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ABSTRACT: The characteristics of El Niño–Southern Oscillation (ENSO) phase-locking in observations and CMIP5 and

CMIP6 models are examined in this study. Two metrics based on the peaking month histogram for all El Niño and La Niña
events are adopted to delineate the basic features of ENSO phase-locking in terms of the preferred calendar month and

strength of this preference. It turns out that most models are poor at simulating the ENSO phase-locking, either showing

little peak strength or peaking at the wrong seasons. By deriving ENSO’s linear dynamics based on the conceptual recharge

oscillator (RO) framework through the seasonal linear inverse model (sLIM) approach, various simulated phase-locking

behaviors of CMIP models are systematically investigated in comparison with observations. In observations, phase-locking

is mainly attributed to the seasonal modulation of ENSO’s SST growth rate. In contrast, in a significant portion of CMIP

models, phase-locking is codetermined by the seasonal modulations of both SST growth and phase transition rates. Further

study of the joint effects of SST growth and phase transition rates suggests that for simulating realistic winter peak ENSO

phase-locking with the right dynamics, climate models need to have four key factors in the right combination: 1) correct

phase of SST growth rate modulation peaking at the fall, 2) large-enough amplitude for the annual cycle in growth rate, 3)

small amplitude of semiannual cycle in growth rate, and 4) small amplitude of seasonal modulation in SST phase

transition rate.

KEYWORDS: Dynamics; ENSO; Sea surface temperature; Thermocline; Climate models; Interannual variability;

Seasonal cycle

1. Introduction

El Niño–Southern Oscillation (ENSO) is the dominant cli-

matemode of interannual variability in the tropical Pacific with

significant global impacts. ENSO events usually occur during

boreal spring and summer, reach their peak in boreal winter,

and then decay in the spring of the second year. This feature of

preferred peak timing, known as the phase-locking phenome-

non, is still an active subject in ENSO research. Two possible

phase-locking mechanisms have been proposed by previous

studies: 1) the linear mechanism (i.e., the seasonal modulation

of ENSO instability; Philander et al. 1984; Hirst 1986; An and

Wang 2001; Burgers 2005) and 2) the nonlinear mechanism

(i.e., the nonlinear interaction between inherent ENSO cycle

and annual cycle; Jin et al. 1994; Tziperman et al. 1994). Using a

conceptual recharge oscillator (RO) model, Chen and Jin

(2020) investigated these two mechanisms in both unforced

and stochastic forcing scenarios and found that the difference

in phase-locking performance between the nonlinear and lin-

ear mechanisms will be largely smoothed out in the presence of

noise forcing. Stein et al. (2010, 2014) and Chen and Jin (2020)

further demonstrated that ENSO phase-locking is mainly

dominated by the seasonal modulation of ENSO instability. In

Chen and Jin (2020), they proved that the RO model, which

only considers the linear dynamics of ENSO, can reproduce the

main phase-locking features found in observations. The pre-

ferred calendar month of ENSO peak time mainly depends on

the phase and amplitude of the seasonal modulation of the SST

growth rate. In addition, the strength of the phase-locking

preference is controlled by the seasonal mean of SST growth

rate and its seasonal modulation amplitude.

The intensity of the coupled instability, which is responsible

for the evolution of ENSO, varies seasonally. Several factors

could cause strong instability, including high sea surface tem-

perature (SST), location of the intertropical convergence zone

(ITCZ) near the equator (Philander 1983), and strong equa-

torial zonal surface wind, which is accompanied by a large

mean SST gradient, shallow thermocline, and strong upwelling

(Battisti 1988). Together these factors make the instability

strongest during boreal summer to autumn (Philander 1983;

Tziperman et al. 1997), leading to the ENSO events reaching

their peak during boreal winter (Li 1997; Chen and Jin 2020).

Even with these advances in qualitative understanding the

mechanism of ENSO phase-locking, which controls the phase-

locking of ENSO in coupled ocean–atmosphere general cir-

culation models (CGCMs), is still inconclusive. Several studies

found that ENSO phase-locking was not adequately simulated

by most CGCMs (Joseph and Nigam 2006; Wittenberg et al.

2006; Ham et al. 2013). It remains unclear whymost models fail

to simulate phase-locking of ENSO to boreal winter. Zheng

and Yu (2007) linked the boreal summer ENSO phase-locking

in the CGCM to its double ITCZ bias. Ham et al. (2013) found

that ENSO’s summer peak in the GFDL CGCM is due to the

large SST gradient and the thermocline shoaling in the boreal

summer, which enhanced the zonal advection feedback and

thermocline feedback. Ham and Kug (2014) also obtained

similar results for a set of CMIP3 and CMIP5 models. Rashid
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and Hirst (2016) found that incorrect simulation of shortwave

feedback and thermocline feedback caused the wrong peak

month of ENSO phase-locking in the ACCESS model. Several

studies also argued that phase-locking is sensitive to shortwave

feedback (Bellenger et al. 2014; Wengel et al. 2018).

The strong preference for the phase-locking with both El

Niño and La Niña peaking during the winter season is a fun-

damental observed feature of ENSO. The poor simulations in

CMIPmodels imply that these climatemodels do not sufficiently

capture the seasonal modulation of ENSO linear dynamics. A

better understanding of the dynamics of ENSO phase-locking

may lead to improved ENSO simulations in CGCMs.Moreover,

it is essential to have realistic ENSO phase-locking in climate

models for ENSO prediction skill (Jin and Kinter 2009).

Improved simulations of phase-locking by climate models may

improve the skill of ENSOpredictions.We conduct a systematic

evaluation of the current CMIP5 and CMIP6 models in terms of

each model’s linear dynamics for ENSO phase-locking. By de-

riving the linear ENSO dynamics based on the conceptual RO

framework, various state-of-the-art climate models are investi-

gated and compared with observations.

This paper is arranged as follows. Section 2 introduces ob-

servational datasets, climate models, and the methodology

applied in this study. Section 3 discusses the features of ENSO

phase-locking in observations, CMIP models, and linear RO

model simulations using the parameters obtained from the

seasonal linear inverse model (sLIM). By deriving ENSO’s

linear dynamics using the conceptual RO framework through

the sLIM approach, various simulated phase-locking behaviors

of CMIP models are systematically investigated and compared

with observations in section 4. In section 5, the sensitivity ex-

amination using the linear RO model is conducted to investi-

gate the joint effects of SST growth and phase transition rates

in climate models. Section 6 gives a summary and discussion.

