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Abstract

Exoskeletons can enhance human mobility, but we still know little about why

they are effective. For example, we do not know the relative importance of

training, how much is required, or what type is most effective; how people

adapt with the device; or the relative benefits of customizing assistance. We

conducted experiments in which naı̈ve users learned to walk with ankle ex-

oskeletons under one of three training regimens characterized by different

levels of variation in device behavior. Assistance was also customized for one

group. Following moderate-variation training, the benefits of customized as-

sistance were large; metabolic rate was reduced by 39% compared to walking

with the exoskeleton turned off. Training contributed about half of this bene-

fit and customization about one quarter; a generic controller reduced energy

cost by 10% before training and 31% afterwards. Training required much
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more exposure than typical of exoskeleton studies, about 109 minutes of as-

sisted walking. Type of training also had a strong effect; the low-variation

group required twice as long as the moderate-variation group to become ex-

pert, and the high-variation group never acquired this level of expertise. Cu-

riously, all users adapted in a way that resulted in less mechanical power from

the exoskeleton as they gained expertise. Customizing assistance required less

time than training for all parameters except peak torque magnitude, which

grew slowly over the study, suggesting a longer time-scale adaptation in the

person. These results underscore the importance of training to the benefits of

exoskeleton assistance and suggest the topic deserves more attention.

One-sentence summary

Training for two hours and customization of assistance contribute half and one-quarter, respec-

tively, of the energy cost reduction from exoskeletons.

Introduction

Exoskeletons can make walking easier. For people with movement disorders, exoskeletons can

assist gait to overcome impairments. Exoskeletons can help people with cerebral palsy decrease

crouch gait (1) and energy cost (2). People with stroke have demonstrated improvements in en-

ergy economy (3) and other functional measures (4) with the aid of exoskeletons. Exoskeletons

can also make difficult tasks easier, such as carrying heavy loads (5), walking up inclines (6),

and running (7,8). Exoskeletons could also overcome some of the effects of aging, for example

by decreasing the energy cost of walking in an elderly population (9).

Despite these advances in exoskeleton designs, there are still gaps in understanding how

humans benefit from exoskeleton assistance. Because there is a human in parallel with the
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exoskeleton, device performance is necessarily tied to human performance. To understand how

humans can master exoskeleton performance, we need to determine not only what optimal

human performance looks like but also how to guide people to that optimal gait (10).

Although aspects of the biomechanical response to exoskeleton use have been character-

ized in several contexts (11–14), little is known about how people adapt to the device. People

can modulate their muscle activity to control an exoskeleton with a fixed (15) or adaptive con-

troller (16), eventually plateauing at a reduced level of activity. Although metabolic cost can

also stabilize after exposure to a constant exoskeleton controller (15, 17, 18), motor learning

research suggests that variable training may result in better outcomes (19–21). Estimates of

the amount of time required to reach a steady-state minimum energy cost ranges widely in the

literature, from 18 (17) to 90 minutes (15), but there are indications among these studies that

longer exposure may have resulted in greater benefits (22).

In addition to the improvements possible with variation training, there is evidence to suggest

that user-specific controllers may result in better exoskeleton assistance. Human gait is so

personalized that it can be used as a biometric measurement (23). Customization in exoskeleton

control can exploit these variations (24) and has been shown to result in large reductions in

metabolic cost with exoskeletons (25, 26). Despite its success, there have been no studies to

determine the relative importance of a personalized controller.

We designed an experiment to understand how the type and duration of training affects per-

formance for both fixed and personalized exoskeleton controllers. Participants were trained

in bilateral ankle exoskeleton walking for nearly ten hours, distributed across one pre-test day

and five days of training. We demonstrated that human-in-the-loop optimization can simulta-

neously train exoskeleton users and discover customized assistance profiles. Motor adaptation

accounted for half of the reduction in energy cost, highlighting the importance of fully training

participants before evaluating performance of an assistive device.
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Figure 1: Experimental setup and protocol. (A) Photograph of the experimental setup. Partic-

ipants wore tethered bilateral ankle exoskeletons and walked on an instrumented treadmill. (B)

Schematic of the experimental setup. Metabolic energy consumption, muscle activity, ground

reaction forces, and body kinematics were recorded throughout the experiment. The devices

were controlled by off-board motors. (C) Schematic of the experimental protocol. Each row

represents the protocol for a typical participant in each of the three training groups. Participants

began with a pre-test of six six-minute validation trials: two trials wearing running shoes and

no exoskeleton, two trials with the exoskeleton unpowered in a zero-torque condition, and two

trials with a generic assistance profile. On each of the five training days, participants began

with an adaptation trial, which differed by training group. All training groups then experienced

validation trials, including the six trials from the pre-test day; the continued optimization and

re-optimization training groups also experienced customized assistance for two validation trials.

The validation tests were randomized and presented in a double-reversal ABCDDCBA order to

mitigate the effects of noise in the metabolics measurements and trial order.
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Results and Discussion

Participants with no prior assistive device experience were exposed to exoskeleton assistance

to determine how different types of training and customization affect performance (Fig 1). A

pre-test was conducted on the first day to determine how people initially responded to the ex-

oskeleton in a fixed, generic assistance pattern. The generic profile was the average optimized

profile from a two-day pilot experiment with ten participants (Supplementary Materials). Per-

formance with assistance was compared to baseline trials with an unpowered, zero-torque mode

and with normal running shoes. Each subsequent day began with a 72-minute adaptation trial,

determined by training group. Adaptation was followed by a series of validation tests, which in-

cluded the conditions tested in the pre-test as well as customized profiles for some participants.

The fifteen participants were randomly sorted into three training groups, two of which ex-

perienced human-in-the-loop optimization. During optimization, a series of assistance profiles

was randomly sampled based on the estimated optimal profile. Participants experienced each

of these profiles for two minutes, and their energy cost was estimated for each. The algorithm

then ranked the assistance profiles by energy cost to determine a new estimate for the optimal

assistance profile.

The continued optimization group underwent human-in-the-loop optimization throughout

the adaptation period. The optimization was seeded with a comfortable assistance profile and a

large distribution from which to sample control laws; these settings have been shown to result

in beneficial assistance (25). On subsequent days, the optimization began with the estimated

optimal profile and associated distribution from the previous day. The algorithm sampled from

a narrower distribution as the confidence in the optimal estimate increased, so this training

program began with variation training before converging on profiles near the optimum. On

each day of testing, the estimated optimal profile from the end of that day was included in
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the validation tests; the customized profile on day n was then the result of 72n minutes of

optimization. The generic profile was periodically tested throughout the adaptation trial to

track adaptation.

The static training group only experienced generic assistance for the duration of the adap-

tation period. This training regimen was intended to isolate the effects of training time on user

expertise. Training protocols with fixed exoskeleton behavior are the most common in prior

studies (15, 17, 18).

