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Large-eddy simulations are conducted to contrast momentum and passive scalar
transport over large, three-dimensional roughness elements in a turbulent channel
flow. Special attention is given to the dispersive fluxes, which are shown to be
a significant fraction of the total flux within the roughness sublayer. Based on
pointwise quadrant analysis, the turbulent components of the transport of momentum
and scalars are found to be similar in general, albeit with increasing dissimilarity
for roughnesses with low frontal blockage. However, strong dissimilarity is noted
between the dispersive momentum and scalar fluxes, especially below the top of the
roughness elements. In general, turbulence is found to transport momentum more
efficiently than scalars, while the reverse applies to the dispersive contributions.
The effects of varying surface geometries, measured by the frontal density, are
pronounced on turbulent fluxes and even more so on dispersive fluxes. Increasing
frontal density induces a general transition in the flow from a wall bounded type to a
mixing layer type. This transition results in an increase in the efficiency of turbulent
momentum transport, but the reverse occurs for scalars due to reduced contributions
from large-scale motions in the roughness sublayer. This study highlights the need
for distinct parameterizations of the turbulent and dispersive fluxes, as well as the
importance of considering the contrasts between momentum and scalar transport for
flows over very rough surfaces.

Key words: turbulent boundary layers

1. Introduction
The dynamics of turbulent shear flows over rough walls has been an active area

of research because of its relevance in the design of engineering systems and in
environmental fluid mechanics. Momentum and scalar exchanges between the wall
and the fluid in such flows are of interest in a wide range of disciplines (Belcher,
Harman & Finnigan 2012). Previous field experiments over natural vegetation (Katul
et al. 1997b; Poggi, Katul & Albertson 2004), wind tunnel studies over obstacles
of regular shapes (Macdonald & Griffiths 1998; Castro, Cheng & Reynolds 2006)
and numerical simulations over three-dimensional roughness elements (Coceal et al.
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2007a; Finnigan, Shaw & Patton 2009; Leonardi et al. 2015) have advanced our
understanding of this problem significantly. For example, these past studies have
underlined the importance of dispersive fluxes inside and close to the roughness
elements (Poggi et al. 2004; Poggi & Katul 2008; Jelly & Busse 2018). Nevertheless,
there still remains a significant knowledge gap, particularly concerning the transport
of scalars, and how it compares to that of momentum, over surfaces that consist of
‘large’ three-dimensional bluff-body-type roughness elements. Large here implies that
the roughness protrudes significantly into the inertial sublayer, and that the details of
the flow below the top of the roughness elements are important for the application.
Note that in the atmospheric science literature, the inertial sublayer is often called
the ‘surface layer’. Over a rough wall, it would be found above the canopy sublayer
(ranging from the ground to the top of the roughness elements) and the roughness
sublayer (ranging from the top of the roughness elements up to the height where
the flow signatures of individual roughness elements are blended out). In the review
paper by Jiménez (2004), he limited the discussions of rough-wall boundary layers to
H/δ < 0.025, where H is the roughness element height and δ is depth of the boundary
layer. In many natural settings and engineering applications, H/δ often exceeds 0.1, a
regime sometimes termed the very rough surface (Castro et al. 2006). For very rough
surfaces, momentum and scalar transport within the canopy and roughness sublayers
are topics of active ongoing research.

Various previous numerical studies (e.g. Kanda, Moriwaki & Kasamatsu 2004;
Castro et al. 2006; Coceal et al. 2007a; Orlandi & Leonardi 2008; Anderson, Li &
Bou-Zeid 2015; Anderson 2016; Giometto et al. 2016; Li, Bou-Zeid & Anderson
2016a; Li et al. 2016b) have probed the details of these very rough-wall flows
such as the morphology of coherent structures and the effects of the roughness in
such regimes. Moreover, recent large-eddy simulations (LES) and direct numerical
simulations (DNS) (Finnigan et al. 2009; Boppana, Xie & Castro 2010, 2012; Park
& Baik 2013; Philips, Rossi & Iaccarino 2013; Leonardi et al. 2015; Li et al.
2016b) investigated the transport of scalars. However, compared to the extensive
literature focusing on the flow and momentum transport, research on scalars and
their transport in flows over very rough walls remains quite limited. In addition, a
detailed comparative analysis of momentum and scalar transport dynamics has not
been performed before.

These open gaps motivate this present paper: we investigate both momentum and
scalars at very high Reynolds numbers over three-dimensional, large roughness using
the LES technique. We focus on the canopy and roughness sublayers. A logarithmic
layer will exist further aloft if the roughness sublayer does not extend all the way
to the top of the inertial layer. In particular, the analyses concern two aspects of the
problem: the effects of different roughness geometries and the comparison between
momentum and scalar transport. The numerical set-up of the problem is described next
in § 2. Section 3 reports the results on the changes in turbulent flow characteristics for
different surface geometries (§ 3.1) and on the spatially coherent dispersive fluxes, in
particular, the differences between momentum and scalar transport (§ 3.2). Section 4
concludes with a summary and discussion.

2. Numerical set-up
In the LES code, the non-dimensional filtered incompressible continuity (2.1),

Navier–Stokes (2.2), and scalar conservation (2.3) equations are solved assuming
hydrostatic equilibrium of the mean flow,

∂ui

∂xi
= 0, (2.1)
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∂ui

∂t
+ uj

(
∂ui

∂uj
−
∂uj

∂ui

)
=−

∂p
∂xi
−
∂τij

∂xj
+ Fi + Bi, (2.2)

∂θ

∂t
+ ui

∂θ

∂xi
=−

∂qs
i

∂xi
. (2.3)

All the variables we will discuss are filtered components, so the usual tilde above the
symbols is omitted for simplicity. The density ρ is taken to be unity and is uniform:
buoyancy forces are not considered. x, y and z denote the streamwise, cross-stream
and wall-normal directions respectively, and u, v and w are the velocity components
in these respective directions. t denotes time; ui is the resolved velocity vector;
xi is the position vector; p is a modified pressure that includes the resolved and
subgrid scale (SGS) kinetic energy (Bou-Zeid, Meneveau & Parlange 2005); τij is the
deviatoric part of the SGS stress tensor; Fi is the body force driving the flow (here
simply a homogeneous steady horizontal pressure gradient along the x direction with
magnitude u2