2. Data and method

a. The recharge oscillator model

The linear stochastic RO model (Jin 1997a,b; Burgers et al.

2005) can almost perfectly simulate the ENSO phase-locking

features when forced by artificial noise forcing, which is con-

sistent with the view that ENSO phase-locking is mainly at-

tributed to the seasonal modulation of linear dynamics and the

nonlinearity is nonessential (Chen and Jin 2020). Therefore,

we only consider the linear dynamics of RO model as follows:
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whereT and h are the area-averaged eastern equatorial Pacific SST

anomalies (58S–58N, 1508–908W) and western equatorial Pacific

thermocline anomalies (58S–58N, 1208E–1558W), respec-

tively. The selection of the T and h regions is based on the first

mode of empirical orthogonal function (EOF) analysis of SST

anomalies and associated thermocline anomalies, respec-

tively. In observations and most CMIP models, there are

significant SST anomalies in the Niño-3 region and related

thermocline anomalies over 58S–58N, 1208E–1558W (not

shown). The terms R and r are the growth rate, and F1 and F2

are the phase transition rate; sT and sh are the noise ampli-

tude, wT(t) and wh(t) are independent white noise term, and

jT and jh are normalized Gaussian distributed red noise

with a decay time scale of 1/mT and 1/mh, respectively. The

choice of parameters is determined from the observations and

CMIP models using the seasonal linear inverse model

(sLIM). The amplitude of noise (sT and sh) is estimated as

the standard deviation of the residual from the RO system

after sLIM. All RO simulations include the mean value of

parameters. All the simulated results are from the last 20 000

years of the 21 000-yr model run with a 5-day time step.

b. The seasonal linear inverse model

The linear inverse model (LIM; Penland and Sardeshmukh

1995) method has been widely used for exploring the dynamics

of ENSO (Vimont et al. 2014; Newman et al. 2009, 2011;

Penland and Sardeshmukh 1995). Here we consider the fol-

lowing dynamics system:

dX

dt
5L(t)X1 j . (5)

This system can be used as a linear approximation for the dy-

namics of observedX(t) with the L operator and noise j. In the

Earth climate system, the seasonal cycle is one of the critical

components of the climate background in addition to climate

mean state. Thus, it is often essential to consider the seasonal

cycle in the linear operator L:

L5L
0
1L

a , (6)

where L0 and La indicate the mean and seasonal cycle of the L
operator, respectively. However, including a seasonal cycle

into Lmeans the degrees of freedom increase significantly and

often require muchmore data. For example, ifL(t) is examined

using a monthly time interval, 12 matrices are needed to re-

solve the annual cycle of L into a monthly time scale. Here, we

propose an approximate approach, called the seasonal linear

inverse model (sLIM), to consider the modulations of seasonal

cycles without increasing degrees of freedom. Let us consider

the following approximation for the linear and annual periodic

operator:

L
a
5Lc

1 cos(vt)1Ls
1 sin(vt)1Lc

2 cos(2vt)

1Ls
2 sin(2vt)1Lc

3 cos(3vt)1Ls
3 sin(3vt)1 . . . ,

(7)

where v 5 2p/(12 months). By applying a perturbation

method, the subsequent solution L operator is expanded as

L5L(0) 1L(1) 1L(2) 1 . . . . The details of our procedures are

described in the appendix. This general method can be applied

to ENSO or other elements, such as the MJO. Because the
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ENSO system’s seasonal modulation beyond the semiannual

cycle is so weak, we only consider the mean state, annual cycle,

and semiannual cycle in this study. Compared to the conven-

tional method, which estimates the annual cycle of L based on

each calendar month, sLIM can obtain the mean and seasonal

cycle of theL operator with limited data. In this study, the state

vector X is defined as

X5

�
T

h

�
, (8)

where T and h are the interpolated pentad (5-day) area-

averaged eastern equatorial Pacific SST anomalies and west-

ern equatorial Pacific thermocline anomalies, respectively, as

defined in Eqs. (1) and (2).

c. Observations and CMIP models

The observed SST used in this study is the monthly Hadley

Centre Global Sea Ice and Sea Surface Temperature dataset

(HadISST; Rayner et al. 2003). The thermocline depth (D20)

is obtained from the Simple Ocean Data Assimilation

(SODA) reanalysis, version 2.2.4 (Giese and Ray 2011).

We assess simulated ENSO behavior of phase-locking in

CGCMs taking part in phases 5 and 6 of the Coupled Model

Intercomparison Project [CMIP5 (Taylor et al. 2012) and

CMIP6 (Eyring et al. 2016)]. The monthly SST and D20 are

from 47 CMIP5 and 43 CMIP6 models historical simulations

(models are listed in Table 1). Only one ensemblemember for

each model is used (e.g., the r1i1p1 integration for CMIP5

and r1i1p1f1 for CMIP6). Each historical simulation was in-

tegrated from a preindustrial control simulation spinup ex-

periment and then forced by solar, volcanic, aerosol, and

greenhouse gas data from 1850 to 2005 for the CMIP5 his-

torical experiments and from 1850 to 2014 for the CMIP6

historical experiments.

In this study, we analyze all the observed and simulated

output from 1871 to 2005 to coincide with the period of

observations and CMIP dataset. The anomalies here are

based on the climatology from 1871 to 2005 and are

detrended by subtracting the linear trend. The El Niño (La

Niña) events in the observations and models are defined as

occurring when the 3-month running averaged Niño-3 index

is greater than 1.0 standard deviations (less than 21.0 stan-

dard deviation).

d. Metrics of ENSO phase-locking

The seasonal variance of SST anomaly and phase histogram

of SST anomaly peak time accounting to the calendar month

are two commonly usedmeasures for the ENSOphase-locking.

