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ABSTRACT

Omnidirectional lighting provides the foundation for achieving
spatially-variant photorealistic 3D rendering, a desirable property
for mobile augmented reality applications. However, in practice,
estimating omnidirectional lighting can be challenging due to limi-
tations such as partial panoramas of the rendering positions, and
the inherent environment lighting and mobile user dynamics. A
new opportunity arises recently with the advancements in mobile
3D vision, including built-in high-accuracy depth sensors and deep
learning-powered algorithms, which provide the means to better
sense and understand the physical surroundings. Centering the key
idea of 3D vision, in this work, we design an edge-assisted frame-
work called X1HE to provide mobile AR applications the ability to
obtain accurate omnidirectional lighting estimation in real time.
Specifically, we develop a novel sampling technique that effi-
ciently compresses the raw point cloud input generated at the
mobile device. This technique is derived based on our empirical
analysis of a recent 3D indoor dataset and plays a key role in our 3D
vision-based lighting estimator pipeline design. To achieve the real-
time goal, we develop a tailored GPU pipeline for on-device point
cloud processing and use an encoding technique that reduces net-
work transmitted bytes. Finally, we present an adaptive triggering
strategy that allows X1HE to skip unnecessary lighting estimations
and a practical way to provide temporal coherent rendering integra-
tion with the mobile AR ecosystem. We evaluate both the lighting
estimation accuracy and time of XIHE using a reference mobile ap-
plication developed with X1HE’s APIs. Our results show that X1HE
takes as fast as 20.67ms per lighting estimation and achieves 9.4%
better estimation accuracy than a state-of-the-art neural network.
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1 INTRODUCTION

Augmented reality (AR), overlaying virtual objects in the user’s
physical surrounding, has the promise to transform many aspects of
our lives, including tourism, education, and online shopping [10, 15].
The key for AR to success in these application domains heavily
relies on the ability of photorealistic rendering, a feature which can
be achieved with access to omnidirecitional lighting information at
rendering positions [6]. For example, a virtual table should ideally
be rendered differently depending on the user-specified render-
ing positions—referred to as spatially-variant rendering, to more
accurately reflect the environment lighting and more seamlessly
blending the virtual and physical worlds.

However, obtaining such lighting information necessary for
spatially-variant photorealistic rendering is challenging in mobile
devices. Specifically, even high-end mobile devices such as iPhone
12 lack access to 360° panorama of the rendering position. Even
though with explicit user cooperation, it is possible to obtain the
360° panorama of the observation position via the use of ambient
light sensors and front-/rear-facing cameras. Directly using the
lighting information at the observation position, i.e., where the
user is at, to approximate the lighting at the rendering position,
i.e., where the virtual object will be placed, can lead to undesirable
visual effects due to the inherent lighting spatial variation [7].

One promising way to provide accurate omnidirectional lighting
information to mobile AR applications is via 3D vision support.
With the recent advancement in mobile 3D vision including built-in
high-accuracy Lidar sensors [14] and low-complexity high-accuracy
deep learning models [23, 32, 33], we are bestowed upon a new op-
portunity to provide spatially-variant photorealistic rendering! In
this work, we design the first 3D-vision based framework XI1HE
that provides mobile AR applications the ability to obtaining ac-
curate omnidirectional lighting estimation in realtime. Our design
can be broadly categorized into three parts: (i) algorithm and sys-
tem design to support spatially-variant estimation; (ii) per-frame
performance optimization to achieve the real-time goal; and (iii)
multi-frame practical optimization to further reduce network cost
and to integrate with existing rendering engines for temporal co-
herent rendering. We implement the framework X1HE on top of
Unity3D and AR Foundation as well as a proof-of-concept refer-
ence AR application that utilizes X1HE’s APIs. Figure 1 compares
the rendered AR scenes using X1HE and prior work [21].
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(a) Left: ARKit vs. right: GLEAM (obtained directly from [21])
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(b) Left: ARKit vs. right: X1HE

Figure 1: Rendered AR scenes. Both GLEAM and X1HE achieve better visual effect compared to ARKit. XI1HE better captures the spatially-
variant lighting difference without needing the physical probe, compared to GLEAM [21]. Note we compared to ARKit’s ambient light sensor

based lighting estimation.

To support the key goal of spatially-variant lighting estimation,
we design an end-to-end pipeline for 3D data processing, under-
standing, and management. Specifically, we devise a novel sampling
technique called unit sphere-based point cloud technique to prepro-
cess raw 3D data in the format of point cloud. This technique is
derived based on our empirical analysis using a recent 3D indoor
dataset [33]; our analysis shows the correlation between the incom-
plete observation data (i.e., not 360° panorama) and the lighting
estimation accuracy. Further, we redesign a recently proposed 3D
vision-based lighting estimation pipeline [33] by leveraging our
unit sphere-based point cloud sampling technique to transform
raw point clouds to compact representations while preserving the
observation completeness. To better support mobile devices of het-
erogeneous capacity and simplify the client design, we centralize
the tasks, including point cloud and lighting inference management,
into a stateful server design. Our edge-assisted design also facili-
tates sharing among different mobile users and therefore provides
opportunities to improve lighting estimation with extrapolated point
cloud data, e.g., via merging and stitching different observation data
to increase the completeness.

To achieve the real-time goal, we develop a tailored GPU pipeline
for processing point clouds on the mobile device and use an encod-
ing technique that reduces network transmitted bytes. Specifically,
we leverage the property of point cloud in which the computa-
tion for each point can be parallelized and devise a strategy that
trade-offs storage to improve runtime performance. In essence,
we pre-generate densely sampled sphere coordinates in the unit
sphere-based point cloud and pre-compute their distances to an-
chors—a set of uniformly distributed surface points in a unit sphere.
At runtime, instead of trying to search for the closest anchor to
each projected point, we simply search within the densely sam-
pled sphere coordinates. We refer to these densely sampled sphere
coordinates as acceleration grids. Further, we encode each colored
anchor of the unit sphere-based point cloud with unsigned 8bits
int and half-precision 16bits float where appropriate based on the
practical characteristics such as common image format of LDR and
the depth sensor precision. Our unit sphere-based point cloud de-
sign also allows easy stripping of unnecessary data by removing
any uninitialized anchors ,i.e., anchors that are not colored due to
incomplete raw observation point cloud.

Finally, we present an adaptive triggering strategy that allows
X1HE to skip unnecessary lighting estimations and a practical way
to provide temporal coherent rendering integration with the AR
ecosystem. The key idea of the triggering strategy is to leverage
an easy-to-obtain and fast-to-compute metric to determine directly

on the mobile device whether the lighting condition has changed
sufficiently to warrant a new lighting estimation at the edge. We use
a sliding window-based approach that compares the unit sphere-
based point cloud changes between consecutive frames. To achieve
temporal-coherent visual effects, we leverage additional mobile
sensors including ambient lighting and gyroscope to better match
the lighting estimation responses with the current physical sur-
roundings. We also detail steps to leverage a popular rendering
engine to apply the spatially-variant lighting on virtual objects.

