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3D Urban UAV Relay Placement: Linear
Complexity Algorithm and Analysis

Junting Chen™', Member, IEEE, Urbashi Mitra

Abstract— Optimal unmanned aerial vehicle (UAV) placement
in a 3-dimensional (3D) space to build a connection between
a base station (BS) and a ground user is studied herein. A key
challenge is to avoid signal propagation blockage due to obstacles.
Much prior work uses probabilistic terrain models with model
parameters learned from the statistics over a large area, and
therefore, the optimization for a specific user in a small local area
is poor. In contrast, this paper seeks the optimal UAV position
over actual and fine-grained terrain, and develops efficient UAV
positioning strategy adaptive to the degree of location-dependent
line-of-sight (LOS) condition measured on the fly. It is proven
that the globally optimal UAV position in 3D can be determined
from the proposed search trajectory which has merely linear
length in the diameter of the target area. Therefore, the proposed
strategy can be practically implemented. Numerical experiments
are performed over a real-world urban topology and demonstrate
superior performance gain over existing strategies based on
probabilistic models.

Index Terms— Unmanned aerial vehicle (UAV), relay networks,
radio map, trajectory planning, position optimization.

1. INTRODUCTION

OW altitude small UAVs have great potential for boost-
ing the performance of wireless communication net-
works. One trending application is to use UAVs to establish
aerial relay networks [1]-[6]. Compared to traditional BSs
installed at fixed positions, the UAV relay system can quickly
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respond to occasional and temporary service requests from
a specific area in the shadow of a BS’s coverage. As a
result, a dynamic network can be formed to geographically
track time-varying service demands and quality-of-service
guarantees [7]-[10].

A compelling feature of a UAV relay system is the ability
of establishing a better propagation environment for a ground
user, e.g., by providing LOS links. This naturally leads to
the problem of optimal 3D placement of UAVs. However,
since there are buildings and trees that potentially block the
air-to-ground signal and create propagation shadows for the
ground user, it is very challenging to find the optimal UAV
position, which should depend on the propagation environ-
ment. Prior work bypassed this difficulty by using a flat-terrain
model or a probabilistic terrain model to arrive at simpli-
fied problem formulations [11]-[20]. For example, [11]-[13]
assumed LOS conditions regardless of the UAV and user
positions. In [14]-[22], probabilistic LOS models are used,
where the LOS and non-line-of-sight (NLOS) conditions are
simplified into a random variable with distribution depending
on the elevation angle from the user to the UAV. Since
stochastic models are over-simplified, they fail to capture the
actual blockage situation for a specific user. There is also a
trending research direction that exploits radio maps for UAV
placement to avoid the actual air-to-ground signal blockage,
but existing results only optimize for the 2D case for tractable
complexity, where UAVs fly at a fixed height [23], [24].
The work [25] also considered LOS-seeking online search for
UAV-aided free space optical communication, but the method
is limited to 2D case.

The goal of the paper is to develop fine-grained blockage-
aware algorithms for the online search of the optimal UAV
position in 3D. There are two main challenges: the sampling
complexity for acquiring the propagation conditions and the
computational complexity due to the unstructured terrain.
First, if there is no radio map available, the UAV may need
to spend a tremendous amount of flight time to explore every
propagation opportunity in 3D. However, an exhaustive search
is prohibitive due to the very limited UAV flight time. Second,
even if we store the entire radio map in an offline database,
the computation for the optimal UAV position is still very
expensive for real time applications because the obstacles may
have arbitrary shapes and so as the patterns of the radio maps.

Our approach is to exploit the hidden structure of the
propagation from a direct ray-tracing mechanism: First, if the
UAV-user link is in LOS, then it remains in LOS when
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(a) UAV relay network

Fig. 1.
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(b) Multi-segment propagation model

(a) The UAV may adjust its position in 3D to avoid signal blockage (grey area) from the user. (b) Multi-segment propagation model: (1) When the

UAV moves upwards, it will experience a smaller degree of obstruction; (2) When the UAV moves along the black dashed line, it travels along the same

propagation segment (i.e., same degree of obstruction).

the UAV moves closer to the user, whereas, when it is in
NLOS, it remains in NLOS when the UAV moves away
(see Fig. 1-(b)). Second, when the elevation angle from the
user to the UAV increases, the degree of LOS obstruction
tends to decrease. Existing work has leveraged the stochastic
version of these features to arrive at probabilistic LOS models
for UAV placement [14]-[22]. Herein, we show that exploiting
the deterministic version of these features can achieve a much
higher performance gain, since the UAV has a better sense of
the environment. We develop an exploration-and-exploitation
search strategy with only linear search complexity. Somewhat
surprisingly, it can be proven that the proposed search leads to
the global optimal solution under mild conditions. This result
theoretically justifies the substantial performance gain of the
proposed method. Our prior work [9] studied a similar UAV
positioning problem in 2D by assuming a fixed UAV height,
but such a constraint limits the potential gain of the UAV
relay system. The extension to 3D requires a new design of
the strategy for low complexity search.
To summarize, the contributions of this paper are:

o We develop a search strategy to find the optimal the UAV
position in 3D that is aware of the fine-grained actual
propagation environment for the target user. The worst-
case search length is linear in the diameter of the target
area.

o We prove that the search algorithm finds the globally opti-
mal UAV position over arbitrary terrain structures, pro-
viding theoretical justification for the proposed strategy.

o We evaluate the proposed strategy for three UAV appli-
cation examples over a real-world urban city topol-
ogy, demonstrating substantial performance gain over the
state-of-the-art solutions, such as the methods based on
probabilistic LOS models.

The rest of the paper is organized as follows. Section II
presents the segmented propagation model and the prob-
lem formulation. Section III develops an angular coordinate
transformation to enable an effective search on a 2D plane.
The algorithm is then described in Section IV with optimal-
ity and complexity analysis. Three application examples are

TABLE I
KEY NOTATIONS

Symbols Meaning

X, Xy, Xp The positions in 3D of the UAV, user, and BS,
respectively (Section II).

Xs The point on the 2D horizontal plane x3 = Hs such
that x, xy, and (Xs, Hy) are collinear (Section IIT-A).

X, Xy, Xp The points where x, xy, and X} are, respectively,

projected on the 2D plane 3 = H; (Section III-A).

du(x), dp(x) | Distances from the UAV at x to the user x, and BS

Xy, respectively (Section II-A).

Dy The set of UAV locations x such that the UAV-user
link is in the kth propagation region (Section II-A).

fi(du,dp)(x) | The system cost function when the UAV locates in the

kth propagation region Dy, (Section II-B).

fr Z, p,0) The same cost function fj, expressed using the angular
coordinate (I, p, 0) (Section III-B).

Fy(p,0) The cost function fk(l*(p, 0), p, ) where the variable
[ has been optimized (Section III-B).

Pk The set of UAV positions on 3 = H using the

(p, 0)-coordinates such that x € Dy, (Definition 2).

formulated in Section V with numerical evaluation over an
actual topology in Section VI. Finally, Section VII provides
the conclusions.

Notation: For functions ¢1(x), g2(x),...,gm(x) : R™ —
R and a function f(g1,92,...,90m) : R — R, the form
f(g1,92,...,9m)(x) is a short-hand notation of the composite
function f(g1(x), g2(x), ..., gan(x)). Other key notations are
summarized in Table I.