Although both methods can capture the preferred peak month

of ENSO phase-locking, only the peak phase histogram mea-

sure correctly describes the strength of phase-locking and the

asymmetry of phase-locking between El Niño and La Niña
(Chen and Jin 2020). The calendar month of the ENSO peak is

defined as the maximum (minimum) peak of a 3-month

running-averaged Niño-3 index within a 10-month time win-

dow to avoid double peaks in a single El Niño (La Niña) event.
In this study, the 3-month smoothed histogram of ENSO peak

phase is used to characterize phase-locking behaviors. Two

metrics of ENSO phase-locking are adopted here to delineate

the basic phase-locking features in terms of the most preferred

peak month and strength of its preference. The metric of the

preferred calendar month of phase-locking (up) is defined as

the calendar month at which histogram has its maximum peak.

The metric for the strength of ENSO’s phase-locking prefer-

ence (us) is defined as

u
s
5
4

3

�
u
max

2
1

4

�
, (9)

TABLE 1. List of 47 CMIP5models and 43 CMIP6models analyzed

in this study.

No. CMIP5 No. CMIP6

1 ACCESS1.0 48 ACCESS-CM2

2 ACCESS1.3 49 ACCESS-ESM1-5

3 BCC-CSM1.1 50 AWI-CM-1-1-MR

4 BCC-CSM1.1-M 51 AWI-ESM-1-1-LR

5 BNU-ESM 52 BCC-CSM2-MR

6 CanESM2 53 BCC-ESM1

7 CCSM4 54 CAMS-CSM1-0

8 CESM1-BGC 55 CAS-ESM2-0

9 CESM1-CAM5 56 CESM2

10 CESM1-CAM5.1-FV2 57 CESM2-FV2

11 CESM1-FASTCHEM 58 CESM2-WACCM

12 CESM1-WACCM 59 CESM2-WACCM-FV2

13 CMCC-CESM 60 CIESM

14 CMCC-CM 61 CMCC-CM2-SR5

15 CMCC-CMS 62 CanESM5

16 CNRM-CM5 63 E3SM-1-0

17 CNRM-CM5.2 64 E3SM-1-1

18 CSIRO-Mk3.6.0 65 E3SM-1-1-ECA

19 EC-EARTH 66 EC-Earth3

20 FGOALS-g2 67 EC-Earth3-Veg

21 FGOALS-s2 68 EC-Earth3-Veg-LR

22 FIO-ESM 69 FGOALS-f3-L

23 GFDL-CM2p1 70 FGOALS-g3

24 GFDL CM3 71 FIO-ESM-2-0

25 GFDL-ESM2G 72 GFDL-CM4

26 GFDL-ESM2M 73 GISS-E2-1-G

27 GISS-E2-H 74 GISS-E2-1-G-CC

28 GISS-E2-H-CC 75 GISS-E2-1-H

29 GISS-E2-R 76 INM-CM4-8

30 GISS-E2-R-CC 77 INM-CM5-0

31 HadGEM2-AO 78 IPSL-CM6A-LR

32 HadCM3 79 MCM-UA-1-0

33 HadGEM2-CC 80 MIROC6

34 HadGEM2-ES 81 MPI-ESM-1-2-HAM

35 IPSL-CM5A-LR 82 MPI-ESM1-2-HR

36 IPSL-CM5A-MR 83 MPI-ESM1-2-LR

37 IPSL-CM5B-LR 84 MRI-ESM2-0

38 MIROC-ESM 85 NESM3

39 MIROC-ESM-CHEM 86 NorCPM1

40 MIROC5 87 NorESM2-LM

41 MPI-ESM-MR 88 NorESM2-MM

42 MPI-ESM-LR 89 SAM0-UNICON

43 MPI-ESM-P 90 TaiESM1

44 MRI-CGCM3

45 MRI-ESM1

46 NorESM1-M

47 NorESM1-ME
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where umax indicates the sum of the 3-month highest values of

the histogram centered on up. The value of us is between 0 and

1, where 0 indicates no locking and 1 complete locking within a

3-month window. Chen and Jin (2020) defined a metric of

sharpness of the histogram to evaluate the strength of phase-

locking preference and it is highly correlated with the metric

of phase-locking strength us; however, it is easier and more

straightforward to evaluate the strength of phase-locking

preference using us.

3. Features of ENSO phase-locking in observations and
CMIP models

a. Observations and CMIP models

In observations, ENSO events have a strong preference for

phase-locking and its preferred peak times tend to occur to-

ward the end of the calendar year from November to January,

where the seasonal cycle of ENSO’s SST growth rate (R)

transitions from positive to negative (Fig. 1a). However, most

climate models fail to simulate ENSO phase-locking and sea-

sonal modulation of R (Fig. 1b and SFig. 1 in the online sup-

plemental material). Moreover, in observations, the seasonal

modulation of R is dominated by the annual cycle and the

semiannual component is much smaller; while in many climate

models, the modulation ofR has a strong semiannual cycle and

plays a secondary role against the annual cycle (SFig. 1).

According to the preferred peak month up, climate models

simulated diverse peak calendar month for ENSO phase-

locking, and only about one-third of the models simulate

ENSOpeaking in boreal winter (Figs. 2a,b). For the strength of

phase-locking preference us, most models are weak compared

with observations (Figs. 2c,d). It is not surprising that there is

only a weak phase-locking preference in CMIP5 and CMIP6

ensemble (Fig. 1b) and the seasonal variation of R is also weak

in many models (SFig. 1). The failure of the climate models’

simulation of ENSO phase-locking raises the question of why

models are doing so poorly and what controls ENSO’s phase-

locking.

b. Linear RO model simulations

As the observed properties of ENSO phase-locking can be

simulated in a linear ROmodel (Chen and Jin 2020), we first use

the sLIM approach to derive the linear dynamics of ENSO [Eqs.

(1) and (2)] and then force the RO model by an artificially gen-

erated noise forcing [Eqs. (3) and (4)]. This linear stochastic

model does a good job of reproducing the ENSO phase-locking

for observations (Fig. 3a) and CMIPmodels (Fig. 3e and SFig. 2).