Spatially-variant lighting information can be traditionally ex-
tracted using physical probes [6, 21], and more recently estimated
with deep neural networks [7, 8, 28, 33]. For example, Debevec et
al. demonstrated that spatially-variant lighting can be effectively
estimated by using reflective sphere light probes to extrapolate
camera views. More recently, Prakash et al. developed a mobile
framework that provides real-time lighting estimation using phys-
ical probes [21]. On a different vein, new deep learning-based
approaches that do not require the use of physical probes have
demonstrated efficiency in estimating spatially-variant lighting.
The early efforts mostly focus on model innovation but still incur
high computational complexity, making them ill-suited to run on
mobile devices [7, 8, 28]. Until very recently, Zhao et al. proposed
a lightweight 3D vision-based approach that takes advantage of
new mobile depth sensors and shows promise of being mobile-
friendly [33]. Our work leverages the advancement of mobile 3D
vision and presents the first framework that supports accurate om-
nidirectional lighting estimation in real time via algorithm and
system co-design. Moreover, our work does not require the use
of physical reflective probes at runtime, thus can support a wider
range and more practical AR application scenarios.

Our main contributions of this paper are:

e We design and implement a 3D vision-based framework X1HE
that allows mobile AR applications to obtain spatially-variant
lighting estimation and to achieve temporal-coherent rendering,
fast and accurately. The relevant research artifact is available at:
https://github.com/cake-lab/Xihe.

e We propose a novel point cloud sampling technique that effec-
tively compresses the observation point cloud without impact-
ing the estimation accuracy. This sampling technique is used in
conjunction with a lightweight neural network to provide the
spatially-variant lighting estimation.

e To achieve the real-time goal, we propose two per-frame optimiza-
tions, namely a tailored GPU pipeline for point cloud operations
on the mobile devices and a practical data encoding scheme. This
allows X1HE generate lighting estimations as fast as 20.67ms. We
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design an adaptive triggering strategy that effectively reduces up
to 76.24% estimation requests by allowing X1HE client to identify
lighting condition changes directly on the mobile devices.

e We conduct a comprehensive evaluation with a real-world 3D
indoor RGB-D dataset on several mobile devices and network
conditions and show that X1HE can achieve better visual effects
than two existing approaches, i.e., GLEAM [21] and ARKit [13].
Further, we also present a detailed performance breakdown of
Xr1HE under different configurations and use cases, reporting mo-
bile, network, and edge time. Our study reveals a number of
important factors such as number of anchors and estimation po-
sitions. Lastly, our lab-based evaluation showcases X1HE’s ability
to effectively generate lighting estimations by adapting to both
environment lighting and user movement dynamics.

2 PROBLEM AND SOLUTION OVERVIEW

In this paper, we set out to address the key problem of providing
spatially-variant photorealistic rendering in the context of mobile
AR. Photorealistic rendering at a high level is about displaying life-
like virtual 3D objects which mobile users cannot easily distinguish
from physical objects. The key challenge to achieving photoreal-
istic rendering lies in obtaining the omnidirectional lighting of a
geometric space where the virtual objects will be displayed. Larger
objects therefore require more lighting information at different
points in the geometric space. The geometric center of the virtual
object, referred to as the placement position, is often assumed to
be specified by the user at runtime. A placement position can be
extrapolated to multiple estimation positions where each position
corresponds to a lighting representation, e.g., SH coefficients. The
advent of 3D vision, the ability to perceive both color and depth
information, creates a new opportunity to transfer the measurable
lighting information at the observation position to the placement
position i.e. rendering positions.

Challenges. We leverage the key idea of 3D vision, and address
three key challenges in designing a 3D vision-based lighting estima-
tion framework called X1HE. The first challenge lies in accurately
representing the spatially-variant lighting given the inherent con-
straints of mobile AR scenarios including limited field-of-view, user
mobility, and environment lighting changes. The second challenge
is to provide such accurate lighting estimation fast enough so that
rendering engines can utilize this information for each frame if
necessary. The third challenge is to provide temporal-coherent ren-
dering that considers cross-frame visual harmony when utilizing
estimated lighting information.

Solution Overview. In this work, we design a 3D-vision based
framework X1HE that provides mobile AR applications the ability
to obtaining accurate omnidirectional lighting estimation in real
time. See Figure 6 for an architecture design of X1HE. Our design
can be broadly categorized into three intertwined parts. We first
introduce the algorithm and system design to support spatially-
variant estimation in Section 3 and then describe our per-frame
performance optimization to achieve real-time goal in Section 4.1.
We further describe our cross-frame practical optimization to reduce
network cost and to integrate with a popular rendering engine for
temporal-coherent rendering in Section 4.2.
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(a) Uniform distribution. (b) Non-uniform distribution.

Figure 2: Impact of anchor point distributions on observation
completeness.

3 SPATIALLY-VARIANT ESTIMATION

Spatially-variant lighting allows representation of lighting at dif-
ferent world positions. As such it has the promise to provide more
photorealistic renderings of virtual objects, which is especially im-
portant in the realm of augmented reality. For example, when used
in a furniture shopping app, spatially-variant lighting can more
effectively render a piece of couch with different outlooks depend-
ing on the user’s physical environment (well-lit room or darker
room), the rendering position, and the couch size. Figure 1 visual-
izes rendering examples with and without spatially-variant lighting
information.

3.1 Unit-Sphere based Point Cloud Sampling

X1HE enables real-time efficient lighting estimation for mobile de-
vices with 3D vision-based deep learning model that takes point
cloud generated from on-device camera captured RGB-D image as
input. Such point cloud data is usually large in size and can contain
redundant information [27]. Therefore, down-sampling point cloud
is beneficial to computation and network efficiency. However, di-
rectly down-sampling the raw point cloud using techniques such
as uniform sampling can negatively impact lighting estimation
accuracy. In this section, we present our novel unit sphere-based
point cloud sampling technique which preserves observation field-
of-view (FoV) as much as possible. Our design is informed by an
empirical analysis that demonstrates the negative correlation be-
tween observation completeness and lighting estimation accuracy.

3.1.1  Impact of Incomplete Observation Data. To study the poten-
tial impact of incomplete observation data on lighting estimation
accuracy, we first propose an entropy-based metric to measure the
point cloud observation completeness. We define the observation
completeness as the percentage of colored anchors when project-
ing a point cloud to unit sphere surface. Further, anchor points are
defined as a set of uniformly distributed surface points in a unit
sphere O. Intuitively, the observation completeness depends on
both the points distribution (D) and anchor distribution (A). We
define the joint entropy H(D, A) as:

i
H(D,A) = = " > P(dij, a;) log, [P(dij. ap)]. (1)
ieS j=1
where P(djj, a;) is the joint probability of projecting points into
a unit sphere with i anchor point, and S is a set of possible anchor
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Figure 3: Observation-preserving metric empirical analysis.

sizes (i.e., number of anchor points). In this work, we choose S =
{211 < k < 12} By using the Equation (1), we can succinctly
measure the point cloud observation completeness. The higher the
entropy value, the more complete the observation. Additionally,
it allows us to easily distinguish the observation completeness
for point clouds of the same size. For example, even though the
two projected point clouds have the same number of points, the
projected point cloud shown in Figure 2(a) is considered to be more
complete than the one shown in Figure 2(b).

