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Human-in-the-loop optimization allows for individualized
device control based on measured human performance. This
technique has been used to produce large reductions in
energy expenditure during walking with exoskeletons but
has not yet been applied to prosthetic devices. In this series
of case studies, we applied human-in-the-loop optimization
to the control of an active ankle-foot prosthesis used by
participants with unilateral transtibial amputation. We
optimized the parameters of five control architectures that
captured aspects of successful exoskeletons and commercial
prostheses, but none resulted in significantly lower metabolic
rate than generic control. In one control architecture, we
increased the exposure time per condition by a factor of five,
but the optimized controller still resulted in higher metabolic
rate. Finally, we optimized for self-reported comfort instead
of metabolic rate, but the resulting controller was not
preferred. There are several reasons why human-in-the-loop
optimization may have failed for people with amputation.
Control architecture is an unlikely cause given the variety of
controllers tested. The lack of effect likely relates to changes
in motor adaptation, learning, or objectives in people with
amputation. Future work should investigate these potential
causes to determine whether human-in-the-loop optimization
for prostheses could be successful.

1. Introduction
Over 600 000 individuals in the US live with a major lower limb
amputation, with this number expected to double by 2050 due

© 2021 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
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to the increasing prevalence of diabetes and obesity [1]. Individuals with amputation rely on lower-limb
prostheses to replace their lost biological limb. However, gait metrics for users of lower-limb prosthesis
are typically worse than those for people without impairment. For example, people using lower-limb
prostheses tend to walk more slowly [2], fall more frequently [3], and expend more energy to walk at
the same speed [4] when compared with unaffected individuals. In addition, people using a
prosthesis tend to demonstrate more gait asymmetry, causing an increased rate of joint degeneration,
pain and osteoarthritis in their intact limb [5,6]. The combination of all of these factors can lead to
limited mobility for individuals with amputation, resulting in secondary health problems, increased
medical costs and more reliance on caregivers [7].

Developing more effective lower-limb prostheses has the potential to mitigate some of these
problems for people with amputation. Previous work has found that tuning passive prosthesis
parameters can have a small effect on metabolic cost [8,9], while other studies have found metabolic
cost to be unaffected [10,11]. In the hopes of producing more meaningful changes for people with
amputation, a number of active ankle-foot prostheses have been developed [12–17]. Two different
approaches in the development of ankle-foot prostheses have had some success in reducing the
energy cost of walking. The first is to provide ankle power similar to biological gait. Lack of push-off
work in passive prostheses is implicated in higher step-to-step transition losses [18,19], which are
correlated with increased metabolic rate [20]. However, some studies have also shown that more
prosthesis push-off work does not necessarily reduce collision work [21,22]. A device providing push-
off work and emulating biological characteristics of human neuromuscular control has resulted in
mixed results with respect to metabolic cost, with some studies finding modest reductions (e.g. 8% in
[23]) and other studies finding no significant difference compared with walking with a passive
prosthesis [24]. The second approach focuses on balance assistance in the form of ankle inversion or
eversion torque in response to changes in the frontal plane centre of mass. Implementing such control
in an ankle-foot prosthesis emulator led to a 9% reduction in energy expenditure during walking
when compared with a zero gain controller [25], although walking in the participants’ prescribed
prosthesis was still the most energetically favourable.

The experimental results of active prostheses show some promise, but biomechanical analyses and
simulations suggest that active prostheses have more potential to mitigate problems faced by
individuals with amputation. The ankle is estimated to provide approximately half of the power
needed for healthy human walking [26], much of which is not replaced by passive prostheses.
Simulation models suggest that active prostheses have the potential to reduce the metabolic cost of
walking significantly below that of unimpaired walking [27]. One possible reason that powered
prostheses have not lived up to their potential is because it is still unknown how best to control them,
and physiological and neurological differences between users could lead to varying responses to the
same device. Previous work has addressed this by hand-tuning control parameters for each subject,
but this process is cumbersome and subjective due the high number of parameters that need to be
adjusted. Perhaps a control strategy that takes individual gait characteristics into account would allow
powered prosthetic devices to better help mitigate problems for individuals with amputation.

Human-in-the-loop optimization (HILO) has been successfully used to determine control parameters
for exoskeletons that result in high reductions in metabolic cost [28–32]. This technique involves choosing
the parameters of a control architecture based on the human response to changes in control parameters.
To do this in a time-efficient manner, HILO uses an optimization strategy that predicts the optimal
parameter set over time using a sample of measurements from different control parameter values.
Both covariance matrix adaptation evolution strategies (CMA-ES) [30] and Bayesian optimization [31]
have been successfully used to determine control parameters that lead to reductions in metabolic cost.
In one example, optimized assistance from an exoskeleton worn on one ankle reduced the energy cost
of walking for all participants significantly more than a hand-tuned static controller, with a range of
improvements of 14% to 42% and an average improvement of 24% [30]. HILO has been used to
successfully reduce the energy expenditure of running [32] and inclined walking [30] with an ankle
exoskeleton, in addition to reducing the energy expenditure of walking with a hip exoskeleton [31].
It has also led to reductions in muscle activity while walking with an ankle exoskeleton [30]. These
studies suggest that user-specific prosthesis control could provide substantial benefits over
conventional, hand-tuned devices. However, HILO has not yet been tested to determine the control
parameters of powered prostheses.