Three sensitivity RO simulations are considered here to examine

the effects of the seasonal modulation of RO parameter: 1) both

seasonal modulations of SST growth rate and phase transition

rates are considered (RO-T), 2) seasonal modulation of SST

growth rate only (RO-R, shown in SFig. 3), and 3) seasonal

modulation of SST phase transition rate only (RO-F1, shown in

SFig. 4). The histograms of phase-locking for RO-T simulation

(Figs. 3b,f) are almost the same as that for observations and

complete RO simulation (Figs. 3a,e), indicating that phase-

locking is primarily attributed by the seasonal modulations of

SST growth rate (R) and phase transition rate (F1), while the

thermocline growth rate (r) and phase transition rate (F1) con-

tribute little to phase-locking.

In observations the effect of F1 on phase-locking (Fig. 3d) is

much smaller compared to the effect ofR (Fig. 3c). This implies

that ENSO’s phase-locking is mainly dominated by the sea-

sonal modulation of R in observations (Stein et al. 2010, 2014;

Chen and Jin 2020). However, in most climate models, the

seasonal modulation of F1 is larger than that in observations

and the maximum of F1 appears in June, resulting in the ap-

pearance of the preferred peak month of the histogram asso-

ciated with the modulation of SST phase transition rate during

boreal springtime (Fig. 3h and SFig. 4). The fact that the effect

ofF1 is equal or greater (Fig. 3h and SFig. 4) than the effect ofR

(Fig. 3g and SFig. 3) in most climate models suggests that

ENSO phase-locking is codetermined by the seasonal modu-

lations ofR and F1. That is to say, in some climate models, their

winter peak phase-locking is induced by the strong seasonal

modulation of SST phase transition rate (F1) with unrealistic

SST growth rate modulation (R). The joint effects of the SST

FIG. 1. Peak phase histogram of ENSO phase-locking (bars) and SST growth rate (curves with dots) for

(a) observations and (b) ensemble mean of CMIP5 and CMIP6 models. The vertical lines and shading in

(b) indicate the minimum and maximum values of the histogram and growth rate, respectively. The mean of SST

growth rate is removed.
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growth and phase transition rates will be discussed later (see

section 5b).

4. A linear dynamics of ENSO phase-locking in CMIP
models

In this section, two basic metrics based on the peak phase

histogram for all El Niño and La Niña events are used to

evaluate ENSO’s phase-locking characteristics in climate

models. First, all 90 models are divided into two groups ac-

cording to the preferred peak month of the histogram up

(Figs. 2a,b). One group has preferred peaks in boreal winter

(November–January) and another group peaks in other sea-

sons. Next, these groups are subdivided into three subgroups

based on the strength of ENSO phase-locking preference us

(Figs. 2c,d). Strong phase-locking subgroups are defined as

FIG. 2. (top) Preferred peakmonth of phase-locking for (a) CMIP5 and (b) CMIP6, and the strength of phase-locking preference for (c)

CMIP5 and (d) CMIP6. (bottom) The number of models for different peakmonth or strength. The observed peakmonth and strength are

indicated as triangle marker in the bottom panels.

FIG. 3. As in Fig. 1, but for the (a),(e) RO simulation, (b),(f) RO-T simulation, (c),(g) RO-R simulation, and (d),(h) RO-F1 simulation.

The curves with dots indicate the SST growth rate in (c) and (g) and SST phase transition rate in (d) and (h). The vertical lines and shading

indicate the minimum andmaximum values of the histogram and growth rate/phase transition rate, respectively. The mean of SST growth

rate and phase transition rate are removed.
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having strengths larger than 0.35. Medium and weak phase-

locking subgroups have strengths between 0.15 and 0.35 and

strengths smaller than 0.15, respectively. According to the

above grouping conditions, 34% of CMIP5 models (16 models

out of 47) and 47% of CMIP6 models (20 models out of 43)

simulate ENSO peaking in boreal winter. In this group of

models, about 40% of models (6 models out of 16 CMIP5

models, and 8 models out of 20 CMIP6 models) have the same

phase-locking strengths as observations (strong phase-locking

subgroup). Only about 15% of climate models simulated ob-

served winter ENSO phase-locking with realistic strengths and

the performance of the CMIP6 models (19%) in simulating the

strong winter peak ENSO phase-locking is better than the

CMIP5 models (13%).

Nevertheless, as mentioned in previous results, in most cli-

mate models, the influence of the SST phase transition rate F1

is more robust than that of SST growth rate R, which means

that the determining dynamics of phase-locking differs from

observations. Therefore, the contributions of R and F1 in

phase-locking should also be considered as an evaluation

condition. In the winter peak phase-locking group, the models

that exhibit a significant change in seasonal modulation of R

from positive to negative during boreal wintertime will be

classified as the winter peak phase-locking group with appro-

priate dynamics, and the others are called the winter peak

phase-locking groupwith biased dynamics. This classification is

also verified through RO-R simulation (SFig. 3), in which the

preferred histogram peak of RO-R simulation should appear

in boreal wintertime (November–January), meaning that the

winter peak phase-locking is mainly attributed by the SST

growth rate. According to the above analysis, in the group

which simulates winter peak ENSO phase-locking with real-

istic strengths, only six models have the appropriate dynamics.

Therefore, on the basis of the two basic metrics for the ENSO

phase-locking together with the natures of seasonal modula-

tions of ENSO’s SST growth and phase transition rates from

derived linear RO dynamics, CMIP5 and CMIP6 models with

winter peak phase-locking are classified into four groups: 1)

strong winter peak phase-locking with appropriate dynamics

(Win-S-AD), 2) medium winter peak phase-locking with

appropriate dynamics (Win-M-AD), 3) strong winter peak

phase-locking with biased dynamics (Win-S-BD), and 4) me-

dium winter peak phase-locking with biased dynamics (Win-

M-BD). The models of these four groups are listed in Table 2

and the ensemble means of its peak phase histogram are shown

in Figs. 4 and 5 .

Both the strong and medium winter peak phase-locking

with appropriate dynamics groups (Win-S-AD and Win-M-

AD) have a significant transition of seasonal modulation of R

from positive to negative in boreal wintertime (Fig. 4).

However, for the Win-S-AD (Fig. 4a), the seasonal modula-

tion of R (curves with dots in Fig. 4b) is dominated by the

annual cycle and the semiannual component is much smaller.