Next, we leverage a recently proposed state-of-the-art 3D vision
based lighting estimation algorithm and its point cloud dataset [33]
to correlate observation completeness with estimation accuracy.
The raw point clouds, each has around 82K points, were first uni-
formly downsampled to 1280 points. We then trained a model (see
Section 6.5 for training setup details) based on the original paper’s
description. Lastly, we obtained the lighting estimation error, rep-
resented as Mean Squared Error (MSE), by evaluating the trained
model on each point cloud and compare the results to ground truth.

Figure 3(a) depicts the entropy distribution of all raw point clouds.
Figure 3(b) shows a negative correlation between the observation
completeness measured by e and estimation accuracy. In conclusion,
we empirically observed that the coverage observation complete-
ness is the key impact factor to lighting estimation accuracy.

3.1.2  Observation Point Cloud Downsampling. To effectively sam-
ple point cloud, we design a novel point cloud sampling method
called unit sphere-based point cloud sampling. It first projects every
point in a point cloud P onto a unit sphere O, defined as f(P, O),
then find the nearest anchor point for each projected point. By
establishing the relationship between each point from P and O, f
outputs a point cloud distribution D. Finally, we downsample P
with a nearest point selection that approximates the depth culling
process [1]. That is, P is downsampled by selecting the nearest
points, i.e., points with the shortest 3D Euclidean distance to the
sphere origin, from D to color corresponding anchor points in O.
Figure 4 provides an example walkthrough of our unit sphere-
based point cloud sampling. Considering three points (p1, p2, p3) in
the original point cloud, and their corresponding projected points
(1, p3» p3)- Each projected point is then matched to an anchor that
is closest to itself. We refer to these matched anchors as nearest
neighbors. In this example, p; will be matched to a; while p, and
p5, will both be matched to a;. Without loss of generality, if p{ is
the only projected point that a; is assigned as the nearest neighbor,
then a; will be initialized with the RGB values of p; and D(p}, 0)—
the distance between p; and the sphere origin o. Similarly, if p} and
ps are the only projected points that ay is assigned, and p; is closer
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to the sphere origin than p; is, a; will be initialized with the RGB
values of p; and D(p}, o).

In practice, the points set P is determined at runtime by configu-
rations and camera hardware while the size of O is a configurable

system parameter; the ratio ;lj:((g; represents the down-sampling

ratio. In other words, we will leverage the unit sphere-based point
cloud as the basis for estimating the spatially-variant lighting infor-
mation instead of directly using the observed point cloud. In an AR
session, we need to perform several consecutive unit sphere-based
point cloud sampling within a small time span for each estimation
position, as will be described in section 4.2.1. The unit sphere-based
point cloud for each estimation position will likely only be partially
initialized, due to incomplete environment observation.

We will store the unit sphere-based point cloud in a custom
designed data structure, represented as a 4D vector (the RGB values
and the 3D Euclidean distance between the projected points and the
sphere origin). This data structure design has two major advantages.
First, sphere anchor positions can be pre-computed ahead of time.
As such, our data structure only needs to store anchors in an ordered
array with each index corresponds to an anchor position. This
design also presents an opportunity to speedup XIHE's triggering
strategy using pre-computed neighbors for each anchor, as will be
described in Section 4.2.1. Second, storing unit sphere-based point
cloud using this data structure allows X1HE to extract both 3D space
positions and colors at viewing directions for estimation positions.

3.1.3 Downsampled Point Clouds for Virtual Objects. XIHE sup-
ports estimation positions that are specified via X1HE’s APIs and
can perform unit sphere-based point cloud sampling at each es-
timation position. Additionally, X1HE also provides a simplified
workflow that automatically assigns estimation positions when a
virtual object is placed to the scene. Specifically, given a virtual
object’s placement position (e.g., specified by the user), X1HE will
first designate the placement position as one estimation position
and subsequently generate multiple estimation positions based on
the object size. In other words, XIHE can support multiple light-
ing estimation requests, the response of each is represented as SH
coefficients, for a given object. However, due to current mobile
rendering engine limitations, e.g., in the case of mobile Unity3D,
X1HE will only render each object with one set of SH coefficients. To
circumvent this limitation, AR developers using XI1HE can either de-
compose the large object into smaller ones or customize rendering
shaders to take advantage of multiple sets of SH coefficients.

3.2 3D Vision-based Estimation Pipeline

Another key design to support spatially-variant lighting comes
down to an efficient algorithm that can extract and estimate lighting
information from an incomplete environment point cloud. As depth
sensors such as Lidar start to be equipped with mobile devices, it
is now possible to leverage 3D vision-based algorithms for Mobile
AR applications.

However, given that mobile 3D vision is in its infancy, there have
been very few works in mobile-friendly 3D vision-based lighting
estimation techniques [26, 33]. We choose the state-of-the-art 3D
vision based lighting estimation model PointAR [33] as the building
block for designing a new lighting estimation neural network that
works well with unit sphere-based point cloud. Briefly, PointAR is
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Figure 4: An example of unit sphere-based point cloud sampling and encoding.

a two-staged neural network pipeline that consists of: (i) a point
cloud transformation to simulate the camera movement from the
observation position to the rendering position; (ii) a point cloud-
based compact deep learning model. Our practical XIHENET is
designed by integrating our novel unit sphere-based point cloud
sampling technique, as described in Section 3.1.2, into the first stage.

To train the X1HENET model, we first generate six training/test
datasets—with the following number of anchors: [512, 768, 1024,
1280, 1536, 2048]—each consists of 608k/2037 unit sphere-based
point cloud from the PointAR RGB-D dataset. Then, we extract the
ground truth lighting information, represented as SH coefficients
from both LDR and HDR environment maps. The resulting data
item is in the form of a downsampled point cloud and the corre-
sponding SH coefficients. For LDR-based and HDR-based datasets,
we train six instances of XI1HENET to study the performance and
estimation accuracy trade-offs. As we later observe that XIHENET
models trained with LDR-based datasets lead to better visual effects
than that of HDR-based datasets; for the remainder of the paper, we
will report results using XIHENET trained on LDR-based datasets.

Xr1HE outputs SH coefficients as an omnidirectional representa-
tion of environment lighting at a single world position for rendering.
If directly using image-based lighting estimation models [8, 28], one
needs to post-process to correctly orient estimated SH coefficients
since the 3D world orientation cannot be represented on the image
input. Our X1HENET guarantees the orientation constant [33] by
explicitly considers the world space point cloud and estimates SH
coefficients at the same orientation.

3.3 Edge-assisted Resource Sharing

3.3.1  Point Cloud Management. Naively preserving and managing
time-series downsampled point clouds on mobile devices can be
harmful to overall system performance as it can consume too much
device memory. Therefore, X1HE proposes to use a stateful edge-
based point cloud management design. Moreover, we abstract X1HE
client as a point cloud provider to handle mobile heterogeneity, like
camera parameters, through adapters.