In this series of case studies, we applied human-in-the-loop optimization to the control of an active
ankle-foot prosthesis used by participants with unilateral transtibial amputation. Four different classes of
control architecture were tested: (i) a heel stiffness controller that varied the stiffness and damping of the
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heel of the prosthesis (figure 1a), inspired by the observation that damped articulation of the ankle can
reduce energy cost compared with rigid prosthetic ankles [33]; (ii) a neuromuscular controller that
emulated biological components of the muscle-tendon complex and has been previously used to
reduce the metabolic cost of walking with an active prosthesis [34] (figure 2a); (iii) a balance controller
that provided ankle inversion/eversion torque based on deviation of the user’s lateral centre of mass
velocity and has been previously used to reduce the metabolic cost of walking with a prosthesis
emulator [25] (figure 3a); and (iv) a time-based torque controller with similar control architecture to
that used to reduce the metabolic cost of walking with exoskeletons (figure 4a). In addition, both five-
parameter and four-parameter controllers were implemented for the time-based torque control
architecture, resulting in a total of five different control architectures tested.

The objective of the majority of the case studies was to minimize user energy expenditure. The
optimization protocol for each case study with this objective is outlined in table 1. Five unique
participants (S1–S5) were enrolled in these studies, with some individuals completing more than one
experiment (table 2). The protocol was similar for all experiments and was based on an optimization
protocol successfully used with exoskeletons [30]. However, there was one exception where the
participant completed an extended protocol, in which the time spent in each condition was increased
by a factor of five, to determine the effects of increased training on adaptation and optimization.
Finally, one additional case study optimized the control parameters with the objective of maximizing
participant preference instead of minimizing metabolic rate. For all case studies, participants
completed separate validation trials after optimization was complete, and performance with the
optimized controller was compared with a generic controller and the participant’s prescribed
prosthesis. Generic control parameters were based on those used in literature with similar controllers,
with subject-specific modifications made in each case study. Based on previous success of human-in-
the-loop optimization for ankle prostheses, we hypothesized that the optimized control parameters
would result in better outcomes (e.g. reduced metabolic cost or increased preference) compared with
any chosen generic parameter set.

2. Results
2.1. Heel stiffness controller
Two parameters dictating the torque trajectory of the prosthesis heel were optimized in the case study of
this novel controller: a heel stiffness parameter and a heel work constant that dictated the amount of
work provided or dissipated by the heel during the gait cycle over the course of loading and
unloading (figure 1a). The optimized parameters after four generations of walking were a heel
stiffness of 100 Nmrad�1 with a heel work constant of 0.4. In validation, the optimized controller was
compared with a generic controller (stiffness ¼ 120 Nm, work constant =−0.5) chosen to provide 32%
heel energy dissipation, which approximates some energy storage and return (ESR) devices with
higher energy dissipation [35]. The optimized controller resulted in a 3.5% reduction in metabolic cost

Table 1. An overview of the protocol for each human-in-the-loop optimization case study that attempted to minimize metabolic
rate, including the control architecture and device used, the number of parameters (params) in the control architecture, the time
spent walking in each control law with a specific parameter set, and the number of control laws per generation (gen). The
participants in each case study are also listed, along with their self-selected walking speed and the number of different control
laws that were tested during each bout of continuous walking.

control

architecture device

params

(#)

time/control

law (mins)

control laws/

gen (#)

gens

(#) N = participant

speed

(m s−1)

control laws/

bout (#)

heel stiffness 3 d.f. 2 2 6 4 1 Sub 1 1.25 2

neuromuscular 1 d.f. 3 2 7 4 1 Sub 2 1.0 7

balance 3 d.f. 2 2 6 4 2 Sub 3 0.89 2

Sub 4 0.67 3

time-based

torque

1 d.f. 5 2 8 6 1 Sub 1 1.25 3

4 2 8 4 2 Sub 1 1.25 3

Sub 5 1.25 3

4 10 8 4 1 Sub 2 1.0 2
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compared with the generic controller (optimized: 3.57 W kg−1, generic: 3.70 W kg−1; figure 1b). Both
controllers led to a higher metabolic cost when compared with walking with the participant’s
prescribed prosthesis (3.21 W kg−1).

2.2. Neuromuscular controller
Three parameters in the neuromuscular controller based on previous literature [34] were optimized. Two
were parameters within the muscle-tendon complex model: (i) Fmax, which is analogous to maximum
muscle isometric force, and (ii) eref, which acts as a tendon strain multiplier. The third parameter was
a feed-forward gain K ff , which affected the magnitude of the muscle activation (figure 2a). After four
generations of walking, the optimized parameters were: Fmax ¼ 4261 N, K ff ¼ 1:346, and eref ¼ 0:062.
We compared the optimized controller with a generic controller with parameters previously
determined to best mimic biological ankle torque [34] (Fmax ¼ 3377 N, K ff ¼ 1:22, and eref ¼ 0:04). In
validation, the optimized controller resulted in a metabolic cost 1.4% higher than the generic
controller (optimized: 2.81 W kg−1, generic: 2.77 W kg−1; figure 2b). Both controllers resulted in higher
metabolic cost than walking with the participant’s prescribed prosthesis (2.49 W kg−1).

