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Improved Atomic Norm Based Time-Varying
Multipath Channel Estimation

Jianxiu Li

Abstract—In this paper, improved channel gain delay estima-
tion strategies are investigated when practical pulse shapes with
finite block length and transmission bandwidth are employed.
Pilot-aided channel estimation with an augmented atomic norm
based approach is proposed to promote the low rank structure
of the time-varying narrowband leaked channel. All the channel
parameters, i.e., delays, Doppler shifts, and channel gains are
recovered. Design choices which ensure unique estimates of chan-
nel parameters for rectangular, Gaussian, and root-raised-cosine
pulse shapes are examined in the noiseless case, respectively.
Furthermore, a perturbation analysis is conducted to measure
the impact of noise and further design choices for parameters
are proposed to mitigate the effects of noise. Finally, numerical
results verify the theoretical analysis and show performance
improvements over the previously proposed method.

Index Terms— Atomic norm, low-rank, re-sampling, channel
estimation, time-varying narrowband leaked channel.

I. INTRODUCTION

ANY wireless communication applications necessitate

high performance channel estimation in order to ensure
reliable communications. In particular, frequency and temporal
distortion [2] are a challenge in high mobility scenarios,
such as high-speed railway systems [3], vehicle-to-vehicle
communications [4], positioning systems [5], and unmanned
aerial vehicle-assisted networks [6].

To combat channel distortion, equalization with accu-
rate channel estimation has been persistently studied (see
e.g. [7]-[11]). Inherent channel sparsity has been exploited
in [9]-[11], reducing the number of observations needed for
estimation; however, these works ignore the impact of practical
pulse shapes which lead to a loss in sparsity (channel leakage)
in the Doppler-delay domain and challenge performance of
these sparse methods.
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Channel leakage has been addressed by enhancing classical
sparse approximation [4], [12], [13]. Another promising way
is to adopt alternative representations of the wireless channel.
Basis expansion models (BEM), modeling the time-varying
channels as a weighted summation of a few basis functions,
is investigated in [14], [15]. Different from the basis expansion
in [12], these basis functions for BEM are fixed and known
to the receiver. Therefore, only a few BEM coefficients need
to be estimated as compared with the unknown channel
parameters [15], resulting in a reduction in the number of
pilot symbols. However, individual channel parameters are not
available from the estimated BEM coefficients and the model
error of BEM may severely degrade the estimation accuracy
when the BEM based approaches are applied to practical
communication systems.

Distinct from the prior works, [16] exploits the atomic
norm heuristic [17], [18] to promote structure, while explicitly
considering the leakage. In this work, the single-carrier sig-
nals transmitted over the linear, time-varying and narrowband
leaked channel exhibit a parametric, low rank, bilinear form.
By exploiting the inherent structure, the parametric low-rank
atomic norm approach (PLAN) in [16] outperforms [4], [12]
in terms of the estimation accuracy and bit error rate (BER)
of data sequences. The extensions of [16] to the orthogonal
frequency-division multiplexing leaked channel are presented
in [20]-[22]; however, only the channel matrix is estimated
in these works [16], [20]-[22]. Even though the approach of
explicitly recovering Doppler shifts is also presented in [16],
delays and channel gains are not separately recovered. In con-
trast to the equalization achieved only with the estimated
channel matrix, improved equalization is enabled via the direct
estimation of channel gains and delays. In addition, based
on the estimated delays and channel gains, time-of-arrival
or received signal-strength information can be exploited for
localization [23]-[26], which is critical to many internet-of-
things applications.

In this paper, we further improve upon the atomic norm
based approach for single-carrier systems. Herein, we augment
the method of [16] and employ the estimated Doppler and
channel leakage vectors to further resolve channel gains and
the delays by exploiting knowledge of the pulse shape. Explicit
channel state information (CSI) in the form of Doppler shifts,
path delays and channel gains enables the construction of
a channel and pulse matched filter. Furthermore, with such
CSI, re-sampling and re-estimation of all parameters with
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further improved quality is achievable. We observe that modest
improvements on the estimation accuracy can lead to signifi-
cant improvements of the BER as seen in [27].

The main contributions of this paper are:

1) An enhancement to the atomic norm based channel
estimation scheme [16] is proposed, where the delay,
Doppler shift, and channel gain of each path can be
individually estimated, in contrast to [16].

2) The conditions for unique delay estimates for rectangu-
lar, Gaussian, and root-raised-cosine (RRC) pulse shapes
are provided for the noiseless case.

3) A perturbation analysis for the noisy scenario is inves-
tigated. The analysis suggests the appropriate values of
key design parameters to optimize performance.

4) The theoretical analyses for uniqueness and perturbation
are validated via simulation.

5) The BER of data sequences and the normalized
mean-squared error (NMSE) for the channel matrix and
Doppler shifts of the new scheme are compared to that
for [16]; strong gains in performance are seen despite
the simplicity of the proposed scheme.

Our prior work [1] introduced the improved atomic norm
based channel estimator and discussed the parameters design
specific to the RRC pulse shapes. Herein, we complete our
scheme and present a systematic approach for the pulse-shape
based parameter design. Furthermore, analysis regarding the
uniqueness of delay estimate for the rectangular pulse shape
and Gaussian pulse shapes is provided. In order to assess
robustness to noise, we provide a perturbation analysis of the
algorithm and further derive proper parameter values to maxi-
mize robustness. The uniqueness and perturbation analyses are
provided for the three different pulse shapes. Full derivations
and proofs are provided herein in contrast to [1].