We design the XIHE server to manage the unit sphere-based
point cloud for each estimation position. Edge data will be updated
throughout the AR session as new lighting estimation requests
come in. Currently our XtHENET can produce highly accurate esti-
mations even with per-frame data that have a number of uninitial-
ized anchors. Based on our empirical analysis between observation
completeness and the estimation accuracy, one practical way to
further improve the estimation accuracy is to leverage multiple
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Figure 5: XtHE mobile GPU processing pipeline.

frames to progressively complete the unit sphere-based point cloud,
i.e., with more colored anchors. Thus, XIHE server manages the
collected environment point cloud in an accumulative fashion and
merges the point cloud with data associated with newly triggered
requests. As such, we can then augment the unit sphere-based point
cloud sent with each estimation request with historical data for
improving observation completeness. Such augmentation is partic-
ularly useful when environment observation data is shared among
multiple estimation positions or clients in the same AR session.

3.3.2 Lighting Estimation Management. Lighting estimation is in-
herently latency sensitive due to the strict latency requirement. In
the context of mobile AR, rendering engine typically targets 30fps
refresh rate, which corresponds to refresh approximately 33.33ms
per frame. Ideally lighting estimation should be performed at each
frame to achieve best accuracy. However, for deep learning-based
estimation algorithms, fulfilling such requirement on mobile de-
vices can be very challenging given the resource constraints and
the likelihood of sharing on-device computation resources with
tasks like rendering.

To address the low latency requirement and better support our
overall vision of supporting multi-users AR sessions and multi-
objects rendering, we design XIHE to run the inference execution
on a GPU-accelerated edge server. A strategically provisioned edge
can provide a low-latency and high-bandwidth connection between
the mobile devices and the server [20], as well as the potential
to batch inference requests. By using edge-based deep learning
inference, X1HE has the potential to support more complex model
and achieve much lower computation latency, e.g., by leveraging
the powerful edge resources. The X1HE server will use the merged
point cloud as the input to the 3D vision-based estimator and send
back the estimation result in SH coefficients to X1HE client.

4 FAST AND ACCURATE ESTIMATION

Continuously processing point cloud data directly on mobile CPU
can be time consuming, thus might violating the real-time goal.
For example, a RGB-D image captured on a iPad Pro with the max
resolution of 256x192 corresponds to 49k raw points. Fortunately,
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operations on point clouds can naturally be parallelized at per-
point level. We explicitly assemble as many operations as possible
to run on mobile GPU to reduce the CPU-GPU communication over-
head for achieving the best performance; the processing pipeline
is shown in Figure 5. Further, as constantly sending all the RGB-D
data over the network to the edge can be costly and might not
be necessary, we devise an adaptive triggering strategy that skips
inference requests if the environment lighting conditions do not
change substantially. The triggering component (see Section 4.2.1)
decides whether X1HE should offload the point cloud sample to the
edge sever for inference or store it into a temporary buffer.

4.1 Per-frame Real-time Optimization

4.1.1  Accelerating Point Cloud Sampling. Our processing pipeline,
as shown in Figure 5, starts with generating point cloud data from
a camera captured RGB-D image feed, and performs generation
at a pre-configured refresh rate. By leveraging GPU computing,
our point cloud generation code can be fully parallelized for com-
mon RGB-D image resolutions, e.g., 256x192 in the case of Lidar-
equipped iPad. Each generation outputs a point cloud of the world
environment that is captured in the current camera view.

Then, we apply unit sphere-based point cloud sampling to the
generated point cloud. However, naively using this sampling tech-
nique is computationally intensive, as it runs in ©(size(P)*size(O))
time. Although it is possible to parallelize both point processing
and anchor searching, the number of required GPU threads can
exceed the maximum support. For example, if we were to fully
parallelize the sampling process, i.e., using one GPU thread for
searching each point-anchor pair, on a point cloud with 49k points
and 1280 anchors, we will need about 62M GPU threads, while the
maximum supported GPU thread group size on mobile Unity3D
platform is 65535. Although partially parallelizing the sampling,
e.g., running the neareast anchor search for each point on a GPU
thread, may comply with the current mobile GPU requirement,
the execution time of each thread will be elongated. Therefore,
we propose an optimization method for reducing the computation
resource requirement of this sampling technique.

Specifically, we propose to build a 2D acceleration grid that uses
densely pre-sampled points and pre-computed results to reduce
the neareast anchor searching time. Specifically, we first densely
sample a set of points on the unit sphere based on quantizing the
spherical coordinates polar angels 6 and ¢. Then, we pre-compute
the nearest anchor for all the densely sampled points and store the
corresponding anchor index in the acceleration grid. At runtime,
for each projected point, we first convert its cartesian coordinate to
spherical coordinate and then apply the same quantization to match
the point to a densely sampled point in the grid. The key advantage
of doing so is that pre-sampled points can be stored as a 2D array,
and indexed with spherical coordinates at runtime cheaply.

Note that using our proposed acceleration grid may introduce
sampling errors as in essence this approach presents the entire
sphere surface with discrete sampled points. Intuitively, the more
points the grid has, the better the approximation. We empirically
show that given a unit sphere-based point cloud with 1280 anchors,
using a pre-computed grid of 1024x512 points allow 97% projected
points match to their neareast anchors and only incur a negligible
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estimation error. More details will be presented in Section 6.3. After
a new unit sphere-based point cloud data is sampled, X1HE client
will continue the GPU pipeline execution by merging the newly
generated data with historical data in the temporary buffer using an
extrapolation operation. The merging operation is an anchor-wise
copy operation between two buffers, and will always overwrite old
data with new one.

An alternative approach to accelerate unit sphere-based point
cloud sampling is to build a bounding volume hierarchy—a tech-
nique to accelerate ray tracing in real-time rendering [11]—by prop-
erly subdivising the sphere surface to reduce the search space.
However, leveraging such subdivision methods is nontrivial as one
has to balance a number of factors such as the sphere surface divid-
ing time, division access time, and total search time. We leave this
exploration as part of future work.

4.1.2  Unit Sphere-based Point Cloud Encoding. X1HE promises the
low-latency network communication by leveraging above-mentioned
compact point cloud data structure with byte-optimized encoding
method. When an estimation request is triggered, X1HE client sends
the corresponding encoded unit sphere-based point cloud as a byte-
encoded HTTP packet to the XIHE server. Our encoding consists of
two steps: the striping step which removes all uninitialized anchors
from the unit sphere-based point cloud and the byte representation
step which stores each point with fewer bits.

Specifically, instead of storing each point of the downsampled
point cloud with four 32bits single precision floats, we use 8bits
unsigned int and 16bits half-precision float to represent each point.
Though the original format is more precise to calculate and per-
forms better as it aligns to the GPU bus transaction size, such data
format uses redundant data bytes. For example, when dealing with
low dynamic range (LDR) camera images, 8bits data is usually suf-
ficient to preserve the useful information. Also, due to limitations
such as depth sensor precision and camera visible area size, the
distance information can be presented with 16bits half precision
float. Lastly, for each colored point, we use an extra 16bits to store
their indices.