∗
/ρδ). The code uses the immersed boundary method (IBM) to account

for the presence of the roughness elements via an immersed boundary force Bi. Here
we adopt a discrete forcing approach to compute Bi (Mohd-Yusof 1997), which
means that the effect of the immersed boundary is incorporated into the discretized
governing equations and Bi is estimated a priori, improving numerical stability (Mittal
& Iaccarino 2005; Mittal et al. 2008; Fang et al. 2011). The specific implementation
in the code used here is detailed and validated in Tseng, Meneveau & Parlange (2006),
Chester, Meneveau & Parlange (2007) and Li et al. (2016a,b). A friction velocity of
u∗ = 1 ms−1, and a half-channel width of δ = 100 m, are the nominal values used
to non-dimensionalize t and all outputs of the code; their imposed numerical values
are thus inconsequential here. The top boundary is impermeable with zero stress;
the simulations therefore are similar to a half-channel. In (2.3), θ denotes a passive
scalar quantity, which for illustration is considered to be temperature in Kelvin in the
current simulations, and qs

i is the ith component of the SGS scalar flux.
We used the Lagrangian scale-dependent dynamic subgrid-scale model (Bou-Zeid

et al. 2005, 2008) to compute the SGS viscosity required for modelling τij. Using
a constant subgrid-scale Prandtl number of 0.4 (Kang & Meneveau 2001; Bou-Zeid
et al. 2010; Li 2016), the SGS diffusivity needed for qs

i is then calculated. Detailed
validations for the flow and scalar transport can be found in Li et al. (2016a) and Li
et al. (2016b), respectively. The LES uses a wall model for momentum and scalars
that has been developed for a hydrodynamically smooth wall (here each facet of a
building/cube is such a smooth wall) at high Reynolds numbers based on Kader &
Yaglom (1972). For the wall model, Reynolds analogy in the vicinity of the wall
(the unresolved viscous and buffer layers) is invoked. Wall modelling for complex
topographies remains an ongoing area of research (Yang et al. 2015) and an open
challenge (Bose & Park 2018). However, the performance of the current approach
has been evaluated and shown to be quite satisfactory in Li et al. (2016b). Note
also that although the viscous and diffusive terms are omitted in (2.2) and (2.3), the
Reynolds number is encapsulated in the wall model. The friction Reynolds number
Re∗ = (u∗δ)/ν is approximately 107 for all LES runs, where ν is the kinematic
viscosity of air used in the wall model. Since the paper does not focus on the
effect of different thermal boundary conditions, which has been studied in Pirozzoli,
Bernardini & Orlandi (2016), a constant surface temperature scalar boundary condition
is used for the surfaces of the obstacles and the bottom wall; the top thermal boundary
condition is zero flux.
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FIGURE 1. (Colour online) Top view of the ‘repeating unit’ for three cases shown in
table 1, where shaded areas represent the obstacles: (a) Cube25; (b) Slender06; (c) Wide32.
Area highlighted by red-dotted line is the lot area, At. Different intermediate cases labelled
as Sf in table 1 are achieved through varying Lxb and Lyb while keeping H, the obstacle
height, constant. Frontal area density, λf , and plan area density λp are defined. Points
labelled as x1 to x4 (red dots) represent locations where time series of instantaneous data
are recorded for analysis. For consistency, we refer to the locations for points x1 to x4 as
‘on top’, ‘behind’, ‘in front’ and ‘in between’ the obstacle, respectively, for all cases.

Case λp λf Nb
x ,Nb

y ,Nb
z Nx,Ny,Nz Lx/δ Ly/δ

Cube25 0.25 0.25 8, 8, 8 192, 96, 64 3 1.5
Slender06 0.12 0.06 16, 3, 8 200, 100, 64 3.125 1.5625
Sf08 0.12 0.08 12, 4, 8 200, 100, 64 3.125 1.5625
Sf12 0.12 0.12 8, 6, 8 200, 100, 64 3.125 1.5625
Sf16 0.12 0.16 6, 8, 8 200, 100, 64 3.125 1.5625
Sf24 0.12 0.24 4, 12, 8 200, 100, 64 3.125 1.5625
Wide32 0.12 0.32 3, 16, 8 200, 100, 64 3.125 1.5625

TABLE 1. Summary of simulation parameters. H/δ = 0.125 across all cases, where H is
the height of obstacles. δ, the half-channel, is set equal to the domain height Lz. Nb

i is
the number of grid points resolving one obstacle in the i direction, while Ni is the total
number of computational points in that direction. Lx and Ly are the domain dimensions in
the streamwise and cross-stream directions. The two digits at the end of each case name
are λf × 100 for that case. Sf stands for ‘Stagger frontal’.

To explore the effects of the geometry, we conducted simulations of different cases
as summarized in table 1 and illustrated in figure 1. The parameters λf and λp are the
frontal area ratio and plan area ratio, respectively; λf is defined as the total projected
frontal (mean-flow normal) area of the roughness elements per unit wall-parallel area
(i.e. land area) and λp is the ratio between the crest plan area (i.e. roof area, shaded
in black figure 1) and the wall-parallel area. The first case is the classic cubical
obstacles. In the remaining cases, we gradually change the horizontal aspect ratio of
the obstacles, while maintaining the same height and area (λp). Figure 1 shows the
cubical case and the two extreme aspect ratios of the other cases. All cases shown
in table 1 were run for 50 eddy turnover times (T ≈ δ/u∗) and averaged for the last
25 T . The averaging time is comparable to that in Leonardi & Castro (2010), where
averaging was done over 2000Tb for Tb = H/Ub; Ub is the bulk streamwise velocity
and H is the obstacle height. Throughout the paper and unless otherwise noted, 〈X〉
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36 Q. Li and E. Bou-Zeid

defines a volume average of X over LxLy1z, where 1z is the vertical grid size; X
defines a temporal average of X. A single prime (′) denotes deviation from X, where
X = X + X′. A double prime (′′) denotes deviation from 〈X〉, where X = 〈X〉 + X′′.

A sensitivity test was carried out to examine the effect of the number of points
used to represent the obstacles and the domain length, particularly for cases where
one dimension of the cubes is only spanned by three grid points. The comparisons for
case Wide32 between the original simulation, a doubled resolution run and a run with
doubled Lx are shown in appendix A. The two simulations with different resolutions
show converging results for the turbulent fluxes in the canopy and roughness sublayers.
Although some discrepancies exist for the dispersive contributions, the conclusions
reached in the present study regarding the Reynolds stress, turbulent scalar flux,
dispersive fluxes and the quadrant analysis are insensitive to doubling the grid
resolution and the streamwise dimension the computational domain.

3. Results and discussion
3.1. Turbulent transport

3.1.1. Effects of surface geometry
We first focus on the impact of surface geometry on the general turbulent flow

characteristics. The parameter space that characterizes the surface geometry is large. A
non-exhaustive list of previous studies have investigated height variations (Yang et al.
2016), geometric shapes (Leonardi et al. 2015; Yang et al. 2016; Llaguno-Munitxa,
Bou-Zeid & Hultmark 2017; Llaguno-Munitxa & Bou-Zeid 2018) of regular (Kanda
et al. 2004; Placidi & Ganapathisubramani 2015) or irregular (Chester et al. 2007;
Yuan & Jouybari 2018) surface roughness elements, as well as statistical moments of
roughness elements (Zhu et al. 2017). We do not aim to comprehensively examine the
parameter space in this paper, but we are more interested in the general transition of
the flow as the roughness, conserving the same area density λp, changes from slender
elements with low λf to wide ones with high λf . Ghisalberti (2009) analysed the
dynamics of flows over many different types of canopies and used the term ‘obstructed
shear flows’ to describe them; he concluded that this type of canopy flow can be
characterized by the penetration depth (δe) of the vortices into the canopy sublayer.
Inflection points in 〈u〉/u∗ clearly exist across all cases, especially with increasing λf
as shown in figure 2(a). Figure 2(b) shows the shear scale Ls, which can serve as an
estimate of δe, as a function of the frontal blockage ratio λf . Ls is a basic length
scale in canopy flows similar to the vorticity thickness defined in a plane mixing
layer; it is defined as Ls = 〈ū〉/〈dū/dz〉, here computed at z = H. The value of Ls,
and consequently δe, decreases with increasing λf (figure 2b), which signifies a larger
shear strength and hence larger deviation from the classical rough-wall boundary-layer
flow as the blockage increases. Ls for Slender06 and Wide32 differ significantly and
additional intermediate cases show a monotonic decrease with λf , which are consistent
with the mean streamwise velocity profiles in figure 2(a).