II. SYSTEM MODEL

Consider a BS located at x, € R3 and a user located at x, €
R3 which is in the propagation shadow of the BS. A UAV is
employed to relay the signal between the BS and the user. The
user location is fixed and the UAV position x = (z1, 72, 23) €
R3 is to be optimized. Suppose that the altitude of the UAV
is lower bounded by H,,;i,, the height of the tallest building,
such that no collision will occur. In addition, assume that the
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BS is placed on a high enough tower, and therefore, there
is always an LOS condition between the UAV and the BS.
However, the UAV-user link likely gets obstructed as shown
in Fig. 1-(a).

A. Channel and Environment Models

Since the UAV position will be optimized in a relatively
large timescale, we focus on the adaptation to the large-scale
channel characteristics. The BS-UAV channel in decibel is
modeled as [gy(x)],5 = bo — ag log,q dp(x) as LOS is always
assumed for the BS-UAV link, where dy(x) = ||x — xp][2 is
the UAV-BS distance.

On the other hand, the UAV-user link can be modeled as

LOS
NLOS

b1 — ay logg dy(x) + &1,

(1)
b2 — a loglo du (X) + 52,

[Qu(x)]dB = {

where d,(x) = ||x —x,]|2 is the UAV-user distance, a;, and by,
are the path loss parameters, and &;, are random variables to
capture the shadowing. Conventionally, LOS is defined as the
scenario where the direct propagation path is not obstructed;
otherwise, the link is in NLOS.

In a more general setting, the system may have the ability to
identify multiple degrees of LOS obstruction. We extend the
classical channel model (1) to the K -segment case. Define Dy,
as the set of UAV locations in which the direct path of the
UAV-user link experiences degree-(k — 1) of LOS obstruction
as shown in Fig. 1. As a result, UAV-user channel in a large
timescale can be written as

K

[9u(®)]gp = > (b — arlog g du(x) + &){x € Di} (2)
k=1

where T{ A} is an indicator function taking value 1 if condition
A is satisfied, and 0 otherwise. Intuitively, the more propaga-
tion regions Dy, to identify, the smaller the variance of &,
which captures the residual shadowing due to reflection and
diffraction. Such an observation was experimentally validated
in [26] and [27].

In addition, we impose two regularization conditions to
shape Dy, as shown in Fig. 1-(b):

Al) Increasing the altitude of the UAV will lower the degree
of LOS obstruction, and

A2) The feasible UAV positions that are in line with a given
user position are in the same propagation region.

An illustrative example is given in Fig. 1-(b), where, for a user
at xy, all UAV positions on the dashed ray belong to obstructed
line-of-sight (OLOS). On the other hand, if the UAV increases
its altitude from the dashed line, it may enter LOS. Note that
any channel measurement data can be fit to model (2) with
conditions II-A and II-A imposed.

We do not make any assumption on the statistics of & in
(2), but we assume that the propagation condition I{x € Dy}
can be perfectly determined along the search path x(t) of the
UAV. In practice, hypothesis testing or other statistical learning
methods can be applied to determine I{x € Dj} from the
measurement data [9], [28], [29].
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B. Problem Formulation

We explain our general formulation from an example, where
a UAV serves as a relay that employs a decode-and-forward
strategy to connect the BS with the user. One may wish to
maximize the end-to-end capacity'

~J(x) £ min { 1ogy (1 + kE{gy(x)}), logy(1
+rE{g)})} G)

where the expectation is taken over the randomness of the
residual shadowing &, and hence, E{gy(x)} and E{gy(x)}
give the average signal-to-noise ratio (SNR). The first term
in (3) captures the approximate spectrum efficiency of the
UAV-BS link and the second term captures that of the
UAV-user link, in which, the parameters x, and k, char-
acterize the SNR back off due to the discrete transmission
power control, the discrete choice of modulation schemes,
coding loss, small-scale fading and shadowing statistics, efc.
In (3), the cost only depends on the distance dp(x) or dy(x)
and the LOS condition I{x € Dj}. As a result, (3) can
be equivalently written as a decomposable form f(x) =
Z,{;l Jr(dy(x), dp(x))I{x € Dy}, where the sub-function f},
corresponds to the objective f(x) in (3) evaluated under the
condition that the UAV locates in the kth propagation region
Dy, ie., H{X S 'Dk} =1.

It is important to note that in (3), the objective f(x)
is discontinuous in x due to the indicator function in (2),
whereas, the sub-functions fj’s are continuous in x.

Similar to the above example, many UAV positioning prob-
lems can be formulated into the following general form:

K
2 : minimi dy, dy) (x)I{x € D
minimize ];fk( us db) (X)I{x € Dy}
subject to Hupin < T3 < Hpax 4)

where fi(z,y)(x) is a short-hand notation for f(z(x),y(x)),
which is the specific cost if the link is in the kth propagation
condition. The constant H,;, is assumed to be larger than the
height of the tallest building.

Finally, it is natural to assume that the cost sub-functions
fr satisfy the following two mild conditions:

A3) The cost fj for each propagation segment k is non-
decreasing with the distances d,, and dy, respectively,

A4) The cost in a less obstructed region is smaller than the
one in a more obstructed region:

Jr(du, d) (%) < fry1(du, db)(x) (5)

fork=1,2,..., K — 1.

It can be easily verified that the example formulation (3)
satisfies these two conditions.

IThe negative sign is because we want to unify our formulation as
minimizing a “cost” function.
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Search Plane 23 = H; *

BS

Ground z3 =0

Fig. 2. Geometric interpretation of the angular transformation. The coordinate
(Xs, Hs) on the search plane x3 = Hs is transformed to (p, 6).

III. DESIGN OF THE ALGORITHM

In this section, we first show that, to find the optimal
position in 3D, it suffices to search on a 2D horizontal plane
r3 = H under an arbitrary altitude Hy, Hpnin < Hy < Hpax.
The intuition is that, if the UAV position x is known to belong
to Da, then all the positions along the dashed line are in Dy
(see Fig. 1-(b)), and hence, the UAV need not explore the
entire dashed line.

To exploit such a property, this section first develops an
angular coordinate system (I, p,#), and then, shows how
to transform the 3D cost functions fi(x) into 2D proxy
segment cost functions Fj(p,0) by first optimizing over .
Finally, based on Fi(p,0), a low complexity search strategy
is developed to find the optimal position in 3D.

A. Angular Coordinate System

Recall that x, x,, and x;, represent the UAV position,
the user position and the BS position, respectively, in 3D.
As shown in Fig. 2, Let (Xg, Hy) be the point where the line
segment joining x and x, intersects with the search plane
x3 = Hy, ie, X € R? is a point on the 3 = H; plane
such that the three points x, x,, and (Xs, Hs) are collinear.
In addition, denote (X, Hy), (Xy, Hs), and (Xp, Hy) as the
points where x, x,, and xp are projected on the search plane
w3 = H;, respectively. Denote | £ [|x —xy||2, p = [|Xs — Xul|2,
and 6 as the angle from vector X, — X, to vector X; — X,. One
can verify that the UAV position x = (z1,x2,23) can be
uniquely represented by the angular coordinates (I, p, 6).

Using the geometric relation, the transformation from
(21,22, 23) to (I, p,0) is:

1(x) =[x = xul2 (6)
Hy . _
o) = %~ %l 9
3
0(x) = sign(z2u1 — z1us) - arccos (z' u/||z|) (8)

where z = (21, 2’2) £ X—Xy, U= (ul, UQ) & ()_(b—)_(u)/”)_(b—
Xu|| is the reference direction pointing from X, to Xy, and
sign(z) = 1 if > 0, and sign(z) = —1, otherwise.

