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Abstract

1. The ecological and environmental science communities have embraced machine

learning (ML) for empirical modelling and prediction. However, going beyond pre-
diction to draw insights into underlying functional relationships between response
variables and environmental ‘drivers’ is less straightforward. Deriving ecological
insights from fitted ML models requires techniques to extract the ‘learning’ hid-
den in the ML models.

. We revisit the theoretical background and effectiveness of four approaches

for deriving insights from ML: ranking independent variable importance (Gini
importance, Gl; permutation importance, Pl; split importance, Sl; and conditional
permutation importance, CPI), and two approaches for inference of bivariate
functional relationships (partial dependence plots, PDP; and accumulated local
effect plots, ALE). We also explore the use of a surrogate model for visualization
and interpretation of complex multi-variate relationships between response varia-
bles and environmental drivers. We examine the challenges and opportunities for
extracting ecological insights with these interpretation approaches. Specifically,
we aim to improve interpretation of ML models by investigating how effective-
ness relates to (a) interpretation algorithm, (b) sample size and (c) the presence of

spurious explanatory variables.

. We base the analysis on simulations with known underlying functional relation-

ships between response and predictor variables, with added white noise and the
presence of correlated but non-influential variables. The results indicate that
deriving ecological insight is strongly affected by interpretation algorithm and
spurious variables, and moderately impacted by sample size. Removing spurious
variables improves interpretation of ML models. Meanwhile, increasing sample
size has limited value in the presence of spurious variables, but increasing sample
size does improves performance once spurious variables are omitted. Among the

four ranking methods, Sl is slightly more effective than the other methods in the

‘In the right light, study becomes insight’—Take the Power Back, by Rage Against the Machine (lyrics by Commerford, Morello, De La Rocha, Wilk; © Wixen Music Publishing)
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presence of spurious variables, while Gl and Sl yield higher accuracy when spuri-
ous variables are removed. PDP is more effective in retrieving underlying func-
tional relationships than ALE, but its reliability declines sharply in the presence
of spurious variables. Visualization and interpretation of the interactive effects
of predictors and the response variable can be enhanced using surrogate mod-
els, including three-dimensional visualizations and use of loess planes to represent

independent variable effects and interactions.

. Machine learning analysts should be aware that including correlated independent

variables in ML models with no clear causal relationship to response variables can
interfere with ecological inference. When ecological inference is important, ML
models should be constructed with independent variables that have clear causal
effects on response variables. While interpreting ML models for ecological infer-
ence remains challenging, we show that careful choice of interpretation methods,

exclusion of spurious variables and adequate sample size can provide more and

KEYWORDS

1 | THE NEED TO IMPROVE MACHINE
LEARNING INTERPRETABILITY IN ECOLOGY

Ecologists and environmental scientists often find themselves
searching for tools to model and predict complex, nonlinear and
high-dimensional systems. In recent years, our ability to predict
complicated systems has greatly improved through the development
of machine learning (ML) algorithms. A substantial body of literature
has accumulated on applications of ML in the ecological and envi-
ronmental sciences (e.g. Cutler et al., 2007; Elith & Leathwick, 2017,
Elith et al., 2008; Marmion et al., 2009). However, when prediction
is not the primary goal, most ML methods tend to behave like ‘black
boxes', meaning that it can be challenging to derive new understand-
ing or ecological insights from these statistical models, irrespective
of their predictive abilities (Roscher et al., 2020). For example, if we
are interested in understanding the distribution of species richness
sampled across a study domain (the ‘response’ variable), we might
use ML methods to fit relationships with a set of candidate inde-
pendent (‘predictor’) variables (e.g. variables describing the spatial
and temporal variation in climate, soils and disturbance). The result-
ing ML model may closely fit the training data and provide accurate
predictions for locations between sample plots. However, without
appropriate visualization or interpretation tools, that same model
may provide little or no insight into the functional (or causal) rela-
tionships between species diversity and underlying climatic, edaphic
and biotic interactions.