In contrast, for the Win-M-AD (Fig. 4d), the modulation of R

(curves with dots in Fig. 4e) has a robust semiannual cycle

compared to Win-S-AD, leading to the weaker strength for

phase-locking. To further discuss the contributions of SST

growth and phase transition rates, the ensemble means of

RO-R andRO-F1 simulations forWin-S-AD andWin-M-AD

are adopted here. For RO-R simulation (Figs. 4b,e), the peak

month of the histogram is also in wintertime, which means

that the preferred calendar month of phase-locking in Win-S-

AD and Win-M-AD are mainly attributed by ENSO’s SST

growth rate. The influence of SST phase transition rate

modulation is less than that of the SST growth rate, but it can

increase the strength of phase-locking (Figs. 4c,f). The larger

contribution of SST phase transition rates in Win-S-AD than

in Win-M-AD is another reason why ENSO phase-locking in

Win-S-AD is stronger.

For the winter peak phase-locking groups in biased dy-

namics (Win-S-BD andWin-M-BD), although their histogram

is similar to the appropriate dynamics groups, there is no sig-

nificant transition of seasonal modulation of R during boreal

winter (curves with dots in Figs. 5b,e). The effect of R (RO-R

simulation) is more inclined to lock the ENSO peak in July–

September (Figs. 5b,e), and the effect of F1 prefers the peak of

histogram occurring in January–March (Figs. 5c,f). For the

models in these groups, F1 has a more considerable influence

and its phase-locking is codetermined by the SST growth and

phase transition rates, which causes ENSO to phase-lock in

TABLE 2. List of CMIP models for strong winter peak phase-locking with appropriate dynamics (Win-S-AD), medium winter peak phase-

locking with appropriate dynamics (Win-M-AD), strong winter peak phase-locking with biased dynamics (Win-S-BD), and medium winter

peak phase-locking with biased dynamics (Win-M-BD). The numbers in parentheses correspond to the model numbers in Table 1.

Group

Win-S-AD Win-M-AD Win-S-BD Win-M-BD

Models (1) ACCESS1.0 (39) MIROC-ESM-CHEM (6) CanESM2 (4) BCC-CSM1.1-M

(16) CNRM-CM5 (54) CAMS-CSM1-0 (9) CESM1-CAM5 (7) CCSM4

(20) FGOALS-g2 (67) EC-Earth3-Veg (56) CESM2 (10) CESM1-CAM5-1-FV2

(32) HadCM3 (68) EC-Earth3-Veg-LR (58) CESM2-WACCM (12) CESM1-WACCM

(70) FGOALS-g3 (61) CMCC-CM2-SR5 (22) FIO-ESM

(89) SAM0-UNICON (71) FIO-ESM-2-0 (28) GISS-E2-H-CC

(88) NorESM2-MM (29) GISS-E2-R

(90) TaiESM1 (60) CIESM

(63) E3SM-1.0

(69) FGOALS-f3-L
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boreal winter. Unlike RO-R simulation of Win-S-AD and

Win-M-AD, the histogram amplitude of RO-R simulation in

Win-S-BD is smaller than that in Win-M-BD. This is because

the phase-locking strengths in these two groups are mainly

determined by the joint effects of SST growth and phase

transition rates, not just the SST growth rate. The details of this

process will be discussed in the next section.

To investigate why some CMIP models reach their peaks in

other seasons rather than in boreal winter, the histograms of

these groups without preferred peaks up in wintertime are

shown in Fig. 6. The preferred peak of phase-locking in

February–April (Fig. 6a), May–July (Fig. 6d), and August–

October (Fig. 6g) showed their transition of seasonal modu-

lation of R from positive to negative in the corresponding

FIG. 4. Peak phase histogram of ENSO phase-locking (bars) and SST growth rate/phase transition rate (curves with dots) for the (a)–(c)

Win-S-AD group and (d)–(f)Win-M-ADgroup, where (b) and (e) are theRO-R simulation and (c) and (f) are theRO-F1 simulation. The

vertical lines and shading indicate theminimum andmaximum values of the histogram and growth rate/phase transition rate, respectively.

The mean of SST growth rate and phase transition rate are removed.

FIG. 5. As in Fig. 4, but for the (a)–(c) Win-S-BD group and (d)–(f) Win-M-BD group.
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season (curves with dots in Figs. 6b,e,h). It is worth noting that

the histogram of RO-R simulation in the August–October

peak group (Fig. 6h) is similar to the RO-R simulation histo-

gram of the Win-S-BD and Win-M-BD groups (Figs. 5b,e),

where the peak of the histogram appears in August. However,

the influence of phase transition rates F1 in the August–

October peak group is relatively small (Fig. 6i), and it cannot

be combined with SST growth rate R to make the preferred

peaks occur in wintertime, such as the Win-S-BD and Win-M-

BD groups.

In summary, in the winter peak phase-locking with appro-

priate dynamics groups (Win-S-AD and Win-M-AD), phase-

locking is mainly attributed by the seasonal modulation of R,

and F1 contributes little to the phase-locking, which is similar

to observations. In contrast, in the winter peak phase-locking

with biased dynamics groups (Win-S-BD andWin-M-BD), the

modulation of R does not regulate ENSO to phase-lock in

boreal winter, and the winter phase-locking is caused by the

combined effect of R and F1. Note that an excessively strong

semiannual cycle of R tends to reduce the strength of phase-

locking or yield unrealistic double peaks. The above results

reveal four key factors that play important roles in achieving

realistic ENSO phase-locking behaviors with the right

dynamics: 1) correct phase of SST growth rate modulation

peaking at the fall; 2) large-enough amplitude for the annual

cycle in the growth rate; 3) amplitude of semiannual cycle in

the growth rate needs to be small; and 4) amplitude of seasonal

modulation in SST phase transition rate needs to be small. In

the next section, we will use the linear ROmodel to investigate

the effects of SST growth and phase transition rate modula-

tions on ENSO phase-locking behaviors.