Our encoding scheme can lead to significantly savings both in
terms of per-request and per-pixel data size. For example, for a
unit sphere-based point cloud generated from a LDR camera image,
using XIHE to encode the request data only needs 7 bytes, about
43.75% of the size if we encode with the original four single precision
floats. Comparing to directly sending the raw RGB-D image (5 bytes
per pixel), X1HE reduces approximately 98.3% data usage by only
needing to send on average 4249 bytes for an RGB-D image with
256x192 resolution. This results in both less network data transfer
and potentially less network time.

4.2 Cross-frame Optimization

4.2.1 Adaptive Estimation Triggering. Most modern camera sys-
tems provide high refresh rate, e.g. 30fps or higher. Estimating
scene lighting at the same frequency for each frame can be benefi-
cial for achieving good visual results, but also consume significant
computation and energy resources. Additionally, it might not be
necessary to update lighting information this frequently as envi-
ronment lighting conditions might not change at this rate. To avoid
sending unnecessary estimation requests to the edge, we design a
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triggering strategy that allows X1HE client to efficiently compare
lighting changes on mobile devices.

Designing effective triggering strategies involve addressing two
major challenges: (i) potential camera movements between con-
secutive frames; (ii) low latency requirement. The first challenge
indicates that image difference-based triggering methods are less
robust as camera movements can lead to mismatched camera im-
ages between frames. Although it is possible to leverage techniques
that stitch consecutive frames, such techniques are likely to violate
the latency requirement outlined in the second challenge. As such,
we design a unit sphere-based point cloud-based triggering strategy
which is less sensitive to observation point cloud changes and can
be integrated as a part of our mobile GPU processing pipeline to
satisfy the real-time goal.

The triggering decision making, in essence, evaluates the unit
sphere-based point cloud differences between frames and decides
triggering based on the amount of difference. Specifically, X1HE
makes the triggering decision by: (i) calculating the anchor-wise
color difference (i.e., MSE of two RGB values) between two unit
sphere-based point clouds that are stored in the temporary buffer
and the persistent buffer, respectively; (ii) obtaining the pooling
averages using a sliding window of size N (i.e., N anchors) on
the sphere for each anchor; (iii) triggering estimation when any
pooled value exceeds a threshold value 6. Both the threshold and
the number of nearest neighbors can be configured empirically
and we set the threshold value § = 0.6 and N = 4 based on our
analysis in Section 4.2.1. If X1HE client decides to trigger the lighting
estimation, we will continue the pipeline execution by merging
the temporary buffer into the persistent buffer. Otherwise, we will
early exit the GPU pipeline execution.

4.2.2  Providing Temporal-coherent Rendering. Lighting estimation
can fall short in reflecting the physical world lighting at the exact
moment. As we described in Section 4 and will show in Section 6,
X1HE can achieve as fast as 20.67ms per lighting estimation request.
This property well positions us to use a simple yet effective ap-
proach to achieve temporal-coherent rendering. To compensate
the estimation delay, we utilize mobile ambient light sensor, which
is cheap to use and provides low-latency ambient average color
and intensity lighting data, to continuously adjust the rendered
environment lighting per frame. Once the SH coefficients response
is available on the mobile device, XrHE will apply it to re-lit the vir-
tual object. As such, our compensation technique can improve the
visual coherence when the environment lighting is changing very
rapidly and handle use cases with less ideal network conditions.
To account for user movement during a single AR session, XIHE
leverages mobile device’s built-in accelerometer and gyroscope
to obtain the camera position and orientation information. This
allows XIHE to track estimation positions (i.e., represented as world
coordinates relative to the origin coordinate) and distinguish them
as active and inactive positions; an inactive position is one that
is outside the current camera view. If all estimation positions are
inactive, X1aE will not engage the GPU pipeline!; as estimation
positions become active, X1HE will resume its normal operations. If
X1HE client triggers the estimation and subsequently sends the unit

! An alternative is to leverage the triggering algorithm to proactively send unit sphere-
based point cloud to the edge for point cloud augmentation.

MobiSys 21, June 24-July 2, 2021, Virtual, WI, USA

| AR Applications |

| EstimationRequest
>

‘ WebService |

| Re)é@reder | Xihe Controller

Data

Encode PointCloud | |Inference
Meta Management | [ Service

Data

Environment
Scanner

| Estimation

Triggering
ARFoudnation
Unity3D
Device a |
Hardware <

Estimated SH Coefficients
Edge Server

PyTorch
Inference
Backend

ent Data
Extrapolation

Mobile Device
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Table 1: X1HE key classes and functions.

API Meaning

XiheController Main system controller

EnvironmentScanner Supporting environment scan
GPUDataProcessor Supporting point cloud processing
InferenceBackend Provide lighting estimation inference
XiheRecorder Provide AR session recording

EstimateAt(p) Function to estimate lighting at given position

PlaceAndEstimateAt(p)  Function to simply place virtual object and estimate
placement position lighting
StartRecording Function to start AR session recording

StopRecording Function to stop AR session recording

sphere-based point cloud corresponding to the active estimation
position to the edge, XIHE server can opportunistically augment
any managed unit sphere-based point cloud at the edge.

5 IMPLEMENTATION

We implement XIHE in two logical components: one runs on the
mobile client side and the other as a managed edge service. Figure 6
depicts the architecture of X1HE. Our implementation consists of
around 5K lines of code written in C#, Python, and CUDA C++,
and works with commodity hardware and software frameworks.
Specifically, X1HE client is built on top of AR Foundation 4.2.0 [30]
which provides basic AR functionalities and works with rendering
engine including Unity3D 2020. We design XI1HE client to run on
a wide range of mobile hardware. X1HE is developed as a Python-
based web API server and uses PyTorch [22] backend with just-in-
time model optimization to host our deep learning model X1HENET.
The server is packaged as a Docker image to facilitate deployment.
Client. X1HE client is implemented as a C# library that runs on
Unity3D. Table 1 summarizes the provided APIs. The mobile GPU
pipeline, including Point Cloud Generation, UnitSphere Sampling,
and Estimation Triggering components, is implemented as Unity3D
compute shaders in HLSL. Developers can start using XI1HE with
both new and existing AR projects by initializing the XiheController
at the start of application life cycle. This allows the applications to
either create a new AR session or join an existing one. Developers
may ignore the implementation of other internal components or can
extend XIHE to support new features, e.g., using new camera hard-
ware through overwriting the AcquireEnvironmentScan function in
the EnvironmentScanner class. We provide EstimateAt and PlaceAn-
dEstimateAt, two key functions to provide spatially-variant lighting
estimation through the XiheController. The first estimation function
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directly returns the estimated SH coefficients as an ordered array,
and therefore can be used in any customized rendering pipelines or
shaders. The second function works directly with Unity3D engine
by supporting a simplified workflow of placing virtual objects in
the format of Unity3D Prefabs into the physical surrounding. If
sufficient lighting change is detected, both functions will trigger
HTTP requests to send the encoded unit sphere-based point cloud
to the server. X1HE also has a built-in AR session recorder that
captures the essential AR session information, including lighting
estimation position, RGB-D camera feed, camera pose and ambi-
ent light sensor data. This recorder is built on top of the same
EnvironmentScanner used in X1HE’s estimation workflow. We pro-
vide two APIs, StartRecording and StopRecording, to control
the recording process.