The re-optimization training group underwent human-in-the-loop optimization as described

above, but with the same initial seed used on each day. Because there was less time for the

optimizer to converge, this training program had higher variability than either the continued

optimization or the static training group. The customized profiles were determined only by

the 72-minute trial on that day rather than a cumulative estimate. Generic assistance was also

periodically applied to track motor adaptation.
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Figure 2: Metabolic cost with assistance during (A) the pre-test and (B) after adaptation.
(A) Metabolic cost (W·kg−1) during the normal shoes, zero torque, and generic assistance con-

ditions for all participants. Initially participants showed a small, but statistically significant,

reduction in metabolic cost in the generic assistance condition compared to the zero torque

condition. (B) Metabolic cost of the generic and optimized assistance conditions, normalized

to the zero torque condition on that day, for the three training groups. All conditions at the

end of the experiment were significantly different than zero torque. Optimized assistance for

the re-optimization group (†) is the response to the torque profile produced by the optimization

algorithm at the end of that day; it is not assumed to be optimally assistive. Comparisons within

training groups were made using paired t-tests. Comparisons across training groups were made

using unpaired t-tests. Error bars denote standard deviation. Statistical significance between

conditions is denoted with an asterisk for P < 0.05; asterisks above a single bar denote signifi-

cance with respect to zero torque.

Training resulted in a substantial improvement in metabolic energy con-
sumption

With only 12 minutes of lifetime exposure to exoskeleton assistance by the end of the pre-test

day, most participants exhibited reduced metabolic cost with generic assistance, with an average

improvement of 10.0 ± 11.0% (mean ± standard deviation) relative to zero torque (Fig 2A,

paired t-test, P = 0.009). After at least four hours of training, participants received a larger

benefit from generic assistance (Fig 2B). Once fully adapted, the continued optimization group

experienced an energy cost reduction of 30.6±8.1% relative to the zero torque condition (paired

t-test, P = 0.005), and the static training group reduced their energy cost by 28.2±4.0% (paired
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t-test, P = 2.74e − 5). The re-optimization group did not improve their energy economy to

the same degree as the other two groups, but still experienced a larger improvement than the

average pre-test response: by 17.5± 9.2% compared to the zero-torque condition (paired t-test,

P = 0.09).

We calculated the change in metabolic cost relative to the energy cost of walking with zero

torque in order to isolate the benefits of assistance from the device-specific costs of added leg

mass or volume and the day-to-day fluctuations of metabolic cost seen in normal walking (27).

The experiment was performed on a versatile emulator system (28), designed to be powerful

and modular with off-board motors and generic end-effectors. An untethered version could be

more streamlined, given a specialized function, or bulkier, because actuation would need to

be on-board. Adaptation to zero torque was fast (27 minutes, Supplementary Materials), but

with some interparticipant variability. This adaptation is likely attributable to the added mass

and kinematic constraints of the device. The final, adapted results were not affected, but may

have resulted in a higher baseline value during the pre-test, meaning that the training effect

we identified is a lower bound. Heavier devices may impede adaptation due to the effects on

proprioception, but we hypothesize that adaptation to assistance would still occur over a slower

timescale.

Participants reduced their metabolic cost almost immediately upon donning a powered ex-

oskeleton for the first time, but tripled the benefit from assistance with more training. Although

some participants increased their energy cost on the first day of testing, the average response

is comparable to other single-session studies (5, 29). Many participants initially disliked assis-

tance, but improved their opinions by the end of the experiment. We did not directly measure

subjective preferences, which may give more insight into any correlations between metabolic

cost and preference (30). Prior to testing, we did not familiarize participants with assistance in

order to fully track their motor adaptation. Many exoskeleton studies report habituating par-
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ticipants before measuring their responses (29). Training may have varying effects on energy

economy, depending on the mode of assistance or the complexity of the task, but these results

support the general need for sufficient training to see larger reductions in metabolic cost.
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Figure 3: Metabolic cost of generic assistance. The metabolic cost of the fixed generic assis-

tance conditions was modeled as an exponential function of time at (A) the study level and

at training group levels for the (B) continued optimization, (C) static training, and (D) re-
optimization training groups. At the study level, participants need nearly two hours of exposure

to active exoskeleton assistance in order to reach expertise, but the rate and expected metabolic

reduction depends on the type of training experienced. Individual participants are represented

by distinct colors, and 6-minute validation trials are represented by larger points than the 2-

minute estimates taken during the adaptation trials. The exponential models, written at the top

of each plot, are shown in black with corresponding 95% confidence bands in gray.

Metabolic cost exponentially decreased with training

The generic assistance profile was experienced at least thirty-two times throughout the experi-

ment in two- and six-minute trials. The performance on each trial was used to track adaptation

as a function of the time a participant was exposed to exoskeleton assistance. At the study level,

metabolic cost decreased over time, following an exponential decay of the form

η = a+ a0e
−ωt, (1)
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where η is the metabolic energy cost, t is exposure time in minutes, a is the steady-state

metabolic cost, a + a0 is the initial energy cost, and ω is a time constant (Fig 3A). This ex-

ponential model fit the data better than a constant model (ANOVA, P < 2.2e− 16).

We considered several factors before converging on an exponential model of metabolic cost.

There are many accepted methods and forms for modeling motor adaptation (19, 31–35). The

aspects of exoskeleton walking that guided our choice of model are outlined here; an extensive

comparison of models can be found in the Supplementary Materials. The chosen exponential

function, shown in Eq. 1, is often used to describe motor learning in locomotion research (15,

17, 35, 36). In order to isolate the effects of motor adaptation, we modeled only the responses

to a fixed exoskeleton assistance pattern, in this case the generic profile.

We used metabolic cost as a proxy for the learned control pattern. Metabolic cost is an

important outcome in exoskeleton research (10) and other locomotion-based motor learning re-

search (37,38). Kinematic measures are often used in learning research (39,40), but are thought

to stabilize earlier than metabolic cost (41). We would then expect models using metabolic cost

to be the most conservative for determining the time to expertise.

Metabolic measurements were modeled with respect to assisted walking exposure time and

were averaged within a single two- or six-minute trial. Developmental research suggests that

time spent walking is a better indicator of children’s ability to walk than days since onset of

walking (42). Exoskeleton learning literature has reported adaptation as a function of single-

breath data (17) and averaged metabolic cost (18). The dynamics of metabolic cost at the

beginning of a walking trial (43) confound exponential models by artificially exaggerating the

warm-up period described in other motor learning paradigms (44,45). Although data averaging

can skew results if there is training that occurs during the period of time over which the data

are averaged (40), the trials were short enough in this case to not encode substantial adaptation,

and the averaged values carry greater meaning. This analysis was insensitive to factors such
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as the number of rest days and data averaging over individual trials, which are explored in

the Supplementary Materials. Overall, the modeling methods presented here characterized the

learning process well and can be used to track adaptation to similar assistive devices.

