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Abstract 

Modeling human motor control and predicting how humans will move in novel environments is a grand scientific 

challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control 

models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typi-

cally, researchers have developed control models that encode physiologically plausible motor control hypotheses and 

compared the resulting simulation behaviors to measurable human motion data. While such plausible control models 

were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), mod-

eling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating 

basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep 

reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse rep-

ertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation 

to model human control. In this paper, we review the current state of neuromechanical simulations, along with the 

fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition 

and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in 

neuromechanical simulations. This “Learn to Move” competition was an official competition at the NeurIPS conference 

from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep 

reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that 

have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We 

close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement 

learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in 

modeling human motor control for biomechanics and rehabilitation research
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Introduction
Predictive neuromechanical simulations can produce 

motions without directly using experimental motion 

data. If the produced motions reliably match how 

humans move in novel situations, predictive simula-

tions could be used to accelerate research on assis-

tive devices, rehabilitation treatments, and physical 
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training. Neuromechanical models represent the 

neuro-musculo-skeletal dynamics of the human body 

and can be simulated based on physical laws to pre-

dict body motions (Fig.  1). Although advancements in 

musculoskeletal modeling [1, 2] and physics simula-

tion engines [3–5] allow us to simulate and analyze 

observed human motions, understanding and modeling 

human motor control remains a hurdle for accurately 

predicting motions. In particular, it is very difficult to 

measure and interpret the biological neural circuits 

that underlie human motor control. To overcome this 

challenge, one can propose control models based on 

key features observed in animals and humans and eval-

uate these models in neuromechanical simulations by 

comparing the simulation results to human data. With 

such physiologically plausible neuromechanical control 

models, today we can simulate many aspects of human 

motions, such as steady walking, in a predictive manner 

[6–8]. Despite this progress, developing controllers for 

more complex tasks, such as adapting to dynamic envi-

ronments and those that require long-term planning, 

remains a challenge.

Training artificial neural networks using deep rein-

forcement learning (RL) in neuromechanical simula-

tions may allow us to overcome some of the limitations 

in current control models. In contrast to developing a 

control model that captures certain physiological fea-

tures and then running simulations to evaluate the 

results, deep RL can be thought of as training control-

lers that can produce motions of interest, resulting in 

controllers that are often treated as a black-box due to 

their complexity. Recent breakthroughs in deep learn-

ing make it possible to develop controllers with high-

dimensional inputs and outputs that are applicable 

to human musculoskeletal models. Despite the dis-

crepancy between artificial and biological neural net-

works, such means of developing versatile controllers 

could be useful in investigating human motor control 

[9]. For instance, a black-box controller that has been 

validated to produce human-like neuromechanical 

simulations could be useful in predicting responses to 

assistive devices or therapies like targeted strength-

training. Or one could gain some insight about human 

motor control by training a controller with deep RL in 
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Fig. 1 Neuromechanical simulation. A neuromechanical simulation consists of a control model and a musculoskeletal model that represent the 

central nervous system and the body, respectively. The control and musculoskeletal models are forward simulated based on physical laws to 

produce movements
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certain conditions (i.e., objective functions, simula-

tion environment, etc.) and by analyzing the control-

ler. One could also train controllers to mimic human 

motion (e.g., using imitation learning, where a control-

ler is trained to replicate behaviors demonstrated by 

an expert [10]) or integrate an existing neuromechani-

cal control model with artificial neural networks to 

study certain aspects of human motor control. While 

there are recent studies that used deep RL to produce 

human-like motions with musculoskeletal models [11, 

12], little effort has been made to study the underlying 

control.

We organized the Learn to Move competition series 

to facilitate developing control models with advanced 

deep RL techniques in neuromechanical simulation. It 

has been an official competition at the NeurIPS con-

ference from 2017 to 2019. We provided the neuro-

mechanical simulation environment, OpenSim-RL, 

and participants developed locomotion controllers for 

a human musculoskeletal model. In the most recent 

competition, NeurIPS 2019: Learn to Move - Walk 

Around, the top teams adapted state-of-the-art deep 

RL techniques and successfully controlled a 3D human 

musculoskeletal model to follow target velocities by 

changing walking speed and direction as well as tran-

sitioning between walking and standing. Some of these 

locomotion behaviors were demonstrated in neurome-

chanical simulations for the first time without using 

reference motion data. While the solutions were not 

explicitly designed to model human learning or con-

trol, they provide means of developing control models 

that are capable of producing complex motions.