In turn, the transformation from the angular coordinates
(I, p,0) to the Cartesian coordinates x = (21,2, x3) can be

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 8, AUGUST 2021

computed as

(Xs(p,0), Hs) — xu
[(Xs(p, 0), Hs) — xu|

where X(p, 0) = X, + pM(0)u, and
— sin@]

cos

x(l, p,0) =1

©))

cos
sin 6

M(6) = {

is a rotation matrix.

B. The Proxy Cost Function on the 2D Search Plane

Given the propagation condition observed at the search posi-
tion (Xs(p,0), Hs), the cost at every [ can be mathematically
computed, since they are under the same propagation condition
according to property II-A as illustrated in Fig. 1-(b).

In the following, we define the proxy segment cost Fy,(p, 0)
on the 2D search plane by first transforming fi(x) to
fk(l, p, 0) using the coordinate transform and then minimizing
fr(l, p,0) over L.

First, using the coordinate transformation (6)—(8), problem
& can be equivalently written in the form of (I, p,0) as

K
P

fe(l, p, O)TI{x(l, p,0) € Dy,
o g mimimize L(p)k:lfk( p,O){x(l, p,0) € Dy}
where fk(Lp»e) £ fk(dUadb)(x(l?p: 9)) and

min Hmax
L:(p)_{l: T VPP +HZ<IL i \/p2+H52}.
s

(10)

=

@

Second, observed that problem £?’ can be decomposed into
an inner problem

K

fe(l, p, 0)I{x(l, p, 0) € Dy
ml1£1£1%1p1)ze ;fk( p, O)I{x(l, p, 0) K}

(1)

which minimizes over ! and an outer problem which minimizes

over p and 6. Given (p,0), the inner problem can be further

written into K subproblems each minimizing fx (I, p, 0) over [.
Let

l;::(pv 9) = arg min fk(lapv 9)
leL(p)

(12)

be the solution to the kth inner subproblem of &?’. In the
example shown in Fig. 1-(b), [} (p, 6) corresponds to the local
optimal position along the black dashed line, with (p, 6) being
the coordinate obtained from (7)—(8) for a given x.

The cost evaluated at local optimal point (I} (p, 9), p, 8) for
the kth propagation condition is then defined as the proxy
segment cost Fy,(p,0) as follows.

Definition 1 (Proxy Segment Cost): The proxy cost for the
kth segment is defined as

In addition, the proxy cost F(p,0) on the 2D search plane
is defined as follows.

(13)
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Definition 2 (Proxy Cost): The proxy cost at the search
coordinate (p,0) on the search plane is defined as

K
F(p,6) £ Filp,O)I{(p,6) € Pi} (14)
k=1

where P, £ {(p,0) : x(I*(p,0),p,0) € Dy} is the kth
propagation segment expressed in the angular coordinate
system.

The following establishes the connection between the proxy
segment cost Fj(p,0) and the segment cost F'(p,0).

Proposition 1: Given (p,0) to examine the propagation
condition at an arbitrary position | € L(p). If x(l, p,0) € D;,
for some k, then, F(p,0) = Fi.(p,0).

Proof: Define {*(p, ) as the solution to the inner sub-
problem (11) of &’. Property II-A and our construction of
the angular coordinate system imply that, given a fixed search
coordinate (p, ), all possible UAV positions x(I, p, #) belongs
to the same propagation condition x(l, p,0) € D; for some

k. This property justifies that [*(p, ) = l]i;(p7 ). As a result,
I{(p.6) € P} = [{x(I".p.0) € Dy} = I{x(1}.p,0) € Dy},
and hence, F'(p,0) = F.(p,9). O

Following the above property, problem 22’ can be further
transformed into a 2D search problem

A F(p,0)

minimize
p>0,—m<O0<m

which drives the following algorithm design.

C. Algorithm Design

The main idea of the search strategy is described as follows
with full technical details given in Algorithm 1.

1) K = 2 Case: In the two segment case, the algorithm
performs in two phases. In phase 0, the UAV starts from the
BS location X;, and moves towards the user at X, on the search
plane z3 = H, until it detects the LOS and NLOS boundary.
The search then enters to phase 1.

In phase 1, the UAV moves according to the two possible
conditions it detects. If it is in the LOS segment, it moves away
from the user by increasing p until the new position does not
decrease the proxy segment cost F; (p, §) any more or until the
UAV enters in NLOS. If it is in the NLOS segment, it moves
along the contour specified by F; (p, #) = constant. The search
continues until the stopping criterion is met, i.e., either p >
Hisn cos B||xp — Xyll2 or OF;(p,6)/0p > 0, or until the UAV
enters in the LOS as illustrated in Fig. 3. The stopping criteria
will be explained in Section IV.

2) K > 2 Case: For the multiple propagation segment case,
the algorithm has K phases. In the kth phase, the segment
Ule D; (or U?Zl P; in the polar domain) is treated as a
virtual LOS segment, and the rest is treated as a virtual
NLOS segment. The UAV follows the search strategy specified
in phase 1 of the K' = 2 case until the stopping criterion
is met. It will be shown in Section IV-C that when the
whole algorithm terminates, the globally optimal UAV position
must have been visited by the trajectory that the UAV has
visited.
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Algorithm 1 Search Strategy for the Optimal UAV Position
Choose a step size ¢ > 0. The search is carried out on a 2D
search plane x5 = Hy using the coordinates (p, ) defined in
(6)—-(8).
1) Search along 6 = 0: Find the critical points p?, k =
1,2,..., K, defined as the solution to

minimize

(15)
p>0, (p.0)EUS_, P;

Initialize Finin = F1(p9,0), (p,0) = (p9,0), and k = 1.
2) Search on the right branch: Set (p,0) < (p2,5/p%).
3) Proceed according to the following two statuses
a) Virtual LOS: If (p,0) € U§:1 P;, update accord-
ing to

p—p+6. (16)

If Fir(p,0) < Fnin, then update the record Finin <
Fy(p,0) and (p,60) — (p,6).

b) Virtual NLOS: If (p,0) € U, ., P;. update
according to

OF, ) —-10F}

w0) o, 17

where v > 0 is chosen such that the UAV position
change satisfy the step size ||AX;|[2 = 0.
Repeat this step until either (i) p > HiinLCOSQ or (ii)
OF(p,0)/0p > 0, where L £ ||y — Xy||2.
4) Search on the left branch: Set (p,0) «— (p2, —d/p?).
Repeat from Step 3).
5) Let k < k + 1. Repeat from Step 2) until £k > K — 1.
6) If EK(p?{,O) < Fhin, then F;, < FK(p?{,O) and
(5,0) — (p0).

The optimal position is given by x(I*(p, ), 3, ) from (9).