Full adaptation can be a slow process

We defined time to reach expertise as the time before the model fit of metabolic rate was within

5% of its asymptote. At the study level, participants needed 109 minutes of practice (IQR, 91

to 131 minutes) to become expert exoskeleton users. This is significantly longer than the length

of most exoskeleton studies, including those for which adaptation time is the main result (15,

17, 18).

This experiment was long enough to see steady-state behavior over an extended period

of time, increasing our confidence in the final measurements compared to a shorter proto-

col (37, 46). If there is an insufficient amount of data at steady state, an exponential model

will tend to underestimate the asymptote and consequently underestimate the time for the pre-

dicted model to reach that asymptote (44), as has been observed in other walking paradigms

such as split-belt treadmill training (37). Premature analysis of motor learning in exoskeleton

walking may then explain the shorter adaptation times seen in the literature (17, 18). Many

existing exoskeleton studies incorporate some level of habituation before the start of the experi-

ment without indication that participants are fully trained (8,29). Ensuring participants are fully

trained should be an important factor in designing assistive device experiments in the future.

Adaptation time, like any other motor learning outcome, is highly context-dependent (47),

so we would expect that the exposure time necessary to gain expertise in using an assistive

device may vary widely. We may predict that unilateral devices (15), devices that assist dor-

siflexion, or devices that act at proximal joints (48, 49) are easier to master than the bilateral

ankle plantarflexor exoskeletons used here. Conversely, increasing the number of joints may
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increase the complexity of the motor learning problem (50) as people often freeze joints (51) or

decompose movements by joint (52) as they learn complex, multi-joint movements, resulting

in longer adaptation times. Energy consumption changes when devices are taken out of the

lab (53), so we would expect that there may be some additional adaptation for participants to

use these devices in the real world. Exoskeleton emulators were used for this study, and hard-

ware differences, such as the added mass of the actuation and power, would affect learning. We

would expect adaptation time to change as a function of assistance magnitude. For example,

the generic assistance used in this study is similar in magnitude to other devices used for aug-

mentation (5, 12, 15, 16, 22), but higher levels of assistance may be necessary to see benefits

in strenuous tasks such as running (8). Although devices used to assist populations impaired

by neurological disease might benefit from lower levels of assistive torque, motor learning is

often impaired in these populations (54, 55), so these populations would either need more time

to learn or more targeted training. Training methods such as biofeedback (52, 56) could speed

motor learning, but care should be taken to implement feedback that does not inhibit learning

in the target population (57). Although similar principles may hold for devices used for reha-

bilitation, this study was focused on assistive devices, so we did not measure the aftereffects of

assistance and how adaptations to assisted gait transferred to unassisted gait. Extensively doc-

umenting adaptation times for every type of assistive device may be infeasible, so researchers

should consider the implications of training when designing their protocols, either by building

training into the experiment or by characterizing adaptation to better predict the steady-state

response to assistance.

The burden of training participants may change how exoskeleton research is done in the

future. Recruiting participants is a difficult task, and longer duration studies are at increased

risk of participant dropout (58). Having a pool of trained exoskeleton users rather than sam-

pling from novices may facilitate research on exoskeleton design and control. Studies with
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smaller sample sizes would allow for more time and resources to be spent on training, enabling

researchers to answer more difficult questions on how assistive devices affect human move-

ment (59). Although these issues are of less concern for people using assistive devices in daily

life, where high exposure times are natural and assistance profiles may be easier to use than

those developed for the lab, these results highlight the importance of longitudinal testing in

the development of future commercial devices. The increased adaptation time observed in this

study, though not an absolute prescription for all future devices, should serve to shed light on

the importance of training as both a step in future experimental protocols and as an area of study

ripe for future research.
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Figure 4: Training time for each training group. (A) Training time (defined as the time

to reach within 5% of the asymptote) determined by the model of metabolic cost adaptation

with generic assistance. (B) Training time determined by the model of mechanical power of

generic assistance. (C) Training time determined by the model of metabolic cost adaptation

with optimized assistance. Training time distributions were computed from the bootstrapped

models used to compute the confidence bands. The central red line denotes the median, with

the top and bottom edges of the box denoting the 75th and 25th percentiles, respectively; the

whiskers extend to the most extreme data points not considered outliers. The predicted training

time for the models given in the main text are denoted by a black ×. Significance between

groups is designated with an asterisk (Wilcoxon rank sum test, P < 0.05).

Appropriate variation training speeds adaptation

The three training groups experienced different levels of variation in assistance profiles and

learned how to use the generic assistance over different timescales (Fig 4A). The static training
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group had zero variation and reached expertise in 218 minutes (IQR, 143 to 358 minutes).

Although the static training group had less exposure time to assisted walking compared to the

optimization groups (432 minutes compared to 540 minutes), the time to reach expertise was

within the exposure time experienced during this experiment. The continued optimization group

had large variation at the beginning of training, with the total variance in control parameter

values being 71 during the first two days, before tapering to minimal variation by the end of

training, with a total variance of 33 over the last two days. This appeared to speed training

with participants adapting in 131 minutes (IQR, 107 to 160 minutes). The re-optimization

training group was exposed to a large variety of assistance profiles throughout the experiment

with the total variance of control parameters being 93 across the entire training period. The

model predicts that their metabolic cost stabilized after 81 minutes (IQR, 51 to 125 minutes).

However, the fact that this group did not achieve the same level of energy cost reduction as the

continued optimization or static training groups suggests that the re-optimization group did not

attain the same level of expertise as the other training groups.

The continued optimization training protocol appeared to be the most effective. There was

a significant improvement in energy consumption after adaptation, compared to the pre-test

(paired t-test, P = 0.005). These participants also adapted more quickly than the participants

in the static training group (Fig 4A, Wilcoxon rank sum test, P < 2.2e − 16) and settled on a

larger reduction in energy cost than the re-optimization training group (Fig 2B, unpaired t-test,

P = 0.04). These results suggest that large variation followed by more targeted practice near

the optimized solutions, as provided by the continued optimization protocol, may be an effective

training approach for exoskeleton studies.

Despite the slower adaptation, simply exposing people to a generically good assistance pro-

file for a long period of time may be as effective in the long term as the training experienced

by the continued optimization group and more effective than the highly variable training pro-
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tocol. The static training and continued optimization groups stabilized to similar reductions in

metabolic cost (Fig 2B, unpaired t-test, P = 0.62), and the predicted steady state energy cost of

walking with generic assistance was similar between these two groups, at 2.27 W·kg−1 for the

continued optimization group and 2.25 W·kg−1 for the static training group. Coincidentally,

there were participants in the static training group who exhibited large reductions in energy

cost in the pre-test before any group-specific training, which may explain why the static train-

ing protocol did not result in a significant improvement compared to the pre-test (paired t-test,

P = 0.25). Adapted energy savings were consistent with the reductions seen for the continued

optimization group, so static training should still be considered an effective training protocol.