The correlation coefficient ruw, computed as 〈(u′w′)/(σuσw)〉 at z = H, is also
depicted in figure 2(b). Its magnitude can be interpreted as a vertical turbulent
momentum transport efficiency (Li & Bou-Zeid 2011). As λf increases, −ruw increases
approximately from 0.2 to 0.46, the latter being consistent with what is typically
found in canopy flows and mixing layers (−ruw ≈ 0.5) (Finnigan 2003). At a higher
elevation of z/H = 1.5, ruw for case Slender06 recovers to 0.43 (not shown here),
consistent with observations over a smoother water surface (with negligible influence
of surface waves) in the atmospheric inertial sublayer under neutral stratification
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FIGURE 2. (Colour online) (a) Value of 〈u〉/u∗ as a function of z/H, where inflection
points are present at z/H> 1; (b) shear length scale Ls and the correlation coefficient ruw
for cases listed in table 1 (except cube25) computed at z=H; (c) rθw and ruw/rθw for the
same cases as (a).

(Li & Bou-Zeid 2011). It is worth reiterating that obstacles in all the cases presented
in figure 2 have the same plan area density (i.e. λp = 0.12); but by changing λf , we
are observing a transition from a canonical wall-bounded flow to a free shear flow,
akin to a mixing layer, where momentum turbulent transport is more efficient.

As this transition occurs, and unlike for its momentum counterpart, the vertical
transport efficiency for the scalar exhibits a non-monotonic behaviour (figure 2c),
reaching a peak of approximately 0.23 at around λf = 0.12. For large λf , while
momentum ruw is more than twice larger than its value at λf = 0.06, the scalar rθw

changes less significantly with changing geometry. Overall, the results show that,
as the flow becomes more mixing layer like, the momentum and scalar transport
efficiencies increasingly diverge. The ratio of their correlation coefficients becomes
appreciably larger than 1 (figure 2c), making the Reynolds analogy (which postulates
that momentum and scalars are transported similarly) less applicable. Note that we

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ri
nc

et
on

 U
ni

v,
 o

n 
11

 N
ov

 2
02

0 
at

 2
3:

24
:0

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

68
7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.687


38 Q. Li and E. Bou-Zeid

do not imply that the flow over a very rough wall or vegetation canopy completely
resembles the canonical mixing-layer flow. Rather, the examples shown in the present
study demonstrate that the rough wall-bounded flows can exhibit mixed properties of
wall-bounded and mixing layer flows (Kanda 2006).

To gain a better understanding of the turbulent statistics at representative points
with respect to the roughness elements, we sampled data at four different points
x1–x4 (see figure 1) for all heights. The pointwise time series of relevant quantities
are recorded at a frequency of 1/(2500T), where T is the eddy turnover time defined
previously. Data were sampled at each time step for a total period of 2T . This time
averaging alone is not sufficiently long to guarantee complete statistical convergence
of the results. However, the statistics were also phase averaged for all repeating
units to improve statistical convergence and the primary characteristics of the flow
that we will focus on are already very clear with this averaging scheme. Turbulent
fluctuations tend to be non-Gaussian for canopy flows over vegetation surfaces
(Raupach 1981; Rotach 1993; Finnigan 2003; Chamecki 2013). The skewness of a
fluctuating component is an indication of the dominance of either positive or negative
events given its probability distribution. As pointed out in Mouri et al. (2003) in
a laboratory experiment of rough-wall-bounded flow over cubical arrays, the wakes
associated with the roughness elements result in correlations between the Fourier
modes of the energy-containing eddies, whereas the Fourier modes are independent
and random for the case of Gaussian turbulence. To further investigate the transition
from a wall-bounded to a mixing-layer flow regime, first, we computed the skewness
of the fluctuating components shown in figure 3(a–c) for point x3 for u/u∗, w/u∗ and
θ/θ1, where θ1 = θ(z= δ). We only illustrate three cases with the same λp, spanning
the full range of λf . Slender06 has close to zero skewness for u′ and w′ (figure 3a,b)
in the roughness sublayer but higher values are observed as λf increases in cases
Sf16 and Wide32, more typical of canopy flows from experimental measurements over
vegetation canopies (Raupach 1981; Rotach 1993; Finnigan 2003). The variation in
skewness from small values in Slender06 to larger ones as λf increases is consistent
with what is expected based on the characteristics of wall-bounded and mixing-layer
flows shown in table 2 of Finnigan (2003). In figure 3(d–f ), the kurtosis Kuu and
Kuθ tends to approach 3 away from the roughness, deviating from that Gaussian
value as the wall is approached. An exception is the u′ kurtosis of cases Sf16 and
Wide32, which is closer to 3 in the canopy sublayer. However, it should be noted
that a kurtosis of 3 is a necessary but not a sufficient condition for the fluctuations
to be Gaussian (a bimodal distribution could also have a kurtosis of 3). Two final
observations on figure 3: (i) the skewness and kurtosis of θ are much less sensitive to
geometry, in agreement with the findings based on the transport efficiency in figure 2,
and (ii) while the skewness plots suggest a convergence of the various geometries at
z/H ≈ 2, the kurtosis continues to show significant differences at that height.

Since in physical space we observed that changes in surface roughness modify the
characteristic length scale and turbulence statistics, we now examine in spectral space
if that also implies a modification in the range of eddy scales that contribute the most
to the turbulent transport. In the frequency domain, the correlation spectrum (Wang
et al. 2016) is defined as RXY = CoXY/(

√
ΓX
√
ΓY), where CoXY is the cospectrum of

time series X and Y and ΓX and ΓY are the power spectra of X and Y , respectively.
If Y is vertical velocity fluctuations w′ and X is u′ or θ ′, RXY is interpreted as a
frequency specific transport efficiency (Wang et al. 2016). The total length of the
collected time series defined in time unit Lz/U0 is approximately 60, where U0 is
the free-stream velocity. We then section the total time series into 20 sub-series of
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FIGURE 3. (Colour online) Skewness and kurtosis of fluctuating quantities at x3: u′
in (a,d); w′ in (b,e); θ ′ in (c, f ). Green dotted lines indicate skewness = 0 in (a–c) and
kurtosis= 3 in (d–f ).

equal length, and perform an ensemble average of the spectra of the 20 samples at
each representative point xi. The presence of the obstacles makes the interpretation
of spectra computed from spatial fields challenging (for example they would contain
the dispersive contribution), and thus we rely on time series at a given point instead.
One could convert the frequency to a wavenumber using Taylor’s frozen turbulence
hypothesis, but this might lead to some uncertainties in the conversion (Cheng et al.
2017) that we prefer to avoid here. The results are shown in figure 4, where only
results at x3 (in front of the obstacle) are presented; similar conclusions can be
obtained from the results at other points (not shown here).