This paper reviews neuromechanical simulations 

and deep RL, with a focus on the materials relevant 

to modeling the control of human locomotion. First, 

we provide background on neuromechanical simula-

tions of human locomotion and discuss how to evalu-

ate their physiological plausibility. We also introduce 

deep RL approaches for continuous control problems 

(the type of problem we must solve to predict human 

movement) and review their use in developing locomo-

tion controllers. Then, we present the Learn to Move 

competition and discuss the successful approaches, 

simulation results, and their implications for locomo-

tion research. We conclude by suggesting promising 

future directions for the field and outline our plan to 

extend the Learn to Move competition. Our goal with 

this review is to provide a primer for researchers who 

want to apply deep RL approaches to study control of 

human movement in neuromechanical simulation and 

to demonstrate how deep RL is a powerful comple-

ment to traditional physiologically plausible control 

models.

Background on neuromechanical simulations 
of human locomotion
This section provides background on neuromechanical 

simulations of human locomotion. We first present the 

building blocks of musculoskeletal simulations and their 

use in studying human motion. We next review the bio-

logical control hypotheses and neuromechanical control 

models that embed those hypotheses. We also briefly 

cover studies in computer graphics that have developed 

locomotion controllers for human characters. We close 

this section by discussing the means of evaluating the 

plausibility of control models and the limitations of cur-

rent approaches.

Musculoskeletal simulations
A musculoskeletal model typically represents a human 

body with rigid segments and muscle-tendon actuators 

[14, 16, 17] (Fig. 2a). The skeletal system is often modeled 

by rigid segments connected by rotational joints. Hill-

type muscle models [18] are commonly used to actuate 

the joints, capturing the dynamics of biological muscles, 

including both active and passive contractile elements 

[19–22] (Fig.  2b). Hill-type muscle models can be used 

with models of metabolic energy consumption [23–25] 

and muscle fatigue [26–28] to estimate these quantities 
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Fig. 2 Musculoskeletal models for studying human movement. 

a Models implemented in OpenSim [1] for a range of studies: 

lower-limb muscle activity in gait [13], shoulder muscle activity in 

upper-limb movements [14], and knee contact loads for various 

motions [15]. b A Hill-type muscle model typically consists of a 

contractile element (CE), a parallel elastic element (PE), and a series 

elastic element (SE). The contractile element actively produces 

contractile forces that depend on its length and velocity and are 

proportional to the excitation signal. The passive elements act as 

non-linear springs where the force depends on their length
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in simulations. Musculoskeletal parameter values are 

determined for average humans based on measurements 

from a large number of people and cadavers [29–32] 

and can be customized to match an individual’s height, 

weight, or CT and MRI scan data [33, 34]. OpenSim [1], 

which is the basis of the OpenSim-RL package [35] used 

in the Learn to Move competition, is an open-source 

software package broadly used in the biomechanics com-

munity (e.g., it has about 60,000 unique user downloads 

as of 2021 [36]) to simulate musculoskeletal dynamics.

Musculoskeletal simulations have been widely used 

to analyze recorded human motion. In one common 

approach, muscle activation patterns are found through 

various computational methods to enable a musculoskel-

etal model to track reference motion data, such as motion 

capture data and ground reaction forces, while achieving 

defined objectives, like minimizing muscle effort [37–39]. 

The resulting simulation estimates body states, such 

as individual muscle forces, that are difficult to directly 

measure with an experiment. Such an approach has been 

validated for human walking and running by comparing 

the simulated muscle activations with recorded electro-

myography data [40, 41], and for animal locomotion by 

comparing simulated muscle forces, activation levels, 

and muscle-tendon length changes with in  vivo meas-

urements during cat locomotion [42]. These motion 

tracking approaches have been used to analyze human 

locomotion [37, 39], to estimate body state in real-time 

to control assistive devices [43, 44], and to predict effects 

of exoskeleton assistance and surgical interventions on 

muscle coordination [45, 46]. While these simulations 

that track reference data provide a powerful tool to ana-

lyze recorded motions, they do not produce new motions 

and thus cannot predict movement in novel scenarios.