Conversely, the re-optimization training protocol was ineffective compared to the other

training protocols. The mean energy cost reduction was increased, but results varied widely

across participants, and the improvement from the pre-test was not statistically significant

(paired t-test, P = 0.73). By the end of the experiment, some participants, who had showed

improvements in the early stages of the experiment, returned to the same performance levels as

the pre-test (Fig 3D). These results suggest that participants either were untrained by the end

of the experiment or quickly learned a different motor task that appeared to be ineffective by

our metrics, demonstrating the trade-off between expertise in a single assistance profile and a

coordination pattern that is robust to a wide variety of assistance patterns.

External variability can improve motor learning (19–21,47,60,61). The variability in move-

ments induced by the exoskeleton assistance may have prompted increased exploration in par-

ticipants (47, 61), resulting in faster adaptation in the continued optimization group compared

to the static training group. The nature of the human-in-the-loop optimization algorithm di-

rected the assistance profiles to converge on those which decrease effort. Moderate rewards can

increase participants’ willingness to explore different coordination patterns, thereby speeding

learning of an optimal movement pattern (47). Any adaptation by the static training group was
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likely not spontaneous (62) and may have been spurred by internal step-to-step variability gen-

erated by either the user or the low-level torque control (63). The similar final performance

between the continued optimization and static training groups are consistent with these ideas.

Variability of practice is thought to improve generalizability and long-term retention, but we did

not compare these outcomes between groups.

Variability can also interfere with learning, as seen in the re-optimization training group.

For stable motions, variability can promote exploration along nonoptimal coordination strate-

gies (61). The assistance profiles experienced by the re-optimization group during training

likely provided less reward than the assistance profiles experienced by the continued optimiza-

tion group. Participants may have taken a risk-averse approach and chosen not to explore new

movement patterns (47), resulting in a single motor control that is effective across all exoskele-

ton behaviors they experience. Although this may be generally acceptable, if the pool of ex-

oskeleton assistance profiles contains detrimental patterns, the universal motor controller may

have performed poorly for beneficial exoskeleton behaviors. The level of assistance likely also

amplified the unfavorable torque profiles, exacerbating the need for a risk-averse gait. More

research should be done to determine when assistance profiles cease to assist and how to appro-

priately bound variation training.
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Figure 5: Mechanical power of generic assistance. The mechanical power of the fixed generic

assistance conditions was modeled as an exponential function of time at (A) the study level

and at training group levels for the (B) continued optimization, (C) static training, and (D) re-
optimization training groups. Mechanical power decreased with training time at the study level

and the group levels. Because the torque profile was fixed in time, the reduction in mechanical

power represents kinematic adaptation to the generic assistance. Individual participants are

represented by distinct colors, and 6-minute validation trials are represented by larger points

than the 2-minute averages taken during the adaptation trials. The exponential models, written

at the top of each plot, are shown in black with corresponding 95% confidence bands in gray.

Ankle kinematics adapted to exponentially decrease mechanical work de-
rived from the exoskeleton

The generic assistance profile was defined as a fixed time-based torque pattern. Participants

were able to modulate their kinematics to determine the amount of mechanical power they

received from the device. Interestingly, mechanical power of the fixed assistance pattern de-

creased in an exponential pattern with training (Fig 5A).

Decreasing plantarflexor muscle activity is a well-documented response to ankle assis-

tance (64). There is some evidence that people decrease ankle plantarflexion and exoskeleton

mechanical power as well, but only for exoskeletons controlled by muscle activity (15). We

expect the decrease in ankle plantarflexion to be the result of decreasing plantarflexor activ-

ity, although we did not analyze muscle activity in this paper. The exponential decay suggests
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that there is a neural component to this kinematic adaptation rather than a purely mechanical

explanation which would have been immediately evident (65).

A prevalent theory in exoskeleton research is that designers should create devices that inject

large amounts of mechanical power in order to see larger reductions in metabolic cost (5).

Previous exoskeleton research has shown that profiles that supply more mechanical work result

in larger reductions in energy cost with some evidence of a fixed conversion between external

mechanical power and metabolic energy savings (12, 13). The adaptation leading to decreased

mechanical power and metabolic cost seen in our participants is inconsistent with these models

and indicates that there are more complex human dynamics that should be considered when

designing exoskeletons.

In other motor learning paradigms such as reaching tasks, kinematics stabilize before metabolic

cost (41). Mechanical power in our study stabilized in 175 minutes, decreasing at a slower rate

than metabolic cost (Fig 4, Wilcoxon rank sum test, P < 2.2e − 16). Adaptation may fol-

low different dynamics under different contexts. For example, reducing muscle activity may

be a higher priority than stabilizing kinematics for long experiments, and the exact durations

may vary depending on the type and level of assistance. Metabolic cost alone does not explain

choices in gait (66), and the factors governing how people explore and adapt are likely similarly

nuanced. Identifying other dimensions along which people explore and adapt in response to

assistive devices may lead to improved training protocols based on biofeedback and targeted

instructions.

Optimizing assistance resulted in larger energetic benefits

The continued optimization group experienced even larger improvements in energy economy

when walking with optimized assistance parameters: 39.6±8.2% compared to the 30.6% reduc-

tion with generic assistance (Fig 2B, paired t-test, P = 0.03). The improved energy economy
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with optimized assistance corroborates the hypothesis that customization, along with a good

generic baseline condition and proper training, plays a role in reducing metabolic cost (25).

The exact ratio of these factors will necessarily depend on the population and the device.

The participants in this study were young, healthy adults with no previous exoskeleton experi-

ence nor a history of movement disorders. As exoskeletons become more available, there may

be motor learning transfer between different styles of exoskeleton, so training may contribute

less to the overall benefit. Diseases such as stroke or surgeries like amputation uniquely affect a

person’s mobility and thus customization of assistive devices could be a more important factor.

Among the young, healthy population tested in this study, there was a range of energy cost re-

ductions from 25% to 59%. Although this large range was unexplained by characteristics such

as basic demographic information (Supplementary Materials), there may be other similarities

among participants who respond well to assistance (67).

Even though the difference between generic and customized assistance was statistically sig-

nificant for our study, the real-world significance will depend on context. For homogeneous

populations, the extra 10% energy savings may not outweigh the added time and effort needed

to optimize assistance. The added complexity in customizing parameters may lead commercial

producers to use a generic approach. In heterogeneous populations, some amount of customiza-

tion may be needed to obtain any benefits.