The rest of this paper is organized as follows. Section II
introduces the signal model of the time-varying narrowband
leaked channel. Section III presents the design of the improved
atomic norm based channel estimation. Then, in Section 1V,
the proposed scheme with three typical pulse shapes is theo-
retically analyzed, where the uniqueness of the delay estimate
is ensured in the noiseless case. In addition, a perturbation
analysis is provided to further analyze accurate estimation
via the proper choices of design parameters. The numerical
results are given in Section V to verify the theoretical analysis
and show the performance improvements. Finally, the paper is
concluded in Section VI. Appendices, A, B, and C provide the
proofs of the propositions and lemma of this work.

Notation: Scalars are denoted by lower-case letters, x and
column vectors by bold letters, . The ith element of x is
denoted by x[7]. A matrix is denoted by bold capital letters,
X, and its (i, j)th element by X[i,j]. The operators |z],
|z], < & >, ||z||2, sign(z) and max(A) represent the largest
integer that is less than x, the magnitude of z, the integer
that is closest to x, the ¢» norm of x, the sign of x and
the maximum value in set A, respectively. The notation ®
denotes the convolution. The operators trace(-), ()7, and (-)#
are defined as the trace of a matrix, the transpose of a matrix
or vector, and the conjugate transpose of a vector or matrix,
respectively.
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II. SIGNAL MODEL

We adopt the signal model of [16], thus, the transmitted
signal x(t) is given by

+oo

Z x[nlp: (t — nTy), (1)

n=—oo

x(t) =

where p;(t), Ts, and z[n] represent the transmit pulse,
the sampling period, and the pilot sequence, respectively.
Since the signal is transmitted over a linear, time-varying and
narrowband channel whose impulse response is given by

Po
glt,7) = md (1 — ty) €2, )
k=1

the received signal can be written as

+oo
w0 = [ gttt -ndr 0. )
where z(t) is a complex, Gaussian, white noise process, pg
denotes the number of dominant paths, 1, vk, and ¢, represent
the channel gain, Doppler shift, and delay of the kth path,
respectively, with 1 < k < py. We label the paths according
to the delay values, thus the first path has the smallest delay
value ¢;. At the receiver, the received signal is converted to the
discrete-time equivalent by matched filtering with p,.(¢), that
is, y(t)®p(t), and then sampled at t = nT,+t*(n), where the
offset, t*(n), is a design parameter. Hence, the corresponding
discrete-time signal is given by

y[n] = (Ji(t) ® g(tv T) ® p?‘(t) + Z(t) & pr(t)) ‘t:nT,mLt*(n)

M—1 po

_ Z Z nkej27rvk[(n7m)Ts+tk]p (mTS 4t (TL) o tk)
m=0 k=1
xx[n —m| + z[n], 4)

where p(t) = p(t) ® pr(t), z[n] = 2(t) @ pr(t) lt=nT, +t* (n)»
0<m< M = % +1, M <n< N+ M-—1,
Tmax = max(t1,...,tp,), and N denotes the length of the
pilot sequence. We refer readers to [4] for more details of this
signal model.

If t*(n) = 0 for each n, the received discrete-time signal is

M—1 po
_ Z anejQﬂ'vk((nfm)Tertk)p (WLTS - tk)
m=0 k=1
xxln —m] + z[n)]. )

Note that, we assume p;(t) = p,(t). The receiver knows
the pilot sequence as well as the transmit and receive pulse
shapes. We seek to estimate the channel parameters, (1, vk,
and t; for 1 < k < pg), given the number of dominant paths.

III. IMPROVED ATOMIC NORM BASED
CHANNEL ESTIMATION

A. Estimation Strategy

Prior to providing our algorithmic improvements to the
methods of [16], we briefly review the estimation strategy
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of [16]. Defining v, = vpTs, li(t) = p(t — t1)e 270t
0T), -, (M — 1)T.)])*, and

—j27r(N+M—1)17:|T

_ 1
b = S
a() = [ei# MY e the received

discrete-time signal in Equation (5) can be rewritten as

Po
y[n] = Z wee (Tr)" enoarprzll + 2[n]
k=1

Po
= trace (Cn—M-o—liBZ Zﬁklka (’l)k)H) + z[n], (6)

k=1

where x, = [z[n],-,aln- (M-, @ =
npel 2Tty Z%:—Ol l(mTy), v € [—1,3], and ¢, is a
vector of length N, with the n-th entry being 1 while the
others being 0. The channel matrix is a function of the
unknown channel parameters:

DPo
H-= Z Melpo (’L_}k)H , (7)
k=1
which establishes a mapping between the transmitted
discrete-time signals and the received discrete-time signals in
the absence of noise. Given that many channels of interest have
a small number of paths relative to the number of observations
po < N, we can formulate a parametric low-rank matrix
recovery problem. Stacking y[n] for M <n < N+ M —1 in
a vector y, we can write

y=1I(H)+z, ®)

where z = [2[M],---,2[N+M —1]]", and the
linear operator II CMxN . CN*1 is defined as
II(H)[n] = trace(c,—pr1@ H). Since each term
in the sum in Equation (7) is a rank-one matrix, [16]
proposes the use of the atomic norm [17], [18]
to promote sparsity. Given a set of atoms, A =
{ejela(@)H NS [—%, %], L)l =1,1 € CMXL g ¢ [0,27r)},
the atomic norm is defined as

|H|| , = inf {¢>0:H € cconv(A)}

{Z i H =) ilrax (%)H} ;
K K
©)

where conv(A) is the convex hull of A. Using the atomic
norm, we solve the following optimization problem to estimate
the channel [16], [19],

= inf
Tk, Ok [ [[2=1

minimize||H|l4 st |y — T(HE)], <e, (10)
where € is a bound on |/2||,, ie., ||z|, < e In [18], our
optimization problem in Equation (10) is shown to have
an equivalent semi-definite program representation, which
enables efficient solution of Equation (10) via solvers such
as CVX [28]. Under key conditions (C-1 and C-2 of [16]),
the Doppler shifts can be estimated by finding the roots of the
following equation:

N
A(@) =1~ H (Z A[n]mnCTLMH)) a(v)|| , (11
n=1

2
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where A is the optimal solution of the dual problem corre-
sponding to the primal optimization problem in Equation (10).
A key result of [16] is that the solution of the optimization
problem in Equation (10) is the optimal and unique solution
of the channel estimation problem if z = 0. We refer readers
to [16] for the details of the atomic norm based Doppler shift
estimation. This concludes the summary of prior work.