2.3. Balance controller
Two participants (S3 and S4) completed the four generation optimization protocol for the two
parameter balance controller based on previous literature [25]. In this control architecture, the
prosthesis behaved as a passive spring in plantarflexion and dorsiflexion, while a baseline
nominal inversion/eversion torque tnom and a gain dictating the magnitude of correction for centre of
mass velocity deviations, K, were optimized. (figure 3a). The optimization for S3 resulted in a K value
of 1.24 and a tnom value of −0.173, while the optimization for S4 resulted in a K value of 3.97 and a
tnom value of 3.03. These were compared with a zero gain generic controller where the K value was
set to zero, but the optimized τnom value was retained. In validation (figure 3b), the optimized
controller led to a 1.2% decrease in metabolic cost for S3 (optimized = 2.45 W kg−1, generic =
2.48 W kg−1) and a 9.1% increase in metabolic cost for S4 (optimized = 1.68 W kg−1, generic =
1.54 W kg−1). The prescribed prosthesis cost for S3 was less than either controller (2.30 W kg−1), while
the prescribed prosthesis cost for S4 was equivalent to the generic controller (1.54 W kg−1).

2.4. Time-based torque controller

2.4.1. Introduction

The parametrization of this controller was based on a similar controller successfully used to optimize the
parameters of ankle exoskeleton torque to reduce metabolic cost [30], with an additional underlying
baseline prosthesis stiffness parameter. In choosing the parameters for the generic controller, the
stiffness parameter was based on the approximate stiffness of the participant’s prescribed prosthesis,
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Figure 1. (a) The heel stiffness control architecture comprised a stiffness and work constant parameter, which dictated the torque
profile during loading and unloading of the heel as a function of heel angle. Stiffness was varied between 50 and 130 N m rad�1,
and the work constant varied from −0.5 to 0.5, with a larger positive work constant resulting in more positive work injected during
the gait cycle. (b) The resulting torque profiles of the generic controller and the optimized controller are shown as a function of heel
angle. (c) The average metabolic cost of the optimized controller was 3.5% lower than the generic controller, but both were higher
than the participant’s prescribed prosthesis.
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while the remaining magnitude and timing parameters were based on average optimal parameters for
ankle exoskeletons, with subject-specific modifications made for subject comfort.

2.4.2. Five-parameter

The five parameters optimized in this control architecture were: baseline stiffness, and the peak time, rise
time, fall time, and peak magnitude of the additive torque (figure 4a). Due to the increased number of
parameters, the participant completed six generations of optimization before validation instead of
four. Optimized parameters were as follows: stiffness ¼ 990 Nmrad�1, peak time ¼ 48%,
rise time ¼ 12%, fall time ¼ 13%, peak torque ¼ �0:01 Nmkg�1. Note that due to the small
magnitude of the optimized peak torque, the optimized controller approximated the behaviour of a
passive spring, and therefore varying other timing parameters would have minimal effect on the
resulting torque profile. The optimized controller was compared in validation to a generic controller
with the following parameters: stiffness ¼ 800 Nmrad�1, peak time ¼ 86%, rise time ¼ 18%,
fall time ¼ 14% and peak torque ¼ 0:05 Nmkg�1 (figure 4b). The optimized controller resulted in a
3.0% decrease in metabolic cost from the generic controller (optimized = 3.28 W kg−1, generic =
3.38 W kg−1). However, both controllers resulted in higher metabolic cost compared with walking
with the participant’s prescribed prosthesis (2.83 W kg−1) (figure 4c).

2.4.3. Four-parameter

Because the optimized peak torque of the five-parameter time-based torque control optimization had a
near-zero magnitude, negating the effect of the other parameters, additional experiments were
conducted using a four-parameter time-based torque control architecture with the peak torque set to
0:5 Nmkg�1. Two participants (S1 and S5) completed the optimization protocol for this control
architecture. S1 had previous experience walking with the five-parameter controller, and his resulting
optimal control parameters after four generations were: stiffness ¼ 843 Nmrad�1, peak time ¼ 78%,
rise time ¼ 13%, fall time ¼ 21%. Optimal parameters for S5 were: stiffness ¼ 754 Nmrad�1,
peak time ¼ 60%, rise time ¼ 50%, fall time ¼ 17%. Optimized controllers were compared with a
generic baseline controller, where stiffness = 900Nm rad−1, peak time ¼ 80%, rise time ¼ 10%,
fall time ¼ 10% (figure 4b). In validation, the optimized controller resulted in a 5.2% increase in
metabolic cost for S1 (optimized = 3.23 W kg−1, generic = 3.07 W kg−1) and a 0.5% increase in metabolic
cost for S5 (optimized = 4.14 W kg−1, generic = 4.12 W kg−1). For S1, walking with the prescribed
prosthesis resulted in a higher metabolic rate than either the generic or optimized conditions
(3.40 W kg−1). S5 had a lower metabolic rate with his prescribed prosthesis (3.67 W kg−1) (figure 4c).

