
Xihe: A 3D Vision-based Lighting Estimation Framework for
Mobile Augmented Reality

Yiqin Zhao
Worcester Polytechnic Institute

yzhao11@wpi.edu

Tian Guo
Worcester Polytechnic Institute

tian@wpi.edu

ABSTRACT

Omnidirectional lighting provides the foundation for achieving

spatially-variant photorealistic 3D rendering, a desirable property

for mobile augmented reality applications. However, in practice,

estimating omnidirectional lighting can be challenging due to limi-

tations such as partial panoramas of the rendering positions, and

the inherent environment lighting and mobile user dynamics. A

new opportunity arises recently with the advancements in mobile

3D vision, including built-in high-accuracy depth sensors and deep

learning-powered algorithms, which provide the means to better

sense and understand the physical surroundings. Centering the key

idea of 3D vision, in this work, we design an edge-assisted frame-

work called Xihe to provide mobile AR applications the ability to

obtain accurate omnidirectional lighting estimation in real time.

Specifically, we develop a novel sampling technique that effi-

ciently compresses the raw point cloud input generated at the

mobile device. This technique is derived based on our empirical

analysis of a recent 3D indoor dataset and plays a key role in our 3D

vision-based lighting estimator pipeline design. To achieve the real-

time goal, we develop a tailored GPU pipeline for on-device point

cloud processing and use an encoding technique that reduces net-

work transmitted bytes. Finally, we present an adaptive triggering

strategy that allows Xihe to skip unnecessary lighting estimations

and a practical way to provide temporal coherent rendering integra-

tion with the mobile AR ecosystem. We evaluate both the lighting

estimation accuracy and time of Xihe using a reference mobile ap-

plication developed with Xihe’s APIs. Our results show that Xihe

takes as fast as 20.67ms per lighting estimation and achieves 9.4%

better estimation accuracy than a state-of-the-art neural network.

CCS CONCEPTS

· Computing methodologies→Mixed / augmented reality; ·

Human-centered computing→Ubiquitous andmobile com-

puting systems and tools; · Computer systems organization

→ Distributed architectures.

KEYWORDS

mobile augmented reality; lighting estimation; 3D vision; deep

learning; edge inference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiSys ’21, June 24śJuly 2, 2021, Virtual, WI, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8443-8/21/06. . . $15.00
https://doi.org/10.1145/3458864.3467886

ACM Reference Format:

Yiqin Zhao and Tian Guo. 2021. Xihe: A 3DVision-based Lighting Estimation

Framework for Mobile Augmented Reality. In The 19th Annual International

Conference on Mobile Systems, Applications, and Services (MobiSys ’21), June

24śJuly 2, 2021, Virtual, WI, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3458864.3467886

1 INTRODUCTION

Augmented reality (AR), overlaying virtual objects in the user’s

physical surrounding, has the promise to transformmany aspects of

our lives, including tourism, education, and online shopping [10, 15].

The key for AR to success in these application domains heavily

relies on the ability of photorealistic rendering, a feature which can

be achieved with access to omnidirecitional lighting information at

rendering positions [6]. For example, a virtual table should ideally

be rendered differently depending on the user-specified render-

ing positionsÐreferred to as spatially-variant rendering, to more

accurately reflect the environment lighting and more seamlessly

blending the virtual and physical worlds.

However, obtaining such lighting information necessary for

spatially-variant photorealistic rendering is challenging in mobile

devices. Specifically, even high-end mobile devices such as iPhone

12 lack access to 360◦ panorama of the rendering position. Even

though with explicit user cooperation, it is possible to obtain the

360◦ panorama of the observation position via the use of ambient

light sensors and front-/rear-facing cameras. Directly using the

lighting information at the observation position, i.e., where the

user is at, to approximate the lighting at the rendering position,

i.e., where the virtual object will be placed, can lead to undesirable

visual effects due to the inherent lighting spatial variation [7].

One promising way to provide accurate omnidirectional lighting

information to mobile AR applications is via 3D vision support.

With the recent advancement in mobile 3D vision including built-in

high-accuracy Lidar sensors [14] and low-complexity high-accuracy

deep learning models [23, 32, 33], we are bestowed upon a new op-

portunity to provide spatially-variant photorealistic rendering! In

this work, we design the first 3D-vision based framework Xihe

that provides mobile AR applications the ability to obtaining ac-

curate omnidirectional lighting estimation in realtime. Our design

can be broadly categorized into three parts: (i) algorithm and sys-

tem design to support spatially-variant estimation; (ii) per-frame

performance optimization to achieve the real-time goal; and (iii)

multi-frame practical optimization to further reduce network cost

and to integrate with existing rendering engines for temporal co-

herent rendering. We implement the framework Xihe on top of

Unity3D and AR Foundation as well as a proof-of-concept refer-

ence AR application that utilizes Xihe’s APIs. Figure 1 compares

the rendered AR scenes using Xihe and prior work [21].