We next present the augmented scheme which provides the
estimates of the delays and the channel gains, building on the
estimates of [16]. In Equation (5), we replace the Doppler
shifts v by their estimated values, v for 1 < k < po,
to construct an estimate of the channel leakage vector, lem.
We assume that the estimates are perturbed from the true
values as follows

hi, = hl, +el, (12)

where the kth element of the true channel leakage vector hl,
with 0 <m < M — 1, is given by

Ry k] = e 07 p (T — 1), (13)

for 1 < k < pg. The vector es,lf ) represents the error induced
by the errors in the estimation of the Doppler shifts. From
Equations (6) and (13), we can see that the channel delays
appear only in the channel leakage vector. How to obtain the
estimated delays and channel gains based on the estimated
channel leakage vector iLﬁn, 0<m < M —1, is the focus of
this section and the main contribution of this paper.

Since the channel gains are unknown, complex values,
we cannot use the phase of h!, defined in Equation (13) to
directly obtain the delay estimate. However, knowledge of
the pulse shape p(t) can be exploited to infer the delays.
We define the ratio function, which will be used in our
estimation strategy, as

p (WLQTS - tk)
p (mlTs - tk)

with 0 < mq1,ms < M — 1 and mq, mo € Z. Here, the error
in the ratio function, elrr) s

r(te) = +elm), (14)

() _ o <P(m2Ts — tk)) Rl K| p(maTy —ti)
el™) = gign - - )
p (m1TS - tk) hfwl Uf] p (mlfe - tk)
(15)

Note that, if p(t) is positive for all ¢, we can directly set

the ratio function, r(¢x) to

hiny 1 If p(t) is not positive
AT P

everywhere, we need to first obtain the sign of %
and then set 7y(t;) properly. Algorithm 1 illustrates the
generation of these ratios for delay estimation. The reason
why we propose to use ry(ty) instead of |ry(¢x)| for delay
estimation is to ensure the uniqueness of the delay estimates,
which is explained in Section IV. Here, the design parameters
mq and mg are two distinct integers restricted to [0, M — 1].
Perhaps surprisingly, the choices of m; strongly influence the
uniqueness and quality of the estimates; furthermore, they are
pulse-shape dependent. Thus in Section IV, we explore good
choices for these parameters for several typical pulse shapes.
Once m; and mg are selected for the kth path, the ratio
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Algorithm 1 Ratio Functions for Delay Estimation
b, (K]

mo

1: Input: 7 (tx) = A Th]
with 1 <k < po and 0 < my,ms < M — 1;

= |rr(ty)] x e?®rtn) and iy,

2: Output: 74 (tg), with 1 <k < pg;
3: for k=1 to py do

4: 2 — 27r(m2—'rnl)"t[)rkTs-i-(brk(tk) :
5. if p(t) is positive for all ¢ then
6: Tk(tk) — \rk(tk)|;

7: else

8 ri(te) — (1) |r(te) s

9: end if

10 k+—k+1;

11: end for

12: return 7 (ty), with 1 < k < po.

function is simply a function of fj, and the delay estimate
of the kth path, te, with 1 < k < Ppo can be obtained by

tA;C = (T‘(tk))_l.

In addition, with good choices of m; and ms, a closed-form
expression for f;, can be found and the computational complex-
ity of the delay estimation scales as O(pg). After the delays
are estimated, we can substitute their values into Equation (5)
to compute the channel gains, where the Doppler shifts are
obtained according to Equation (11). Therefore, all the channel
parameters are individually recovered.

(16)

B. Re-Sampling

We observe that one can always construct an equalizer
from the estimated channel leakage vector and Doppler shifts
as in [16]. However, with the estimated delays and channel
gains, several applications are enabled such as localization.
Furthermore, we can both re-sample the received signal with
the proper channel-pulse matched filter as well as re-estimate
the channel parameters with the re-sampled signals for more
accurate estimation. We note that re-sampling results in a
reduction in channel leakage and an increased signal-to-
interference-ratio at the receiver. We observe that re-sampling
is not possible with PLAN [16].

Specifically, we re-sample the received signal at nTs + thr
with 1 < %k’ < py, and thus have

(2(t) @ g(t,7) @ pr(t) + 2(t) @ pr(t)) li=n, +i,,
mo—1 Ppo

Z Z nke‘ﬂ‘m}k’[(TL_”L)TSJ'_tk’]p (mn + fk’ _ tk)
m=0 k=1

x x[n —m] + z[n].

yln] =

7

Essentially, the receive filter is matched to the pulse shape
and the channel with the newly estimated parameters.
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The improved estimation strategy is denoted as the Atomic
Norm based Delay-Doppler Estimation (ANDE).

IV. PULSE-SHAPE BASED DESIGN CHOICES

Given that typical pulse-shapes are non-linear with respect
to the time argument, the inversion function r(-) needed to
compute the delay estimates will also be non-linear. As such,
we need further constraints to ensure unique delay estimates.
To this end, we show that proper choice of m; and my can
ensure uniqueness for several common pulse shape functions.
In particular, the rectangular, Gaussian, and RRC pulse shapes
are investigated, respectively, where we assume mo > my
without loss of generality.

