

tation only took roughly 250ms (Table VII). The computation

time was recorded for every task at every trust level (enumer-

ated from 1 to 20). The computation time was averaged over all

trust levels, separately for each method implemented, and on

average, the computation took no longer than 200ms. This is

important as it implies potential for run-time implementation.

A. Phase Angle

For phase angle monitoring trust levels were enumerated

from 1 (high trust) to 20 (low trust). Computation time is

shown in Table II and Table III.

1) Phase Angle of DG2: The optimization chose essential

sensors at the first DG inverter as well as choosing the

sensor related to the task. As ktrust increased by 1, meaning

there was slight loss of trust (decrease of roughly 5.25%)

by the operator, the optimization chose to include a sensor

at DG1 (P ), suggesting that the active power of DG1 is

an essential sensor for the interface. As the operator’s trust

in the automation continued decreasing (ktrust increasing)

additional sensors were chosen at the second DG and then

the third DG. The optimization chooses to initially select

the sensors at points where the relative degree of the cor-

responding state is 2. When the user is fully distrustful (0%
trust) in the automation, an additional sensor is selected at

DG1 (voq , q-axis DG inverter-based voltage). The point of

common coupling, where the microgrid connects to the main

grid, extends from the same node that DG1 connects to. We

speculate that DG1 is fundamentally important for system

stability and operator success in completing tasks. Table II

shows the computation times for phase angle monitoring of

DG2, maximum, minimum and averaged over all trust levels,

separately for each method implemented.

2) Phase Angle of DG3: For this task we observed similar

patterns. For high trust, the optimization chose sensors at the

first DG as well as the sensor related to the task. With lower

levels of trust, additional essential sensors were selected at

the second and then third DGs. The resulting user-interface

for this task was designed almost identically to the one from

the previous task, with the exception of the sensor related

to the task. Table III shows the computation times for phase

angle monitoring of DG3, as well as maximum, minimum and

averaged times over all trust levels, separately for each method

implemented.
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Computation Time (s)

Method Avg. Max Min

Constraint Programming 0.1140 0.1140 0.1140

Submodular Optimization 0.1767 0.2080 0.1380

TABLE III: Computation timetable for phase angle monitor-

ing of DG3. Constraint programming was implemented for

ktrust = 1, and submodular optimization for ktrust = 2
through ktrust = 38.

Computation Time (s)

Method Avg. Max Min

Constraint Programming 0.09545 0.0992 0.0917

Submodular Optimization 0.1878 0.2304 0.1566

TABLE IV: Computation timetable for active power monitor-

ing of DG1. Constraint programming was implemented for

ktrust = 1, 2, and submodular optimization for ktrust = 3
through ktrust = 38.

B. Active Power

Another series of operator tasks related to essential aspects

of a microgrid is monitoring the active power of each DG.

Trust levels were again enumerated from 1 (high trust) to 20
(low trust). Computation times were fast for these three tasks,

shown in Table IV, Table V, and Table VI), respectively, as

well.

1) Active Power of DG1: The optimal solutions for active

power monitoring included many of the similar sensors chosen

for phase angle monitoring. One difference to note is that

as ktrust increased by 1, the optimization only selected the

sensor related to the task (100% − 94.5% trust), unlike for

phase angle monitoring, in which a second sensor was chosen

as soon as trust decreased slightly. As trust decreases, the

optimization continues to select additional critical sensors at

the first, second, and then third DG inverter, in addition to the

sensor related to the task. At very low levels of trust (5.25%
trust), a sensor is selected at DG1 (voq). Then at full loss of

trust (0% trust), a final sensor is selected at DG2 for the phase

angle. The voq sensor provides the voltage-source DG inverter

voltage on the q-axis. The phase angle of DG2 proves to be

an important metric when the tasks are not related to phase

angle. Table IV shows the computation time for active power

monitoring of DG1, maximum, minimum and averaged over

all trust levels, separately for each method implemented.

2) Active Power of DG2: The interface design is very

similar to the previous task. Similar patterns of sensor selection

by the optimization for the user-interface are observed. The op-

timization selects the sensor related to the task for ktrust = 1
and ktrust = 2, and as the operator continues to lose trust in

the system additional sensors are chosen at DG1, then DG2,

and then DG3. The same two sensors are selected when the

user has very low to no trust in the automation as in the

previous task. Table V shows the computation time for active

power monitoring of DG2, maximum, minimum and averaged

over all trust levels, separately for each method implemented.

Computation Time (s)

Method Avg. Max Min

Constraint Programming 0.09595 0.1000 0.09190

Submodular Optimization 0.1812 0.2082 0.1495

TABLE V: Computation timetable for active power monitor-

ing of DG2. Constraint programming was implemented for

ktrust = 1, 2, and submodular optimization for ktrust = 3
through ktrust = 38.

Computation Time (s)

Method Avg. Max Min

Constraint Programming 0.09370 0.09440 0.09300

Submodular Optimization 0.1774 0.2038 0.1358

TABLE VI: Computation timetable for active power monitor-

ing of DG3. Constraint programming was implemented for

ktrust = 1, 2, and submodular optimization for ktrust = 3
through ktrust = 38.

3) Active Power of DG3: The interface design is very

similar to the two previous tasks regarding active power

monitoring. The same pattern of sensor selection is followed as

previously discussed, with a substitution of the sensor related

to the task with the current task. Table VI shows the compu-

tation time for active power monitoring of DG3, maximum,

minimum and averaged over all trust levels, separately for each

method implemented.