PP+, 9<—9+7(—

D. Detecting Propagation Segment

Algorithm 1 requires detection on the propagation segment
x € Dy, along the search trajectory x. In practice, the detec-
tion can be realized using a maximum likelihood estimation
method. For the kth propagation segment, let hy(u) be the
probability density function of the random variable &, in the
model (2). Then, given the channel gain measurement y in
decibel at UAV location x, one can pick propagation segment
k that maximizes the likelihood function

k= argmax hy(y — by + ax log,o dy(x)).
k=1,2,...,K
In particular, if & is further modeled as a Gaussian random
variable with variance U,%, then, the detection rule can be
further derived as

k= argmin L ly — by, + ax logqg du(x)] -
k=1,2,....K Ok
The above detection method implicitly assumes the knowl-
edge of propagation parameters ay, by, and oy, which can be
obtained either from a separate training phase or from Step 1
in Algorithm 1. In the latter case, the UAV first searches on
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Fig. 3. (a) The running best objective value (projected to the search plane)

discovered along the search path, the black curve. (b) The corresponding
search path on the search plane.

the BS-user axis to collect channel measurements, and then
performs parameter estimation for ay, bx, and oy [28], [30].

IV. COMPLEXITY AND OPTIMALITY ANALYSIS

In this section, we focus on the algorithm analysis for two
types of cost functions fi(z,y):

Type 1. For every xz,y > 0,

Afu(zy) Ofn(z,y) P fulzy) _
Sligt) SRt >, Sgest) = 0, and

fk (Ia y) > 07
ox

& fulz,y)  10fw(2,y)

e
02 r Oz =0 (18)
O frelz,y)  10fr(z,y)
e (19)

Type II. There exist continuous, positive, and strictly
increasing functions f,gl)(:zr) and f,gQ)(y) for 2,y > 0, such
that

fulzy) = max{ £V (@), £ ()} (20)
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Note that convexity is not required, and recall that, in our
formulation &, the arguments « and y in fi(x,y) correspond
to the distances d,(x) and dy,(x), respectively. These two types
of cost functions have a vast of applications as will be seen in
Section V. Examples of Type I functions include the outage
probability as a function of path loss with respect to (w.r.t.) the
distances in a relay channel [31], [32]. Examples of Type II
functions are the end-to-end ergodic capacity (with a negative
sign) of a relay channel [32], [33].

A. Unique Local Minimizer in the Proxy
Segment Cost Fy(p,0)

It can be found that Fj(p,6) has a unique local minimizer
py(0) for each 6, justifying the stopping criterion (ii) in
Algorithm 1.

First, it can be shown that fk(l, p,0) is quasiconvex and
I (p, 0) is a unique local minimizer. Recall that a quasiconvex
function f(x) is a function of which the sub-level set C, =
{z : f(z) < a} is convex. Moreover, a function f(z) is strictly
quasiconvex if f(Az1 + (1 — N)xz) < max{f(z1), f(z2)} for
any 0 < A < 1 and x1 # x2. Thus, the following result can
be established.

Proposition 2 (Unique Partial Minimizer 1): For Type [
and Type II cost functions, fk(l ,p,0) is strictly quasiconvex
in | and admits a unique local minimizer I};(p,0) in L(p), i.e.,
dfx/0l <0 for 1 < I(p,0) and Df /Dl > 0 for | > I (p,6).

Proof: See Appendix A. O

Proposition 2 implies that I*(p, #) can be found efficiently
using algorithms such as bisection search. The solution can
be obtained in [log2 ’)EAT{{—‘ steps, where € > 0 is the error
tolerance and AH = Hy o — Hiin-

Proposition 3 (Unique Partial Minimizer 11): For Type 1
and Type II cost functions, the proxy cost function Fy(p,0) is
strictly quasiconvex in p, and there is a unique local minimizer
P (0) of Fi(p,0), ie, Fi(p1,0) > Fr(p2,0) for p1 < p2 <
p:(0), and Fy(ps,0) < Fi(pa,0) for pi(0) < ps < pa.

Proof: See Appendix B. ]

As Fy(p,0) has a unique local minimum pj(¢) for each
g, there is no need to search in p > pj(0), corresponding to
the region satisfying dFy(p, 0)/0p > 0, which is the stopping
criterion (ii) in Algorithm 1.

B. Linear Search Complexity and Quasilinear
Computational Complexity

1) Linear Search Complexity: The search complexity is
defined as the length of the UAV search path. We first show the
following result for the stopping criterion (i) in Algorithm 1.

Proposition 4 (Search Region): The solution p;(0) that
minimizes Fy(p,0) satisfies pj(0) < H—HHLDL cos .

Proof: Please refer to Appendix C. ]

Then, as a result of Proposition 4, it can be shown that the
worst-case search length of Algorithm 1 is a linear function
of the radius of the target area.

Theorem 1 (Maximum Trajectory Length): The length of
the search trajectory from Algorithm 1 is upper bounded by

(24K —1.4) 72— L.
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Proof: (Sketch) One can show that the iteration in Step 3
never decreases p and #. On the other hand, the search region
is bounded due to Proposition 4. Therefore, the search length is
only linear in the scale of the target area. The detail calculation
is similar to the case studied in [9, Theorem 2]. |

The sampling complexity is thus upper bounded by (2.4K —
1.4)%L/6, with § being the step size in Algorithm 1. As a
comparison, a naive exhaustive search may require O(L3/J)
search complexity.

2) Quasilinear Computational Complexity: The computa-
tional complexity of the proposed algorithm is dominated
by the number of evaluations of the proxy segment cost
function F(p, 8), which involves {logQ ”(AT{{ evaluations of
the original cost function f as previously discussed following
Proposition 2. In particular, computing the search direction
in (17) involves four evaluations of Fj, using the differential
formula in (17). Then, it can be shown that the complexity
is upper bounded by (10.6K — 9.6)(log, L — log, eHs)%,
which is roughly O(K Llog L/d) in term of the number of
evaluations of Fj. Again, a naive exhaustive algorithm may
require O(L3/§) complexity.

C. Global Optimality

Somewhat surprisingly, we can show that, although the
search has a linear length, the algorithm can find the globally
optimal position in 3D with an arbitrary number of propagation
segments.

An intuitive explanation on the global optimality is as
follows. First, as a result of the specialized angular coordinate
system (I, p, 8) developed in Section III-A, the optimal solu-
tion I*(p, 8) given (p, #) can be analytically computed without
navigating the UAV to physically search along . Thus, the 3D
spatial search problem degenerates to a 2D one. Second, under
some mild conditions on the original cost functions fi(x,y)
in (4), the proxy cost functions Fj(p, #) in (13) has some nice
properties, such as the uniqueness of the local minimizer pj;(6)
for each 6, that can be exploited by Algorithm 1. Studying
these key features, global optimality in 3D can be established
as follows.

Consider a continuous-time algorithm trajectory x(¢), which
is obtained from Algorithm 1 using infinitesimal step size
0 = kdt at each infinitesimal time slot dt. Correspondingly,
the time series of the minimum cost Fiin (t) and (p(£), 6(t))
defined in Algorithm 1 are continuous-time processes.

Theorem 2 (Global Optimality): For Type I and Type II
cost functions, the process (p(t),0(t)) from Algorithm 1 con-
verges to the globally optimal solution (p*,0*) to problem
P in finite time t = T < oo. In addition, the corresponding
x(I*(p*,0%), p*, 0%) obtained from (9) is the globally optimal
solution to problem 2.

Proof: (Sketch) One can easily establish the following
property for given any 6’ # 0.
min Fy(p,0") < mi min  F;(p,0). 21
p>0 k(o 0) < Ijnzl}cl p>0,00">0 J(p ) @b
0]1<|0]<m/2

To see this, we note that F(p,0) = fe(l*(p,0), p,0) from
Definition 1 and fx(l, p,0") < fi(l, p,0) for any p > 0 and
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[ € L(p), because the UAV-BS distance d,, increases when
increasing |0 (see Equation (25)), but the UAV-user distance
dy = [ remains unchanged.