For each pulse shape type, we first view the design para-
meters m1 and my as constants and prove that, based on the
noiseless ratio function, i.e., e(e) =  for all k, the delays can
be efficiently estimated without errors. The analysis herein
is for the noiseless case and assumes access to the leak-
age vector and the Doppler shifts; thus any method can be
employed to determine these parameters. Our ANDE strategy
exploits the estimated leakage vector and Doppler shifts via
PLAN [16], however, the methods for estimating the delays
and channel gains can be applied to any strategy providing the
needed estimates. Then, a perturbation analysis is conducted
to determine how to select the design parameters for the noisy
case. We denote the noiseless ratio function by f(¢;) and the

perturbation level is defined as §(k) = ;((;:)

A. Rectangular Pulse Shape

The rectangular pulse shape is firstly considered and p(t) is
given by

) (18)

where 2T is the support of p(t). For this kind of pulse
shape, we assume 27, < T and MT, < T hold and
thus the bandwidth is essentially determined by the Doppler
spread [29]. For fixed m; and mg, the ratio function used to
estimate the delay can be expressed as

p(moTs — 1) 1-— |%‘

p(miTs—ty) 11— |[mle=te]’

fR(tkt) =

19)

for the noiseless case, and correspondingly the delay estimate
is given in Equations (20a)-(20c), as shown at the bottom of
the page. Therein, we assume that fr(tx) # 1! and fr(tx) #
—1 because MT, <T.

Note that the derivation of Equations (20a)-(20c) presumes
knowing whether m;Ts (i = 1,2) is greater than the true

YIf fr(t) = 1, the delay estimate of the kth path can be directly obtained.

(m1 — ma)Ts

Jr(ty)—1 "7
(mgo —mq)Ts — 2T

fr(te) +1

(m1 —ma)Ts
my Ty + T 4 UL~ M2)%s
' frty) — 1

miTs — T +

te =< mTs+T+

if moTs >t and m1Ts > ty; (20a)
if moTs >ty and m T < tg; (20b)
otherwise (20c)
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value of delay. Clearly this cannot be known a priori. If we
randomly choose the delay estimates from the potential values
presented in Equations (20a)-(20c), this will result in poor
performance. Thus we need to analyze the selection of m; and
mg. To this end, Proposition 1 provides this design guidance
for the noiseless case.

Proposition 1: When the rectangular pulse shape is adopted
for the signal model given in Equation (5), the uniqueness of
the delay estimates can be guaranteed for the noiseless case
(e(") = 0) with any mq,ms € (0, M — 1] and there is a
closed-form expression for the delay estimate.

Proof: See Appendix A. O

Remark 1: Based on Proposition 1 and its proof, after the
ratio function fr(tx) is obtained, it is compared with two
thresholds I';y = 1 + M and 'y =1+ %
to determine which equations (Equation (20a), (20b), or (20c))
we need to use as the delay estimate.

Then, we consider a perturbation e("®) to the noiseless ratio
function fr(tg), i.e., rr(ty) = fr(ty)+el™) = %—k
e(”k), where 0 < m; < mo < M — 1. Correspondingly,
the error in the delay estimate is given by

e (my, my) = t), — i, 1)

which is a function of m; and msy. To reduce the error in
the delay estimates, the design of m; and my is analyzed in
Lemma 1.

Lemma 1: For the rectangular pulse shape, |e(**) (my,ms)|
monotonically decreases as m; decreases or mso increases, if
A) 0(k) > —1for 1 <k < pg.

Proof: See Appendix B. ]

Remark 2: From Lemma 1, a smaller value of m; or a
larger value of my yields a greater reduction in delay estimate
errors. Therefore, the best performance is achieved when
mq = 0 and mo = M — 1, which will be further discussed in
Section V.

Remark 3: We observe that the monotonic relationship
between m; (i = 1, 2) and the error appears to hold on average
for 6(k) < —1, but not for each realization.

B. Gaussian Pulse Shape

We next consider the Gaussian pulse shape and define p(t)
as,

1 2
p(t) = e 207 (22)
2ro

where /20 is the pulse half-duration. For the noiseless case,
the ratio function corresponding to Equation (14) is given by

fG(tk) _ P (m2TS — tk) _ 6('anf'nL%)T?zigm,Qf'nLl)tkTs
p (mlTs - tk)

It is straightforward to verify that fc(Z;) is a monotone
function with respect to ;. We can obtain the unique delay
estimate of the kth path as

. 20" da(t) + 0m3 — )T
2(mg — mq)Ts
(ma+m1)Ts  o?In fo(ty)

— 5 +'Un2—wn07;' (24)

(23)
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If the ratio function has an error e("*), namely, ra(ty) =
fa(ty) +elm) = % + e(") | the corresponding error

in the delay estimate is

e(t’“)(ml,mg) = tk — lgk

= o’ In < Jo(te) )
(mg —mq)Ts falty) + el

0_2

1
(i — )T <1 T 6<rk>> -

Proposition 2: For the Gaussian pulse shape described
in Equation (22), and a fixed perturbation level §(k),
le(*) (my1, my)| is monotonically decreasing with increasing
value of |mg — my|.

Proof: From Equation (25), it is straightforward to verify
% < 02 if the value of o and 6(k) are given. [J

Remark 4: In order to combat the effect of perturbations,
for fixed values of m; (i = 1, 2), one should select the smallest
possible o as seen in Equation (25). This is intuitive, as a
smaller o translates to a larger bandwidth.

Remark 5: The perturbation analysis in Section V also
shows that noise sensitivity is decreased with larger mo —m;.
Thus, we conclude that the best performance is achieved when
mgo — my is maximized for the Gaussian pulse shape, which
is when mo — my = M — 1. These observations are validated
in the numerical results (see Section V).