The ability of ML approaches to predict accurately is valuable,
but ecological interpretation of the underlying functional relation-
ships can be challenging (Lucas, 2020; Wenger & Olden, 2012).

Nonetheless, the often superior predictive ability of ML approaches,

better opportunities to ‘learn from machine learning’.

bivariate functional relationship, boosted regression tree (BRT), ecological inference,

interpretation of machine learning models, random forest (RF), variable importance

relative to more traditional approaches (e.g. linear and nonlinear
regression), suggests that the functional relationships are embodied
in the fitted ML models. The challenge, therefore, is to provide tools
to extract (quantify and/or visualize) those functional and ecological
relationships from the black box. In particular, we would hope that
ML will help answer three key ecological questions: (a) Which pre-
dictor variables are the most influential in determining the behaviour
of the response variable? (b) What are the functional relationships
between predictors and the response variable? And (c) how do inter-
actions among predictors determine the complex and often nonlin-
ear patterns in the response variable?

To extract ecological insights, we need a comprehensive un-
derstanding of interpretation approaches for ML models and how
to generate reliable and accurate interpretation results (Brieuc
et al., 2018; Cutler et al., 2007; Lucas, 2020). Earlier studies focused
on the accuracy of variable importance estimations (Gini impurity
and mean decrease in accuracy) related to impacts of correlated
predictors (e.g. Gregorutti et al., 2017; Strobl et al., 2008), scale
of measurement and number of categories (e.g. Nicodemus, 2011;
Strobl et al., 2007) and their intrinsic stability (Calle & Urrea, 2011;
Wang et al., 2016). Mean decrease in accuracy is sensitive to dataset
noise (Calle & Urrea, 2011), while the performance of the Gini coef-
ficient is affected by correlation between predictor variables and the
number of categories for categorical predictors (Nicodemus, 2011).
While agreement has not been reached for which of the two is more
efficient (e.g. Calle & Urrea, 2011; Nicodemus, 2011), new vari-
able importance measures have been developed (e.g. conditional
importance by Strobl et al., 2007 and split importance [SI] by Elith
et al., 2008), promoting the need for a comprehensive compari-

son among them. Meanwhile, compared to variable importance,
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assessment for methods to extract bivariate relationships has re-
ceived much less attention, although it is critical for ecological
interpretation.

The need for sufficient training data (sample size) has long
been a major concern for accurate ML model predictions (Perry &
Dickson, 2018; Raudys & Jain, 1991; Stockwell & Peterson, 2002).
However, it is less well-known how sample size impacts model in-
terpretation, including variable importance and functional rela-
tionships. This is particularly important in ecology, where relatively
small-scale experiments lead to ML models with small sample sizes.
Assessment of variable importance measures (Gini and permutation
importance) showed that both of them are sensitive to sample size
(e.g. Strobl & Zeileis, 2008; Wang et al., 2016). Similarly, while the
presence of spurious variables may have little negative impact on
ML predictions, the covariance among true and spurious predictors
may reduce our ability to effectively rank predictor importance.
More particularly, the inclusion of spurious predictor variables will
likely obscure our ability to retrieve ‘true’ functional relationships
for influential predictors, as spurious variables alias a portion of the
underlying correlations with true predictors and thus obscure the
true relationships.

In this paper, we evaluate how ML interpretation approaches are
impacted by sample size and the presence of spurious variables. We
review interpretive tools that can shed new light on the ML black
box, and provide opportunities for new and improved ecological and
functional insights. We use a simulation dataset to illustrate key in-
terpretation strategies, and demonstrate their abilities for reliable
ecological interpretation and inference. In so doing, we provide

some recommendations for efficient ecological interpretation.

2 | MATERIALS AND METHODS

We conducted a simulation, with known underlying relationships
between response and predictor variables, to assess retrieval of
ecological insights from ML models. We examine four algorithms to
evaluate variable importance and two for visualization of bivariate
functional relationships between each predictor and the response
variable. We then introduce surrogate models to visualize the in-
teractive (i.e. multivariate) effects of predictor variables on the re-
sponse variable. We provide brief theoretical background for the
interpretation approaches, compare their performance and analyse
their sensitivity to sample size and spurious variables.