Alternatively, musculoskeletal simulations can produce 

motions without reference motion data using trajectory 

optimization methods [47]. This approach finds muscle 

activation patterns that produce a target motion through 

trajectory optimization with a musculoskeletal model 

based on an assumption that the target motion is well 

optimized for a specific objective. Thus, this approach has 

been successful in producing well-practiced motor tasks, 

such as normal walking and running [48, 49] and pro-

vides insights into the optimal gaits for different objec-

tives [26, 27], biomechanical features [50], and assistive 

devices [51]. However, it is not straightforward to apply 

this approach to behaviors that are not well trained and 

thus functionally suboptimal. For instance, people ini-

tially walk inefficiently in lower limb exoskeletons and 

adapt to more energy optimal gaits over days and weeks 

[52]; therefore, trajectory optimization with an objective 

such as energy minimization likely would not predict 

the initial gaits. These functionally suboptimal behaviors 

in humans are produced by the nervous system that is 

probably optimized for typical motions, such as nor-

mal walking, and is also limited by physiological control 

constraints, such as neural transmission delays and lim-

ited sensory information. A better representation of the 

underlying controller may be necessary to predict these 

kinds of emergent behaviors that depart from typical 

minimum effort optimal behaviors.

Neuromechanical control models and simulations
A neuromechanical model includes a representation of a 

neural controller in addition to the musculoskeletal sys-

tem (Fig.  1). To demonstrate that a controller can pro-

duce stable locomotion, neuromechanical models are 

typically tested in a forward physics simulation for mul-

tiple steps while dynamically interacting with the envi-

ronment (e.g., the ground and the gravitational force). 

Neuromechanical simulations have been used to test gait 

assistive devices before developing hardware [53, 54] and 

to understand how changes in musculoskeletal properties 

affect walking performance [7, 28]. Moreover, the control 

model implemented in neuromechanical simulations can 

be directly used to control bipedal robots [55–57] and 

assistive devices [53, 58, 59].

Modeling human motor control is crucial for a predic-

tive neuromechanical simulation. However, most of our 

current understanding of human locomotion control is 

extrapolated from experimental studies of simpler ani-

mals [60, 61] as it is extremely difficult to measure and 

interpret the biological neural circuits. Therefore, human 

locomotion control models have been proposed based 

on a few structural and functional control hypotheses 

that are shared in many animals (Fig.  3). First, locomo-

tion in many animals can be interpreted as a hierarchical 

structure with two layers, where the lower layer generates 

basic motor patterns and the higher layer sends com-

mands to the lower layer to modulate the basic patterns 

[60]. It has been shown in some vertebrates, including 

cats and lampreys, that the neural circuitry of the spinal 

cord, disconnected from the brain, can produce stereo-

typical locomotion behaviors and can be modulated by 

electrical stimulation to change speed, direction and gait 

[62, 63]. Second, the lower layer seems to consist of two 

control mechanisms: reflexes [64, 65] and central pattern 

generators (CPGs) [66, 67]. In engineering terms, reflexes 

and CPGs roughly correspond to feedback and feedfor-

ward control, respectively. Muscle synergies, where a 

single pathway co-activates multiple muscles, have also 

been proposed as a lower layer control mechanism that 

reduces the degrees of freedom for complex control tasks 

[68, 69]. Lastly, there is a consensus that humans use 

minimum effort to conduct well-practiced motor tasks, 

such as walking [70, 71]. This consensus provides a basis 
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for using energy or fatigue optimization [26–28] as a 

principled means of finding control parameter values.