This human-in-the-loop optimization algorithm yielded large energy benefits, but the differ-

ence in energy cost may be attributable to other factors. The optimization was seeded with a

different controller than the generic profile, and the resulting mean of the optimized parameters

differed from the generic control parameters. We also did not systematically sample the space

to determine the sensitivity to changes in parameter values. Future work to determine the im-

portance of slight variations in parameters around a generically beneficial controller may yield

finer insights into the implications of customization of device parameters.
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Figure 6: Optimal and generic assistance profiles for the continued optimization group. (A)

Optimal torque trajectories (N·m·kg−1) after twenty generations of optimization, shown in solid

lines for each participant. The generic assistance torque trajectory is shown as a dotted line in

black. (B) Metabolic cost reduction vs. mechanical work for the generic assistance profiles,

denoted ◦, and for the optimal assistance profile, denoted �. Averaged values are depicted with

a black outline. Optimal assistance provided more mechanical work than generic assistance

(repeated measures ANOVA, P = 2.9e− 10).

Optimization resulted in parameters that differed from the generic pattern,
with some shared characteristics across participants

We used an evolutionary strategy (25) to optimize four parameters which determined a smooth,

single-peak torque trajectory as a function of stride time. One parameter determined the peak

torque magnitude, τ , and three parameters determined the timing of the peak, tp, the rise time,

tr, and the fall time, tf . After 20 generations, the optimized torque pattern, based on the average

of the optimized parameters, was characterized by a peak of 0.68 ± 0.06 N·m·kg−1 at 54.3 ±
0.7% stride, which was higher in magnitude and later in time than generic assistance (Fig 6A, t-

test, P = 0.007 and P = 0.01, respectively). Other aspects of the optimized torque curves, such

as the rise time of 27.8 ± 4.5% and fall time of 9.7 ± 0.9%, were similar to generic assistance

(Fig 6A, t-test, P = 0.46 and P = 0.85, respectively).

The average optimized values for peak time and fall time indicate a universally beneficial

peak time and offset time for exoskeleton assistance. The peak time and offset time, defined
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as the sum of the peak time and fall time, were near the limits of the parameter space and did

not vary considerably between participants, with ranges of less than 2% of stride for each node.

These limits were chosen based on comfort (25), but could be relaxed for different devices.

These results, along with results seen during pilot testing and other studies (8,25), indicate that

an assistance profile with peak torque near the end of stance, quickly tapering to zero torque at

toe-off, results in the largest energy benefits.

Rise time varied substantially across participants, which could be the result of individual

variation or the result of a weak relation between rise time and metabolic cost such that rise

time does not substantially affect metabolic cost over a large range. It is difficult to determine

if rise time is necessarily a user-specific parameter or if it does not directly affect metabolic

cost. To truly understand the importance of rise time as a parameter, another experiment to

test energy expenditure in response to a range of rise times, with sufficient training, should be

performed.

As participants learn to use the exoskeleton, they benefit more from larger magnitudes of

torque assistance. The participants in the pilot test that determined the generic controller would

not have fully adapted to exoskeleton assistance because the protocol only lasted two days (Sup-

plementary Materials). This seems to explain the lower magnitude relative to these optimized

profiles. Participants in this study initially noted that the level of assistance in the generic pro-

file seemed too high, but were more comfortable by the end of the experiment. This increased

comfort could be due to neuromuscular changes, like increased strength at proximal joints, as

well as changes in how people perceive assistance timing and magnitude, both of which may

be important factors for walking with higher levels of assistance. The trajectory of the parame-

ters during optimization indicate the optimal peak torque could be much larger in magnitude for

fully trained users, yet still within the capabilities of existing (12,22,25) and future exoskeletons

as new methods for actuation and energy storage improve torque density and specific energy.
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Increased training time or more targeted training may allow people to utilize the larger torques

and transfer the mechanical assistance to other joints (48). This might happen naturally with

commercial or prescribed devices that are used regularly for long periods of time.
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Figure 7: Optimized parameter values by generation for the continued optimization group
and corresponding exponential fits. (A) Peak time, as a percentage of stride time, quickly

converged to 54.1% of stride, with participants averaging 54.3 ± 0.7% after 20 generations

(Mean ± S.D.). (B) Rise time appeared to be participant-specific, with the model converging

to 27.90% of stride (average after 20 generations: 27.8 ± 4.5%). (C) Fall time also quickly

converged to 9.59% of stride (average after 20 generations: 9.7±0.9%). Peak time and fall time

are coupled when peak time occurs late in stance, which may explain the stable fall time values.

(D) Peak magnitude was predicted to converge at 1.02 N·m·kg−1, but participants optimized

to lower values, 0.68 ± 0.06 N·m·kg−1, after 20 generations of optimization. For all panels,

individual participants are represented by distinct colors, and the exponential models, written at

the top of each panel, are shown in black with corresponding 95% confidence bands in gray.

22



Exposure time (minutes)

0 600400200

M
e
ta

b
o
lic

 c
o
s
t

o
f 
o
p
ti
m

iz
e
d
 a

s
s
is

ta
n
c
e
 (

W
 k

g
-1
)

0.0

5.0

2.0

3.0

1.0

4.0
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Human-in-the-loop optimization converged over multiple timescales

By the nature of our study, participants co-adapted with the exoskeleton. Therefore, we need

to consider both the device parameters and human response in determining the time course

of adaptation for the full system. The same exponential model analysis as in Eq. 1 was used

to understand the evolution of both the parameters and the metabolic cost of the optimized

conditions.

We observed three timescales for optimization: convergence time of the timing parameters,
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convergence time of the peak torque magnitude, and adaptation time of the user. Timing pa-

rameters quickly converged, with peak time converging to a value within 5% of the predicted

asymptote by 2.0 generations (Fig 7A, IQR, 1.9 to 2.2 generations). Rise time and fall time both

converged within a generation, at 0.7 generations for rise time (Fig 7B, IQR, 0.7 to 2.8 gener-

ations) and 0.7 generations for fall time (Fig 7C, IQR, 0.6 to 3.4 generations). Peak torque

magnitude does not appear to have converged within this experiment, with the model predicting

convergence after 106 generations (Fig 7A, IQR, 28 to 108 generations), which is equivalent to

1908 minutes of optimization.

Based on the metabolic cost of optimal assistance, which encodes all of these factors as well

as the time for the person to adapt to the exoskeletons, participants in the continued optimiza-

tion group adapted to customized assistance in 330 minutes (Fig 8, IQR, 184 to 557 minutes).

Though the single exponential model suggests a longer training time compared to generic as-

sistance, this estimate captures the effects of several phenomena of varying timescales, some

of which have not yet converged by the end of the experiment. Although multiple timescales

for motor adaptation have been demonstrated for other contexts (34), we hypothesize that con-

vergence in metabolic cost for customized assistance in this case may reflect a decrease in

variability in the tested parameters rather than true convergence of the human-exoskeleton sys-

tem.

There is some evidence that the optimization algorithm could converge quickly for certain

parameterizations. The timing parameters may have been easier to learn and thus faster to

converge. The initial value for peak time was far from the final value, and starting with a

better seed could speed optimization. The importance of this parameter may also explain why

participants performed so well without the optimization fully converging in both our experiment

and in other human-in-the-loop optimization studies (25). However, peak torque magnitude

steadily increased throughout the experiment without converging. Because novices are often
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unable to accept high torques, simply seeding the optimization with a higher magnitude may

not yield favorable results. Another experiment with fully trained participants could also be

conducted to fully understand how quickly the magnitude of assistance can be optimized with

human-in-the-loop optimization without the confounding effects of human motor adaptation.