As Algorithm 1 is identical to [9, Algorithnm 1], which
was developed on the 2D case, except for the construction of
Fy.(p,0). We also note from (21) and Propositions 3 and 4
that, the proxy segment cost functions F(p, f) have the same
properties as those discussed in [9, Theorem 1]. Therefore,
Algorithm 1 finds the globally optimal solution to Z?”. Due
to the equivalence from the angular transformation, the global
optimality of the 3D problem &2 is thus confirmed. One can
follow [9, Appendices C, D] for the details of the proof. [

V. APPLICATIONS

In this section, we list three example formulations for 2.
The objective functions of the first two examples respectively
match with the Type I and Type II conditions in Section IV-A.
The objective of the third example does not match with
either of the conditions. We will numerically evaluate the
performance of these applications in an actual urban city
topology in Section VI.

A. Minimize the Outage Probability

Consider the deployment of a relay network to lower the
link outage probability under a certain end-to-end target data
rate. The UAV relay operates in an amplify-and-forward (AF)
mode, where it simply redirects the signal from the BS to the
user by amplifying the signal. Specifically, denote the received
signal at the UAV relay as y; = /Fygrparps + 1y, where I,
is the transmit power at the BS, g, is the large scale fading
including the path loss and shadowing of the BS-UAV link,
arp 18 a random variable to model the small scale fading, and
s,ne ~ CN(0,1) models the transmit signal and receive noise,
respectively.

Under the AF mode, the relay signal is given by s, =
Yr/\/ Pogrblacp|? + 1 where the denominator is a scaling fac-
tor to normalize the transmission power at the UAV. The
receive signal at the user is thus given by y, = / FPrgurQurS:c+
ny, where P, is the transmit power at the UAYV, g, , and a,, are
the large scale fading variable and small scale fading variable
of the UAV-user link, respectively. Finally, n, ~ CN(0,1) is
the receive noise. We assume that |a.p|? and |ay,|? follow
exponential distribution with parameter A = 1, a common
assumption of Rayleigh fading channels.

The relay channel capacity is given by Car = %1og2(1 +
(Z(Pbgr,b|ar,b‘2a Prgu,r‘au,r‘Q))’ where Q(x7y) £ xy((:l: +y+ 1)
and the constant % is to capture the fact that the signal
requires two time slots to reach the user [31], [32]. The outage
probability w.r.t. a target data rate R can be shown to be
P{Car < R} = (g + 5,—)(2°% — 1) under high SNR,
i.e., Bogrp, Prgur > 1 [32, Lemma 1].

To minimize the outage probability P{Cxr < R} for the
large-scale propagation statistics and LOS conditions, one can
formulate problem & by choosing

1 1
— T —o
B,Gody *° Pfrdy **

fi(du, dy) =

E=1,2,....K
(22)
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where (), is approximately 10°/1° and ap = ax/10 for
ay, by, given in (2). One can verify that the objective function
fr satisfies the Type I condition. Hence, from Theorem 2,
Algorithm 1 will find the globally optimal UAV position in 3D
space.

B. Maximize the Capacity

Consider a decode-and-forward (DF) relay system where
the UAV servers as a relay. The relay channel capacity of
such a DF system can be shown to be Cpp = % min{log,(1+
Pogrplary|?),10gs (1 + Prgurlauws]®)} [32], [33]. In an actual
system, the averaged achievable data rate will depend on the
average SNR PF,g; and F.g,, through a number of factors
such as channel fading, channel coding schemes, modulation
schemes, and rate adaptation strategy. As discussed in [34],
this process can be abstracted using a discount factor x, 0 <
k < 1, resulting in a simplified, but widely-used model for
the effective SNR. Then, the relay capacity is given by Cpr =
3 min{logy (1 4+ £Psgrp), 1085 (1 + KPrgur), Tmax }- Based on
the analysis in [34], a typical choice of x is kK = 0.5.

To maximize the relay channel capacity, one populates
problem & by choosing

1 . _
Te(dy, dy) = 5 min{log, (1 + kB, God, *°),
logs(1 4+ kPfrdy “*), Tmax}  (23)
for k = K, with 3, = 10%/1° and a3, = ay/10

according to (2).

One can verify that the objective function fj satisfies the
Type II condition. Hence, from Theorem 2, Algorithm 1 will
find the globally optimal UAV position in 3D space.

Note that our formulation (23) ignores the residual shad-
owing & in (2), and hence, the optimal solution to & only
results in a sub-optimal solution in practice. Nevertheless,
the numerical study in Section VI-E shows that, compared
to the baseline, the performance obtained from optimizing
(23) is already quite close to a genie-aided one that takes
into account the residual shadowing &;, and requires exhaustive
search in 3D.

C. Energy Minimization for Data Collection

Suppose that the UAV needs to navigate to a remote location
and deliver B message bits to a user using a DF relay strategy.
We assume that the UAB-BS link is strong enough, and
hence, the end-to-end capacity is given by the capacity of the
UAV-user link ry(dy) = 3 min{logy(1 + £P:gur(d)), max }-
To further simplify the problem, we assume that the UAV
only transmits when it reaches the desired position.” A related
problem with similar arguments was also studied in [8] under
a more complex multi-hop scenario, but we want to keep the
example simple here for clarity. The required transmission
time is t = B/(Wry(d)), where W is the bandwidth.

Denote P.ruise, FPhovers and  Pejreuit, as the UAV  cruise
power, the UAV hover power, and the circuit power for

2We also observe from numerical experiments that the UAV is mostly
in deep shadowing during its course to the target position. In this case,
the transmission during the UAV navigation phase is negligible.
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Fig. 4.
Washington DC, USA. (Right) The corresponding elevation map of buildings
and vegetation. The BS is placed at the red triangle with 45 meter height.

(Left) An orthoimagery of an 800 [m] x 800 [m] area in

data processing, respectively. Note that, in reality, the power
consumption may depend on various factors such as the UAV
speed. If we focus on the operation under a constant UAV
speed, then the cruise power Fnise 1S roughly constant. Thus,
the power consumed at the navigation phase is Peised/v and
the energy consumed at the transmission phase is (Phover +
Piireuic + B)B/(Wry(d)), where d is the distance from the
initial UAV position and v is the speed.? Therefore, the total

energy consumed to deliver the total B bits is given by

BPhover + Peircuit + 1) B
E Pcrulied + ( L Wru( l) )
To optimize for the large- scale propagation characteristics

and LOS conditions, the target UAV position that minimizes
the total energy consumption £ can be found by solving
problem &, where the objective function can be chosen as,
fork=1,2,..., K,

d (Phover + Pcircuil""P )B

dy, d) =Paryice — +
Fuldu, d) =Perise ~ W - min{logy (1 + &P Brdy

) rmax}.

One can verify that fj is increasing in both d,, and d, respec-
tively. However, f; does not satisfy either Type I or Type II
conditions. Therefore, the global optimality of Algorithm 1
for such an energy minimization problem is still unclear.
However, as will be observed from the numerical experiments
in Section VI-F, the performance between Algorithm 1 and
that of an exhaustive search is nearly indistinguishable.