Server. XIHE server is built on top the Tornado web framework and
the PyTorch inference backend with just-in-time model optimiza-
tion. XIHE server provides two key features, namely the AR session
management and the lighting estimation request processing. The AR
session management service is provided by three components, i.e.,
MetaData Management, PointCloud Management, and Data Extrap-
olation. Specifically, the MetaData Management is responsible for
storing AR session’s basic information, such as unique session ID
issued by the server, client-specific identifier, and timestamp. To
connect to the XIHE server, each X1HE client will either create a new
AR session by posting requests or join an existing AR session by
providing the session ID. Additionally, we use the NumPy library to
perform tensor operations on HTTP payload in the byte format to
achieve historical data extrapolation. A pretrained XIHENET (num-
ber of anchors = 1280) is included and managed by the PyTorch
inference backend. X1HE server is packaged as a Docker image and
can be setup with minimal configuration effort.

A reference AR application. We include an example AR applica-
tion implemented with X1HE APIs and the ARKit V4.0 plugin from
the ARFoundation. The resulting application can be compiled to
run on iOS and macOS. This reference application allows a mobile
user to place 3D virtual objects by selecting rendering positions
in the current camera view. For each virtual object, the mobile
application will generate one logical lighting estimation request
per frame. Depending on the detected lighting conditions, X1HE
client will trigger one or more physical lighting estimation requests
which will send the encoded unit sphere-based point cloud to the
Xi1HE server for inference. The number of physical lighting esti-
mation requests per frame is by default depending on the object
size but can also be configured by the mobile AR developers for
performance and quality trade-offs. The 3D objects will be ren-
dered with spatially-variant lighting information provided by X1HE.
Lastly, users can easily record the AR session with XIHE’s session
recorder, facilitating real-world record-and-replay experiments.

6 EVALUATION

We conducted our experiments by using an example AR application
which uses X1HE’s APIs for obtaining spatially-variant lighting esti-
mation. We used three different devices, a MacBook Pro 15”, a 2nd
generation iPad Pro 11” with a built-in Lidar sensor, and an iPhone
11 Pro, to evaluate the on-device performance. Our edge service
is on a desktop running Ubuntu 20.04 with a 16 core AMD Ryzen
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Figure 7: XIHE end-to-end time. XIHE lighting estimation via
the university WiFi, can complete in as fast as 20.67ms.

Figure 8: AR scenes rendered with lighting information pro-
vided by ARKit and our framework XIHE.

Threadripper 2950X CPU, 128GB memory, and a Nvidia RTX 2080Ti
GPU. We quantified X1HE’s performance in terms of end-to-end
lighting estimation time, accuracy, and visual effects and compared
it to the commercial baseline ARKit [13], an academic framework
GLEAM [21], and a 3D vision estimation pipeline [33] where ap-
propriate. XIHE can deliver spatially-variant lighting estimation as
fast as 20.67ms and achieves visually-coherent rendering effects.
We further evaluate how each proposed technique and configura-
tion contributes to X1HE’s performance with a detailed breakdown
study, e.g., with different sampling strategy, anchor size, and mobile
network condition, and a lab-based real-world evaluation.

6.1 End-to-end Performance

We demonstrate the end-to-end performance achieved by XIHE;
X1HE takes less than 24.04ms to complete in all three devices with
the university WiFi as shown in Figure 7. As such, X1HE not only
can support 30fps refresh rate but also takes 19.9% less time than
GLEAM [21]. The on-device GPU computation takes less than
6.65ms to finish running on all three devices. This indicates that
XIHE can support a wide range of mobile devices. Figure 8 compares
the visual effects of three 3D objects. Given the same virtual object
and the same environment lighting condition, X1HE’s reference AR
application is able to display the virtual object in a photorealistic
manner. However, when using the ARKit’s ambient lighting esti-
mation APIs, objects will be rendered with less desirable effect as
only ambient lighting intensity and color information are available.
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Table 2: Mobile computation breakdown. All components except
the first and the last run in the GPU pipeline.

On-device MacBook Pro iPhone iPad Pro
Component Avg. Time (ms) Avg. Time (ms) Avg. Time (ms)
AcquireEnvironmentScan N/A N/A 1.458
GeneratePointCloud 0.063 0.193 0.221
UniSphereSampling 0.015 0.061 0.063
MergeTemporaryBuffer 0.007 0.024 0.029
MakeTriggeringDecision 1.34 2.185 3.040
MergePersistentBuffer 0.013 0.057 0.062
EncodeBuffer 2.16 2332 2.832

Table 3: Edge computation breakdown.

Edge 512 Anchors 1280 Anchors 2048 Anchors
Component (ms) (ms) (ms)
Decoding 0.23 0.30 0.32
Extrapolation 0.01 0.01 0.01
Inference 3.99 591 10.80

6.2 Performance Breakdown

6.2.1  On-device performance. To quantify the performance of X1HE
client, we measure the time breakdown of each component that
runs on the mobile device. Table 2 shows the average time across
five runs measured with the Unity3D built-in profiling tool [31].
For the MacBook Pro and iPhone measurement, since they do not
have built-in Lidar sensors, we randomly selected five test data.
First, we observe that the total on-device time excluding the Ac-
quireEnvironmentScan step using MacBook Pro, iPhone and iPad
Pro are 3.57ms, 4.90ms and 6.65ms, respectively. This is expected
as the results matches the devices’ GPU computation capabilities.
Second, the long GPU time of two dominating components (i.e.,
MakeTriggeringDecision and EncodeBuffer) are likely due to
the callback functions needed for communicating between CPU
and GPU and non-continuous memory access during encoding.

6.2.2 Edge performance. To quantify the performance of XIHE
server, we measure the time breakdown of each component that
runs on a GPU-equipped desktop. Table 3 shows the average time
across the entire test dataset. First, we observe that both the decoding
and inference time increase with the number of anchors. This
is expected as unit sphere-based point cloud with more anchors
are likely to have more encoded points that need to be decoded
and transformed. Second, the point cloud extrapolation only takes
0.01ms but provides the opportunity to improve the lighting esti-
mation accuracy, i.e., by boosting the input point cloud’s entropy
with historical data.

6.2.3  Network performance. Figure 9 shows the network time un-
der different network conditions and user interactions. If the user
places larger objects, i.e., more positions to estimate, the network
time increases sublinearly under all network conditions. For ex-
ample, for iPad Pro that uses the university WiFi, the network
time to handle four estimation positions is about 1.28X that of one
estimation position. Both residential WiFi and LTE take several
times longer than using the university WiFi, indicating the need
to properly deploy the X1HE server. Even under undesirable net-
work condition, e.g., iPhone with LTE, X1HE can still generate one
lighting estimation in about 79.2ms which is lower than the 400ms
needed by GLEAM to generate high-fidelity estimation [21].
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Figure 10: Relative entropy comparison of different point
cloud sampling techniques. Our unit sphere-based point cloud
sampling achieves 55.74% and 30.80% better entropy compared to
uniform random sampling [33] and farthest point sampling tech-
niques [24], respectively.