C. Reactive Power

The third set of tasks corresponds to monitoring the reactive

power of DG1, DG2, and DG3. The trust levels were enumer-

ated from 1 to 20, high trust to low trust, respectively. For

the reactive power monitoring of DG3 task in this section, a

diagram is provided to portray the user-interface produced by

the optimization at three different trust levels. The computation

time was fast for these tasks, shown in Table VII, Table VIII,

and Table IX, respectively, as well.

1) Reactive Power of DG1: The optimal user-interface

for reactive power monitoring contained many of the similar

sensors selected for active power monitoring. Other than the

sensor that is related to the task being selected, the user-

interface is built following the same pattern as for active power

monitoring. Table VII shows the computation time for reactive

power monitoring of DG1, maximum, minimum and averaged

over all trust levels, separately for each method implemented.

2) Reactive Power of DG2: The sensor related to the

task is selected for the first two values of ktrust before the

optimization selects additional sensors from DG1, DG2, and

then DG3. The same pattern is followed in sensor selection

for this task as it was for active power monitoring. Table VIII

shows the computation time for reactive power monitoring of

DG2, maximum, minimum and averaged over all trust levels,

separately for each method implemented.

3) Reactive Power of DG3: Sensors are chosen in a similar

pattern as the were discussed in the active power monitoring
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Computation Time (s)

Method Avg. Max Min

Constraint Programming 0.1655 0.1758 0.1552

Submodular Optimization 0.1933 0.2499 0.1395

TABLE VII: Computation timetable for reactive power moni-

toring of DG1. Constraint programming was implemented for

ktrust = 1, 2, and submodular optimization for ktrust = 3
through ktrust = 38.

Computation Time (s)

Method Avg. Max Min

Constraint Programming 0.1281 0.1640 0.09220

Submodular Optimization 00.1786 0.2038 0.1404

TABLE VIII: Computation timetable for reactive power moni-

toring of DG2. Constraint programming was implemented for

ktrust = 1, 2, and submodular optimization for ktrust = 3
through ktrust = 38.

cases, other than the sensor selected that related to the task.

Table IX shows the computation time for reactive power

monitoring of DG3, maximum, minimum and averaged over

all trust levels, separately for each method implemented.

A diagram representation of sensor placement chosen by the

optimization using three different user trust levels for reactive

power monitoring of DG3 is shown in Figs. 4, 5, and 6. In

Figure 4 the trust level was chosen to be 20, corresponding

to no trust, to capture operator lack of confidence in the

automation during an event such as a sudden loss of voltage

and frequency stability in the microgrid. For this type of event,

we assume the operator will need to take manual control of the

automation to restore it to stable working conditions, therefore

needing all vital information about the microgrid. An example

of such a disturbance could be an unanticipated loss of power

generation from one or more DGs due to a severe storm or an

accident at the generation source.

A intermediary trust level of 11 was chosen to represent

medium trust (Figure 5) which may signify a disturbance

the operator is familiar with or one that is not necessarily

detrimental, such as an unanticipated spike in power demand.

For example, this could be something like a populated event

that produces a heavy load on the system, or an industrial

business powering up large machines without prior warning to

the microgrid operators. We assume these events would cause

some caution for the microgrid operator, but with the proper

expertise it may be remedied with an intermediary amount of

information.

For a high trust scenario (Figure 6), the trust level was

chosen to be 3 to represent a scenario in which the operator

has a high level of confidence in the system such as when

the microgrid operating within the stable ranges with no

inherent problems. It may also signify that an expert operator

may be overseeing the microgrid’s operations. We assume the

operator feels confident in the automation controls keeping

the microgrid within its stable ranges, therefore the operator

Computation Time (s)

Method Avg. Max Min

Constraint Programming 0.09615 0.09680 0.09550

Submodular Optimization 0.1770 0.2082 0.1403

TABLE IX: Computation timetable for reactive power moni-

toring of DG3. Constraint programming was implemented for

ktrust = 1, 2, and submodular optimization for ktrust = 3
through ktrust = 38.

Fig. 4: Interface for the reactive power (Q) monitoring task

for DG3, where operator distrusts automation (ktrust = 20).

requires very little information.

VI. CONCLUSION

In this paper, a state-space model of a microgrid was

introduced composed of three DG inverters and two loads,

based on a known model in [9]. Each subsystem was individ-

ually modeled and transformed to a common reference frame

provided by the first DG inverter to obtain a comprehensive

microgrid model. This model was shown to have very poor

conditioning and posed complications for the user-interface

design optimization. A strategy was chosen where initially

a pole at the origin was removed and then the system was

decomposed into two time scales, the slow and fast modes.

After algebraic manipulation due to removal of a pole at

the origin, the system is reduced from a 47 order system to

a 38 order system by considering only the slow dynamics.

Exploiting the fact that the tasks are related to the slow

dynamics of the system, it was possible to continue with this

reduced system for the interface optimization.

Future work from this analysis can be expanded to include

much larger power systems and with varying combinations of

user tasks. For example, the number of distribution generator

inverters may be increased in each microgrid. And an example

of combining operator tasks would be for the task to be

monitoring active power of all distribution generators in the

micrgorid, or something of that nature. It is important to note

that the optimization took, on average, less than 185 millisec-

onds to compute using submodular optimization and less than

125 milliseconds for the constraint programming approach.

This implies that larger system may have little issue with

regards to time constraints in completing the optimization.
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