C. Root-Raised-Cosine Pulse Shape

Finally, we consdier the RRC pulse shape. As such p(t) is
defined as

T 1 T
Esmc (ﬁ) , t= :t%;
=11 iy = (F)
—sinc | = | ——%,
e

T

where sinc(t) = %, 0 and T are the roll-off factor and
a design parameter of p(t), respectively. Viewing the design
parameters m; and my as constants, we consider the following
noiseless ratio function for delay estimation,

(26)
otherwise,

frrc(tk)
_ p(m2Ts - tk)
p (mlTs - tk)

sine (2251 ) cos( 2mTante) ) (] (2muTictu) )2)

sinc (mleft’“) cos(ﬂﬁ(mlTTS_t’“)) (1 — (72’8(”127?5_”’))2) 7
(27)

where we assume p (m T, — t3,) # 0.3

O\S(tk) (mq,m2)|
9(ma—mi)
le(tk) (m,m2)| is not a continuous function with respect to mgp — my.
However, we can judge whether |e(*&) (m1,m2)]| is monotonically decreased
with the increasing value of ma — m1 by exploring the monotonicity of

le®) (m1, ma)| with ma —my € R.
3If we have p(m1Ts — 1) = 0 and p(maTs — 1) # 0, the delay
estimate of the kth path can be directly obtained.

2In fact, does not exist because mo — m; € 7Z and
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(@ (b) ()
10°; [ | 10°
b > ) > ) A
0
LJ)J % " /}/?/I % f/?/
0 107
+>-m,z=5, m =0 [[ -Im,-m |=5] P> 2
m,=5, m =3 1078 -2 Imm |=3 $-m=11,m =0
m2=1, m1=0 |m2-m1|=1 m2=10, m1=0
10710
-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5
(k) é(k) o(k)
Fig. 1. NMSE of delay estimation under different fixed perturbation levels, (a) rectangular pulse shaping, (b) Gaussian pulse shaping, and (c) RRC pulse
shaping.

In general, frrc(tr) is not a monotonic function with
respect to ¢, and thus the uniqueness of the delay estimate
cannot be guaranteed. To make the delay estimate unique
for the noiseless case, we need to properly select the design
parameters m; (¢ = 1,2), which is discussed in Proposition 3.

Proposition 3: For the RCC pulse shape, the uniqueness of
the delay estimates in the noiseless case (e("™) = () can be
guaranteed and there is a closed-form expression for the delay
estimate if:

C1) m; =0and my € |
Z;
C2) The parameters 7" and 3 in Equation (26) are such that
T = fmyT, and § € Z.
Proof: See Appendix C. (]

Remark 6: In contrast to the noiseless case, the conditions
of Proposition 3 do not guarantee a unique estimate for
all possible perturbations to the ratio function e("*). Each
perturbation value yields a different optimal mo value within

2M . .
[m,M — 1]. In practice, the perturbation is unknown.

However, one can consider multiple values of mo and average
the corresponding delay estimates.

In Section V, we will numerically examine the influence
of the choice of my on the accuracy of the delay estimation
and further discuss the performance degradation caused by
violation of the conditions in Proposition 3.

2M

1+\/§,M7 1],* where m; and my €

V. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
scheme. First, the effects of the perturbations on the delay
estimation are numerically presented, with the rectangular,
Gaussian, and RRC pulse shapes all explicitly considered,
respectively. Then, our proposed scheme is compared with
PLAN [16] to the show the two key performance improve-
ments: lower BER with re-sampling and more accurate esti-
mation with re-estimation.

A. Signal Parameters

The channel model is constructed based on Equation (2).
Specifically, the delays are uniform random variables,

2M . .
[Eav,L M — 1] enforces M > 6 because

mg € Z and mg > mq = 0 holds, which enables the consideration of large
(i.e. M > 6) discrete delay spreads. The condition M > 6 can be met by
decreasing the sampling period 7.

“4Note that, the constraint mgo € |

normalized to (0, 1] and the normalized Doppler shifts (also
uniform random variables) have a support [f%, %] The chan-
nel gains and noise are complex, independent, Gaussian ran-
dom variables. The pilot sequence is a Binary Phase Shift
Keying (BPSK) modulated random sequence, ie., {—1,+1}
with equal probability. As previously noted, the pulse shapes,
pe(t) = pr(t), are chosen as the rectangular, Gaussian, or RRC
pulse shapes. Correspondingly, we set p(t) based on Equa-
tions (18), (22), or (26), truncated by a window with length of
2MT. For the optimization problem in Equations (10), we set
€ to 0,1/ N + 2y/NTlog N [30] with o2 being the variance of
z[n], 1 <n < N. In all of these experiments, the scaling law
developed in [16] is satisfied to ensure proper behavior of the
atomic norm based estimator and we set py and 7 to 3, and
Tms 4 L (me — Zme) respectively. Unless otherwise stated,
M 1is set to 6 and the SNR is defined as the transmit SNR
averaged over the pilot and the data sequence. We make no
assumptions on the modulation scheme and arbitrary values of
po can be accommodated assuming a sufficiently large value
of N.

B. Perturbation Analysis

The influence of the perturbation on the errors in the
delay estimates is further analyzed using simulations to back
up theoretical analysis in Section IV. The NMSE of delay
estimation under the fixed perturbation levels 6(k) is presented
in Fig. 1, where N is set to 150 for the simulations of
perturbation analysis. Furthermore, the NMSE performance
under different SNRs is shown in Fig. 2 to statistically validate

the analysis. We define the NMSE as NMSE = %
2

~ is the true value of the target parameter and 4 denotes its
estimated value.

We first consider the rectangular pulse shape; the NMSE of
the delay estimates is presented in Figs. 1(a) and 2(a), where
T defined in Equation (18) is set to M7Ts. Consistent with
the analysis in Proposition 1, Figs. 1(a) and 2(a) show that a
smaller value of m; or a larger value of ms can help decrease
the error in the delay estimate, making it less sensitive to
the perturbation, even though condition A of Lemma 1 is not
always satisfied for a given SNR.