Low-frequency eddies contribute to the efficient transport of both momentum
and scalars, but a wider range of scales contribute to Rθw. Higher correlation
spectrum values can be noted for scalars, compared to momentum, for all three
cases between 10 < f δ/u∗ < 102. As the roughness frontal blockage, and the
streamwise distance between the elements, increase (e.g. for case Wide32), more
lower-frequency motions can penetrate into the canopy more easily and they become
more efficient in transporting momentum below the canopy top (figures 4a to 4c).
This finding for cases with larger λf is consistent with the results obtained from
hot-wire anemometry measurements in a wind tunnel by Perret et al. (2019), who
noted that the canopy-induced smaller-scale motions strongly interact with the
boundary-layer-scale motions. For scalars on the other hand, it seems slower motions
spanning a larger range of frequency are the most efficient at transport deep inside
the canopy at intermediate densities λf (case Sf16), becoming less efficient in case
Wide32. In summary, figure 4 shows the change in time scales of the most efficient
transport eddies across different geometries. As the transition to a mixing-layer-type
flow indicated in figure 2 occurs, lower frequencies contribute more effectively to
momentum transport in the canopy and roughness sublayer. However, for scalar
transport, there seems to be an optimal configuration or density for the large scalar
motions to interact effectively with the lower part of the canopy.
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FIGURE 4. (Colour online) Pseudocolour plot of the correlation spectra Ruw in (a–c) and
Rθw in (d–f ) for different cases x3. The solid horizontal black line denotes the top of the
obstacles.

The iso-surfaces of instantaneous high temperature, θhigh, are shown in figure 5.
Here, θhigh is defined as θ + 1.5θrms computed at z/H = 1 at any instant. We colour
these iso-surfaces by the instantaneous normalized Reynolds stress and wall-normal
scalar flux (figures 5b,d and 5e, f, respectively). Although both Slender06 and Wide32
demonstrate streamwise thermal ‘streaks’ (Hetsroni et al. 1999; Leonardi et al. 2015),
Wide32 is characterized by more patchy structures in most of the domain; whereas the
temperature iso-surfaces in Slender06 are more elongated in the streamwise direction
and are aligned in between the staggered roughness elements.

Stronger flow disturbance by the obstacles are observed in the mixing-layer-like
flow where the more obstructive three-dimensional geometry is found to significantly
disrupt the structures, in agreement with the experimental observations in Hetsroni
et al. (1999). Focusing now on the flux intensity depicted by the colours on the
instantaneous flow structures, there can also be discernible dissimilarities between
w′θ ′ and −w′u′ in the canopy sublayer, suggesting that some eddies might be carrying
momentum but not scalars or vice versa. Thus, we conduct a quadrant analysis in
the next section to further investigate the (dis)similarity of momentum and scalar
transport.

3.1.2. Similarity of turbulent momentum and scalar transport
Quadrant analysis is a useful and widely used technique for probing how turbulent

motions evolve and produce transport in the wall-normal direction (Wallace 2016).
Thus, we apply this technique here to compare the momentum and scalar turbulent
transports over the canopy and roughness sublayers. The definition of each quadrant
for momentum flux follows previous studies (Katul, Hsieh & Kuhn 1997a; Katul
et al. 1997b; Li & Bou-Zeid 2011): Q1 events are classified as s′ > 0 and w′ > 0;
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FIGURE 5. (Colour online) Iso-surfaces of θhigh, where θhigh=〈θ(z=H)〉+ 1.5(θrms(z=H))
low-pass filtered for better visualization, for Slender06 in (a,b) and for Wide32 in (c,d).
θrms(z=H) denotes the standard deviation of a snapshot of θ at z=H.

Q2 as s′ < 0 and w′ > 0; Q3 as s′ < 0 and w′ < 0; Q4 as s′ > 0 and w′ < 0, where
s is u or θ . A prime denotes the turbulent perturbation of an instantaneous value
from its Reynolds average, surrogated for here only by a time average and denoted
by an overbar. We applied quadrant analysis to time series collected at the four
representative horizontal locations (x1 to x4) indicated in figure 1 and at every height,
but we will only show results for x2 and x3 since the other locations convey the
same information (they are shown in appendix B). The same averaging procedure
detailed for the results of the skewness is used here. For the momentum flux, Q2
and Q4 are termed ejections and sweeps respectively; for scalar flux, Q1 (motion that
transports higher concentrations of the scalar upward, the wall being a source here)
and Q3 (motion that brings lower concentrations downward) are termed ejections and
sweeps, respectively. Compared to the other two quadrants, the ejections and sweeps
are the dominant events in transporting momentum and scalars; they contribute to
down-gradient transport.
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FIGURE 6. (Colour online) Contribution to total flux for (a,c) momentum and (b,d) scalar
at points x2 (back) and x3 (front) in case Cube25. Ejections are blackA; sweeps are blue
C; outward interactions (w′ > 0 and u′ > 0 or θ ′ < 0) are red 6; and inward interactions
(w′ < 0 and u′ < 0 or θ ′ > 0) are green@.

Figure 6 shows the contributions from various quadrants (momentum in a,c;
scalar in b,d) for case Cube25, where the contribution of quadrant i is defined as
|s′w′|i/

∑
i |s′w′|. The contribution of each quadrant to scalar fluxes is broadly similar

to that of momentum across all points, though slight differences between momentum
and scalars are seen inside the canopy sublayer below z/H = 1. The spatial variation
across the four different horizontal location in the canopy sublayer is on the other
hand significant, underlining the complexity of the flow within these three-dimensional
roughness arrays. These differences blend away above the canopy. The number of
ejection events exceeds that of sweeps below z/H= 1.25 across all four points (not all
shown here), indicating that below this height sweeping events are stronger compared
to the more frequent and less intense ejections. The cross-over point at z/H = 1.25
is consistent with results for the Reynolds stress from DNS reported by Coceal et al.
(2007a) for the same underlying roughness geometry of staggered cubes, although
they averaged over all points at a given z. It has been previously observed that for
momentum transport the sweeps’ contribution to total stress dominates over ejections
in the neutral roughness sublayers of vegetation canopies (Dupont & Patton 2012)
and in a realistic urban area characterized by large roughness elements (Rotach 1993;
Christen, van Gorsel & Vogt 2007). Dominance of sweeps in momentum transport
over very rough walls, compared to the dominance of ejections over smooth and less
rough counterparts, is in general agreement with the picture proposed and discussed
in detail by Raupach, Finnigan & Brunei (1996) who adopted a mixing-layer analogy
for these very rough walls to account for the differences compared to typical flows
over smooth or small-roughness walls. In the outer layer, the dominance of ejections
is restored as typical in smooth-wall boundary layers (Adrian 2007).