Most neuromechanical control models are focused 

on lower layer control using spinal control mechanisms, 

such as CPGs and reflexes. CPG-based locomotion con-

trollers consist of both CPGs and simple reflexes, where 

the CPGs, often modeled as mutually inhibiting neurons 

[72], generate the basic muscle excitation patterns. These 

CPG-based models [8, 73–77] demonstrated that stable 

locomotion can emerge from the entrainment between 

CPGs and the musculoskeletal system, which are linked 

by sensory feedback and joint actuation. A CPG-based 

model that consists of 125 control parameters produced 

walking and running with a 3D musculoskeletal model 

with 60 muscles to walk and run [75]. CPG-based models 

also have been integrated with different control mecha-

nisms, such as muscle synergies [8, 76, 77] and various 

sensory feedback circuits [74, 76]. On the other hand, 

reflex-based control models consist of simple feedback 

circuits without any temporal characteristics and demon-

strate that CPGs are not necessary for producing stable 

locomotion. Reflex-based models [6, 20, 78–80] mostly 

use simple feedback laws based on sensory data accessi-

ble at the spinal cord such as proprioception (e.g., mus-

cle length, speed and force) and cutaneous (e.g., foot 

contact and pressure) data [61, 65]. A reflex-based con-

trol model with 80 control parameters combined with a 

simple higher layer controller that regulates foot place-

ment to maintain balance produced diverse locomotion 

behaviors with a 3D musculoskeletal model with 22 mus-

cles, including walking, running, and climbing stairs and 

slopes [6] and reacted to a range of unexpected perturba-

tions similarly to humans [81] (Fig. 4). Reflex-based con-

trollers also have been combined with CPGs [79] and a 
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Fig. 3 Locomotion control. The locomotion controller of animals 

is generally structured hierarchically with two layers. Reflexes and 

central pattern generators are the basic mechanisms of the lower 

layer controller
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when optimized at different simulation environments with different objectives. c The same model optimized for minimum metabolic energy 

consumption reacted to various disturbances as observed in human experiments [81]
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deep neural network that operates as a higher layer con-

troller [80] for more control functions, such as speed and 

terrain adaptation.

Human locomotion simulations for computer graphics
A number of controllers have been developed in com-

puter graphics to automate the process of generating 

human-like locomotion for computer characters [82–86]. 

A variety of techniques have been proposed for simu-

lating common behaviors, such as walking and running 

[87–90]. Reference motions, such as motion capture data, 

were often used in the development process to produce 

more natural behaviors [91–94]. Musculoskeletal models 

also have been used to achieve naturalistic motions [95–

97], which makes them very close to neuromechanical 

simulations. The focus of these studies is producing nat-

ural-looking motions rather than accurately representing 

the underlying biological system. However, the computer 

graphics studies and physiologically plausible neurome-

chanical simulations may converge as they progress to 

produce and model a wide variety of human motions.

Plausibility and limitations of control models
The plausibility of a neuromechanical control model can 

be assessed by the resulting simulation behavior. First 

of all, generating stable locomotion in neuromechani-

cal simulations is a challenging control problem [61, 98] 

and thus has implications for the controller. For instance, 

a control model that cannot produce stable walking 

with physiological properties, such as nonlinear muscle 

dynamics and neural transmission delays, is likely miss-

ing some important aspects of human control [99]. Once 

motions are successfully simulated, they can be com-

pared to measurable human data. We can say a model 

that produces walking with human-like kinematics, 

dynamics, and muscle activations is more plausible than 

one that does not. A model can be further compared with 

human control by evaluating its reactions to unexpected 

disturbances [81] and its adaptations in new conditions, 

such as musculoskeletal changes [7, 28], external assis-

tance [53, 54], and different terrains [6].

We can also assess the plausibility of control features 

that are encoded in a model. It is plausible for a control 

model to use sensory data that are known to be used 

in human locomotion [61, 65] and to work with known 

constraints, such as neural transmission delays. Models 

developed based on control hypotheses proposed by neu-

roscientists, such as CPGs and reflexes, partially inherit 

the plausibility of the corresponding hypotheses. Show-

ing that human-like behaviors emerge from optimality 

principles that regulate human movements, such as mini-

mum metabolic energy or muscle fatigue, also increases 

the plausibility of the control models [26–28].