Optimized assistance had higher mechanical power than generic assistance

The optimized torque trajectories provided significantly more mechanical power than the generic

profile (Fig 6B, repeated measures ANOVA, P = 2.9e− 10). Although assistance profiles with

higher device input resulted in lower energy output, mechanical power appeared to provide di-

minishing returns on metabolic cost reductions. The average reduction in metabolic cost for this

group in response to generic assistance was 0.95 W·kg−1, and the reduction in metabolic cost in

response to the optimized assistance was 1.21 W·kg−1, compared to a doubling in mechanical

power, with 0.11 W·kg−1 and 0.23 W·kg−1, for generic and optimized assistance, respectively.

We did not design this study to examine the complicated relationship between mechanical

power and metabolic cost, but further research should be done to understand the complexities of

energy transfer in the human-exoskeleton system. Although we measured the metabolic costs

of candidate profiles with a wide variety of mechanical power, the optimization systematically

adjusted parameters so as to reduce energy cost over time, leading to a sample of control laws

that were necessarily correlated with lower metabolic cost. A full characterization of the rela-

tionship between metabolic cost, mechanical power, training, and other exoskeleton and user

characteristics would make an important contribution to exoskeleton research and should be

the objective of future studies. To fully explore the relationship between mechanical power

and metabolic cost, exoskeleton parameters could be sampled over a large range of mechanical

power and tested on expert exoskeleton walkers to determine how differing levels of mechanical

assistance affect energy economy rather than selecting for conditions which reduce metabolic
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cost. For example, our results indicate that timing of assistance is an important factor, so vary-

ing the timing of the injected work may better explain the relationship between device power

and metabolic energy consumption. Future studies on this topic should ensure that participants

are fully trained given the coupling of adaptation and mechanical power (Fig 5). We previously

conducted experiments to characterize the relationship between device power and metabolic

cost (12), but the participants were not fully trained and we now know that we can sample a

larger space with expert exoskeleton users.

Scarcity of exoskeletons, trained exoskeleton participants, and open-access
exoskeleton data limit research

These results point to a need for further research on the effects of training on exoskeleton

performance. The improved energy economy and altered biomechanics observed during adap-

tation suggest that results reported early in the learning process may not be representative of

the final outcomes. Researchers studying other locomotor tasks, such as split-belt treadmill

walking (37), have also renewed interest in reevaluating the length of time required to train an

individual. In the following section we provide suggestions for ways to mitigate the issue of

training, which could extend beyond the realm of assistive devices.

One method to ensure users are fully adapted is to lengthen experimental protocols. For

this study, with time for setup and breaks between trials, the average participant needed roughly

29 hours of lab time for 9.2± 1.2 hours of walking. These participants were healthy and active,

and all were able to complete the 72-minute trials without breaks. Populations with decreased

mobility, such as patient populations or elderly populations, would likely require increased

time in the lab to complete the same protocol. Studying the long-term effects of exoskeleton

assistance is also an important next step and would require further increases in experimental

duration.
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Improving and speeding training is an important and relevant area for future research. Al-

though we identified some features of training that resulted in better, faster metabolic cost re-

ductions, we cannot deem one of them an “optimal” strategy nor can we claim a universal

adaptation for all assistive devices. A combination of strategies may be more effective, or an

entirely different protocol based on step-to-step variations or a designed curriculum may yield

even better results, dependent on the devices being used. We gave participants minimal instruc-

tion, but we know that targeted instruction and biofeedback can result in better outcomes in

other training paradigms (56,68). Analysis of the provided data in the Supplementary Materials

may lend insights into which aspects of locomotion could be used as targets for biofeedback,

which is still an open question in the field of assistive device research. Participants were also

not allowed to consume media or otherwise cognitively distract themselves during this experi-

ment, but increasing intellectual engagement or entertainment may make recruiting participants

easier and may even result in faster adaptation. Identifying methods to speed training is im-

perative if assistive devices are to be studied in patient populations. Time in the lab is limited

because walking is difficult, making the protocol from this study impractical, but assisting these

populations will have the greatest effect on global health.

Simulations of exoskeleton assistance could also facilitate experiments by identifying ben-

eficial strategies before testing a population. Ensuring accuracy in simulations of human-

exoskeleton systems is difficult now due to the lack of data on the response to exoskeletons.

Although we did not perform any biomechanics analyses in this study, we collected a com-

plete biomechanics dataset (Supplementary Materials) so that future researchers can advance

the field without the overhead of performing these lengthy experiments. For example, accurate,

individualized models could speed optimization by identifying better seeds. This set is limited

to a young, healthy population using bilateral ankle exoskeletons, and training populations with

movement disorders or adapting to more complex devices may be an even slower process, so
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collecting and sharing these data sets would invite more research into each paradigm.

There are limitations to this study, primarily due to the supply of participants. A larger

sample size would yield more confidence in the results, but a post-hoc power analysis revealed

that our study was sufficiently powered for the large changes in metabolic cost observed in our

study (e.g., comparing the pre-test to the post-adapted metabolic cost of generic assistance in

the continued optimization group (N = 5) has a power of 0.87). Although this study was signif-

icantly longer than most exoskeleton studies, extending the protocol may have answered more

questions such as how peak magnitude converges, but the difficulty in recruiting participants

would be increased. Because few laboratories conduct experiments testing human response to

exoskeleton assistance, the future of exoskeleton research may rely on designing studies with

fewer participants (59) or amassing and testing the same pool of expert exoskeleton users. The

results from these future experiments could be generalizable with careful cultivation of a vari-

ety of participants or a better understanding of how individual differences affect the response to

assistive devices.

Conclusion

This experiment highlighted the importance of training and adaptation on exoskeleton perfor-

mance and illustrated the benefits of device customization. Participants who received moderate

levels of variation during training significantly reduced their metabolic rate with customized as-

sistance, of which half was due to training and one quarter to customization. The time required

to stabilize metabolic cost was significantly longer than training periods in previous exoskeleton

studies and depended on the type of training experienced. These results demonstrate that people

can learn how to exploit the exoskeleton provided they have proper training and sufficient time

to adapt. The human-exoskeleton system is complex, even without the confounding effects of

time-varying motor adaptation. Giving participants more time to adapt to exoskeleton assistance
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should result in better and more reliable outcomes for assistive device studies. Some previous

studies that seemed to identify flaws in exoskeleton design may actually have identified flaws

in user training.

Materials and Methods

Participants

Fifteen participants (5 female, age = 24.3 ± 3.2 yrs; body mass = 71.0 ± 11.4 kg; height =

1.72 ± 0.09 m) with no prior history of movement disorders completed this study. This study

was approved by the Stanford Institutional Review Board and written consent was provided by

all participants before participation.