2.4.4. Conversationally tuned

During validation of the optimized four-parameter time-based controller, we also tested a fourth
condition based on subject preference. To determine controller parameters for this condition, we
modified the controller as the participant walked on the prosthesis and provided verbal feedback on
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the preferred parameters. The preferred parameters chosen by S1 were: stiffness = 675 Nm rad−1,
peak time ¼ 80%, rise time ¼ 25%, fall time ¼ 15%. The preferred parameters chosen by S5 were:
stiffness = 800 Nm rad−1, peak time ¼ 80%, rise time ¼ 60%, fall time ¼ 20% (figure 4b). In validation,
the conversationally tuned controllers led to a higher user metabolic cost than all other conditions for
both S1 (3.50 W kg−1) and S5 (4.36 W kg−1) (figure 4c). We also collected user opinions of the
controllers during validation, without informing the subject which controller they were using. S1
commented that the generic controller was ‘comfortable from the start and stayed comfortable’, but
also noted that it ‘has finicky timing’. He noted that both the optimized controller and the
conversationally tuned controller were ‘comfortable from the start’, but the optimized controller ‘felt
like it required more effort later’, while the conversationally tuned controller ‘didn’t feel good later’.
S5 noted that the generic controller had ‘too much push-off’, the conversationally tuned controller had
‘definitely not enough push-off’, and the optimized controller had ‘a perfect amount of push-off’.

2.4.5. Extended protocol

One subject completed an optimization protocol with the four-parameter time-based torque controller in
which the duration of each control law was ten minutes instead of the usual 2 min allotted for each
condition. The optimization resulted in the following control parameters: stiffness = 710 Nm rad−1,
peak time ¼ 74%, rise time ¼ 44%, fall time ¼ 11%. The optimal controller was compared with a
generic controller with the following parameters: stiffness = 1200 Nm rad−1, peak time ¼ 80%,
rise time ¼ 10%, fall time ¼ 10% (figure 4b). The optimized controller resulted in an 7.2% increase in
metabolic cost compared with the generic controller (optimized = 3.25 W kg−1, generic = 3.03 W kg−1).
Both resulted in higher cost than the participant’s prescribed prosthesis (2.61 W kg−1; figure 4c).

To examine if the additional time spent in each control law affected the estimated steady-state
metabolic rate of each condition, we compared the asymptote of the metabolic fit from the first 2 min
of data with the average metabolic cost of the last 2 min in each 10 min control law. The RMSE error
between these two values was 0.20, or 6% of the participant’s metabolic cost while walking with the
prescribed prosthesis (standing metabolic cost baseline was not subtracted, as this was collected during
optimization and not validation). Because the optimizer uses a weighted average of the control laws
resulting in the lowest metabolic cost from each generation to create the distribution of the parameter
set for the next generation, we also compared how these rankings differed when calculated using the
2 min metabolic fit versus the average of the last 2 min of each condition. In all generations, the 2 min
metabolic fit matched the predictions of the 2 min average for two of the top three control laws that
resulted in the lowest metabolic cost. The control law that led to the lowest metabolic cost in each
generation was the same for the 2 min fit and the 2 min average 50% of the time.

2.4.6. Preference optimization

S1 completed an optimization where the cost function aimed to optimize user comfort, as opposed to
minimizing metabolic cost. The protocol was similar to other case studies, with the exception that the
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time spent in each control law was shorter (23 s), and the participant experienced five unique control
laws multiple times within a generation for a total of 11 conditions. This allowed all control laws to
be directly compared with one another by asking the participant to rank the current control law as
better or worse than the previous control law. A composite ‘score’ for each control law was used at
the end of the generation to determine the parameter set of the next generation. At the end
of optimization, the parameters were as follows: stiffness = 1041 Nm rad−1, peak time ¼ 69%,
rise time ¼ 40%, fall time ¼ 18%. In validation, in addition to comparing with the generic controller
that emulated average optimal magnitude and timing parameters from ankle exoskeletons (stiffness =
900 Nm rad−1, peak time ¼ 80%, rise time ¼ 20%, fall time ¼ 15%), the initial condition used to seed
the optimization was also tested (stiffness = 800 Nm rad−1, peak time ¼ 65%, rise time ¼ 30%,
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fall time ¼ 20%) (figure 4b). During validation, the participant was allowed to request these three
controllers in any order, and was asked to rank them at the end of the trial. The participant chose the
controller used as the optimization seed as the most preferred, followed by the generic controller
(figure 4c). The optimized controller was the least preferred. We also asked for participant feedback
on the three controllers. He stated that the optimized controller was ‘too passive’, and the generic
controller ‘too springy’, while the controller used for the optimization seed was ‘just right’.

3. Discussion
We present a series of case studies in which human-in-the-loop optimization of an ankle-foot prosthesis
failed to produce functionally relevant changes in metabolic cost for people with transtibial amputation.
In total, five different control architectures were implemented, and either one or two participants
completed the optimization protocol for any one control architecture. Mild reductions in the
optimized controller of up to 3.5% compared with a generic controller were seen in some of the case
studies. However, because the error in human metabolic rate measurement using indirect calorimetry
has been estimated to be between 2 and 3% [36,37], these reductions are not meaningful. In addition,
these reductions are significantly smaller when compared with an average 24% reduction in metabolic
cost as a result of optimization of unilateral ankle exoskeleton control. In fact, the largest metabolic
reductions seen in these case studies compared an optimized controller that behaved as a passive
spring with a generic controller that injected mechanical power into the gait cycle, corroborating
previous evidence that providing higher mechanical power with an assistive device does not
necessarily correlate with reduced user metabolic rate [22,24]. One case study examined an extended
protocol, but the optimized controller still resulted in higher metabolic cost than during walking with
a generic controller. We also examined a controller chosen by the participant via conversational
tuning, but this resulted in higher metabolic rate than all comparison controllers. Finally, in one case
study, we attempted to optimize for preference by allowing the participant to rank controllers, but the
optimized parameters were not preferred in validation.