For the implementation of ANDE with the Gaussian pulse
shape, we set o to 1. The NMSE of delay estimation is shown

, where
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Fig. 2. NMSE of delay estimation under different SNRs, (a) rectangular pulse shaping, (b) Gaussian pulse shaping, and (c) RRC pulse shaping.
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Fig. 3.

in Figs. 1(b) and 2(b). It can be observed that, for both the
fixed perturbation level and the random perturbation, with the
increasing value of |mg —m;y|, the NMSE of delay estimation
is dramatically reduced. Furthermore, using a larger value of
|ma2 — my| causes the NMSE of delay estimation to increase
more slowly as the perturbation level increases. Therefore, for
the Gaussian pulse shape, we seek to maximize |mg — my|.
For the RRC pulse, Proposition 3 dictates m; = 0 and

mo € [, M — 1]. In Fig. 1(c), the NMSE of delay

estimation using ANDE with RRC pulse shapes are plotted,
where my, M, 8 and T in Equation (26) are set to 0, 12,
% and mofTy, respectively. Based on Proposition 3, there
are two choices of mo to ensure unique delay estimates, i.e.,
mg = 11 or 10. From Fig. 1(c), for fixed perturbation levels,
a relatively lower NMSE of delay estimation is achieved with
a larger value of ms, where the Doppler shift of each path is
assumed to be perfectly estimated before the Algorithm 1 is
implemented. Under different SNRs, a slightly lower NMSE
of delay estimation is achieved with a smaller value of mgy
if the SNR is less than than 12dB, but a larger value of my
leads to the reduction of errors in the delay estimates as SNR
increases. Consistent with our analysis, we see that there is no
optimal design of my for all perturbations.

To visualize the impact of the violation of conditions in
Proposition 3, we set m; = 0 and my = 9. To obtain the delay
estimates of this case, we search for the potential value i) in
P(mgTs*fh)
m—fRRc(fk)Hz-
The associated NMSE for this case is also shown in Fig. 2(c).

(0, 1] for each path that minimizes ||

BER of the data sequence under different SNRs, (a) rectangular pulse shaping, (b) Gaussian pulse shaping, and (c) RRC pulse shaping.

As uniqueness is not guaranteed, a strong performance loss is
seen, as suggested by Proposition 3.

C. Bit Error Performance Comparison

We first consider the BER of our proposed method and
compare to that of PLAN. The motivation behind considering
BER first is that for the leakage vector and Doppler values the
NMSE of ANDE is exactly that of PLAN, i.e. PLAN is used
to initialize ANDE. However, we will consider the impact of
re-sampling and re-estimation within ANDE and compare to
PLAN in the sequel. We underscore that for BER computation,
ANDE does re-sample the signal exploiting the estimates of
all channel parameters.

To show the performance gains achieved by our scheme,
the BER for data detection with ANDE and PLAN [16] are
shown in Fig. 3, where N, mq, mgo, M, o, (3, and the support
of the rectangular pulse shape 7" are set to 64, 0, 5, 6, 1, %
and 2MT,. Maximum likelihood sequence equalization [31] is
implemented for detection. Note that, these design parameters
are selected based on the theoretical analysis in Section IV,
which ensures the uniqueness of delay estimates for the
noiseless ratio function and yields delay estimation that is
relatively robust to noise. For each Monte Carlo, a sequence
of 150 i.i.d. BPSK symbols is generated. The average BER
for each sequence is determined and then averaged over each
Monte Carlo run.

As shown in Fig. 3, ANDE outperforms PLAN, offering
2.5dB to 5dB improvement on average. This strong gain is
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NMSE of channel matrix estimation under different SNRs, (a) rectangular pulse shaping, (b) Gaussian pulse shaping, and (c) RRC pulse shaping;

NMSE of Doppler shift estimation under different SNRs, (d) rectangular pulse shaping, (e) Gaussian pulse shaping, and (f) RRC pulse shaping.

achieved as the individual delays, Doppler values, and channel
gains are estimated via ANDE enabling the construction of
receive filtering based on the pulse shape and the channel;
whereas PLAN only estimates the channel matrix described in
Equations (7). Essentially, with channel parameters individu-
ally recovered using ANDE, properly re-sampling the received
signal increases the signal-to-interference-plus-noise ratio on
average, beneficial to the accurate signal detection.

D. Estimation Accuracy Performance Comparison

Since our purpose is to estimate the channel parameters
and recover the transmitted signal as accurately as possi-
ble, we then numerically analyze the NMSE of the channel
matrix and Doppler shifts estimation to show the performance
improvements with our scheme. Since the estimates of delays
and channel gains are not available via PLAN as explained in
Section III-B, t*(n) is set to 0. Nevertheless, these parameters
can be separately estimated via ANDE and thus #*(n) can
be properly adjusted based on this complete channel side
information. Finally, the re-sampled signals are used as the
pilot sequence for re-estimation. We set #*(n) to 7 in the
following experiments.

Figures 4(a)-(c) show the NMSE of the channel matrix
estimation using ANDE and PLAN, where all the design para-
meters of pulse shapes are the same as that in Section V-C.
From Figs. 4(a)-(c), we can observe that, as compared with
PLAN, lower NMSE of channel matrix estimation is achieved
by re-estimation with the properly re-sampled signals, where
individual channel parameters are estimated using ANDE,
when the Gaussian pulse shape, the rectangular pulse shape
or the RCC pulse shape is adopted during transmissions.
In contrast to PLAN where the delays and channel gains
are not explicitly estimated, with these parameters recovered

via ANDE, re-sampling the received continuous-time signal
equivalently reduces the delay spreads. This makes it easier
to estimate the channel parameters, which is one reason for
the performance improvements shown in Figs. 4(a)-(c). In
comparing the NMSE plots to the BER plots, we see that
modest improvements in NMSE via ANDE and re-estimation
can often lead to larger gains with respect to the BER. This
phenomenon was also observed in [27]. The key is that the
improved estimation methods provide better estimates for the
more critical channel parameters - those that impact BER
performance.