5. Sensitivity examination in the ideal RO model

a. The dependence of preferred peak and strength of phase-

locking in the RO model

As mentioned previously, in the observations the preferred

peak of histogram occurs when the seasonal modulation of SST

growth rate transitions from positive to negative. To investi-

gate the determinants of the preferred peak month of the

phase-locking in the climate models, the largest negative de-

rivative ofR is chosen as the transition point. If the transition of

R is not clear due to the semiannual cycle, such as the negative

derivative of R has two comparable values, the transition

timing is defined by the annual cycle component of R. The

FIG. 6. As in Fig. 4, but for the (a)–(c) February–April, (d)–(f) May–July, and (d)–(f) August–October groups.
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scatterplot shown in Fig. 7 displays the relationship between

the preferred peak month of the histogram and the month of

the largest negative derivative of R. In observations, the pre-

ferred histogram peak appears at the largest negative deriva-

tive of the R (red circle in Fig. 7a); however, they do not

entirely follow this rule in the climate models (gray dots in

Fig. 7a). In the RO-R simulations that only consider the sea-

sonal modulation in SST growth rate R (Fig. 7b), the preferred

histogram peak occurs near the largest negative derivative ofR

in all climate models, indicating that the influence of F1 is too

strong in most climate models and the preferred peakmonth of

phase-locking is codetermined by the seasonal modulations of

both SST growth and phase transition rates.

Using the RO model framework, Chen and Jin (2020)

demonstrated that the strength of phase-locking preference is

mainly controlled by themean SST growth rate and its seasonal

modulation amplitude. Here, for CMIPmodels, the strength of

ENSO phase-locking preference depends on the amplitude of

the mean SST growth rate (R0), amplitude of the annual cycle

of SST growth rate (Ra), and amplitude of the annual cycle of

SST phase transition rate (F1a) are shown in Fig. 8. There is a

positive correlation between the phase-locking strength andRa

(Fig. 8b) as well as between phase-locking strength and R0

(Fig. 8a). In contrast, the phase-locking strength has little

dependence on F1a (Fig. 8c). This small dependence on phase-

locking strength in climate models is because all of the influ-

ences are combined. If we drop the semiannual component

simulated in the climate models (RO-AC simulation; Fig. 8d),

the correlation between the phase-locking strength and Ra

increases slightly. Further, if we abandon the seasonal modu-

lation of the SST phase transition rate (F1a is set as zero in RO-

AC-noF1a simulation; Fig. 8e), this relationship improves

dramatically. This suggests that F1a could also affect the

strength of phase-locking. Finally, if themean values of theRO

model parameters for each climate models are set to be equal

to the observed values (RO-AC-noF1a_obsL0 simulation;

Fig. 8f), the phase-locking strength has a good relationship with

Ra. The above results reveal that the amplitude of the annual

cycle of SST growth rateRa andmean value of SST growth rate

R0 are crucial for determining the strength of phase-locking

preference in the climate models. The seasonal modulation of

the phase transition rate F1a also impact the strength of phase-

locking, but the effects are much smaller than the seasonal

modulation of the SST growth rate or mean SST growth rate.

b. The joint effect of SST growth rate and phase
transition rate

In this subsection, sensitivity examinations are conducted

using the linear RO model to investigate the joint effects of

SST growth and phase transition rates on the two basic ENSO

phase-lockingmetrics. The dependence of the preferredmonth

of phase-locking and the strength of this preference on the

annual cycle amplitudes and phases of SST growth rate R and

phase transition rate F1 are examined here. Although the im-

pact of the semiannual component is not negligible in most

state-of-the-art climate models, only the annual cycle parts of

seasonal modulations are considered for simplicity. In most

climate models, because the phase of the SST phase transition

rate is similar (SFig. 4), we fix the phase of F1, where the

maximum appears in June and the minimum occurs in

December (Fig. 9). There are no seasonal modulations in the

other coefficients of RO model and the mean value of all co-

efficients is set to the CMIP ensemble mean (The mean values

of R, r, F1, and F2 are set to 20.37 yr21, 2.27 yr21,

0.148Cm21 yr21, and 28.05m 8C21 yr21, respectively).

When considering the dependence of phase-locking strength

on R, the annual cycle amplitude of F1 is set as the ensemble

mean of CMIP models (0.108Cm21 yr21). The increase in the

ENSO phase-locking strength is a consequence of the in-

creased amplitude of the SST growth rate Ra (Fig. 10a). It is

worth noting that the largest strength of phase-locking pref-

erence appears when the phase difference between R and F1 is

about 6 months. For the 6-month phase difference, the sea-

sonal evolutions of the SST growth and phase transition rates

FIG. 7. Scatterplots of the preferred peak month of the histogram and largest negative de-

rivative of the SST growth rate for (a) observations and CMIP models and (b) the RO-R

simulation. The gray dots denote the CMIP models. The red circle and blue cross indicate the

observations and ensemble mean of CMIP models, respectively.
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are shown in Fig. 9 as a solid green curve and black dashed

curve, respectively. The preferred peak months of the histo-

gram due to the independent effect ofR and F1 are indicated as

triangle markers in Fig. 9. The peak of the histogram caused by

the SST growth rate appears when the seasonal modulation of

R transitions from positive to negative, while the preferred

histogram peak generated by the SST phase transition rate

occurs when the seasonal modulation of F1 changes from

negative to positive. The greater phase-locking strength in

6-month phase difference between R and F1 is because the

influences of SST growth and phase transition rates are su-

perimposed in boreal springtime (Fig. 9).

Further, the annual cycle amplitude of R is fitted to the en-

semble mean of CMIP models (0.84 yr21) to study the depen-

dence of phase-locking strength on F1 (Fig. 10b).When seasonal

modulation of R and F1 are out of phase (2–10-month phase

difference), the increase in ENSO phase-locking strength is the

result of an increase in the amplitude of the SST phase transition

rate F1a. However, when R and F1 are in the same phase (phase

difference is 0 to 1 month or 11 months), the strength of phase-

locking will decrease as theF1a increases.WhenR and F1 are out

of phase, the influences ofR andF1 are superimposed (green and

black triangle markers in Fig. 9); however, when R and F1 are in

the same phase, the influences of R and F1 will become out of

phase (blue and black triangle markers in Fig. 9) and there will

be a counteracting effect.