6.3 Impact of Point Cloud Sampling

Entropy comparison. We use the point cloud test dataset from
PointAR [33] and generate three variants using the uniform random
sampling [33], farthest point sampling [24], and our proposed unit
sphere-based point cloud sampling techniques. For each point cloud
(and its downsampled versions), we first calculate the entropy using
Equation (1) and divide it by the raw point cloud entropy. Figure 10
compares the relative entropy. First, our unit sphere-based point
cloud sampling approach is more effective in preserving the en-
tropy, with on average 0.545 higher relative entropy than using
the uniform random sampling, and 0.359 higher than using the
farthest point sampling. Second, using more anchors can improve
the entropy but the improvement plateaus after 1280. This obser-
vation suggests that using 1280 anchors can be effective. Later in
Section 6.5 we will compare and show that unit sphere-based point
cloud technique also achieves better estimation accuracy.

Impact of acceleration grids. In this section, we analyze the error
associated with the acceleration grid with the mismatch rate metric,
calculated by comparing the colored anchors with and without
acceleration. We first randomly generate a set of 1M points in a
cubic 3D space with an edge length of 10 meters to simulate common
AR application scenarios in real-world environments. Figure 11(a)
shows the mismatch rate using different acceleration grid sizes.
First, as the grid size increases (i.e., corresponding to pre-sampled
more points), the mismatch rate decreases. For example, with an
acceleration grid of 1024x512 and an anchor size of 1280, we observe
that 97.36% of points were matched to the same anchor without
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Figure 11: Impact of acceleration grids. Even though accelera-
tion grids might erroneously match a small percent of points, it has
minimal impact on the estimation accuracy.
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Figure 12: Empirical characterization of unit sphere-based
point cloud generated from the test dataset [33].

Table 4: Comparison of different encoding methods.

Unit Size  Avg.Size Avg. Time

Encoding Method

(bytes) (bytes) (ms)
float32 16 20480 0.003
float32 + striping 18 10926 1.793
uint8 + float16 5 8960 1.675
uint8 + float16 + striping (Ours) 7 4249 1.003

using acceleration. Second, for a given grid size, the mismatch rate
also depends on and grows with the number of anchors. However,
the impact is relatively small compared to the choice of acceleration
grid size and is within 1% for the range of anchor numbers.

We further investigate the impact of our acceleration mechanism
on the lighting estimation accuracy. Figure 11(b) shows the normal-
ized accuracy, calculated by comparing the accuracy achieved using
acceleration and the ground truth accuracy using X1HENET. We
see that neither the acceleration grid size and the anchor number
impact the lighting estimation accuracy. This also suggests that our
X1HENET has a good generalization.

6.4 Performance of Encoding

Next, we evaluate the effectiveness of different encoding methods.
Figure 12 presents the empirical characterization by performing
the unit sphere-based point cloud sampling technique to the raw
point clouds from the test dataset. We find that unit sphere-based
point cloud generated from a single RGB-D camera image usually
contains many uninitialized anchors (i.e., empty anchors), as shown
in Figure 12(a). For example, when setting the number of anchors
to be 1280, we observe that more than half anchors are empty.

Figure 13: Network performance of different encoding meth-
ods. The mobile AR application connects to the X1HE server via the
university WiFi.

Figure 12(b) shows the required bytes for encoding only non-empty
anchors using float32.

Table 4 compares the required bytes and time to encode our unit
sphere-based point cloud using different methods. Even though di-
rectly encoding using uint8 for RGB values and float16 for depth
information only requires 5 bytes per anchor, it takes more than
twice as many bytes to transfer the entire unit sphere-based point
cloud than our encoding approach. Further, as the striping opera-
tion is cheaper, taking about 0.09ms on the iPad Pro, our encoding
method improves the total encoding time by 1.67X compared to
directly encoding with unit8+float16.

Figure 13 shows the median network time to transfer the unit
sphere-based point cloud from the MacBook Pro to the XTHE server
via the university WiFi. Results for other devices and network con-
ditions (residential WiFi and T-mobile LTE) exhibit similar trends
and are omitted. First, we observe that our encoding method takes
as little as 26.3% network time compared to three baselines under all
combinations of anchor numbers and estimation positions. Second,
the time taken by our encoding method grows slower with the
number of anchors compared to other encoding approaches.

6.5 3D Vision-based Estimator Performance

We evaluate the performance of XIHENET and compare its accu-
racy to a state-of-the-art lighting estimator PointAR [33]. We use
the same 3D indoor dataset (about 608k training and 2037 test
data) as PointAR and preprocess each image to generate the unit
sphere-based point cloud and SH coefficients pairs. We extract SH
coefficients from the LDR format given its best visual rendering
effects. We repeat the same process using the uniform random
sampling to generate the training dataset for PointAR. We train
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Figure 14: 3D vision-based lighting estimator performance.
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Figure 15: Triggering strategy analysis. Each strategy is evalu-
ated on five e-percentile split datasets.

both X1HENET and PointAR using the same hyperparameters, i.e.,
2 PointConv blocks, each with multilayer perceptron setup of (64,
128) and (128, 256) [33]. Additionally, we train a third model (with
the same backbone as X1HENET) with farthest point sampling [24].

Figure 14 shows the performance of the 3D vision-based es-
timators. We use SH coefficients RMSE, which is defined as the
numerical difference between the predicted and ground truth SH
coefficients, as the metric to evaluate the lighting estimation ac-
curacy [8]. Our X1HENET achieves better SH coefficients RMSE
(the lower the better) for all unit sphere-based point cloud sizes
as shown in Figure 14(a). Further, we observe that XIHENET on a
Nvidia RTX 2080Ti GPU can generate lighting estimations between
3.99ms to 10.80ms. As shown in Figure 14(b), we can support up to
250 inferences per second with batch size=1.

6.6 Triggering Strategy Analysis

We quantify the effectiveness of different triggering strategies us-
ing the metric triggering accuracy that describes the percentage of
correctly identified environment lighting changes between two con-
secutive frames. We create a new dataset that consists of 1754 image
pairs and a binary label for each pair indicating the lighting change.
The image pairs are formed with two methods: (i) select data items
from the test dataset that share the same observation image but
from different estimation locations; (ii) randomly select a pair of
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Table 5: Real-world evaluation of X1HE. We record and replay
three AR sessions under different lighting and movement dynamics.