Since its inception, human-in-the-loop optimization has been successfully used to optimize
behaviour of a range of different exoskeletons for assistance in various gait conditions with different
control architectures [28–32]. Given its success with exoskeletons, it is surprising that HILO failed to
produce meaningful changes in metabolic cost when used to tune the parameters of an ankle-foot
prosthesis controller. There are several reasons why this technique may have failed, which can be
broadly separated into two categories. First, it is possible that optimization decisions that have led to
successes with exoskeletons are not applicable when optimizing prosthesis control. There are
many factors that can affect the optimization, such as the chosen control architecture, optimization
protocol, optimization strategy and cost function. It is possible that further modifications of these
factors would lead to better results. Second, it is possible that inherent differences in user mechanics
and neural control between people with amputation and those without impairment limit the effects of
HILO for prosthetic devices. Similarly, the lack of sensory feedback, differences in learning
mechanisms, or different objective functions of people with amputation could prevent HILO from
being successful.

Although there is a range of decisions that could affect the results of human-in-the-loop optimization,
we can hypothesize which are most influential based on the completed case studies. For example, it is
possible that the control architectures tested were not capable of reducing the participants’ metabolic
cost below that of walking with their prescribed prostheses. However, we tested five different control
architectures, four of which were vastly different from each other. Both the neuromuscular and the
balance controller have previously been successfully used to reduce the metabolic cost of walking
with an active prosthesis [23,25]. In addition, a similar time-based torque controller has been used to
reduce the metabolic cost of walking with exoskeletons [30]. Given this information, it is unlikely that
the controller is the primary reason for the lack of meaningful changes in metabolic cost.

Another factor that could affect the outcome of optimization is the experimental protocol. The
protocols chosen for these case studies were based on those successfully used for HILO with
exoskeletons with a control architecture similar to the five-parameter time-based torque controller.
Past studies showed that for a four-parameter optimization, four generations with eight different
conditions of 2 min each resulted in convergence for nine out of 11 participants [30]. In the case
studies presented here, the protocol for the four-parameter optimization was the same as previous
studies, with additional generations added for additional parameters and fewer control laws tested for
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fewer parameters. We also examined an extended protocol, where the amount of time spent in each
control law was increased from 2 to 10 min, in order to determine the effect of additional adaptation
time and verify that the metabolic fit predicted at 2 min was similar to the average metabolic rate at
the end of 10 min. Although there were differences in metabolic rate between the initial 2 min
metabolic fit and the metabolic average of the final 2 min, the majority of the top three control laws
predicted to result in the lowest metabolic rate at 2 min were the same as those measured at 10 min.
Additionally, if a lack of adaptation time was the sole reason that HILO did not succeed, we would
still expect to see a consistent reduction in metabolic cost or metabolic cost variability, which was not
observed experimentally (see supplemental figures for examples of metabolic rate over the course of
the optimization protocol). Nevertheless, it is possible that better results might be achieved with
additional training, continued optimization or other protocol improvements.

The optimization algorithm is another factor that could affect the effectiveness of optimization. All case
studies presented here relied on a covariance matrix adaptation evolution strategy (CMA-ES) to calculate
the next generation of control laws. This strategy has previously been shown to be robust to measurement
noise and successful in high-dimensionality spaces. Because CMA-ES does not use information from
previous generations, it is also resistant to bias that can occur as a result of adaptation over time. Other
optimization strategies such as gradient descent [28,29] or Bayesian optimization [31] have also been
effectively used for HILO of exoskeletons to optimize one or two parameters simultaneously. However,
gradient descent is sensitive to measurement noise, while Bayesian optimization is not robust to human
adaptation over time, as it uses all information from previous trials instead of evaluating each
generation independently. It is possible, however, that using a different optimization strategy could be
more effective, especially for control architectures with fewer parameters.

Finally, it is important to consider the cost function when defining an optimization problem. In this
case, we must take into account two cost functions: the cost function that we choose for the optimizer and
the cost function used by the neuromuscular controller of the human during movement. The majority of
prior HILO work uses the minimization of metabolic rate as the cost function, both because it is easily
quantifiable and because humans walking with exoskeletons have been shown to minimize metabolic
rate in real time [38]. However, people with amputation, compared with unaffected individuals, may
have additional constraints affecting their gait. For example, individuals with amputation tend to fall
more frequently [3] and list socket discomfort as a major limitation [39]. Perhaps because of the
additional importance of stability and comfort, people with amputation adapt gait patterns with a
similar energy cost independent of prosthesis behaviour. We attempted to address this issue with two
case studies: one where we allowed the participant to choose their own device parameters through
conversational tuning, and one where we changed the cost function of the optimization to maximize
participant preference. However, the conversationally tuned controller resulted in higher metabolic
cost than all other controllers tested in validation, and the controller chosen by the optimization for
preference was not preferred in validation. This suggests that preference is not highly correlated with
energy expenditure for people with amputation. Future work could examine alternative cost functions
such as walking speed or stability.