The dependence of preferred ENSO phase-locking peak on

R and F1 is shown in Figs. 10c and 10d. The preferred peak of

phase-locking only depends on the phase of R if Ra is large

enough or F1a is small. For a stronger Ra or smaller F1a, the

preferred phase-locking peak is completely determined by

ENSO’s SST growth rate. The winter preferred peak of the

FIG. 8. The strength of ENSO phase-locking preference depends on the (a) amplitude of mean SST growth rate (R0), (b) amplitude of

the seasonal modulation of SST growth rate (Ra), and (c) amplitude of the seasonal modulation of SST phase transition rate (F1a). (d)–(f)

The dependence of phase-locking strength on the amplitude of the seasonal modulation of SST growth rate for the RO-AC, RO-AC-

noF1a, and RO-AC-noF1a-obsL0 simulations, respectively. Red circle indicates observations.

FIG. 9. Schematic diagram for the sensitivity RO examinations.

The black dashed curve is the seasonal modulation of the SST

phase transition rate. Blue, red, and green curves indicate the

seasonal modulations of SST growth rate for 0-, 3-, and 6- phase

difference with SST phase transition rate, respectively. The pre-

ferred peak months of the histogram due to the independent effect

of SST growth rate and phase transition rate are indicated as tri-

angle markers. The mean of SST growth rate and phase transition

rate are removed.
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histogram appears at the largest negative derivative of R in

winter (circle markers in Fig. 10c). However, when the Ra is

weak or the F1a is strong enough, the preferred peak of phase-

locking depends on the joint effects of seasonal modulation of

SST growth rateR and seasonal change of SST phase transition

rate F1. This means that the winter peak of the histogram may

appear when the largest negative derivative ofR does not occur

in winter (cross markers in Figs. 10c and 9d). The above results

can explain why some models (Win-S-BD and Win-M-BD

groups) have the largest negative derivative of ENSO’s SST

growth rate in July–September but the maximum peak of his-

togram occurs in November–January.

6. Summary and discussion

In this study, the characteristics of ENSO phase-locking in

observations and CMIP5 and CMIP6 models are examined

based on the 3-month running averaged peak phase histogram.

The metric of ENSO phase-locking for the preferred time (up)

is defined as the calendar month in which the histogram has its

maximum peak. The metric of phase-locking strength (us) is

defined as the relative probability derived from the sum of the

3-month highest values of the histogram centered on up as

described in Eq. (9). According to these two basic metrics, the

CMIP5 and CMIP6 models performed poorly in simulating the

ENSO phase-locking with only about one-third of models

simulating ENSO peaking in winter (36 models out of 90).

Even in this group of models, only 40% (14 models out of 36)

have phase-locking strengths comparable with the observa-

tions. Therefore, only about 15% of climate models simulated

observed winter ENSO phase-locking with realistic strengths,

and the performance of the CMIP6models (19%) in simulating

the strong winter peak ENSO phase-locking is better than the

CMIP5 models (13%).

Based on the recharge oscillator model framework, ENSO

linear dynamics were derived through the seasonal linear in-

verse model (sLIM). The phase-locking in observations and

CMIP models is shown to be well reproduced by the linear RO

model with seasonal modulated dynamics. Our results also

suggest that the seasonal modulation of SST growth rate

plays a dominant role in controlling ENSO phase-locking in

the observations, as argued by previous studies (Stein et al.

FIG. 10. (top)The strength of ENSOphase-locking preference depends on the phase difference betweenR and F1

and the (a) amplitude of the annual cycle of SST growth rate (Ra) and (b) amplitude of the annual cycle of SST

phase transition rate (F1a). (bottom) The preferred peak month of phase-locking depends on phase-difference and

the (c) amplitude of the annual cycle of SST growth rate (Ra), and (d) amplitude of the annual cycle of SST phase

transition rate (F1a). The circles indicate both the preferred peak of the histogram and largest negative derivative of

R appear in winter. The crosses represent that the winter peak of the histogram appear when the largest negative

derivative of R does not occur in winter.
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2010, 2014; Chen and Jin 2020). In most climate models, in

contrast, the seasonal modulations of SST phase transition

rate often play an equal or greater role than those of SST

growth rate in controlling simulated behaviors of the

ENSO phase-locking. As a result, simulated the phase-

locking behaviors in climate models are codetermined by

both the seasonal modulation of SST growth rate and phase

transition rate.

According to the two basic metrics for the ENSO phase-

locking, the preferred calendar month of phase-locking and

strength of this preference, together with the natures of sea-

sonal modulations of ENSO’s SST growth and phase transition

rates from derived linear RO dynamics, climate models with

winter phase-locking are classified into four groups, namely 1)

strong winter peak phase-locking with appropriate dynamics

(Win-S-AD); 2) medium winter peak phase-locking with ap-

propriate dynamics (Win-M-AD); 3) strong winter peak phase-

locking with biased dynamics (Win-S-BD); and 4) medium

winter peak phase-locking with biased dynamics (Win-M-BD).

For Win-S-AD and Win-M-AD, phase-locking is mainly con-

trolled by the seasonal modulation of the SST growth rate,

which is the same as the observations. In contrast, inWin-S-BD

and Win-M-BD, ENSO’s phase-locking in boreal winter is

caused by the combined effect of SST growth rate and phase

transition. An excessively strong semiannual cycle of SST

growth rate tends to reduce the phase-locking strength or yield

unrealistic double peaks.

Finally, sensitivity examinations are conducted using the

linear RO model to investigate the joint effects of SST

growth and phase transition rates on the two basic ENSO

phase-locking metrics. The preferred calendar month and

strength of this preference are found to depend on the

combined effects of the amplitudes and phases of SST

growth rate and phase transition rate. Our sensitivity study

suggests that to simulate ENSO phase-locking by the climate

models for the right dynamics, these models must have the

four key factors in a tight combination: 1) correct phase of

SST growth rate modulation peaking at the fall, 2) large-

enough amplitude for the annual cycle in the growth rate, 3)

small amplitude of semiannual cycle in the growth rate, and

4) small amplitude of seasonal modulation in SST phase

transition rate. For the CMIP5 and CMIP6 models, only six

models simulate winter ENSO phase-locking with reason-

able amplitudes achieve ENSO phase-locking similar to

observations (Win-S-AD group), further indicating the dif-

ficulty of climate models to simulate the ENSO phase-

locking using the right dynamics.