ar
X

iv
:2

1
0
6
.1

5
2
8
0
v
1

[c

s.
C

V
]

 3
0
 M

ay
 2

0
2
1

MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA Y. Zhao and T. Guo

operations on point clouds can naturally be parallelized at per-

point level. We explicitly assemble as many operations as possible

to run onmobile GPU to reduce the CPU-GPU communication over-

head for achieving the best performance; the processing pipeline

is shown in Figure 5. Further, as constantly sending all the RGB-D

data over the network to the edge can be costly and might not

be necessary, we devise an adaptive triggering strategy that skips

inference requests if the environment lighting conditions do not

change substantially. The triggering component (see Section 4.2.1)

decides whether Xihe should offload the point cloud sample to the

edge sever for inference or store it into a temporary buffer.

4.1 Per-frame Real-time Optimization

4.1.1 Accelerating Point Cloud Sampling. Our processing pipeline,

as shown in Figure 5, starts with generating point cloud data from

a camera captured RGB-D image feed, and performs generation

at a pre-configured refresh rate. By leveraging GPU computing,

our point cloud generation code can be fully parallelized for com-

mon RGB-D image resolutions, e.g., 256x192 in the case of Lidar-

equipped iPad. Each generation outputs a point cloud of the world

environment that is captured in the current camera view.

Then, we apply unit sphere-based point cloud sampling to the

generated point cloud. However, naively using this sampling tech-

nique is computationally intensive, as it runs inΘ(size(𝑃)∗size(𝑂))

time. Although it is possible to parallelize both point processing

and anchor searching, the number of required GPU threads can

exceed the maximum support. For example, if we were to fully

parallelize the sampling process, i.e., using one GPU thread for

searching each point-anchor pair, on a point cloud with 49k points

and 1280 anchors, we will need about 62M GPU threads, while the

maximum supported GPU thread group size on mobile Unity3D

platform is 65535. Although partially parallelizing the sampling,

e.g., running the neareast anchor search for each point on a GPU

thread, may comply with the current mobile GPU requirement,

the execution time of each thread will be elongated. Therefore,

we propose an optimization method for reducing the computation

resource requirement of this sampling technique.

Specifically, we propose to build a 2D acceleration grid that uses

densely pre-sampled points and pre-computed results to reduce

the neareast anchor searching time. Specifically, we first densely

sample a set of points on the unit sphere based on quantizing the

spherical coordinates polar angels 𝜃 and 𝜙 . Then, we pre-compute

the nearest anchor for all the densely sampled points and store the

corresponding anchor index in the acceleration grid. At runtime,

for each projected point, we first convert its cartesian coordinate to

spherical coordinate and then apply the same quantization to match

the point to a densely sampled point in the grid. The key advantage

of doing so is that pre-sampled points can be stored as a 2D array,

and indexed with spherical coordinates at runtime cheaply.

Note that using our proposed acceleration grid may introduce

sampling errors as in essence this approach presents the entire

sphere surface with discrete sampled points. Intuitively, the more

points the grid has, the better the approximation. We empirically

show that given a unit sphere-based point cloud with 1280 anchors,

using a pre-computed grid of 1024x512 points allow 97% projected

points match to their neareast anchors and only incur a negligible

estimation error. More details will be presented in Section 6.3. After

a new unit sphere-based point cloud data is sampled, Xihe client

will continue the GPU pipeline execution by merging the newly

generated data with historical data in the temporary buffer using an

extrapolation operation. The merging operation is an anchor-wise

copy operation between two buffers, and will always overwrite old

data with new one.

An alternative approach to accelerate unit sphere-based point

cloud sampling is to build a bounding volume hierarchyÐa tech-

nique to accelerate ray tracing in real-time rendering [11]Ðby prop-

erly subdivising the sphere surface to reduce the search space.

However, leveraging such subdivision methods is nontrivial as one

has to balance a number of factors such as the sphere surface divid-

ing time, division access time, and total search time. We leave this

exploration as part of future work.

4.1.2 Unit Sphere-based Point Cloud Encoding. Xihe promises the

low-latency network communication by leveraging above-mentioned

compact point cloud data structure with byte-optimized encoding

method. When an estimation request is triggered, Xihe client sends

the corresponding encoded unit sphere-based point cloud as a byte-

encoded HTTP packet to the Xihe server. Our encoding consists of

two steps: the striping step which removes all uninitialized anchors

from the unit sphere-based point cloud and the byte representation

step which stores each point with fewer bits.

Specifically, instead of storing each point of the downsampled

point cloud with four 32bits single precision floats, we use 8bits

unsigned int and 16bits half-precision float to represent each point.