Independent from the optimization variables that can affect the results, it is possible that the contrast
between the success of HILO for exoskeletons and the failure of HILO for active prostheses is related to
the differences between participant groups. At the joint level, people with amputation lack both sensing
and direct control of the joint at which optimization occurs. It is possible that one or both of these
characteristics is necessary in order to learn during optimization. For example, when undergoing HILO
with exoskeletons, participants are able to feel the timing and magnitude of torque applied by the
exoskeleton and can adjust their gait accordingly, either to take advantage of the additional power
provided by a ‘good’ control law or to mitigate the negative effects of a ‘bad’ control law. By contrast,
proprioception in people with amputation is altered, since sensory information is not available directly
from the limb. Although people with amputation can fairly precisely sense the stiffness of their
prosthesis, sensory information must come from interactions at the socket and whole-body
proprioception of resulting knee and hip kinematics [40]. It is possible that additional sensory feedback
or direct control would improve adaptation and gait modification, and in turn reduce metabolic cost.

Inherent whole-body level differences between people with amputation and those without
impairment could also contribute to the differences in gait adaptation in response to assistive devices.
For example, it is possible that individuals with amputation use different learning mechanisms, as
neural circuitry associated with motor learning could be re-arranged in complex ways in response to
limb loss. Although learning may be possible even with the lack of sensory feedback, it may occur on
a much longer timescale than in people without impairment. Specifically, past studies that showed
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successful reductions in metabolic cost in response to an active ankle-foot prosthesis have relied on a long
adaptation protocol [41]. One limitation of device emulators is that they are constrained to the lab, which
limits the length of time and the environment in which participants are allowed to adapt. Both this lack of
adaptation time and the differences in prosthesis design could account for the case study results
demonstrating that metabolic cost was always lowest with the participants’ passive prosthesis. In
addition, after limb loss, individuals re-learn how to walk using their passive prosthesis with specific
guidance from prosthetists and physical therapists. It is possible that this training interferes with
adaptation to a new device. Or perhaps the ‘forced exploration’ that comes from trying many diverse
conditions, which is shown to be beneficial in pushing a person towards the metabolic minimum
while walking with exoskeletons [42], is actually harmful to the learning process of people with
amputation because ‘bad’ conditions force the participant to prioritize stability over metabolic cost
minimization, which could result in increased metabolic cost.

There are a myriad of reasons why HILO may be more challenging when applied to powered
prostheses instead of exoskeletons. Although the results of our case studies showed that HILO does
not result in meaningful changes in metabolic cost for people walking with an active ankle-foot
prosthesis, it is possible that HILO can be further adapted to be more effective for patient populations.
One limitation of our studies is that each experiment contained a limited number of participants and
should not be used to make broad conclusions. However, our results can be used to guide future
directions for new HILO experiments with active prostheses. Ultimately, HILO has the potential to be
extremely beneficial in developing effective control of powered prostheses for people with amputation.
Powered prostheses, if controlled properly, could reduce falls, lower user energy expenditure, increase
walking speed, and decrease the prevalence of osteoarthritis in the intact limb. We believe the results
of our case studies provide a good starting point for future experiments aiming to improve powered
prosthesis control through human-in-the-loop optimization.

4. Methods
4.1. Participants
Five participants with unilateral transtibial amputation (N = 5, 4 male and 1 female; age = 37.8 ± 14.1
[26–60] years; body mass = 77.8 ± 8.99 [65.8–90.7] kg; height = 171.2 ± 4.44 [167–178] cm; time since
amputation = 13.6 ± 10.4 [3–26] years; mean ± s.d.) took part in the case studies (table 2). An overview
of the case studies completed by each participant can be found in table 1. All individuals provided
informed consent prior to participation. All study protocols were approved by the Institutional
Review Board of either Carnegie Mellon University or Stanford University, depending on the location
at which the study took place.

4.2. Hardware
In all case studies, participants walked on a treadmill (Bertec, OH, USA) while using either an ankle-foot
prosthesis emulator or their prescribed prosthesis. Walking speed for each case study was determined by
participant fitness and duration of the study (table 1). The ankle-foot prosthesis emulator consisted of off-
board actuation and control hardware attached to a prosthesis end-effector (HumoTech, PA, USA).
Flexible Bowden-cable tethers transmitted mechanical power to the prosthesis. Sampling of the strain
gauges and encoders of the device, as well as control commands, were implemented at 1000 Hz. All
studies used one of two different ankle-foot prosthesis end-effectors (figure 5b). The first was a 1 d.f.
device with a mass of 0.96 kg capable of 41° of ankle plantarflexion, 21.7° of ankle dorsiflexion, 190 Nm
of ankle plantarflexion torque, and 5N m of ankle dorsiflexion torque (HumoTech, PA, USA). The
second end-effector was a 3 d.f. device with an actuated heel and two toe digits and a mass of 1.2 kg.
This device could generate 19° of ankle plantarflexion and dorsiflexion, 140 Nm of ankle plantarflexion
torque, and 100 Nm of ankle dorsiflexion torque [43]. The device used for each case study can be
found in table 1.