2.1 | Simulation design

We generated a pseudo dataset representing hypothetical variability
in global species richness in response to three environmental pre-
dictors, with known underlying functional relationships (Figure 1a).
To fulfil the goal of examining effectiveness of ML interpretation
approaches, our simulation simplified and generalized the abiotic

mechanisms of species richness by focusing on three primary factors:

temperature (MAT, K; Antdo et al., 2020; Fuhrman et al., 2008;
Stegen et al., 2012), rainfall (MAP, mm; Frank et al., 2014; Gelfand
et al., 2005) and disturbance (here we only used fire frequency,
year'l; He et al., 2019; Peterson & Reich, 2008). In this hypothetical
example, we modelled species richness (SN) as a linear combination

of the three environmental (predictor) variables:

SNnorm, = f (x) +¢, (1)

SN = 100 x (w; x SNnormyar + wy X SNnormyap + w3 X SNnorme;... )
(2)

where x represents each of the three predictors (MAT, MAP and fire),
and f is the associated deterministic function. SNnorm, (each scaled
0-1) are the normalized species richness values determined by envi-
ronmental predictors x. The three SNnorm, (Figure 1a) were generated
with parabolic, sigmoid and negative sigmoid relationships (f) for MAT,
MAP and fire frequency, respectively, with added Gaussian error (g).
Weights (w) for MAT, MAP and fire frequency were set as w, = 0.6,
w, = 0.3 and w, = 0.1, respectively, representing the relative impor-
tance of the three predictors in determining eventual SN. We con-
strained the range of SN to 0-100 by removing points (166 samples)
out of the 0-100 range.

In addition, we simulated two environmental variables, ‘V1' and
‘V2’, which in our simulation have varying degree of correlation with
the three (‘true’) predictor variables, but no direct impact on spe-
cies richness. These ‘spurious variables’ were included in the ML
analysis to mimic common practice of including numerous variables
when constructing ML models, many of which are mechanistically
uninfluential in determining the response, but may nevertheless be
correlated with it due to environmental covariance. The combination
of correlation among predictor variables and noise obscures the un-
derlying bivariate relationships (Figure 1).

Simulation of the five environmental variables incorporated hy-
pothetical spatial gradients in a domain representing a hypothetical
terrestrial world, with partial covariance among environmental vari-
ables, as typically found in real systems (Figure 2). Thus among the
three ‘true’ predictor variables, MAT follows a latitudinal gradient
peaking near the equator (Figure 2a); MAP peaks in the centre of the
domain and declines outwards (Figure 2b); while fire frequency in-
teracts with MAP and MAT, peaking in mesic systems with moderate
rainfall and higher temperature (Figure 2c). Among the two ‘spurious
variables’, V1 (Figure 2d) increases from west to east with no direct
dependence on other predictors, while V2 (Figure 2e) is partially cor-
related with the other predictor variables.

Weight terms (w) in Equation 2 provide the underlying variable
importance, ranked MAT > MAP > fire frequency. The determin-
istic relationships in Figure 1a represent the underlying functional
relationships between species richness and the three deterministic
predictors, while the spatial interactions among predictors (Figure 2)
simulate covariance among predictors that tends to confound the
ability of statistical modelling approaches to derive accurate func-
tional relationships, particularly when examined using bivariate

methods (Figure 1b,c). As is common in real-world situations, the
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FIGURE 1 Simulated relationships between species richness for a hypothetical taxon and five environmental predictor variables. The
upper row (a) shows the deterministic bivariate relationships (dark line) used to simulate species richness (Equation 1), with additional
Gaussian noise (grey points). Row (b) shows the final species richness (SN, Equation 2) along the five predictors under ‘data-rich’ scenario

(N = 64,454). Row (c) illustrates the additional challenge inherent in modelling data-poor situations, showing 500 samples randomly selected

from row (b)

spatial interactions between predictor variables distort our ability
to visualize bivariate relationships (Figure 1b,c), particularly for vari-
ables with lower influence such as mean annual precipitation and fire
frequency (w = 0.3 and 0.1 respectively). Our goal, therefore, is to be
able to work with complex, correlated and noisy data, such as sim-
ulated here, and discern which predictor variables are ecologically
important, and then gain insights into the functional relationships
with the response variable.