Our results for case Cube25 demonstrate that the turbulent transport of a passive
scalar exhibits similar behaviour to momentum. Similarity or dissimilarity between
momentum and passive scalar transport over wall-bounded turbulent flows has also
been discussed in the literature. For instance, similarity in the transport is found
in laboratory results (Perry & Hoffmann 1976; Nagano & Tagawa 1988) over
smooth surfaces and field measurements in the atmospheric boundary layer over
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FIGURE 7. (Colour online) Turbulent transport efficiencies at x1–x4 for the case of
staggered cubes. (a) Momentum transport efficiency ηm; (b) scalar transport efficiency ηs;
(c) ηm − ηs averaged over points x1–x4.

vegetation canopy and in the roughness sublayer over an urban area (Dupont &
Patton 2012; Wang et al. 2014), and in DNS over two-dimensional square-shaped
obstacles (Leonardi et al. 2015). Dissimilarity is not as extensively reported (Christen
et al. 2007), except when buoyancy begins to play a significant role in turbulence
generation (Li & Bou-Zeid 2011). The generalizability of the similarity between
turbulent transport of momentum and scalar observed above for case Cube25 to other
cases is assessed through quadrant-analysis-based turbulent transport efficiencies,
defined as η = Ftotal/(Fejection + Fsweep) (Wyngaard & Moeng 1992; Li & Bou-Zeid
2011), where F is the (total or from a single quadrant) flux of momentum or scalars.
The results for cases Cube25, Slender06 and Wide32 are shown in figures 7–9.
Figures 7–9(a,b) show the vertical profiles of efficiencies at each of the four horizontal
locations x1 to x4, as well as an average over these points, while figures 7–9(c) show
the difference between ηm and ηs, averaged over the four points.

Above z/H = 1.25, ηm − ηs approaches 0 and spatial variability is blended out at
all points and across all cases shown in figures 7–9. Below that blending height, case
Cube25 (figure 7) shows the most significant spatial variation of efficiencies across
the four points; ηm and ηs for Slender06 (figure 8) vary much less while for Wide32
the efficiencies deviate appreciably only at x4. We need to note however that these
locations and their relative distance are not all equivalent since their locations relative
to the cuboids are not identical in all cases.

Although there are some discrepancies between ηs and ηm at some locations, such
as at x2 and x4 within the canopy sublayer of Cube25 and Wide32, the general trends
for momentum and scalar efficiency remain similar for those cases. On the other hand,
Slender06 displays more dissimilarity between momentum and scalar transport in the
canopy sublayer as shown by the η values (figure 8), with a higher transport efficiency
for the scalar. While sweeps dominate the transport of the scalar in Slender06
(figure 18), both sweeps and ejections contribute approximately equally to the total
momentum flux (figure 17), especially at points x3 and x4. A physical explanation
for this dissimilarity is that the penetration of high horizontal momentum sweeps
downward is hindered by the blockage effect of the slender-shaped roughness element,
which induces negative fluctuations in u′ and thus increases inward interactions and
reduces ηm. Nevertheless, sweeps that are associated with cold (low θ ′) fluid, but not
with a large positive u′, can still efficiently penetrate the canopy and transport the
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FIGURE 8. (Colour online) Same as figure 7, but for case Slender06.
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FIGURE 9. (Colour online) Same as figure 7, but for case Wide32.

passive scalar. Overall, turbulent momentum and scalar transport are broadly similar
for Cube 25 and Wide 32, but not for Slender06 that has a higher ηs than ηm.

It would be instructive to analyse further why the slender blocks induce more
dissimilarity than the wider ones, but this is not a core goal of this paper and will
not be pursued here. What we can conclude is that, as the general characteristics of
turbulent flows transitions from wall-bounded-like to a mixing-layer-like regime, u′
and θ ′ exhibit more similar correlations with w′. For these mixing-layer-like flows,
turbulent momentum and scalar transports are broadly similar but with a slightly
more efficient momentum transport (ηm > ηs). However, this similarity is reduced for
wall-bounded-like flows and the more efficient exchange is now for scalars (ηm < ηs)
when measured using quadrant analysis (note that for the efficiency defined based
on the correlation coefficient in figure 2, momentum transfer remained slightly more
efficient than scalar transfer for the slender geometry). For all geometries, the results
suggest a turbulent Schmidt or Prandtl number 6= 1 (results not shown here).

3.1.3. Velocity and passive scalar structures
To understand how turbulent momentum and scalar transport behave as the flow

regime transition illustrated in the previous sub-section occurs, we analyse the
spatial correlations of turbulent quantities. The two-point streamwise correlation for

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ri
nc

et
on

 U
ni

v,
 o

n 
11

 N
ov

 2
02

0 
at

 2
3:

24
:0

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

68
7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.687


Contrasts between momentum and scalar transport 45

z/H

z/H

z/H

z/H

3
2
1

10 12 14 16 18

3
2
1

10 12 14 16 18

x/H

3

2

1

10 12 14 16 18

3

2

1

10 12 14 16 18

3
2
1

10 12 14 16 18

3
2
1

10 12 14 16 18

x/H

3

2

1

10 12 14 16 18

3

2

1

10 12 14 16 18

Ruuå £ 15° Ruuå £ 12°

Rœœå £ 26° Rœœå £ 49°

Ruuå £ 20° Ruuå £ 20°

Rœœå £ 40° Rœœå £ 49°

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 10. (Colour online) Two-point streamwise correlation for u and θ for case
Slender06: (a–d) and case Wide32: (e–h). The black (blue) crosses in the inset figures
(in b, f ) indicate the reference points X0 in figures a,c,e,g (b,d, f,h). The black (blue)
crosses are positioned at the middle of the top of the cuboids and between the cuboids
respectively. The correlation contours are spaced uniformly with a step 0.1 from 1
(innermost) to 0.3 (outermost). The solid green line segments are drawn between X0 and
X1, where X1 is on the furthest point on the correlation contour of 0.3. The angle α is
between the streamwise direction and the line segment X0X1.