4.3. Metabolic rate calculations
To determine user metabolic rate, respirometry data was collected using a Quark CPET metabolic cart
(Cosmed, CA, USA). Metabolic rate was calculated using standard empirical equations [44]. In
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validation, net metabolic rate was calculated by subtracting standing metabolic power from the metabolic
cost of all other conditions and normalizing by body mass. During optimization, most control laws were
tested for 2 min of walking. As this is not typically sufficient time for metabolic rate to reach a steady
state, we fit an exponential curve to the metabolic rate and used the asymptote as the estimate of
steady-state metabolic rate, as previously described [30]. One extended protocol tested each control
law for 10 min of walking.

4.4. Optimization trials
During optimization, user metabolic rate was measured while walking on the treadmill wearing an ankle-
foot prosthesis emulator with changing control laws. A covarience matrix adaptation evolution strategy
(CMA-ES) was used to identify the control parameters, as described in Zhang et al. [30]. The goal of the
optimizations was either to minimize metabolic rate or maximize subject preference. In the optimization
protocol, a number of control laws are evaluated in each generation, after which the optimizer
determines a new distribution from which to select the control laws for the following generation. The
number of generations, number of control laws per generation, duration of each control law, walking
speed, and the number of control laws tested per continuous walking bout for each case study
minimizing metabolic rate is given in table 1. The protocol for the case study in which user preference
was optimized is described in further detail in the preference optimization subsection. Prior to starting
optimization trials and after every break, participants were allowed to acclimate to walking in the ankle-
foot prosthesis emulator controlled using a standard spring controller. The acclimation time was one
minute for the case studies using the heel stiffness controller and the four-parameter time-based torque
controller with the standard protocol, and 2min for all other case studies.

4.5. Validation trials
At the end of optimization, validation trials were performed in order to compare performance of the
optimized controller with one or more of the following conditions: a generic controller, the participant’s
prescribed prosthesis, and a conversationally tuned controller. The purpose of the comparison between

prosthesis
end-effector

motors
computer

data
cable

universal emulator

1 d.f. device 3 d.f. device

ankle-foot prosthesis end-effectorsexperimental set-up(a) (b)

Bowden cables

Figure 5. (a) In all case studies, participants walked on a treadmill in a universal emulator system that consisted of an ankle-foot
prosthesis end-effector powered by off-board motors and controlled by a computer. (b) Each case study used one of two different
ankle-foot prosthesis end-effectors: a 1 d.f. device or a 3 d.f. device.

Table 2. Demographics for the five subjects with unilateral transtibial amputation that participated in the case studies. Note that
some participants took part in more than one case study, as described in table 1.

subject sex age body mass (kg) height (cm)

side of

amputation

cause of

amputation

time since

amputation (years) prescribed prosthesis

1 M 26 90.7 170 L Congenital 26 Ossur VariFlex XC

2 M 26 65.8 168 L Traumatic 22 Ossur VariFlex Modular

3 F 35 74.8 167 L Traumatic 3 Ossur ProFlex LP

4 M 60 78.0 173 R Dysvascular 4 Ossur ProFlex LP

5 M 42 79.8 178 R Traumatic 13 Fillauer Wave
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the generic controllerwas to compare the optimized parameters to somewhat arbitrarily selected parameters.
In order to make these conditions comfortable for the subject, the chosen parameter values for the generic
controllers were loosely based on previous literature of similar controllers. Following a standing baseline
measurement of energy expenditure, validation conditions were tested twice in a double reversal order to
mitigate the effects of adaptation or drift, except the prescribed prosthesis condition was tested only once
(with the exception of the balance controller case studies, where it was tested twice). Each validation trial
lasted 5min for the case study with the heel stiffness controller, 10min for the case study with the
extended protocol of the four-parameter time-based torque controller, and 6min for all other case studies
optimizing for metabolic rate. The metabolic rate for each trial was found by averaging the last 2 min of
metabolic data. The average metabolic cost of the two validation trials per condition, normalized to user
mass, determined the final metabolic cost for that condition.

4.6. Control parametrization

4.6.1. Heel stiffness controller

This case study used the 3 d.f. ankle-foot prosthesis end-effector. The two toes of the device were connected
to passive compression springs, while the heel was the only actively controlled digit. The stiffness of the
compression springs was chosen by the participant based on comfort. Heel torque was dictated by a
control architecture dependent on stiffness and work constant parameters, as well as heel angle. Heel
angle is defined in the sagittal plane as the angle from the plane perpendicular to the prosthesis pylon
to the heel end-effector, as described in [43] When the heel angle is less than 0.2 rad, the heel provides a
minimum torque of 1:5 Nm. As the heel angle increases above this threshold, stiffness and work
constant coefficients dictate the heel torque during loading and unloading. The resultant torque profile
can be visually displayed as a parallelogram in the heel torque and angle space, with two sides of the
parallelogram corresponding to the loading phase of the heel and the other two sides corresponding to
the unloading phase (figure 1a). The bottom left point of the parallelogram is located at 0.2 rad and
1:5 Nm and is the point of transition from minimal torque behaviour at small heel angles to the higher
torques at larger angles. The top right point of the parallelogram lies at a heel angle of 0.7 rad, and
along a line that begins at the bottom left point of the parallelogram and has a slope equal to the
stiffness parameter. This stiffness parameter can vary from 50 to 130 Nm rad−1.