2.2 | Interpretation methods

We investigated interpretation approaches for extracting (a) vari-
able importance, (b) bivariate functional relationships and (c) multi-
variate functional relationships and predictor interactions. For each
interpretation approach, we examined how they are affected by

sample size and spurious variables.

We used random forest (RF) and boosted regression tree (BRT)
models as our primary ML examples, although many of the insights
and recommendations apply to other common ML approaches.
RF and BRT are used extensively in ecology and environmental
sciences, in large part due to their ability to deal with nonlinear
interactions and remarkable predictive capabilities (e.g. Anchang
et al., 2020; Brieuc et al., 2018; Cutler et al., 2007; De'Ath, 2007;
Jevsenak & Skudnik, 2021; Molnar, 2019; Prasad et al., 2006; Ross
et al., 2020; 2021). The hyperparameters used for ML models were
consistent among sample size and bootstraps. We used 100 trees for
RF, while the number of predictors (mtry) was determined using the
tuneFR function. For BRT, the tree complexity was three, learning
rate equalled 0.01 and bag fraction was 0.8. The predicted species
richness by RF and BRT and associated predictor errors are shown in
Figure S1. The pseudo dataset comprised 64,620 (359 x 180) sam-
ples, representing species richness across the hypothetical domain

(Figure 2f). Since real-world studies can be severely data limited, we



YU ET AL.

Methods in Ecology and Evolution | 5

(a) Mean annual temperature (K)
o o -

(b) Mean annual precipitation (mm)
o

(c) Fire probability

T 4.000 08

o
[+ o
- 320
o | o o
© © ©
. 555 - 3,000 06
o | o o
(s [0} ™
3 S S
2 oA =) L 20002 © 04
© © ©
s | | -
34 % @ 2
I ! 1.000 ! 0.2
o o o
i w @ ¢
o o o
()] T T T T T 1 » 0 (9] oc
! 60 120 240 360 ! 60 120 240 ! 60 120 240
Longitude Longitude Longitude
(d) V1 (e) V2
8 8 8 - 10t
0.1
3 * 8 3
0.0 e
o 15 o [@)
[sp] (a2} [sp]
3 2 1.8 60
2o - 2o
S 3 -0.2 3 40
o o o
(%] ® (3]
I 5 I I
-0.3
o o [ on 20
ki ¢ ?
2 T g EEE L :
! 60 120 240 ! 60 120 240 360 I 60 120
Longitude Longitude Longitude

FIGURE 2 Spatial distribution of three influential environmental variables: (a) temperature, (b) precipitation and (c) fire, and two non-
influential variables: (d) V1 and (e) V2 used to model (f) species richness generated using Equation 1

also sampled the full dataset (sample sizes: 100, and from 500 to
5,500 with an interval of 500) to examine how dataset size affects
ML interpretation. To avoid spurious findings with random sample
fluctuations, the random selection of samples was bootstrapped
with 100 repetitions (the distribution of bootstrap samples with
respect to predictor variables was checked for similarity with the

overall dataset using Kolmogorov-Smirnov test).