In addition, the NMSE of Doppler shift estimation is plotted
in Figs. 4(d)-(f), where implementing ANDE and re-estimation
yields a more accurate Doppler shift estimation. There is an
apparent 1dB to 5dB gain on average in the SNR sense as
compared with PLAN.

VI. CONCLUSIONS

In this paper, an improvement to an atomic norm based
estimation scheme is proposed for time-varying narrowband
leaked channels, where all the channel parameters can be
individually estimated. In particular, a new strategy to estimate
delays and channel gains after atomic norm based channel
matrix estimation [16] is provided. The analysis regarding the
uniqueness of delay estimates in the presence of Gaussian
pulse shapes, rectangular pulse shapes or RRC pulse shapes
and the accompanying perturbation study for the noisy case are
provided. Despite its simplicity, the new method offers strong
improvement with respect to BER over the prior art (2.5dB
to 5dB) [16]. Direct estimation of the delays is an essential
element of high performance channel equalization, as well as
localization strategies; thus the proposed methods have many
practical applications. The proposed method can also be used
to further improve channel matrix and Doppler estimation.
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APPENDIX A
PROOF OF PROPOSITION1

Based on Equations (20a)-(20c), there are three potential
delay estimates for each path. Since ¢ is unknown, we cannot
directly distinguish which estimate is the desired one. How-
ever, because af%,(;;") > (0 always holds, the delay estimate is
unique and can be obtained by comparing the ratio function
with two fixed thresholds I'; and I's.

Recall that, in Section IV, it is assumed that 27, < T
and T > MT, holds for the rectangular pulse shape. Given
the presence of channel leakage, we have that M > 2 and
(M —1)Ts < Tmax < MTs, with the use of the definition
of the maximum discrete delay spread. Therefore, it can be
verified that 1 > fgr(tr) > 0 if maTs > miTs > t;, > 0,
fR(tk) > —1 if moTs > tp > mqTs, and fR(tk) > 1 if
MT, >t > moTs > mqTs.

For the noiseless case (6(7"“) = 0), to ensure the uniqueness
of the delay estimates, 7, = t; needs to be enforced for a given
fr(tx). Therefore, m,Ts > te > 0, moTs >t > mq T, and
MT, > t}, > msyTs hold for Equations (20a), (20b) and (20c),
respectively. Specifically, suppose that f; takes the estimate
given in Equation (20a), we need to ensure

5 (ml - mQ)Ts

ty =m1Ts — T + <my T,
' fr(te) =1
and equivalently we can obtain
fr(tr) <T4,

where I'y = 1+ % If #;, takes the estimate presented
in Equation (20b), the following condition needs to be met,

e )l 21,

ng<£:ng—|—T—|— —
Pem e Frlte) + 1

and thus we have

I'y < fr(te) <To,

moTs—my T

with I'y = 1 4 722

verified that

. Similarly, if £ > moT5, it can

[y < fr(tk)-

Based on the above analysis, after we obtain fr(¢x), this
ratio function is compared with I'; and I'y, and the unique
delay estimate can be rewritten as

(m1 7’1’)‘L2)T5
Ty — T + — 205
' fr(tr) — 1

(may —my)Ts — 2T
fR(tk) + 1

(m1 —ma)Ts
T, + T + T~ M2)2s
' fr(tr) —1

if fr(tr) <Ti;

mlTs +T+

£ = , if Ty < fr(ty) <Ta;

otherwise.

(28)

APPENDIX B
PROOF OF LEMMA 1

To prove Lemma 1, with the existence of the perturbation,
we need to show |e(®¥)(my, my)| is monotonically decreas-
ing with respect to m; while monotonically increasing with
respect to ma, for a fixed perturbation level §(k).

6233

Recall that, " > M T is ensured for this kind of pulse shape
and thus T > max{mqTy, t; } holds. Furthermore, since (k)
is assumed to be greater than —1 according to the condition
A, we can derive |e(**)(m;,ms)| in Equation (29), as shown
at the top of the next page, by substituting Equations (19)
and (28) into Equation (21).

With some algebra, the first-order partial derivatives
of |e®)(my,mo)| with respect to m; and ma, ie.,
ale(tkgﬁl’%)‘ and a‘e(tk)asz;hmz)l,s can be derived, respec-
tively. With the conditions T > max{moTs,tx} and

8(k) > —1, it can be verified that el (mama)l -,

and %’W < 0 hold. Therefore, |e)(my,my)| is

monotonicaﬂy decreasing with respect to m; while monoton-
ically increasing with respect to mo.

APPENDIX C
PROOF OF PROPOSITION 3

By designing ¢; = Tls, qQ = % and g3 = 5"1”, we have
@ > 1 ma > q >1, 0my >qg > 1, ¢ €R, and
q2,q3 € Z since the condition C2 is assumed. When m; is set
to 0 according to the assumption C'1, the ratio function f(¢1)

can be rewritten as

(=) @ta)gy (T — 2Btx)
(q1q2Ts — tr) (28t — (2g3 — 1) 1 T)
(1 Ts + 20tx)
28tk — (2¢3 + 1) uTs)’

where t;, € (0, MT,) and t;, # ﬁmgTs, (1 - i)mgTs,
ms Ty, or (14 5-)maTs, for all k.