VI

A. Propagation Environment Modeling

NUMERICAL RESULTS

We study the city environment using the geographical data
captured in central Washington DC, USA in 2013.* Fig. 4
shows the orthoimagery of an 800 m x 800 m area of
interest and the corresponding elevation map. In this area,
the maximum building height is 45 meters. Building areas
are designated by black polygons, whereas, the colored pixels
outside the building areas represent the urban vegetation. The
BS antenna is placed at 45 meter height. For each experiment

3We assume that the UAV consumes the same power Peyise regardless of its
direction of mobility. Such an approximation is motivated from the experiment
results in [35], where there is only 10% power difference between the UAV
ascending and UAV hovering.

4The original data was obtained from the USGS database:
http://ngmdb.usgs.gov. The processed dataset is available at IEEE DataPort
with DOI: 10.21227/y6gg-j788.
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TABLE 1I
DEFAULT NETWORK PARAMETERS

Parameter Description
BS Located at (150, 770, 45) in Fig. 4 (red triangle)
User Uniformly dropped at the ground level in the

non-building area

2.5 GHz (3GPP), 28 GHz (mmW)
20 MHz (3GPP), 500 MHz (mmW)
33 dBm (BS), 30 dBm (UAV)

7 dB

Single antenna

Carrier frequency
Bandwidth
Transmit power
Noise figure
Antenna (3GPP)

Antenna (mmW) 4 x 4 half-wavelength uniform planar array with

20 dB beamforming gain

3GPP: 22.0 + 28.0log; (d) 4 20log g fe,
mmW: 61.4 + 20.0log;o(d), osg = 1 dB

3GPP: 32.0 + 28.0log;(d) + 201og; fe.
mmW: 81.4 + 20.0log;((d), ogp = 3 dB

3GPP: 22.7 + 36.7log(d) + 26 log1 f.
mmW: 72.0 + 29.2log;((d), ogg = 5 dB

200 W (cruise), 200 W (hover), 2 W (circuit)

Speed: 5 m/s, Minimum height: 45 m, Maximum
height: 120 m

Path loss (LOS)
Path loss (OLOS)
Path loss (NLOS)

UAV power
UAV configuration

below, we evaluate 10,000 uniformly random user locations
in the non-building area. The minimum UAV height is set
to 45 meters to avoid collision with any building while
maintaining LOS condition with the BS; the maximum height
is 120 meters to obey the US regulation.

We employ a ray-tracing method to identify three propa-
gation conditions: LOS, if there is no building or vegetation
blocking the direct ray from the transmitter to the receiver,
OLOS, if there is only vegetation blockage of the direct ray,
and NLOS, if there is a building that blocks the direct ray.
Corresponding path loss models and shadowing parameters
o s are used as specified in Table II. The residual shadowing
is modeled as N(0, o%g).

B. Air Interface

We evaluate two air interfaces. One transmits at 2.5 GHz
with propagation parameters taken from the 3GPP Urban
Micro (UMi) model in [36]. The other transmits at 28 GHz
with parameters taken from the experiment results reported
in [37]. Since both the standard cellular model [36] and the
experiment in [37] consider only two propagation scenarios,
LOS and NLOS, we simulate the parameter for the OLOS
condition by adding 10 dB (3GPP case), or 20 dB (mmW
case), vegetation penetration loss from the LOS models in [36]
and [37], respectively.

For millimeter wave (mmW) links, we assume half-
wavelength 4 x 4 uniform planar arrays at the BS transmitter,
UAV transceiver, and the user receiver. The beamforming is
computed using channel statistics. Experimental results in [37]
showed that a 9—12 dB gain under long-term beamforming can
usually be achieved at the user side. Therefore, we assume a
20 dB beamforming gain combined from both the transmitter
and receiver. The key parameters are summarized in Table II.
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Fig. 5. Statistics of propagation conditions.

C. Baseline Schemes and Observations

We evaluate the UAV placement method in Algorithm 1
with step size 9 = 3 meters; we compare performance with
the following four baseline schemes:

e Direct BS-user link: The scheme transmits at the direct
BS-user link, without the help of the UAV relay. In the
urban topology depicted in Fig. 4, we numerically found
that there are only 3.3% users in LOS condition to the
BS and less than 20% users in OLOS condition. The
LOS ratio at the 89 degree elevation angle corresponds
to the fact that roughly 20% of the street is covered by
vegetation as shown in Fig. 4.

o Statistical Method: Define pi(p(x)) = P{x € Dk’cp}
as the conditional probability of the UAV position x
belonging to the kth propagation segment given the
elevation angle ¢ from the user to the UAV. The empirical
distributions py(p) are obtained in an offline mode from
a large amount of channel measurement data over various
user and UAV positions in Fig. 4. The results are plotted
in Fig. 5. Given py(¢), the UAV position is obtained by
solving

K
22 . minimi (dy, dy)pr
stat mlilélﬂgilze I;fk( us do)Pr(0(X))
subject to Hyin < 3 < Hpax

using an exhaustive search algorithm. Note that under
K = 2, this method is conceptually identical to the
probabilistic LOS method in the literature [14], [15].

e 1D Exhaustive Search: This schemes performs an exhaus-
tive search along the BS-user axis on the x3 = Hy
plane and finds the UAV position that minimizes the
objective function of &?. The UAV relays then relays
the message to the user, while the direct BS-user link
is completely ignored.

e 3D Exhaustive Search: This schemes performs an exhaus-
tive search over a 3D lattice with 3 meter spacing. The
lattice that achieves the minimum cost in £ is chosen as
the optimal UAV position.
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Fig. 6. Outage probability.

D. Outage Probability Minimization and the Confirmation on
the Global Optimality

Consider the outage probability minimization problem in
Section V-A. The performance is evaluated using the 3GPP
Urban Micro (UMi) model and the residual shadowing is
ignored as discussed in Section V-A. We normalize the outage
probability in (22) from various UAV schemes by the outage
probability of the direct BS-user link for each user. Note
that the ratio is equivalent to the uncoded bit error rate
(BER) improvement, and the cumulative distribution functions
(CDFs) of the improvement are plotted in Fig. 6. Two cases
are evaluated using the default parameters in Table II except
for those specified in the figure.

It is observed that the proposed scheme can substantially
reduce the uncoded BER over the statistical scheme. In par-
ticular, when the UAV-to-user link is stronger, the proposed
scheme can achieve much more reduction from the statistical
scheme. This is because the proposed scheme finds a position
closer to the BS while still maintaining a good propagation
condition (such as LOS) to the user. In addition, it is observed
that the CDF curves of the proposed scheme coincide with
those from the exhaustive search, numerically confirming that
the proposed algorithm finds the globally optimal solution
to Z.

E. Capacity Maximization

Consider a system that operates in a hybrid transmis-
sion mode with an objective to maximize the capacity in
Section V-B. Specifically, if the propagation condition is in
LOS or OLOS, the mmW radio interface at 28 GHz is used for
transmission; otherwise, the 3GPP radio interface at 2.5 GHz is
used. The shadowing parameters are specified in Table II. The
algorithm optimizes 7 in (4) with the cost functions specified
in (23).

1) Robustness Under Shadowing: Note that the formulation
in (23) ignores the shadowing when searching for the best
UAV position, while the performance is evaluated under the
presence of shadowing as specified in Table II. In other words,
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Fig. 7. Throughput evaluation over 10,000 user positions under the presence
of shadowing.
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Fig. 8. Average throughput under various maximum permissible UAV
height Hmax-

the globally optimal solution to %2 is not necessarily the
position that achieves the maximum throughout under the
presence of shadowing. In this experiment, we observe 17%
performance degradation from exhaustive search in terms of
average throughput as shown in Fig. 7.