2.2.1 | Variable importance

Variable importance (or feature importance) approaches are
designed to rank the relative contribution of multiple predictor vari-
ables to response variables in ML models (Friedman, 2001). There
is little consensus in the ML literature on how to calculate the rela-
tive importance of different independent variables in a fitted model.
We tested four frequently used methods to rank predictor variables:
Gini importance (Gl; Breiman, 2001), permutation importance (Pl;
Cutler et al., 2012), conditional permutation importance (CPI; Strobl
et al., 2007) and (SI; Elith et al., 2008). We estimated their accuracy
in ranking predictor variables relative to simulated weights (w), and
examined their sensitivity to sample size and spurious variables.
The first three importance measurements are associated with RF

model, while the last one (Sl) is commonly used with BRT models. Gl

quantifies the decreased variation of samples through all the nodes
split by a predictor variable in a RF. Pl estimates variable importance
as the decrease in prediction accuracy (increase in error) when the
target variable is randomized (permuted) and input to a previously
trained model (Strobl et al.,,2007, 2008). Gl and Pl are implemented in
the R package ranDOMFOREST. R package parTy modifies the Pl approach
as the CPI, which computes the decrease in prediction accuracy fol-
lowing the permutation of portions of the range of a predictor variable
(Strobl et al., 2008). Sl considers how many times a predictor variable
is used in splits across all trees in a boosted regression tree, and has
been adopted by many packages such as LiGhiTGBM (Ke et al., 2017),
XGBoosT (Chen & Guestrin, 2016) and srr (Elith et al., 2008; Friedman
& Meulman, 2003). See Table S1 for common R resources for ML.

2.2.2 | Bivariate functional relationships

We explored two methods, partial dependence plots (PDPs)
and accumulated local effects (ALEs), for retrieval of underlying
bivariate functional relationships. PDP has been a mainstay for
ecological and environmental inference (e.g. Cutler et al., 2007;
Friedman & Meulman, 2003; Galkin et al., 2018; Moya-Larafo
& Corcobado, 2008; Sankaran et al., 2008), while the use of ALE
method has been less frequently adopted (Apley & Zhu, 2016). These
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two approaches are available in most ML programming packages
(Table S1). Both PDP and ALE are designed to retrieve the functional
relationships between response variables and predictive variables,
somewhat analogous to a bivariate linear or nonlinear regression.
PDP estimates the marginal effects of predictors by averaging the
predicted outcomes from an ML model (Casalicchio et al., 2018;
Friedman, 2001; Molnar et al., 2018; Zhao & Hastie, 2021). By con-
trast, ALE calculates the difference of local predictions across small
intervals of the predictor variable range (Apley & Zhu, 2016). PDP
and ALE can be applied to both RF and BRT.

2.2.3 | Multi-variate functional relationships and
predictor interactions

While PDP and ALE are intended to show the bivariate relationship
between the response variable and predictor variables, the multivari-
ate effects of predictor variables are not readily apparent using bivari-
ate visualizations. A less common approach for visualization of these
underlying relationships in the environmental and ecological literature
uses interpretable or ‘surrogate’ models (Molnar, 2019). A surrogate
model uses predictions from an ML model that are re-analysed using a

more easily interpretable (visualizable) model approach. Although any

interpretable model (e.g. a simple decision tree, generalized linear or
additive models) can be used as a surrogate model (Molnar et al., 2018),
here we highlight the use of three-dimensional (3D) plane fitting (loess
models) as a straightforward approach to visualization of multi-variate
functional relationships and predictor interactions (Aho, 2013).

The surrogate model was generated from the fitted ML model (e.g.
using the predict function in R) for all points in the calibration set, poten-
tially enhanced with additional random points in data-poor situations.
In this way, a surrogate model can represent the relationships embodied
in the ML model, free of the noise associated with the original data. To
explore surrogate model visualizations for ecological interpretation of
fitted ML models, we examined the multivariate effect of the more in-
fluential variables on species richness using 3D loess planes to show the
interactive effect of predictor pairs on the response variable.