Existing neuromechanical control models are mostly 

limited to modeling the lower layer control and produc-

ing steady locomotion behaviors. Most aspects of the 

motor learning process and the higher layer control are 

thus missing in current neuromechanical models. Motor 

learning occurs in daily life when acquiring new motor 

skills or adapting to environmental changes. For exam-

ple, the locomotion control system adapts when walking 

on a slippery surface, moving a heavy load, wearing an 

exoskeleton [52, 100], and in experimentally constructed 

environments such as on a split-belt treadmill [101, 102] 

and with perturbation forces [103, 104]. The higher layer 

control processes environment cues, plans long-term 

motion strategies, and coordinates basic motor skills to 

navigate in dynamic and complex environments. While 

we will discuss other ideas for explicitly modeling motor 

learning and higher layer control in neuromechanical 

simulations in the Future directions section, deep RL may 

be an effective approach to developing controllers for 

challenging environments and motions.

Deep reinforcement learning for motor control
This section highlights the concepts from deep reinforce-

ment learning relevant to developing models for motor 

control. We provide a brief overview of the terminology 

and problem formulations of RL and then cover selected 

state-of-the-art deep RL algorithms that are relevant to 

successful solutions in the Learn to Move competition. 

We also review studies that used deep RL to control 

human locomotion in physics-based simulation.

Deep reinforcement learning
Reinforcement learning is a machine learning paradigm 

for solving decision-making problems. The objective is to 

learn an optimal policy π that enables an agent to maxi-

mize its cumulative reward through interactions with its 

environment [105] (Fig.  5). For example, in the case of 

the Learn to Move competition, the environment was 

the musculoskeletal model and physics-based simula-

tion environment, and higher cumulative rewards were 

given to solutions that better followed target velocities 

with lower muscle effort. Participants developed agents, 

which consist of a policy that controls the musculoskel-

etal model and a learning algorithm that trains the pol-

icy. For the general RL problem, at each timestep t, the 

agent receives an observation ot (perception and proprio-

ception data in the case of our competition; perception 

data includes information on the target velocities) and 

queries its policy π for an action at (excitation values of 

the muscles in the model) in response to that observa-

tion. An observation ot is the full or partial information 

of the state st of the environment. The policy π(at |ot) can 

be either deterministic or stochastic, where a stochastic 
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policy defines a distribution over actions at given a par-

ticular observation ot [106]. Stochastic policies allow gra-

dients to be computed for non-differentiable objective 

functions [107], such as those computed from the results 

of a neuromechanical simulation, and the gradients can 

be used to update the policies using gradient ascent. The 

agent then applies the action in the environment, result-

ing in a transition to a new state st+1 and a scalar reward 

rt = r(st , at , st+1) . The state transition is determined 

according to the dynamics model ρ(st+1|st , at) . The 

objective for the agent is to learn an optimal policy that 

maximizes its cumulative reward.

One of the crucial design decisions in applying RL to 

a particular problem is the choice of policy representa-

tion. Deep RL is the combination of RL with deep neural 

network function approximators. While a policy can be 

modeled by any class of functions that maps observations 

to actions, the use of deep neural networks to model poli-

cies demonstrated promising results in complex prob-

lems and has led to the emergence of the field of deep RL. 

Policies trained with deep RL methods achieved human-

level performance on many of the 2600 Atari video games 

[108], overtook world champion human players in the 

game of Go [109, 110], and reached the highest league 

in a popular professional computer game that requires 

long-term strategies [111].

State-of-the-art deep RL algorithms used in Learn to Move
Model-free deep RL algorithms (Fig.  6) are widely used 