Though the original format is more precise to calculate and per-

forms better as it aligns to the GPU bus transaction size, such data

format uses redundant data bytes. For example, when dealing with

low dynamic range (LDR) camera images, 8bits data is usually suf-

ficient to preserve the useful information. Also, due to limitations

such as depth sensor precision and camera visible area size, the

distance information can be presented with 16bits half precision

float. Lastly, for each colored point, we use an extra 16bits to store

their indices.

Our encoding scheme can lead to significantly savings both in

terms of per-request and per-pixel data size. For example, for a

unit sphere-based point cloud generated from a LDR camera image,

using Xihe to encode the request data only needs 7 bytes, about

43.75% of the size if we encodewith the original four single precision

floats. Comparing to directly sending the raw RGB-D image (5 bytes

per pixel), Xihe reduces approximately 98.3% data usage by only

needing to send on average 4249 bytes for an RGB-D image with

256x192 resolution. This results in both less network data transfer

and potentially less network time.

4.2 Cross-frame Optimization

4.2.1 Adaptive Estimation Triggering. Most modern camera sys-

tems provide high refresh rate, e.g. 30fps or higher. Estimating

scene lighting at the same frequency for each frame can be benefi-

cial for achieving good visual results, but also consume significant

computation and energy resources. Additionally, it might not be

necessary to update lighting information this frequently as envi-

ronment lighting conditions might not change at this rate. To avoid

sending unnecessary estimation requests to the edge, we design a

Xihe: A 3D Vision-based Lighting Estimation Framework for Mobile Augmented Reality MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA

REFERENCES
[1] [n.d.]. Depth buffer - The gritty details.
[2] Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen, Srikanth V Krishnamurthy, and

Amit K Roy-Chowdhury. 2019. Frugal Following: Power Thrifty Object Detection
and Tracking for Mobile Augmented Reality. In Proceedings of the 17th Conference
on Embedded Networked Sensor Systems (New York, New York) (SenSys ’19). ACM,
New York, NY, USA, 96ś109.

[3] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E Culler, and Randy H Katz. 2018.
MARVEL: Enabling Mobile Augmented Reality with Low Energy and Low La-
tency. In Proceedings of the 16th ACM Conference on Embedded Networked Sensor
Systems (Shenzhen, China) (SenSys ’18). ACM, New York, NY, USA, 292ś304.

[4] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and
Hari Balakrishnan. 2015. Glimpse: Continuous, Real-Time Object Recognition
on Mobile Devices. In Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems (Seoul, South Korea) (SenSys ’15). Association for
Computing Machinery, New York, NY, USA, 155ś168.

[5] Dachuan Cheng, Jian Shi, Yanyun Chen, Xiaoming Deng, and Xiaopeng Zhang.
2018. Learning Scene Illumination by Pairwise Photos from Rear and Front
Mobile Cameras. Comput. Graph. Forum 37, 7 (2018), 213ś221. http://dblp.uni-
trier.de/db/journals/cgf/cgf37.html#ChengSCDZ18

[6] Paul Debevec. 2006. Image-based lighting. In ACM SIGGRAPH 2006 Courses.
4śes.

[7] Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xiaohui Shen, Emiliano
Gambaretto, Christian Gagné, and Jean-François Lalonde. 2017. Learning to
Predict Indoor Illumination from a Single Image. ACM Transactions on Graphics
(2017).

[8] Mathieu Garon, Kalyan Sunkavalli, Sunil Hadap, Nathan Carr, and Jean-François
Lalonde. 2019. Fast Spatially-Varying Indoor Lighting Estimation. CVPR (2019).

[9] Google. 2020. ARCore. https://developers.google.com/ar.
[10] Google for Education. [n.d.]. Bringing virtual and augmented reality to school |

Google for Education. https://edu.google.com/products/vr-ar/?modal_active=
none. Accessed: 2020-7-24.

[11] Johannes Gunther, Stefan Popov, Hans-Peter Seidel, and Philipp Slusallek. 2007.
Realtime ray tracing on GPU with BVH-based packet traversal. In 2007 IEEE
Symposium on Interactive Ray Tracing. IEEE, 113ś118.

[12] Jinhan Hu, Alexander Shearer, Saranya Rajagopalan, and Robert LiKamWa. 2019.
Banner: An Image Sensor Reconfiguration Framework for Seamless Resolution-
based Tradeoffs. In Proceedings of the 17th Annual International Conference on
Mobile Systems, Applications, and Services (Seoul, Republic of Korea) (MobiSys
’19). Association for Computing Machinery, New York, NY, USA, 236ś248.

[13] Apple Inc. 2020. Introducing ARKit 4. https://developer.apple.com/augmented-
reality/arkit/.