a quantity s at reference point x and for a separation distance X0 can be computed
as ρss(X0, x)= s′(X0)s′(x)/(srms(X0)srms(x)), where r.m.s. denotes the root mean square
of the turbulent fluctuations. These correlations are shown in figure 10 for cases
Slender06 and Wide32. The angle of inclination of the contours was calculated
following the approach of Leonardi et al. (2015), where α is estimated as the angle
between the horizontal direction and the segment X0X1, indicated by the green
solid line, the point X1 being the furthest from X0 on the contour Ruu = 0.3. The
increased interactions between the roughness elements and the flow in the roughness
sublayer are indicated by larger α, especially Ruu(x2) in figure 10( f ) relative to
figure 10(b). Compared to the two-dimensional bars studied in Leonardi et al. (2015),
the three-dimensional roughness geometry and different configurations also introduce
spanwise variation in the correlation contours. The mixing-layer-like flow regime
results in increased interactions between the surface and the roughness sublayer for
both u′ and θ ′. However, the increase is more pronounced for the velocity and the
correlation contours Rθθ are less sensitive to the increase of λf than their velocity
counterparts.
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Nevertheless, the angles for θ ′ are always larger than for u′. Even for a surface-layer-
like flow regime of the slender geometry, where the coupling between canopy sublayer
top and the roughness sublayer aloft is not as strong as that for the mixing-layer-like
case, the effect of the roughness geometry on a passive scalar can extend further up.
This result is also consistent with the lower frequency (larger scale) of the motions
contributing to Rθw than to Ruw in figure 4, as well as with the wider range of scales
that can effectively transfer scalars as deduced from the spectral analysis. It should
be noted here that this analysis is restricted to a plane that crosses the buildings,
and indicates longer coherence for the wide, more obstructive geometry. Most of the
coherent structures for the slender geometry are in between the buildings as illustrated
in figure 5 and would not be captured in this correlation coefficient analysis.

3.2. Dispersive transport
An important aspect that sets very rough walls apart is that dispersive stresses
or fluxes, which arise from the spatial inhomogeneity of the time-averaged flow
field, can be important contributors to total transport (Wilson & Shaw 1977;
Finnigan 1985, 2003). Any mean (time-averaged) quantity φ can be decomposed
into φ = 〈φ〉 + φ

′′

, where the double prime represents the spatial deviation of the
time-averaged variable from its time–space average. In the present paper, we consider
〈φ〉 representing the planar average of a time-averaged quantity over the volume
of dzLxLy (i.e. a planar average). The dispersive fluxes then arise from the spatial
averaging of (2.2) and (2.3). As an example, the spatially local, time-averaged
dispersive momentum stress is u′′i u′′j (x, y, z). Taking the volume averaging over
dzLxLy, 〈u′′i u′′j 〉(z)= 〈uiuj〉 − 〈ui〉〈uj〉. Physically, the dispersive stresses result from the
transport by the mean (time-averaged) coherent flow structures, such as the persistent
circulations that will form between buildings.

3.2.1. Dissimilarity between dispersive momentum and heat transport
Figure 11 shows the ratios Fdis/Ftotal = 〈u′′w′′〉/(〈u′′w′′〉 + 〈u′w′〉) and Fturb/Ftotal =

〈u′w′〉/(〈u′′w′′〉 + 〈u′w′〉) in (a) and their counterparts 〈w′′θ
′′

〉/(〈w′′θ
′′

〉 + 〈w′θ ′〉) and
〈w′θ ′〉/(〈w′′θ

′′

〉 + 〈w′θ ′〉) in (b) for all the cases with λp = 0.12 and for increasing
λf (Slender06 to Wide32). Examples of previous studies on the momentum dispersive
fluxes (Christen & Vogt 2004; Poggi et al. 2004; Martilli & Santiago 2007; Coceal,
Thomas & Belcher 2007b; Poggi & Katul 2008; Leonardi et al. 2015; Giometto et al.
2016) and a few on dispersive scalar fluxes (Christen & Vogt 2004; Leonardi et al.
2015) have demonstrated their importance within the canopy sublayer, as well as in
the roughness sublayer. Similar to previous findings, our simulations also indicate that
the dispersive fluxes are significant within the roughness arrays. The dispersive flux
can contribute ≈50 % of the total momentum or scalar flux (where the contribution
of the subgrid-scale fluxes is included in the total) below the roughness elements
height for some cases. It is noteworthy that there are no monotonic trends of how the
dispersive fluxes vary with λf , reflecting the complexity of how the mean circulations
change with changing geometry. The fractions of dispersive fluxes, in general, are the
highest for the most eccentric geometries Slender06 and Wide32. Our results show
that for z/H = 2–3 dispersive fluxes for most cases are close to zero, broadly in
agreement with Coceal et al. (2007a) and Leonardi et al. (2015). We performed our
analysis for the time-averaged quantities over time spans of approximately H/Ub =

1200 (Ub is the bulk velocity) and longer than the H/Ub= 600 suggested in Leonardi
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FIGURE 11. (Colour online) Contribution of x–y-averaged dispersive or turbulent (resolved
+ subgrid-scale) fluxes to the total for (a) momentum and (b) scalar. F, Slender06;
E, Sf08;@, Sf12;A, Sf16; C, Sf24;B, Wide32.

et al. (2015), who found that such an averaging time is required for secondary non-
persistent circulations in the roughness sublayer to meander and be transported away.

Both dispersive stress and scalar flux are important portions of the total fluxes
especially within the canopy sublayer, and their dissimilarities are now studied
in detail. Figure 12 shows u′′N = u′′/〈u(z = H)〉 and θ

′′

N = θ ′′/1θ , where 1θ =

〈θ(z = H) − θ(z = 0.125H)〉 for an x–z cross-section indicated by the blue line in
figure 1. The pseudocolour plots and streamlines are phase averaged for all repeating
units in the domain. Negative u′′N is due to loss of horizontal momentum u in the
wakes produced by the obstacle, as well as due to upstream blockage as the flow
approaches a block. Positive θ

′′

N , on the other hand, are prominent only in the lee
of obstacles and result from all three canyon surfaces (ground and walls) being
kept at a higher temperature. As λf increases, in figures 12(b1) to ( f 1) and 12(b2)
to ( f 2) the most pronounced momentum–scalar distinction can be found upstream
of the obstacle where the mean recirculation pattern results in ‘counter-gradient’
dispersive momentum transport (fluid slowed by the pressure field generated by the
obstacle being advected downwards) but ‘down-gradient’ scalar transport (cooler or
lower concentration fluid transported downwards). This difference emerges from the
non-local action of pressure on momentum (the fluid’s streamwise velocity has to
decrease as it approaches the windward face even before it contacts that face), but
its absence from the dynamics of scalars (the fluid has to ‘touch’ the surface to
uptake scalars). The sign of the dispersive scalar fluxes in that region is thus the
same as the total flux, while there is partial cancellation of dispersive stresses for
momentum. As λf increases, the region that contributes to ‘down-gradient’ dispersive
flux enlarges, especially from Slender06 to Sf24. Case Slender06 generates a mean
flow that is fundamentally different from the other geometries since flow separation
and the emergence of a (resolved) recirculation zone behind the obstacle only starts
with case Sf08. In addition, upstream of the obstacle, a downward flow appears in
case Sf08, resulting in downward transport of colder air (green region near x/H = 5).
However, such downward flow upstream of the building is absent in Slender06.