3 | RESULTS

3.1 | Variable importance
We compared the estimated variable importance and the rank of

the predictor variables with the simulated importance weights

(Figures 3 and 4). In the presence of spurious variables (Figure 3),
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Gl, Sl and CPI were able to retrieve the correct rank order among
influential variables (MAT > MAP > Fire), and Sl showed slightly bet-
ter result than the others. However, Gl and Sl assigned considerable
importance to the spurious variables (V1, V2) and no method was
able to consistently retrieve the applied weightings for the true pre-
dictors (w = 60%, 30% and 10% respectively) when spurious vari-
ables (V1, V2) were present in the models. Pl was unable to correctly
rank predictor variables (Figure 3), indicating particular sensitivity of
this index to covariance and aliasing among true and spurious vari-
ables. Notably, CPI tends to exaggerate the importance of the more
important variable (MAT), while assigning relatively low importance
to less influential (but true) variables (MAP, fire) and spurious vari-
ables. CPIl importance rankings were also much more variable than
other importance methods. Larger sample size decreases the varia-
tion in importance estimates, but did not consistently improve ac-
curacy indicating that, in the presence of spurious predictors, larger
sample sizes will not necessarily improve predictor importance
assessments.

Removal of spurious variables considerably improved the ability
of G, Pl and Sl to accurately rank and quantify predictor importance
(Figure 4). However, CPI still tends to exaggerate importance of the
more influential variable (MAT) while underestimating the less influ-
ential variables (MAP and fire). Larger sample sizes, in the absence
of spurious variables, improved the ability of Gl and PI to retrieve

the importance of the three predictors. However, SI and CPI were

insensitive to larger sample sizes. In the absence of spurious vari-

ables, Gl and Sl were the most reliable importance indices.

3.2 | Bivariate functional relationships

The accuracy assessment for retrieved bivariate functional rela-
tionships was conducted using a similarity measure (Kendall's Tau;
Sen, 1968) between the retrieved curve and the simulated function
for deterministic predictors. A high similarity value indicates that the
retrieved functional relationship is similar to the deterministic func-
tion (Figure 1a).

Partial dependence plots were generally more accurate than ALE
inretrieving the functional form of deterministic variables (Figure 1a),
when computed using either the RF or BRT model (Figures S2 and S3).
With the existence of spurious variables, increasing sample size has
limited effect on the accuracy of either PDP or ALE to retrieve bivar-
iate functions of the three deterministic variables (Figures 5 and 6).
Retrieval of functional forms for the three deterministic variables is
greatly improved following removal of spurious variables from the
models (Figure 6). Figure S3 shows an example of largely improved
retrieved curves for the three deterministic variables (either by PDP
or ALE) with the spurious variables omitted. The similarity between
the retrieved function (by PDP) and the simulated function increased
from 0.5 to 0.8 for MAT, from 0.7 to 0.9 for MAP and from O to 0.8
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for fire frequency, indicating the strong impact of spurious variables
on retrieval of bivariate functions. Increasing sample size also tends
to improve the accuracy of PDP and ALE, when the spurious vari-
ables are excluded, up to a threshold of ~2,000 points beyond which

accuracy reaches an asymptote in these simulations.

3.3 | Muilti-variate functional relationships and
predictor interactions

We used 3D loess planes to show how the response variable in our
simulations varies with interacting pairs of the three influential vari-
ables (MAT, MAP and fire frequency). The simulated data are shown
as points and the predictions from the fitted RF model (i.e. the sur-
rogate model) are the planes. As might often occur in real-world
data, the full representation of a predictor variable's functional
range does not always occur, leading to concentration of data in
parts of the feature space, and less well-supported loess predictions
in under-sampled regions of feature space. However, the separate
and interactive effects of the predictor variables begin to emerge in
the shape of the surrogate models. For example, in Figure 7a, which
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shows simulated species richness response to the two most influ-
ential variables (MAT and MAP), the underlying effects of MAT are
seen as a bell-shape distribution, with the asymptotic relationship
between species richness and MAP. In our simulated dataset, the fire
effect leads to a reduction in species richness but the relationship
is complex reflecting realistic correlations between fire frequency
and climate that were incorporated into the pseudo-data simulations
(Kahiu & Hanan, 2018).
The surrogate model predictions for data-poor models
(Figure 7d-f) are broadly similar to data-rich models but with less
reliable predictions of separate and interactive effects, particu-
larly in the already data-limited extremes of feature space. With
limited data samples (1,000 in this case), the interactive effects
emerging for the three influential variables are less clear. For
example, the effect of fire frequency on species richness at low
MAT shifted from the original nearly no effect (Figure 7b) to a
conspicuous linear increasing curve (Figure 7e). Meanwhile, fire
frequency, simulated with limited effect on specie richness under