To ensure the uniqueness of the delay estimates, we need
to analyze the monotonicity of frrc(tr). The first-order
derivative of frrc(tr) with respect to ¢ is given by

Ofrrc(tr)
Oty
(—1)d2%as (¢, — t](gl))(tk _ téz))(tk _ t,(f’))(tk o tl(:l))
(b — q102T%) (T2 — 482 (t — q12T)?2))°

frrc(ty) =

3D

)

(32)
where

LD _ q1927 11— 14 Y 4q5 — 1
¥ 2 V3@ |’
(2 _ Q19271 1 1Y 4q5 — 1
SRS — T =3 g

2 \/§Q3
/3 _ 71927 1 Vg —1
@ 1=,

2 \/§Q3

Sale(t’cg(Tnlmm)l and 2l¢
m

and |e(**) (m1,ma)| is not a continuous function with respect to m; and
me. However, we still can judge whether |e(*#) (m;,m2)| is monotonic with
respect to 1m1 or ma by exploring the monotonicity of |e(*#) (m1,m2)| with
mi1,mo € R.

(r) (mq,m .
8(”121 2) o not exist because mi,ms € Z
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16(k)| (T + te — maTs)(T + tyy — maT)
—0(k)(T + ti, — maTs) + moTs — mi Ty’
(T +t, — maTs)((2+ 6(k)) (m1Ts — tr) + 6(k)T)
S(k)(T + ti, — maTs) + 2T + 2ty — maTs — my Ty’
O(E)T + ty, — moT)(T — t + m1Ts) — 2T (moTs — m1Ts)
5(]{?)(T + ity —moTs) — maTs +miTs ’
(T +tp — maT)(0(k)(T + tp — maTy) + 2t — 2ma 1)
5(k)(T +t — mQTs) + 2t — moTs — mqy T ’
[0(K)(T =t + maTs)(0(k)(T + te — maTs) + 2t — 2moT%)
(BT + ty, — maTys) + 2t — miTs — moTy ’
S(R)T 4ty — m T ) (T — tg, + maTs) + 2T (moTs — my Ts)
(k) (T — ty, + moTs) + moTs — mi Ty
—(T =t + maTs) (0 (k)T — tg + maTys) — 2t + 2moTs)
8(k)(T — ti, + maoTs) + 2T — 2ty + moTs + mq T
PUI(T — by + maT)(T = by + moT)
6( )( 7tk+m2T5)+m2Ts 7m1TS ’
[6(B)|(T + tp — moTs)(T — tg + mTs)
S(K)(T + ty, — maTs) + 2T +m Ts — maoTy’

if fR(tk) S Fl,tk S mlTS;

if 'y < fr(tr) <Tatp <miTs;

if T'y < fR(tk),tk- <mT;

if fr(ty) <Ti,miTs <ty < moTy;

\e(tk)(ml,mgﬂ = if To < fr(tr),maTs < tr, < moTs;

. AF fr(te) <Ti,moTs < tg;

if Pl = fR(tk) < Fg,mQTS < g

if I'y < fr(tr), moTs < t;

otherwise.

(29)

<5fRRc(tk)+\/f}%,n,c(tk-)*(*l)%34fRRc(tk,)+1*(*1)%>m2Ts

T iAf frro(tr) < 0;
4(frrc(tk)+(=1)7)

~ . 1
ty = male if frro(tr) = (—1)71; (30)
(5fRRc(tk)*\/ffmc(tk)*(*l)% 34frro (tr)+1—(— )%)mﬂE
T , otherwise
A(frrC(tr)+(=1)7)
and if ¢ € (0,msTs) and t” € (moTs, MTy). Therefore, given
frro(tr), the delay of all paths can be uniquely estimated.
/12

t;(f) _ nals 1 14+ VidgG — 1 . By computing the inverse function of frrc(tr) given

2 \/§q§ in Equation (33), the potential values of delay estimates

It can be verified that (5 fRRc(tk)Jr\/f?mc(tk)*(*l)%l’vﬁl fRRc(tk)Jrl*(*l)%)szs

T, are -
) <0<t < T2 <l <yt <Y, 1(mnc ) +(n7)

1 1
Therefore, if t,(f) + t,(f’), the ratio function frprc(tx) is not (5 fRRc(t’“)f\/fl%mc(t*")*(*l)534 fRRC(t*‘)"H*(*l)ﬂ) maTs

monotonic with respect to ¢, when ¢;, € (0, MT) and multiple
delay estimates may exist for a given frrc(tr). However, .
since the assumptions C'1 and C2 hold, we have g3 = 1 and ~ With frrco(tr) # (—1)% 7.5 Herein, it can be verified that

and

?

4<fRRc(tk)+(—1)%>

the following two conditions are satisfied, fare (k) — (71)%34 frrc(ty) +1 > 0 holds for all
1 t,(f) _ t,(f). tr € (0, MT,). Since the uniqueness of the delay estimate is
2) t,(:l) > ]VH;S. ensured according to the above analysis, the remaining step

is to discuss which potential value is the unique estimate
for several cases, i.e., a) % is even and frrc(tx) > 0;
b) % is even and —1 < frro(tk) < 0; ¢) 3 L is even and

With the above two conditions, the ratio function in Equa-
tion (31) can be simplified into

frro(tk) = (ql(q;})ii’;(ﬁ;gfj_zg;j%) (33 frre(ty) < =15 d) § is odd and fRRc(tk) <0ye) 5 is
Then, we can derive that when t; € (0,moT%) or t, € odd and 0 < frro(tr) < 1; f) is odd and frrc(tr) > 1.
(maTs, MTy), the following inequality holds By exploiting the properties of fRRc(tk), we can determine
) the desired estimate with some algebra and the closed-form
(_1)%8‘7{%;@’“) <0, expression for the delay estimate is given in Equation (30),

k

as shown at the top of the page.
proving frrc(tx) is a monotone function with respect to .
Also, we have

1 R
frRRC (t/)fRRC (t”) <0, I frro (ty) = (—1)8 T itis straightforward to verify that £;, = —m22T5 .
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