Due to the asymmetry of the obstacles in the x and y directions, isolating the
spatially coherent characteristics of the dispersive fluxes in each direction can inform
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FIGURE 12. (Colour online) Normalized dispersive stress and flux for all cases: colour
scale indicates s′′N = s′′/1s for s= u or θ . Lines with arrows are the u–w streamlines.

us of the direction-specific variabilities of the temporally averaged quantities. To
probe this aspect, we first define the deviation of a temporally averaged quantity, φ,
from a direction-specific spatial average 〈φ〉i:

φ
′′

i = φ − 〈φ〉i, (3.1)

where 〈〉i denotes the average over the ith direction. The direction-specific dispersive
fluxes averaged in the same direction 〈s′′i w′′i 〉i physically represent the magnitude
of spatial covariance, or the dispersive contribution linked to variability, in the
i-direction alone. These fluxes will vary in the other horizontal direction, but can
then be averaged in that direction; for simplicity, we denote the planar-averaged
direction-specific dispersive fluxes as 〈s′′w′′〉i. The results are shown in figure 13
normalized by the total flux (〈s′′w′′〉 + 〈s′w′〉), where s is u or θ . We reiterate that,
compared to the regular dispersive fluxes, direction-specific dispersive fluxes inform us
about how the spatial variability in each direction contributes to the spatial covariance.
Therefore, it is noteworthy that the dissimilarities between the dispersive transport of
momentum and scalar are observed in both x and y directions. Figure 13(b) clearly
depicts a monotonically increasing 〈θ ′′w′′〉X with λf , but the ‘cancellation’ effect leads
to non-monotonic variation of 〈u′′w′′〉X with λf (figure 13a). An equally important
aspect of the results is that the x-variability is more important than the y-variability
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FIGURE 13. (Colour online) Normalized direction-specific dispersive stress and flux
for all cases: colour scale indicates λf , subscripts X or Y indicate direction-specific
fluxes in the streamwise or spanwise direction (both subsequently planar averaged).
(a,c) Streamwise and spanwise direction-specific normalized momentum stresses,
respectively; (b,d) streamwise and spanwise direction-specific scalar fluxes, respectively.

for the wider geometries, and the reverse is true for slender ones, as expected. For
the y-specific dispersive momentum stress, Slender06 stands out as the case that is
completely dominated by this component (figure 13c). This also applies to scalar
fluxes, although there is less variation with geometry. This underlines the role of the
long streamwise rolls that form in between the obstacles in case Slender06 (depicted
in figure 5) and that seem to be significantly weakened even by the slight widening
of the obstacles in Sf08.

3.2.2. Effects of geometry on dispersive transport efficiency
The effects of different geometries on the dispersive fluxes can be further studied

using the approach of quadrant analysis, but now applied to u′′, w′′ and θ
′′

(Pokrajac
et al. 2007; Poggi & Katul 2008) in a similar way to applying it to turbulent
fluctuations. Instead of indicating the presence of turbulent events, each quadrant
event reveals the spatially coherent structures of the time-averaged quantities.
An equivalent dispersive transport efficiency can be defined as the ratio of the
total flux 〈u′′w′′〉(z) =

∑4
i Fi to the sum of the two Fi contributions producing

down-gradient fluxes. Here Fi is the dispersive flux contribution of the ith quadrant
Fi(z) = (LxLy)

−1
∫

A Ii(x, y, z)u′′(x, y, z)w′′(x, y, z)d A, where Ii is an indicator function
of the quadrant event and A is extent of the horizontal domain. The same sign
convention as the turbulent fluctuating components is applied to u′′, w′′ and θ

′′

. The
transport efficiency for momentum (ηd

m) and scalars (ηd
θ ) for the dispersive fluxes
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FIGURE 14. (Colour online) Dispersive transport efficiencies for different cases: (a) F,
Slender06; (b)@, Sf12; (c)A, Wide32; (d) ηd

m and ηd
θ averaged for 0 6 z 6 2H.

is hence defined as η =
∑

i Fi/〈F2 + F4〉. For instance, when u′′ < 0 and w′′ > 0,
we denote it as a dispersive ‘sweep’, which indicates a persistent spatial feature.
Similarly, we can also define a direction-specific dispersive transport efficiency for
〈s′′Xw′′X〉 and 〈s′′Yw′′Y〉 as ηd

X and ηd
Y , respectively.

Figure 14(a–c) indicates that there is distinct dissimilarity between the vertical
distribution of ηd

θ and ηd
m, related to the physical differences that arise from the

role of pressure discussed above. In general, ηd
m < ηd

s , except for case Slender06
shown in figure 14(d). This is in stark contrast to the turbulent transport efficiencies
shown in figure 7 where the slender case was the one showing a lower turbulent
momentum transport efficiency. As λf increases, a non-monotonic trend is observed
for the difference between ‘efficiency’ of dispersive transport of momentum and the
passive scalar, with the most eccentric geometries again showing the highest transport
efficiencies. The high efficiency in Slender06 can be understood as a result of the
absence of the ‘cancellation’ effect as discussed in the previous paragraph, and of
the stronger dispersive variability in the lateral direction as indicated in figure 13(c)
and by the long structures depicted in figure 5. The lower pressure drag associated
with the small λf in Slender06 prevents the formation of a recirculation zone and
no ‘counter-gradient’ dispersive momentum flux at the leading edge is present. With
increasing λf , the y-direction dispersive fluxes drop, even becoming negative for
the Sf08 momentum flux (figure 13c) due to strong ‘counter-gradient’ fluxes at the
leading edge. As λf continues to increase, the influence of the y-direction variability
is minimized and the x-direction dominates, resulting in a monotonic increase in the
efficiency as the ‘down-gradient’ dispersive momentum fluxes in the recirculation
region increase. Therefore, a number of competing factors, such as the differences in
spatial variabilities in x and y directions for different geometries, collectively influence
the non-monotonic behaviour of dispersive fluxes as λf increases.
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Dispersive transfer of scalar is less impacted by the change of geometry due to the
absence of cancellation effect. However, with larger recirculation regions (from cases
Sf08 to Wide32), the efficiency and magnitude of both the dispersive momentum
and scalar fluxes are enhanced. The complex flow dynamics and non-monotonic
changes with λf underline the need for more detailed investigation to relate the
universal features of dispersive transport of momentum and scalar to the topological
characteristics of the surface, and to construct a model for dispersive fluxes. However,
since this is not one of the central research questions of this study, we have to leave
it to future investigations.

4. Conclusion

We use LES to compare and contrast the transport of momentum and passive
scalars, by turbulent and dispersive fluxes, over very rough surfaces consisting
of three-dimensional cuboidal roughness elements. The focus is on the canopy
and roughness sublayers, since above these layers the flow reverts to a canonical
wall-bounded flow regime. The effect of the frontal blockage of the roughness
geometry on the fluxes is also investigated.