No participant had worn an exoskeleton prior to the study. Participants were randomly as-

signed to an adaptation group described below before the first data collection (Fig 1C). Sixteen

participants were recruited. One participant ceased communication with the research staff and

thus was dropped from the study. One participant ended the study after five days due to discom-

fort, and one participant ended after five days because they appeared to have converged. Both

participants who completed five days of experiments were included in the analyses presented

here. All other participants included in the study completed at least six days of experimentation.

Exoskeleton hardware and control

Experiments were conducted using a bilateral ankle exoskeleton emulator (28). The exoskeleton

end-effector consisted of a lightweight (0.88 kg) instrumented frame attached to a commercially-

available running shoe (Fig 1A). The device contacted the participant at the foot and at the shank

just below the knee. The exoskeletons were actuated by powerful off-board motors via a flex-

ible Bowden cable transmission. The participants chose from men’s shoe sizes of 7, 9, or 11

and were given padding if the shoe was too large. The same model and size of shoes used in
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exoskeleton trials were used for normal walking trials.

During stance, a torque trajectory was prescribed by magnitude and time-based parame-

ters (25) and was achieved with iterative learning low-level control (69). The trajectory was

defined by peak time, the time at which the peak magnitude occurs as a percentage of the av-

erage stride time; rise time, the time for the trajectory to rise from 0 N·m·kg−1 to the peak

magnitude as a percentage of the average stride time; fall time, the time to drop from the peak

magnitude to 0 N·m·kg−1 as a percentage of stride time; and the peak magnitude in N·m·kg−1.

The trajectory was smoothed by a cubic spline between the nodes. The control was triggered

by a pressure sensor activated at heel strike. Iterative learning control exploits the periodicity of

gait and has been used effectively with these devices (8,25), with the root-mean-square error in

torque tracking for this study as 2.5 N·m·kg−1, which is equivalent to 6.4% of the average peak

torque in the generic assistance condition.

The swing phase, triggered by toe-off, was controlled as a function of ankle position. The

ankle angle was tracked by a rotary encoder (Renishaw, Gloucestershire, UK) and used to de-

termine toe-off. The motor was controlled to track the joint position with added slack to avoid

interfering with the participant’s natural kinematics.

Protocol

All participants completed a protocol shown in Fig 1C. Participants first completed a quiet

standing trial on each day to determine their resting metabolic rate. On the pre-test day, partic-

ipants completed a double-reversal validation test with the following trials: a normal walking

trial with unaltered shoes to match the shoes in the exoskeleton, a zero torque trial with the

exoskeleton worn but in a zero torque mode, and a generic assistance trial with a fixed generic

torque profile. All walking trials were completed on a split-belt treadmill set at 1.25 m·s−1. The

only verbal instructions were to “walk comfortably” and to “let the device do the work for you.”
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On each subsequent day of the study, participants first completed a 72-minute adaptation

trial with a 2-minute warm-up, based on random assignment, then a series of validation trials.

Participants were given the opportunity for a break at each quarter of the adaptation trial, but

were instructed that they could stop at any time. All groups completed the validation trials from

the pre-test with other validation trials added for specific training groups. Each validation trial

was six minutes in length. Participants were given a 5-minute break between trials.

The generic assistance profile was determined through pilot testing. The pilot experiment,

described in greater detail in the Supplementary Materials, was a 2-day protocol with ten par-

ticipants. Participants walked in bilateral ankle exoskeletons over one day of habituation and

one day of human-in-the-loop optimization (25). The generic assistance profile for the experi-

ment presented in this paper was defined by the average optimized parameters: peak time was

52.9% of stride, rise time was 26.2% of stride, fall time was 9.8% of stride, and the peak torque

magnitude was 0.54 N·m·kg−1.

Continued Optimization Training Group

Five participants (2 female, age = 23.4 ± 1.1 yrs; body mass = 70.2 ± 6.4 kg; height = 1.70 ±
0.11 m) were assigned to the continued optimization training group. During the adaptation trial

on each training day, participants experienced four generations of human-in-the-loop optimiza-

tion. The initial seed on the first day was set with peak time at 45% of stride, rise time at 25%

of stride, fall time at 10% of stride, and peak torque magnitude at 0.55 N·m·kg−1. The opti-

mization on each subsequent day continued from the optimized parameters from the previous

day.

Each generation featured nine control laws, beginning with the generic assistance profile,

followed by seven randomly sampled control laws, and ending with the mean of that generation.

Each control law was experienced for two minutes, so each generation was 18 minutes in length.
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A sound signaled the beginning of a new control law, and the low-level torque tracking was reset

to mitigate the effects of previous control laws. The generic assistance profile was tested at the

beginning of each generation to track motor adaptation. To ensure comfort and mitigate the

changes in control law, the seven randomly sampled control laws were sorted by peak torque

magnitude.

At the end of each adaptation block, a new set of optimal parameters was generated and

tested during the validation trials. The validation trials contained the trials from the pre-test,

i.e., normal walking trials, zero torque trials, and trials in which the exoskeleton applied generic

assistance. For this training group, participants also experienced the optimized profile from the

end of that day’s adaptation block, as well as the optimized profile from the end of the first day

of adaptation.

Static Training Group

Five participants (2 female, age = 23.6± 3.5 yrs; body mass = 67.6± 14.1 kg; height = 1.71±
0.08 m) completed the static training. Each control law during the adaptation block was the

generic assistance profile, but with a sound to signal every two minutes. Because participants

were blinded to their group assignment, they were unaware that all control laws were identical.

The validation trials were strictly the trials from the pre-test, i.e., normal walking trials, zero

torque trials, and trials in which the exoskeleton applied generic assistance.

Re-optimization Training Group

Five participants (1 female, age = 25.8± 4.1 yrs; body mass = 75.6± 13.0 kg; height = 1.76±
0.06 m) were assigned to the re-optimization training group. The adaptation trial was identical

to the continued optimization training protocol, but the seed on each day was set to the same

initial seed, i.e., peak time at 45% of stride, rise time at 25% of stride, fall time at 10% of stride,

and peak torque magnitude at 0.55 N·m·kg−1. The control laws were randomly sampled so
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that participants experienced a new set of controllers from the same distribution on each day.

The optimized parameters generated by the adaptation period were also tested in the validation

trials. The validation trials were the same as for the continued optimization group, i.e., normal

walking trials, zero torque trials, and trials in which the exoskeleton applied generic assistance,

the optimized profile from the first day of optimization, as well as the optimized profile from

that day of optimization.

Data collection

Participants wore tethered bilateral ankle exoskeletons (Fig 1A) (28). The exoskeleton assis-

tance was governed by a torque pattern parameterized by four parameters: peak magnitude,

peak time, rise time, and fall time (25). The control loop ran at 1000 Hz on a real-time com-

puter (Speedgoat, Liebefeld, Switzerland).