The knowledge learned from our analysis and under-

standing gained from ENSO RO dynamics has led us to

narrow down the key factors that control the ENSO phase-

locking. Nevertheless, how these errors in these factors are

related to the biases in climate mean state and its seasonal

cycle biases in both coupled and uncoupled physical pro-

cesses remain to be further delineated. A possible pathway

toward addresses these questions is to further decompose

ENSO’s SST growth and phase transition rates following the

approach advocated by Jin et al. (2006, 2020) such that the

seasonal modulations of these rates will be explicitly related

to biases in climate mean state and its seasonal cycles as well

as the efficiencies of various feedbacks. The modulation of

SST growth rate is determined by dynamical damping,

thermocline feedback, zonal advective feedback, meridional

advective feedback, vertical advective feedback, and ther-

modynamic damping. The modulation of the SST phase

transition rate is controlled by the zonal advective feedback,

meridional advective feedback, vertical advective feedback,

and thermocline feedback. Further progress along this line

of research will be reported in forthcoming papers.
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APPENDIX

Seasonal Linear Inverse Model

Considering the following dynamics system:

dX

dt
5L(t)X1 j , (A1a)

L5L
0
1L

a . (A1b)

Let us consider the following approximation for the linear and

annual periodic operator:

L
a

5Lc
1 cos(vt)1Ls

1 sin(vt)1Lc
2 cos(2vt)1Ls

2 sin(2vt)

1Lc
3 cos(3vt)1Ls

3 sin(3vt)1 . . . ,

(A1c)

where v 5 2p/(12 months). We further denote the covariance

and the annual-harmonic-weighted covariance and their de-

rivatives as

C
0
5 hX(t)3XT(t2 t)i , (A2a)

Cc
n 5 hcos(nvt)X(t)3XT(t2 t)i , (A2b)

Cs
n 5 hsin(nvt)X(t)3XT(t2 t)i , (A2c)

G
0
5

�
1

2d
[X(t1d)2X(t2d)]3XT(t2 t)

�
, (A2d)
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Gc
n 5

Dcos(nvt)
2d

[X(t1d)2X(t2d)]3XT(t2 t)
E
, (A2e)

Gs
n 5

�
sin(nvt)

2d
[X(t1d)2X(t2d)]3XT(t2 t)

�
, (A2f)

for n5 1, 2, 3, andwhere t is the lag time for lag covariancematrix

and d is the time step for the central difference. Angle brackets

denote an expectation (approximated by averaging in time).

Because the annual cycle is normally smooth and dominated

by the first two to three harmonics, we only consider n5 1, 2, 3

here. Then we derive the following equations:

G
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0
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Equations (A3b)–(A3g) can be rewritten as
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0
3Cc

0 1�3

n51(Lc
n 3Cc

n 1Ls
n 3Cs

n) , (A4a)

Gc
m 5L

0
3Cc

m 1�3

n51

�
Lc

n 3

�
Cc

m1n 1Cc
m2n

2

�

1Ls
n 3

�
Cs

m1n 2Cs
m2n

2

��
,

(A4b)

Gs
m 5L

0
3Cs

m 1�3

n51

�
Lc

n 3

�
Cs

m1n 1Cs
m2n

2

�

1Ls
n 3

�
Cc

m2n 2Cc
m1n

2

��
.

(A4c)

form5 1, 2, 3. This operator matrix can be solved by using the

perturbation method. The solution L operator is expanded as

L5L(0) 1L(1) 1L(2) 1 . . .. We assume that the matrix asso-

ciated with all components of the harmonics are merely the

first-order correction to the L0 operator because they are

normally significantly smaller than that zeroth order, which is

the time-invariant part. Thus, the leading order time-invariant

solution is as follows:

L(0)
0 5G

0
C21

0 . (A5)

The term L(0)
0 is a simple linear operator from the LIMwithout

considering any annual cycle modulation. As we consider all

the harmonic-weighted covariancematrices and corresponding

derivatives as the first-order quantities comparing with C0 and

G0, respectively, and all Lc
n and Ls

n as the first-order correction

to L(0)
0 , then the first-order solution of Lc

n and Ls
n can be ex-

pressed as

Lc(1)
n 5 2(Gc

n 2L(0)
0 3Cc

n)C
21
0 , (A6a)

Ls(1)
n 5 2(Gs

n 2L(0)
0 3Cs

n)C
21
0 . (A6b)

The second-order correction can be added to the first-order

solution as follows:

Lc(2)
n 5 22

�
�3

m51Lc(1)
m 3

�
Cc

n1m 1Cc
n2m

2

�

1�3

m51Ls(1)
m 3

�
Cs

n1m 2Cs
n2m

2

�
2Lc(1)

n 3
C

0

2

�
C21

0 ,

(A7a)
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Ls(2)
n 522

�
�3

m51Lc(1)
m 3

�
Cs

n1m 1Cs
n2m

2

�

1�3

m51Ls(1)
m 3

�
Cc

n2m 2Cc
n1m

2

�
2Ls(1)

n 3
C

0

2

�
C21

0 ,

(A7b)

for n 5 1, 2, 3.

The second-order solution that can be added to the leading-

order solution for L0 is as follows:

L(2)
0 52

�
�3

n51(Lc(1)
n 3Cc

n 1Ls(1)
n 3Cs

n)

�
C21

0 . (A7c)

Combining the first- and second-order solutions, we will get the

annual cycle modulated solution to the second-order accuracy

without inverting the whole combined matrix. Note that the

solution of the annual-modulatedmatrix can be solved by whole

matrix inversion without the approximation. Interpolated pen-

tad observed temperature and thermocline depth are used to

calculate the operator L in this study. The term t is set to

1month (6 pentads) to estimate the first-order operatorL(0) and

one pentad to estimate the higher-order operator L(1) and L(2).

The time step of central difference (d) is one pentad. We ran a

number of tests and found that the second-order approximation

is highly accurate. This conclusion should hold for climatic ap-

plication of the method.
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