The influence of different three-dimensional roughness elements alters the general
turbulent flow characteristics. We observe a general transitioning behaviour from a
canonical wall-bounded flow type to a mixing-layer-like one or ‘obstructed shear
flow’, when the frontal area ratio λf increases. This ratio encodes the flow blockage
by the roughness elements, and the preponderance of free-shear wakes behind the
roughness elements. This is particularly illustrated by the decrease in the shear length
scale and the enhanced penetration of low-frequency eddies (associated with large
scales) into the canopy layer as λf increases. This transition causes a monotonic
and significant increase in the momentum transport efficiency as the flow becomes
more mixing layer like, while on the contrary the transport efficiency for scalars
measured by the correlation coefficient changes more mildly and non-monotonically
with increasing λf . This is mainly a result of the distinct contributions from large-scale
motions in the roughness sublayer, which are able to increase the interaction between
the canopy sublayer and the roughness sublayer more effectively for momentum
than for scalars as the geometry is modified to increase flow obstruction. Turbulent
transports of momentum and passive scalar are found to be broadly similar in general,
as evidenced by a quadrant analysis, with a marginally higher averaged turbulent
momentum transfer efficiency. The unique exception is case Slender06, where the
difference in turbulent momentum and scalar transports becomes more substantial.

A distinct feature of flows over very rough surfaces is that dispersive fluxes can
be significant, particularly for the most eccentric geometries (Slender06 and Wide32)
where they amount to ≈50 % of the total flux. The dispersive momentum and scalar
fluxes show more pronounced differences than their turbulent counterparts. Directional
analysis of dispersive fluxes also confirm such differences in both the streamwise and
spanwise directions, the latter displaying a higher sensitivity to the underlying surface
topology. The differences between momentum and scalar dispersive fluxes are traced
back to the non-local action of pressure in the momentum dispersive contributions,
and the absence of a pressure counterpart for scalar transport. Thus, the geometry
has a larger influence on the momentum fluxes than on the scalar fluxes, as indicated
by more pronounced changes in momentum dispersive transport efficiency. The most
pronounced discrepancies between momentum and scalars are noted for the more
symmetric geometries, while the most eccentric ones display comparable transport
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efficiencies. In particular, Slender06 again emerges as the exception, displaying the
strongest scalar–momentum similarity for the dispersive part. This unique behaviour
of Slender06 is shown to be related to the dominance of dispersive variability in the
cross-stream direction; however, more research is needed to fully elucidate how the
asymmetry of roughness elements influences the spatial coherence of the dispersive
fluxes.

Although we only simulated flows with constant scalar concentration boundary
conditions, the results about dis(similarity) between turbulent and dispersive fluxes and
between momentum and scalars should hold for flux or mixed boundary conditions
as well. On the other hand, if the scalar concentration influences buoyancy (e.g. with
large temperature fluctuations), the active role of the scalars will then have a strong
impact on the dynamics (Li & Bou-Zeid 2011) and the present results will be
altered. This study demonstrates that the (dis)similarity between momentum and
scalar transport in three-dimensional very rough surfaces can be complicated by
the spatial variability of the roughness elements and the specific topology of the
underlying geometry. However, the present findings, especially the significance of the
scalar dispersive flux contributions over dense canopy, can inform the interpretation
of experimental measurements, which are often pointwise data where dispersive
fluxes cannot be estimated: such measurement in the canopy and roughness sublayers
are missing nearly half of the total fluxes. This can be overcome by collecting data
(e.g. using movable hotwires or particle image velocimetry) at various spatial locations
to be able to assess the dispersive contributions. In addition, in the dense canopy
sublayer, the mechanistic difference (arising from the pressure term) in generating
dispersive momentum and scalar fluxes need to be incorporated in model development.
Current parameterizations either neglect dispersive fluxes or do not distinguish them
from turbulent fluxes, but, as our analyses show, their physics are quite distinct and
this difference is not the same for momentum and scalars.
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Appendix A. Resolution test
A sensitivity test is carried out to examine the effect of the number of points used

in representing the obstacles. It was found previously by Tseng et al. (2006) that at
least 6 points per dimension of the obstacle are required to represent a solid in LES
(they used a similar approach and LES code to the ones we are using here). Therefore,
we doubled the resolutions for the case Wide32 listed in table 1. In addition, a test
case with all other parameters maintained the same as Wide32 except for Lx/δ, which
was doubled to 6.25, was also conducted. Figure 15 shows the comparison between
the original simulation, the higher resolution case and the case with longer domain
length, where θ1 is 〈θ〉 at z = δ and θ0 is 〈θ〉 at z = 1/8H. Both test cases were
run for approximately 30 eddy turnover times and are averaged for the last 15 eddy
turnover times. We compute the height-averaged relative mean square error defined as
rn

e = 〈
√
(qn − q0)2/q0〉z, where qn is some quantity for comparison in case n (n = 1
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FIGURE 15. (Colour online) Comparisons of horizontally averaged quantities. (a) 〈u/u∗〉,
(b) 〈(θ0 − θ)/(θ0 − θ1)〉, where θ0 = θ(z = 0.125H) and θ1 = θ(z = δ), (c) 〈u′w′/u2

∗
〉,

(d) 〈θ ′w′/u∗θ1〉.

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

2

1

2

1z/H
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FIGURE 16. (Colour online) Comparison of the dispersive fluxes contributions for different
simulation set-ups for (a) momentum, (b) scalar.

being doubled Lx and n= 2 being the case of double resolution in all directions) and
q0 is that same quantity from the initial set-up of case Wide32. The value of r1

e in
percentage for (a–d) are 1.7, 1.5, 15 and 27 %; r2

e in percentage for (a–d) are 1.7, 2.0,
5.5 and 4.2 %. r2

e are all within 6 % compared to case Wide32, which shows that we
achieve good grid convergence. The larger deviation seen in case of doubled Lx in the
second-order moments is due to the fact that in the larger domain the streamwise roll
are less persistent and the convergence to a linearly decreasing stress (as expected) is
faster. However, for z/H < 2, the deviation in the case of doubled Lx is small, likely
because of the dominance of the small-scale wall-attached eddies.

Figure 16 shows the percentage of dispersive momentum and scalar flux to total
flux for these three cases. Good agreements between the three cases confirm that
the differences observed between dispersive momentum and scalar fluxes are robust,
especially for the roughness sublayer, which is the focus of this study.
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FIGURE 17. (Colour online) Contribution to total flux for momentum for Slender06.
(a–d) points x1–x4 indicated in figure 1. Ejections are blackA; sweeps are blueC; outward
interactions are red6; and inward interactions are green@.
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FIGURE 18. (Colour online) Contribution to total flux for scalar for Slender06
(a–d) points x1–x4 indicated in figure 1. Ejections are blackA; sweeps are blueC; outward
interactions are red6; and inward interactions are green@.

Appendix B. Quadrant analysis at different points
Quadrant analyses similar to results in figure 6 are presented here for Slender06 in

figures 17 and 18; Wide32 in figures 19 and 20.
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FIGURE 19. (Colour online) Contribution to total flux for momentum for Wide32
(a–d) points x1–x4 indicated in figure 1. Ejections are blackA; sweeps are blueC; outward
interactions are red6; and inward interactions are green@.
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FIGURE 20. (Colour online) Contribution to total flux for scalar for Wide32 (a–d) points
x1–x4 indicated in figure 1. Ejections are blackA; sweeps are blueC; outward interactions
are red6; and inward interactions are green@.
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