As observed, even when the model assumptions are violated,
the proposed algorithm still yields good performance. First,
it is observed that the proposed scheme achieves more than
80% throughput of the 3D exhaustive scheme for all categories
in Fig. 7. Note that the proposed scheme only requires a
spatial search path that is linear in the diameter of the target
area, but an exhaustive search would require a cubic path.
By contrast, the statistical method perform substantially worse.
Second, for the users in deep shadow (the 20th percentile),
the proposed scheme can deliver over 2X throughput of that
from the statistical method.

2) Impact on the Maximum UAV Height Hya.x: Fig. 8
demonstrates the average throughput versus the maximum
permissible UAV height H,,,x under 23 dBm BS transmission
power and various UAV transmission power. First, we find
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Fig. 9. Histograms of the optimal UAV positions in deviation angle and

elevation angle w.r.t. the BS-user direction.

TABLE 111
AVERAGE LENGTH OF THE SPATIAL SEARCH TRAJECTORY

Proposed
Hy=50m Hg=120 m
614 m 706 m

1D Search 2D Exhaustive

459 m 83.4 km

that the larger I1,,,,x, the higher the average throughput. This
confirms the advantage of the 3D optimization for UAV relay
position. Second, it is also found that the larger the UAV
power, the more gain to be achieved by increasing Hy,x.
Finally, for the statistical method baseline, it does not benefit
from adjusting the UAV height, because its optimal solution
is always attained at the minimum UAV height from our
experiment.

3) Statistics on the Optimal UAV Position in 3D: Fig. 9
shows the histograms of the optimal UAV positions in terms
of the deviation angle € and eclevation angle ¢ w.rt. to
the BS-user direction. It is observed that the optimal UAV
positions tend to have small deviation angle and elevation
angle. Such a property may provide insights in designing
approximate solutions to handle the practical issue of non-
isotropic antenna pattern at the BS.

4) Length of the Spatial Search Trajectory: Table 1II sum-
marizes the average length of the spatial search trajectory for
each scheme over 10,000 user locations. Note that performance
bottleneck is the physical length of the search path that
UAV explores over. As observed, the path lengths of the
proposed scheme under different search parameters H (see
Algorithm 1) are comparable to that of the 1D Exhaustive
Search baseline, numerically confirming Theorem 1, which
states that the search path has linear length in the diameter of
the target area.

F. Energy Minimization

For the energy minimization problem in Section V-C, we
also consider the hybrid transmission model discussed in
Section VI-E. The UAV is required to deliver B = 10 Giga
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bits to a user which may be in deep shadow at its BS-user
link.

Fig. 10 plots the distribution of the total energy consumption
for different schemes. It is observed that the proposed UAV
placement algorithm can reduce the total energy consumption
by a half from a statistical method. Moreover, the pro-
posed scheme significantly outperforms the 1D Exhaustive
Search method. This suggests that the optimal UAV posi-
tion usually not lies on the BS-user axis. Finally, the per-
formance of the proposed scheme matches with that from
the exhaustive search, which implies that the proposed
Algorithm 1 still finds the globally optimal UAV position
in this special example, despite violating the conditions in
Theorem 2.

VII. CONCLUSION

This paper developed an efficient search algorithm to find
the globally optimal UAV position for establishing the best
relay link between a BS and a user. A key problem addressed
here was to avoid signal blockage for the UAV-to-user link.
As oppose to statistical methods, the proposed algorithm
measures the LOS condition on the fly and adapts to the local
propagation environment. The worst case search length was
shown to be bounded by a linear function of the BS-user
distance. In addition, the algorithm has been proven to find
the globally optimal UAV position in 3D for several types
of cost functions. The results were further confirmed by
numerical experiments over a real terrain topology, where the
proposed method significantly outperformed the method based
on stochastic terrain models.

APPENDIX A
PROOF OF PROPOSITION 2

A. Proof for Type I Functions

Define the squared distances as Dy = d? and D, = d2
for simple notation. From the geometric relations between the
three positions x, Xp, and x,, and recall that L £ ||%, — Xp||2,
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we have
Dy(l) =1* (24)
722 . pl 2
Dy(l, p,0) = L*sin* 0 + (L cos @ 7\/m>
[H, 2
+(7f == - ) (25)

Lemma 1: Suppose that the functions D,(z) and Dy(z)
are strictly convex in z. Then, for Type I function fi(x,y),
the composite function fk(D;/Q,D;/z)(z) is strictly convex
in z.

Proof: From the chain rule and the fact that d, = D& /2
and that fj(x,y) is non-decreasing in = and y, we have 6%% =

%d&:%u' = %{%#ﬁ > (. The second order derivative is then
given by
0 fi 3 ofs 1
oD2 (ad 2\/D_u>
(92fk 1 8fk 0 1
~ 0d2 ( ) 5vD. | 8d, oD, (2\/—)
_ 1 (% Sely g
4d2\ 0d2  0d, d,
where the last inequality is from condition (18)

Similarly, we can obtain g];k > (0 and g Dfé > 0.

Define an operator V as V £ | 821 622 . Za |T, where 2,
is the mth entry of z. We have V fj, = VD + 5 af" =V Dy,
In addition, noticing that 8?; -(Z;’ji = 0, we arrive at

2
V2, = g g’; VD, VDT + ;bf 2p,
gjj; VD,VD; + (,ff D V2D = 0

which shows that fi(Dy Dy/? Dé/Q)(z) is convex in z. In addi-
tion, since D,(z) and Db( ) are strictly convex in z, we then
conclude that fk(D&/z, Dy/?)(z) is strictly convex in z. [J

From (24)—(25), we know that Dy(l,p,8) and Dy(l) are
strictly convex in [. Then, using Lemma 1, we can conclude
that fi(du,dy)(l, p,0) is strictly convex in [, and hence,
frx(l, p,0) admits a unique local minimum at [} (p, 6) over the
interval £(p), which is convex and compact. Since it is strictly
convex, fx(l, p,0) is also strictly quasiconvex.

B. Proof for Type Il Functions
Exploiting the increasing functions f()(x) and f®(y),
7(1) s (D)nl/2 7(2) 2
we define f, (1) = f,/(DJ/7)() and f,7(1,p,0) =
FP(DY?)(1, p,0). Condition (20) implies that

Full, p,6) = max{ 7" (1), 77 (1, p,0)}.

Lemma 2: Let f1(z) and f2(x) be positive and strictly
increasing functions. In addition, let g1(y) and g2(y) be
strictly convex functions. Then, the composite function f(y) =
max{ f1(g1)(y), f2(92)(y)} is strictly quasiconvex in'y.

Proof: Suppose that y1,y2 € Co = {y : f(y) < a}. Let
max{f(y1), f(y2)} = a1 < a. Then, gi(y;) < f; () for
both i,57 € {1,2}, by the strictly increasing property of f;,

(26)
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where z = f; ! (y) denotes the inverse function of y = f;(z).
From the strict convexity of g;, we have

9i(Ay1 + (1= N)y2) < Agi(yr) + (1 — N)gi(y2)
<A o) + (1= N f (o)
= fifl(al)
for both 7 € {1,2} and A € (0,1). Therefore, f;(g;)(Ay1 +
(1 — A)y2) < a1, and hence f(y1 + (1 — N)ys) <
a1 = max{ f(y1), f(y2)}. This concludes that f(y) is strictly
quasiconvex. (]
Using Lemma 2, fk(l, p,0) in (26) is strictly quasiconvex
in [. We then have the following result on the optimality.
Lemma 3 (Optimality From Quasiconvexity): If f(xz) s
strictly quasiconvex in a convex and closed interval 1 € R,
then f(x) admits a unique local minimum in 1.