Standard biomechanics data including metabolic energy consumption were collected. Par-

ticipants refrained from all food and drink except for water for at least three hours before they

arrived for the experiment, which resulted in approximately four hours of fasting before the first

trial. Volumetric oxygen consumption and carbon dioxide expulsion were measured throughout

the experiment using an indirect calorimetry device (Cosmed Quark CPET, Rome, Italy) and

streamed to the real-time exoskeleton controller. Metabolic energy consumption was computed

using a standard equation (70). During optimization, the estimated metabolic cost of each con-

troller was the result of a first-order dynamical model fit to single-breath data (25, 71). This

method has been shown to result in low estimation errors, with an average of 4% error in a

previous study (25). The optimization algorithm used these estimates to rank the control laws

to minimize metabolic cost.

Net metabolic cost, computed offline after the experiment, was used in the analyses pre-

sented in this paper. A quiet standing trial was conducted at the beginning of the experiment
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after set-up to guarantee participants were at a fasted, rested state. Quiet standing was subtracted

from all measurements of metabolic cost to yield the net metabolic cost of walking. Validation

trials were six minutes in length, of which the second half, i.e., the final three minutes, were

used for all analyses. The trial length and averaged measurement are standard practice in biome-

chanics and provide the truest representation of metabolic cost for steady state movement. The

adaptation trials, which were two minutes in length, are represented by an estimate of steady-

state metabolic rate based on a first-order approximation (43, 71). These estimates are used to

determine optimal parameters during the experiment and have been shown to produce low (4%)

error in predicting steady state metabolic cost (25).

Motion capture, electromyography, and force data were time-synced and recorded sepa-

rately from the metabolic and device data. Motion capture data were recorded using 55 markers

(Vicon, Oxford Metrics, Oxford, UK). Electromyography was recorded with Trigno wireless

sensors on eight muscles on each leg (Delsys, Boston, MA, USA). Participants completed all

walking experiments on an instrumented split-belt treadmill (Bertec, Columbus, OH, USA)

which also provided ground reaction forces and moments. Ground reaction forces and mo-

ments were streamed to the computer running the real-time controller as well as recorded with

the motion capture measurements. The biomechanical data were periodically recorded through-

out adaptation and recorded for the entirety of the validation trials. These data were not included

in this paper due to space constraints, but links to the data can be found in the Supplementary

Materials.

Statistical analysis

All statistical analyses were performed after the experiment in R 3.6.2 (72–75).

To determine the effects of training and training type on the metabolic cost of assistance,

a 3-way ANOVA, followed by a stratified analysis on the post-adaptation data, was performed

34



(Fig 2). For the 3-way ANOVA, the factors were day (pre-test, post-adaptation), training group

(continued optimization, static training, re-optimization), and condition (normal shoes, zero

torque, generic assistance, and optimized assistance). All three factors, i.e., day, group, and

condition, were significant, indicating that training, training type, and assistance type resulted

in different levels of energy cost. To determine the effects of training group on condition, we did

a subanalysis on the post-adapted states followed by the Holm-Šidák step-down correction for

multiple comparisons. The post-adapted states were the validation trials from the final two days

of the experiment, which occurred after the continued optimization group had reached expertise

with optimized assistance. To isolate the effects of assistance and training on metabolic cost

within training groups, paired t-tests followed by the Holm-Šidák step-down correction were

performed. For all analyses, the significance level was α = 0.05.

Analyses of the optimized control laws for the continued optimization group are presented

in the main text, and analyses for the re-optimization group can be found in the Supplementary

Materials. A one-way repeated measures ANOVA was computed to determine differences in

net exoskeleton power between conditions (Fig 6). The post-adapted states were the validation

trials from the final two days of the experiment, as described for the metabolic cost analyses. A

t-test was computed to determine differences in parameter values after twenty generations for

the continued optimization group compared to generic assistance.

Exponential models were used to characterize human motor adaptation (Figs 3, 5, 8) and

evolution of the optimal parameters (Fig 7). Changes due to adaptation were characterized by

a single exponential curve of the form η = a + a0e
−ωt, where t represents time in minutes, a

is the steady-state response, a0 is a scaling factor, and ω is the time constant. The outcomes

of interest, represented by η, were metabolic cost (Figs 3, 8) for generic and optimized assis-

tance, respectively, and net exoskeleton power (Fig 5) for generic assistance conditions during

validation and during the adaptation trial. The same model was used for the evolution of the
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parameters (Fig 7), where η was the value of the parameter normalized to its respective range

and t was the number of generations. The model parameters {a, a0, ω} were estimated using

a weighted nonlinear least squares algorithm (73). Validation trials were weighted three times

more heavily than the adaptation trials for these models because validation trial estimates were

computed over a duration triple the length of the adaptation trials. Model significance was de-

termined by an ANOVA model comparison with the constant model η = a, which is standard

practice for linear and nonlinear regressions. For all model comparisons, the significance level

was α = 0.05.

Bootstrapping was used to determine confidence intervals on the exponential models and

to characterize the adaptation rates (74, 76). For a given model determined by nonlinear least

squares, the residuals were sampled and replaced; these residuals were added to the model

estimates to determine a new data set, which was then used to compute a new exponential

model. This process was completed up to 10000 times, depending on how often the model

converged. These models were then used to determine the point-wise 95% confidence interval

for the exponential model. This bootstrapping technique has been used in other biomechanical

studies and has been shown to better capture the randomness in the underlying model (76, 77).

The learning rates were computed as the time in minutes for the model to reach a value within

5% of the predicted asymptote. The learning rates presented in this paper were computed for the

model determined by nonlinear least squares, and the corresponding confidence intervals were

determined by the bootstrapped replicates (Fig 4). Because the bootstrapped learning rates

did not follow a normal distribution, according to the Shapiro-Wilk test (P < 2.2e − 16), we

performed the Kruskal-Wallis tests, followed by Dunn’s tests with α = 0.05 (75), to determine

differences across training groups.
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Supplementary materials

Supplementary Methods

Supplementary Results and Discussion

Fig. S1. Results from the pilot experiment to determine the generic assistance profile.

Fig. S2. Metabolic cost of zero torque.

Fig. S3. Study-level model comparison to characterize the metabolic cost of walking with

generic assistance.

Fig. S4. Metabolic cost of generic assistance using different measures of time.

Fig. S5. Metabolic cost and corresponding exponential models of the fixed generic assistance

conditions for individual participants.

Fig. S6. Net metabolic cost of all conditions for each participant.

Fig. S7. Exoskeleton torque vs. ankle angle for generic assistance.

Fig. S8. Optimized and generic assistance profiles for each participant in the re-optimization

group.

Fig. S9. Optimized parameter values at the end of each day of optimization for the re-

optimization training group.

Table S1. Participant Demographics.

Movie S1. Validation.

Movie S2. Adaptation.

Links to datasets S1 to S15
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