While stiffness dictates the torque provided at 0.7 rad, the work constant determines the trajectory the
torque follows in order to reach this value. Specifically, the work constant affects the top left and bottom
right points of the parallelogram, which are defined using a second axis of the parallelogram that
transects both points. This second axis is determined such that the heel stiffness does not exceed
130 Nm rad−1 at any point in the trajectory. Therefore, the top left point of the parallelogram occurs at
the point where a line starting at the bottom left of the parallelogram with a slope of 130 Nm rad−1

intersects a horizontal line with the same torque value that occurs at 0.7 rad (dependent on the
stiffness parameter). The bottom right point of the parallelogram occurs at the intersection of a line
which originates at the top right point of the parallelogram and has a slope of 130 Nm rad−1 with a
horizontal line at the minimal torque value of 1:5 Nm.

After finding the second axis of the parallelogram, the work constant serves as a scaling factor that
determines how far along this axis the bottom right and top left points of the parallelogram are located.
The work constant is also used to distinguish which points corresponds to the loading and unloading
phases. A positive value of the work constant indicates that work is injected during the gait cycle, so
the heel produces more torque in the unloading phase as the heel is pushing off than during the
loading phase. A negative work constant indicates that the heel produces less torque in the unloading
phase, resulting in net negative work over the gait cycle. In addition, the magnitude of the work
constant is used to determine the effective ‘width’ of the parallelogram. A work constant with a value
of 0 results in no width, and the torque profile becomes a function of heel angle with a given stiffness
for both the loading and unloading phases. A work constant with a higher magnitude results in a
greater difference between the torque magnitude in the loading phase and the torque magnitude in
the unloading phase.

4.6.2. Neuromuscular controller

The neuromuscular controller adapted the active plantarflexor component of the controller described in
Eilenberg et al. [34] (figure 2a). We varied three model parameters during optimization (Fmax, eref and Kff).

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:202020

12
 D

ow
nl

oa
de

d 
fro

m
 h

ttp
s:/

/ro
ya

lso
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 M

ay
 2

02
1 



The parameters Fmax and eref are analogous to maximum muscle isometric force and a tendon strain
multiplier, respectively, with Kff acting as a feed-forward gain. Parametrizing the controller in such a
way allowed for large variability in the resulting behaviour of the ankle-foot prosthesis.

4.6.3. Balance controller

In this control architecture, prosthesis inversion or eversion torque was held constant during each
stance phase and was calculated by adding a nominal torque parameter τnom to a correctional term
determined by multiplying a gain K by centre of mass velocity deviations. To implement this
controller, we made two modifications to the balance controller previously described in Kim et al.
[25] (figure 3a). First, we measured deviations of centre of mass velocity instead of centre of mass
acceleration. Centre of mass velocity was determined using two string potentiometers attached to
the participant’s waist and grounded to the treadmill handlebars. Since the side-to-side distance of
the treadmill is known, we could calculate the centre of mass of the participant with additional
information from the potentiometers. By differentiating the centre of mass position, we found the
centre of mass velocity. Second, prior work relied on an instrumented treadmill to calculate the
centre of mass deviation at the moment of intact limb toe-off, used to determine the ankle torque to
be applied during the subsequent stance phase of the prosthetic foot. In this case study, we
computed the centre of mass deviation when the prosthesis achieved foot flat due to a lack of an
instrumented treadmill.

4.6.4. Time-based torque controller

Five parameters defined the torque profile of the time-based torque controller: device stiffness, peak
torque magnitude, time of peak torque, rise time to peak torque and fall time after peak torque. Peak
time, rise time, fall time and peak torque parameters are identical to previous work with exoskeletons
[30]. For our work with the ankle-foot prosthesis, we also added an underlying baseline stiffness of
the device (P1), creating a total of five optimization parameters (figure 4a). Although all parameters
could be modified, three case studies utilized a controller where the peak torque was fixed at
0:5 Nmkg�1, and only the other four parameters were optimized.

4.7. Preference optimization protocol
This case study focused on modifying the parameters of the four-parameter time-based torque controller
in order to maximize subject comfort, as opposed to minimizing metabolic cost. The optimization
protocol included six generations with five control laws evaluated per generation. However, instead of
experiencing each control law only once, the participant experienced each control law multiple times
for 23 s each. Starting with the presentation of the second control law, the participant was asked to
rate the current control law as better or worse than the previous one. Control laws were presented in
an order such that all five were directly compared with each other (12345135241), and a total
preference score for each control law was determined at the end of the generation. This was then used
to determine the distribution of the parameter set for the next generation. Three controllers were
evaluated in validation: the optimized controller, a generic controller, and a controller with the
parameters used for the optimization seed. To allow for comparison of all three controllers with one
another, validation consisted of 5 min of continuous walking, during which time the participant was
allowed to request any of the three controllers at any time. At the end of the 5min trial, the
participant ranked all three in order of preference.
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