Proof: We develop the proof from contradiction. Suppose
that xo € I is a global minimizer of f(z), and z; is a local
minimizer, where z1 # . As a result, f(zo) < f(z1). with-
out loss of generality (w.l.0.g.), assume that zo < z;. Choose
an arbitrarily small e > 0, such that x5 = 21 — € is sufficiently
close to the local minimizer x; and f(z2) > f(x1). As a
consequence, there exists a 0 < A < 1, such that z2 = Axg +
(1 — A)z1. However, according to the quasiconvexity of f(z),
it holds that f(z2) < max{f(zo), f(z1)} = f(x1), which
violates the fact that z; is a local minimum. By contradiction,
the local minimum is unique. (]

Using Lemma 3, one can conclude that fk(h p,0) admits a
unique local minimum [} (p, 8) over L(p).

APPENDIX B
PROOF OF PROPOSITION 3

We exploit a third coordinate system to develop the results.
Consider a 6-plane, defined as the 2D plane that is perpendic-
ular to the ground and passing through both the user position
x, and the UAV position x(l, p,0) as illustrated in Fig. 11.
Each point x(I, p,0) on the f-plane can be represented by
coordinates (y, z) as follows

p

l—
1 Vp*+ HZ
[j] ~ G = | Vi,

Vp?+ HE

where the mapping Gy is invertible and the reverse trans-
formed is denoted as (I,p) = G, ' (y, 2).

On the #-plane, the squared distances can derived as
Di(y,z) = L*sin®@ + (Lcos® — y)? + (¢ — Hp)? and
D(y, z) = y*+ 22, which are strictly convex in (y, 2). Define
the transformed cost function (on the #-plane) as

Ry, 2) 2 (DD, (D9) ) (y, 2).

It turns out that f,f is strictly quasiconvex in (y, z) for both
Type I and Type II functions. To see this for Type I functions,
applying Lemma 1, f,f (y, z) is shown to be strictly convex in
(y,2). Hence, f2(y, z) is also strictly quasiconvex in (y, z).
For Type II cost functions, we have

F(y, ) = max{ £V (DD)Y2)(y, =), fO DY) (y, 2)}-

Using Lemma 2, f{(y, z) is strictly quasiconvex in (y, z).

27)

(28)
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Fig. 11. Geometric interpretation of the f-plane.

We now study the monotonicity of Fi(p,6) on the interval
(0, p*), where p*(6) is the minimizer of Fj(p,#). Consider
an arbitrary p;, such that 0 < p; < p*. Denote the
coordinates on the §-plane (y*,z*) = Gg(l;(p*,0),p*) and
(y1,21) = Ga(l(p1,0), p1), where I5(p1,0) is the solution
to 2, given (py,0). Note that ff(y*, 2*) < fZ(y1, 21), since
p*(0) minimizes Fy(p,0).

In addition, for some 0 < ¢ < 1, let yo = ty* + (1 — t)y1
and zy = tz* 4 (1 —¢)z;. In particular, we choose an arbitrary
p2 satisfying p; < pa < p*, and we choose the parameter

= pz(mfifﬁgﬁ;byl), so that G, ' (ya, 22) = (I2, p2) for
some 5. Note that Is € L(p2), because the constraint Hyyi, <
23 < Hpax in &2 is equivalent to Hyyyy < 2 < Hyppay in the
f-plane, and p > 0 is equivalent to y > 0, which imply that
the feasible domain is convex on the f-plane.

Using these notations, we have

fy2,20) = fL(ty" + (1= tyyn, 82" + (1 = t)z1)
< max{ff(y*, %), fi(y1,21)}
= fl(y1, 21)

where the inequality comes from the strict quasiconvex of f,f .
As a result, we have

Fk(p279) = f/c(du’db)(X(ZZ(p279)7p276))
< folyz, z2) < fR(y1, 21)
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where the right hand side satisfies

fg(ylvzl) = f’f(duvdb)(x(l;:(phe)vphe» = Fk(plve)

which concludes the monotonicity of Fy(p, ) over (0, p*) as
p1 and po have been chosen arbitrarily.

Similarly, we can show that Fy(ps,0) > Fi(ps,0) >
Fy.(p*,0) for any %L cost > ps > ps > p*. Therefore,
we can conclude that Fy(p,0) is strictly quasiconvex in p
for both Type I and Type II functions. In addition, from
Proposition 4 proven in Appendix C, the optimal solution p* is
boundedin 0 < p < %L cosf. As a result, using Lemma 3,
Fy(p,0) admits a unique local minimizer p*(#) for each 6.

APPENDIX C
PROOF OF PROPOSITION 4

Denote the elevation angle as (. Then, from geometric
relation as illustrated in Fig. 11, we have cos¢ = £

and sinp = W/ As a result, (25) can be written as
pP+H;
Dy(1,p,0) = L?sin? 0 + (L cos 0 — 1 cos ¢)?
+(Isinp — Hy)2

The constraint in &2’ suggests that Hy,;, < Ising < Hpay.

There are two cases for the optimal solution {*(p, 6) dis-
cussed as follows.

(i) I*sing > Hpiy: in this case, the following condition
holds

0Dy

— =2(l — Lcos0cosyp — Hysi 0

a0 |- (o) ( cosf cos b sin ) o) <
because otherwise, the gradient in &7, becomes positive as
of R (% ddy Dy _ fi DD, 6Du)
Al lix(p,0) ddy 0Dy Ol Ody Ody Ol /l1=(p,0)

k=1
xI{x(l, p,0) € D} >0

which means that [*(p, ) will not be the optimal solution.
(Recall that f}, are increasing in the distances d, = D;/ % and
d, = DY/?, and Dy(1) = 1?). As a result, we have

Hmin * ,

—— <I" < Lcosfcosyp — Hysinp

sin
which arrives at

Hpin < Lcosfcospsiny + Hy sin? %)
pHs + HbH52
= Lcos———
cos T H?
leading to inequality

p* = pHsp+ HZ(1 — pnHy) <0 (29)

where p = L cos6/Hyin. Knowing that p > 0, we can solve
(29) to obtain

H,
< f(w u? —4(1 —qu))

H,
— L cosf.

min

< Hgu =
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(1) I* sin ¢ = Hyyiy: in this case
D;(pv 9) = Db(l*(pa 9)7/)79)
Hmin
= L%sin® 0 + (L cos§ — p—=2)2

H;
+(Humin — Hp)? (30)
* A * Hglin 2 2
N

Note that to fix the variable [(p,0) as a pre-determined
function of p and 6 according to the relation I sin ¢ = Hp,in,
minimizing Fj(p, #) over p > 0 is an unconstrained problem.
This is because p > 0 will be automatically satisfied as a result
of (30)—(31). As a result, the optimality condition
OF, _ Ofx O0dy, 0Dy Ofx Ody OD;
dp  Ody 0D} Op dd, OD: dp
holds only if aaDp: < 0, which leads to p < HL“_L cosf.
To conclude from the above two cases, the solution that

minimizes FJ(p, #) must satisfy p*(6) < 72— L cos 6.
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