for continuous control tasks, such as those considered 

in the Learn to Move competition, where the actions 

are continuous values of muscle excitations. Model-free 

algorithms do not learn an explicit dynamics model of 

state transitions; instead, they directly learn a policy to 

maximize the expected return, or reward. In these con-

tinuous control tasks, the policy specifies actions that 

represent continuous quantities such as control forces 

or muscle excitations. Policy gradient algorithms incre-

mentally improve a policy by first estimating the gradi-

ent of the expected return using trajectories collected 

from forward simulations of the policy, and then updat-

ing the policy via gradient ascent [118]. While simple, the 

standard policy gradient update has several drawbacks, 

including stability and sample efficiency. First, the gra-

dient estimator can have high variance, which can lead 

to unstable learning, and a good gradient estimate may 

require a large number of training samples. Algorithms 

such as TRPO [113] and PPO [114] improve the stability 

of policy gradient methods by limiting the change in the 

policy’s behavior after each update step, as measured by 

the relative entropy between the policies [119]. Another 

limitation of policy gradient methods is their low sample 

efficiency. Standard policy gradient algorithms use a new 

batch of data collected with the current policy to esti-

mate a gradient when updating the current policy at each 
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Fig. 5 Reinforcement learning. In a typical RL process, an agent takes 

a reward and observation as input and trains a policy that outputs an 

action to achieve high cumulative rewards
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Fig. 6 Reinforcement learning algorithms for continuous action space. The diagram is adapted from [112] and presents a partial taxonomy of 

RL algorithms for continuous control, or continuous action space. This focuses on a few modern deep RL algorithms and some traditional RL 

algorithms that are relevant to the algorithms used by the top teams in our competition. TRPO: trust region policy optimization [113]; PPO: proximal 

policy optimization [114]; DDPG: deep deterministic policy gradients [115]; TD3: twin delayed deep deterministic policy gradients [116]; SAC: 

soft-actor critic [117]
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iteration. Thus, each batch of data is used to perform a 

small number of updates, then discarded, and millions 

of samples are often required to solve relatively simple 

tasks. Off-policy gradient algorithms can substantially 

reduce the number of samples required to learn effec-

tive policies by allowing the agent to reuse data collected 

from previous iterations of the algorithm when updating 

the latest policy [115–117]. Off-policy algorithms, such 

as DDPG [115], typically fit a Q-function, Q(s, a), which 

is the expected return of performing an action a in the 

current state s. These methods differentiate the learned 

Q-function to approximate the policy gradient, then use 

it to update the policy. More recent off-policy methods, 

such as TD3 and SAC, build on this approach and pro-

pose several modifications that further improve sample 

efficiency and stability.

Deep RL for human locomotion control
Human motion simulation studies have used vari-

ous forms of RL (Fig.  6). A number of works in neuro-

mechanical simulation [6, 75] and computer graphics 

studies [95, 96] reviewed in the Background on neurome-

chanical simulations of human locomotion section used 

policy search methods [120] with derivative-free opti-

mization techniques, such as evolutionary algorithms, 

to tune their controllers. The control parameters are 

optimized by repeatedly running a simulation trial with 

a set of control parameters, evaluating the objective func-

tion from the simulation result, and updating the control 

parameters using an evolutionary algorithm [121]. This 

optimization approach makes very minimal assumptions 

about the underlying system and can be effective for 

tuning controllers to perform a diverse array of skills [6, 

122]. However, these algorithms often struggle with high 

dimensional parameter spaces (i.e., more than a couple of 

hundred parameters) [123]. Therefore, researchers devel-

oped controllers with a relatively low-dimensional set of 

parameters that could produce desired motions, which 

require a great deal of expertise and human insight. Also, 

the selected set of parameters tend to be specific for par-

ticular skills, limiting the behaviors that can be repro-

duced by the character.

Recently, deep RL techniques have demonstrated 

promising results for character animation, with policy 

optimization methods emerging as the algorithms of 

choice for many of these applications [114, 115, 118]. 

These methods have been effective for training control-

lers that can perform a rich repertoire of skills [10, 124–

127]. One of the advantages of deep RL techniques is the 

ability to learn controllers that operate directly on high-

dimensional, low-level representations of the underlying 

system, thereby reducing the need to manually design 

compact control representations for each skill. These 

methods have also been able to train controllers for 

interacting with complex environments [124, 128, 129], 

as well as for controlling complex musculoskeletal mod-

els [11, 130]. Reference motions continue to play a vital 

role in producing more naturalistic behavior in deep RL 

as a form of deep imitation learning, where the objective 

is designed to train a policy that mimics human motion 

capture data [10, 11, 126] (Fig. 7). As these studies using 

reference motion data show the potential of using deep 

RL methods in developing versatile controllers, it would 

be worth testing various deep RL approaches in neuro-

mechanical simulations.