SH coefficients SH coefficients  Triggering

Variable Threshold § RMSE Mean RMSE Std  Percentage
0.5 0.0180 0.0119 1.59%
R1: Light temperature 0.6 0.0193 0.0175 0.27%
0.7 0.0169 0.0047 0.13%
0.5 0.0113 0.0065 2.69%
R2: Light intensity 0.6 0.0110 0.0038 0.24%
0.7 0.0180 0.0054 0.24%
0.5 0.0040 0.0231 48.41%
R3: User movement 0.6 0.0070 0.0262 23.67%
0.7 0.0102 0.0051 5.91%

data items.The first pairing method covers the slower-changing
scene scenarios while the second pairing method covers faster-
changing ones. To assign the lighting change label to each pair, we
use three common metrics, SH coefficients RMSE and two image-
based metrics (reconstructed irradiance map PSNR and SSIM), that
are used for describing lighting conditions. We then sort each image
pair in ascending order based on the metric calculation and label
the lower and higher € percents as 0 and 1, respectively. A label of
0 indicates no lighting change while a label of 1 indicates lighting
change. By ignoring the middle percentile, our label assignment
method allows us to automatically distinguish the pairs that exhibit
lighting changes from ones that do not with high confidence. We
manually verify the labeling results.

Figure 15 compares the triggering accuracy with different dataset
partition threshold € and triggering threshold 6, using the SSIM met-
ric. Results corresponding to other metrics show similar trends and
are omitted. We first observe that the observation MSE-based trig-
gering strategy has a good accuracy when the triggering threshold
0 is properly configured. Outside a small range of 0, the triggering
accuracy is significantly lower. Second, we see that X1HE’s sliding
window based strategy can achieve better triggering accuracy than
the MSE-based strategy and it’s less sensitive to the choice of 6.
Using larger window sizes have little impact on the triggering accu-
racy. As different window sizes correspond to different computation
complexity, we use a default of window size=4 in XIHE.

6.7 Lab-based Real-world Evaluation

In this section, we present a real-world evaluation of XIHE in a
lab environment to demonstrate its effectiveness of our triggering
algorithm. We show that with optimal configuration (6 = 0.6, N = 4,
1280 anchors), XIHE can skip sending at least 76.24% estimation
requests to the edge while still achieves comparable accuracy to
running inference every frame. We use X1HE’s session recorder to
capture recordings when the user is interacting with our reference
AR application in an indoor environment. We create both lighting
condition and movement dynamics by using a remotely controlled
light source and having the user walk around the light source.
For each recording, we control one of the variables, i.e., light
temperature, light intensity, and user movement. The light source
allows us to vary the temperature from candle light (1500K) to
daylight (6500K) with 500K increment and the intensity from 0%
to 100% (800 lumens) with 1% increment. We record relevant AR
session information per frame. In total, we create three recordings
with an average length of 35 seconds. We replay each recorded AR
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Figure 16: AR scenes rendered with X1HE with different materials. Both metallic and smoothness are Unity parameters.

session to X1HE and report both the SH coefficients RMSE and the
percentage of triggered frames (i.e., being sent to the edge).

As shown in Table 5, X1HE (0 = 0.6) only needs to send up to
23.67% inference requests to the X1HENET while only incurring an
average RMSE of 0.011. We also inspect the visual effects of the
rendered object during the replay and confirm minimal differences
with and without the triggering algorithm enabled. Interestingly,
for the third recording where the user is walking around the light
source with the iPad Pro, X1HE triggers a lot more inference requests
than the other two recordings. We suspect that more frequent
triggering is likely due to increased observation completeness at
estimation positions and enlarged viewing angles.

7 RELATED WORK

To provide mobile AR that is suitable for real-world deployment,
researchers have been working on aspects including energy opti-
mization, interactivity, and lifelike rendering [2, 3, 26]. The key to
achieve lifelike rendering in AR is the ability to obtain accurate
lighting information [8, 25, 29]. Although intuitively simple, there
are a number of AR-specific challenges that distinguish this task
from prior work in the graphics community [6, 11, 25].

There has been little work on providing real-time lighting estima-
tion for mobile AR [5, 21, 33]. Commercial SDKs such as ARKit [13]
and ARCore [9] only provide ambient lighting estimation which is
often insufficient to capture the spatially-variant environment light-
ing. A recent work GLEAM leverages physical probes and improves
the rendering effects over these commercial SDKs [21]. However,
the use of physical probes hinders the user experiences. Our work is
the first 3D vision-based framework that provides spatially-variant
lighting estimation in real time.

The system design of XIHE is largely inspired by our empirical
study and tackles problems that are common to edge-based AR
systems [16, 18, 19]. Specifically, when designing X1HE, we focus
on minimizing the reliance on mobile resources to avoid excessive
power consumption [2, 3, 12]; we also minimize the network com-
munication to the edge server by only issuing requests that are
likely to improve the lighting estimation accuracy, e.g., when the
lighting condition changes or when X1HE has more updated envi-
ronment information [4, 17]. Our work differs from existing work
on edge-based AR systems in addressing the lighting estimation-
specific requirements and 3D vision-based opportunities.

8 DISCUSSION

We made the conscious decision to co-design some aspects of XIHE,
including the unit sphere-based point cloud sampling and the trig-
gering metric, with a state-of-the-art 3D lighting estimator [33].

We believe such application-specific optimizations are worthwhile
trade-offs, allowing us to fully explore the performance potential of
both algorithms and systems. In other words, rather than exposing
the trade-offs of accuracy and performance to AR developers, we
offload such responsibilities to the framework design phase.
Nevertheless, the lighting estimation accuracy provided XiHE
will be bounded by the supported lighting estimators. For example,
as X1HENET currently only demonstrates good estimation accu-
racy for low-frequency lighting, virtual objects that require high-
frequency lighting information (such as metallic finish) will have
less photorealistic rendering effects. Figure 16 show the visual ef-
fects of Stanford bunny with different material settings. Lower
metallic values will give more matte-looking finish while lower
smoothness values will lead to higher diffused reflection.
Additionally, to effectively support any future models on XIHE,
respective components have to be rethought and redesigned. How-
ever, given X1HE’s modular design and that its major components
are general enough, we do not anticipate substantial changes. Lastly,
X1HE currently provides an end-to-end 3D vision-based lighting
estimation service per AR session. To support multi-user shared
AR sessions, we will at least need to redesign the Point Cloud
Management module to carefully manage the lifecycles and states.

9 CONCLUSION

Our system XTHE is a 3D vision-based lighting estimation platform
that provides fast and accurate spatially-variant lighting estimation
for mobile AR systems. Specifically our unit sphere-based point
cloud sampling allows us to effectively downsample the raw point
cloud captured in real time without compromising the lighting esti-
mation accuracy. To avoid unnecessary network communication
between mobile and edge, we designed an adaptive triggering al-
gorithm that only sends unit sphere-based point cloud to the edge
when there are significant lighting condition changes. The good
estimation accuracy is guaranteed by our 3D-based lighting model
that is inspired by recent work [26, 33] and is redesigned to consider
both network and storage cost. We implemented X1HE on top of
Unity3D, ARFoundation, and Pytorch frameworks. Our controlled
experiments with three devices including a Lidar-enabled iPad Pro
demonstrated that XIHE can provide visually-better rendering than
ARKit and GLEAM under various experiment settings.
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