[14] Apple Inc. 2020. iPad Pro 2020. https://www.apple.com/ipad-pro/specs/.
[15] Inter IKEA Systems B. V. 2017. IKEA Place. https://apps.apple.com/us/app/ikea-

place/id1279244498. Accessed: 2020-7-2.
[16] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge Assisted Real-time

Object Detection for Mobile Augmented Reality. In The 25th Annual International
Conference on Mobile Computing and Networking (MobiCom’19) (Los Cabos, Mex-
ico) (MobiCom ’19, Article 25). Association for Computing Machinery, New York,
NY, USA, 1ś16.

[17] Q Liu and T Han. 2018. DARE: Dynamic Adaptive Mobile Augmented Reality
with Edge Computing. In 2018 IEEE 26th International Conference on Network
Protocols (ICNP). 1ś11.

[18] Q Liu, S Huang, J Opadere, and T Han. 2018. An Edge Network Orchestrator for
Mobile Augmented Reality. In IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications. ieeexplore.ieee.org, 756ś764.

[19] Z Liu, G Lan, J Stojkovic, Y Zhang, C Joe-Wong, and M Gorlatova. 2020. CollabAR:
Edge-assisted Collaborative Image Recognition for Mobile Augmented Reality. In
2020 19th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN). 301ś312.

[20] Samuel S. Ogden and Tian Guo. 2018. MODI: Mobile Deep Inference Made Effi-
cient by Edge Computing. In USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 18).

[21] Siddhant Prakash, Alireza Bahremand, Linda D Nguyen, and Robert LiKamWa.
2019. Gleam: An illumination estimation framework for real-time photoreal-
istic augmented reality on mobile devices. In Proceedings of the 17th Annual
International Conference on Mobile Systems, Applications, and Services. 142ś154.

[22] PyTorch. [n.d.]. Tensors and Dynamic neural networks in Python with strong
GPU acceleration. https://github.com/pytorch/pytorch. Accessed: 2020-8-4.

[23] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2016. PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation. arXiv preprint
arXiv:1612.00593 (2016).

[24] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. Point-
Net++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In
Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf

[25] Ravi Ramamoorthi and Pat Hanrahan. 2001. An efficient representation for
irradiance environment maps. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques - SIGGRAPH ’01. ACM Press, Not
Known, 497ś500. https://doi.org/10.1145/383259.383317

[26] Kai Rohmer, Johannes Jendersie, and Thorsten Grosch. 2017. Natural environment
illumination: Coherent interactive augmented reality for mobile and non-mobile
devices. IEEE transactions on visualization and computer graphics 23, 11 (2017),
2474ś2484.

[27] Ruwen Schnabel and Reinhard Klein. 2006. Octree-based point-cloud compression.
In Proceedings of the 3rd Eurographics / IEEE VGTC conference on Point-Based
Graphics (Boston, Massachusetts) (SPBG’06). Eurographics Association, Goslar,
DEU, 111ś121.

[28] Shuran Song and Thomas Funkhouser. 2019. Neural Illumination: Lighting
Prediction for Indoor Environments. CVPR (2019).

[29] Pratul P. Srinivasan, BenMildenhall, MatthewTancik, Jonathan T. Barron, Richard
Tucker, and Noah Snavely. 2020. Lighthouse: Predicting Lighting Volumes for
Spatially-Coherent Illumination. In CVPR.

[30] Unity. 2020. AR Foundation 4.2.0-preview.5. https://docs.unity3d.com/Packages/
com.unity.xr.arfoundation@4.2/manual/index.html.

[31] Unity3D. [n.d.]. Unity Profiler. https://docs.unity3d.com/Manual/Profiler.html.
Accessed: 2020-8-4.

[32] Wenxuan Wu, Zhongang Qi, and Li Fuxin. 2019. PointConv: Deep Convolutional
Networks on 3D Point Clouds. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[33] Yiqin Zhao and Tian Guo. 2020. PointAR: Efficient Lighting Estimation for Mobile
Augmented Reality. In Computer Vision ś ECCV 2020, Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer International
Publishing, Cham, 678ś693.

	Abstract
	1 Introduction
	2 Problem and Solution Overview
	3 Spatially-variant Estimation
	3.1 Unit-Sphere based Point Cloud Sampling
	3.2 3D Vision-based Estimation Pipeline
	3.3 Edge-assisted Resource Sharing

	4 Fast and Accurate Estimation
	4.1 Per-frame Real-time Optimization
	4.2 Cross-frame Optimization

	5 Implementation
	6 Evaluation
	6.1 End-to-end Performance
	6.2 Performance Breakdown
	6.3 Impact of Point Cloud Sampling
	6.4 Performance of Encoding
	6.5 3D Vision-based Estimator Performance
	6.6 Triggering Strategy Analysis
	6.7 Lab-based Real-world Evaluation

	7 Related Work
	8 Discussion
	9 Conclusion
	Acknowledgments
	References