heavy rainfall due to high moisture (Figure 7c), presented signif-

icant negative impact on species richness with small sample size
(Figure 7f).

®

ssauyol saloadg

FIGURE 7 3D loess planes showing how a response variable (species richness) varies with the three deterministic predictor variables
(MAT, MAP and fire frequency) with prediction from random forest for a data-rich scenario (a-c with 5,500 samples) and a data-poor
scenario (d-f with 1,000 samples). Shaded blue planes are the surrogate models. Points are the original stochastically simulated data with

known underlying functional relationships (Figure 1a)
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4 | DISCUSSION: TOWARDS EFFICIENT ML
MODEL INTERPRETATION

Machine learning models have been used extensively in ecological
and environmental studies due to their simplicity in implementation
and remarkable predictive ability. However, the ‘black box’ nature
of most ML models limits ecological inference, process under-
standing and interpretation of the dynamics underlying the system
being studied. In this paper, we reviewed several ML interpretation
methods (four variable importance measurements, two functional
relationship methods and a surrogate model) and examined their re-
sponse to sample size and spurious variables, in an effort to improve
ecological/process inferences, and make recommendations for use
of ML models. We found that the performance of interpretation ap-
proaches used to identify which variables are most influential, and
retrieve underlying functional relationships from ML models, is sen-
sitive to methods selected and the presence of spurious variables.
Increasing sample size improves interpretation when spurious vari-
ables are omitted from ML model fits. However, increasing sample
size does not, on its own, overcome model confusion caused by spu-
rious variables.

The inclusion of spurious variables (i.e. variables that are cor-
related with, but do not have a causal relationship with the target
variable) severely impacts variable importance ranking and retrieval
of functional curves. In particular, removing spurious variables can
largely improve variable ranking using Gl and SI, likely due to their
sensitivity to within-predictor correlation (Nicodemus, 2011). In our
simulations, the PDP approach was considerably more successful
than ALE in retrieving underlying functional relationship. However,
both methods were highly sensitive to the presence of spurious vari-
ables. As found for variable importance ranking, increasing sample
size provided little benefit in the ability of PDP and ALE when the
spurious variables were present, but increasing sample size did result
inimproved functional relationship retrieval when spurious variables
were excluded.

Our results confirm previous research that careful selection of
independent variables is essential for successful ML (e.g. Alizadeh
et al., 2018; Seyedzadeh et al., 2019; Vellido et al., 2012). Although
inclusion of numerous independent variables in ML models can yield
improvements in predictive ability, this approach is not helpful when
ecological interpretation is the goal. We also showed that the use of
surrogate models (i.e. analysis of predictions from fitted ML models)
can provide additional insights into multi-variate relationships and
predictor interactions using, in this study, 3D loess planes. However,
the surrogate model predictions were also very sensitive to dataset
size, requiring larger datasets (>1,000 in this case) to characterize
the interactive effects of predictor variables.

This study compared different interpretation methods for esti-
mating variable importance and functional relationships and anal-
ysed the factors that may influence the interpretation of ML models.
ML analysts should be aware that including correlated indepen-
dent variables in ML models with no clear causal relationship to

response variables can interfere with ecological inference. When

ecological inference is important, ML models should be constructed
with independent variables that have clear causal effects on re-
sponse variables. While interpretation of ML models for ecological
inference remains challenging, careful choice of interpretation meth-
ods, exclusion of spurious variables and sufficient sample size can
provide ML users with more and better opportunities to ‘learn from

machine learning’.
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