Learn to Move competition
The potential synergy of neuromechanical simulations 

and deep RL methods in modeling human control moti-

vated us to develop the OpenSim-RL simulation plat-

form and to organize the Learn to Move competition 

series. OpenSim-RL [35] leverages OpenSim to simu-

late musculoskeletal models and OpenAI Gym, a widely 

used RL toolkit [131], to standardize the interface with 

state-of-the-art RL algorithms. OpenSim-RL is open-

source and is provided as a Conda package [132], which 

has been downloaded about 42,000 times from 2017 to 

2019. Training a controller for a human musculoskeletal 

model is a difficult RL problem considering the large-

dimensional observation and action spaces, delayed and 

sparse rewards resulting from the highly non-linear and 

discontinuous dynamics, and the slow simulation of mus-

cle dynamics. Therefore, we organized the Learn to Move 

competition series to crowd-source machine learning 

expertise in developing control models of human loco-

motion. The mission of the competition series is to bridge 

neuroscience, biomechanics, robotics, and machine 

learning to model human motor control.

The Learn to Move competition series was held annu-

ally from 2017 to 2019. It was one of the official compe-

titions at the NeurIPS conference, a major event at the 

intersection of machine learning and computational neu-

roscience. The first competition was NIPS 2017: Learning 

to Run [35, 133], and the task was to develop a control-

ler for a given 2D human musculoskeletal model to run 

as fast as possible while avoiding obstacles. In the second 

competition, NeurIPS 2018: AI for Prosthetics Challenge 

[134], we provided a 3D human musculoskeletal model, 

where one leg was amputated and replaced with a passive 

ankle-foot prosthesis. The task was to develop a walk-

ing controller that could follow velocity commands, the 

magnitude and direction of which varied moderately. 

These two competitions together attracted about 1000 

teams, primarily from the machine learning community, 

and established successful RL techniques which will be 

discussed in the Top solutions and results section. We 
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designed the 2019 competition to build on knowledge 

gained from past competitions. For example, the chal-

lenge in 2018 demonstrated the difficulty of moving from 

2D to 3D. Thus, to focus on controlling maneuvering in 

3D, we designed the target velocity to be more challeng-

ing, while we removed the added challenge of simulating 

movement with a prosthesis. We also refined the reward 

function to encourage more natural human behaviors 

(Appendix - Reward function).

NeurIPS 2019: Learn to Move - Walk Around
Overview
NeurIPS 2019: Learn to Move - Walk Around was held 

online from June 6 to November 29 in 2019. The task was 

to develop a locomotion controller, which was scored 

based on its ability to meet target velocity vectors when 

applied in the provided OpenSim-RL simulation environ-

ment. The environment repository was shared on Github 

[135], the submission and grading were managed using 

the AIcrowd platform [136], and the project homepage 

provided documentation on the environment and the 

competition [137]. Participants were free to develop any 

type of controller that worked in the environment. We 

encouraged approaches other than brute force deep RL 

by providing human gait data sets of walking and running 

[138–140] and a 2D walking controller adapted from 

a reflex-based control model [6] that could be used for 

imitation learning or in developing a hierarchical control 

structure. There were two rounds. The top 50 teams in 

Round 1 were qualified to proceed to Round 2 and to 

participate in a paper submission track. RL experts were 

invited to review the papers based on the novelty of the 

approaches, and we selected the best and finalist papers 

based on the reviews. More details on the competition 

can be found on the competition homepage [136].

In total, 323 teams participated in the competition 

and submitted 1448 solutions. In Round 2, the top three 

teams [141–143] succeeded in completing the task and 

received high scores (mean total rewards larger than 

1300 out of 1500). Five papers were submitted, and we 

selected the best paper [141] along with two more finalist 

papers [142, 143]. The three finalist papers came from the 

top three teams, where the best paper was from the top 

team.

Simulation environment
The OpenSim-RL environment included a physics sim-

ulation of a 3D human musculoskeletal model, target 

velocity commands, a reward system, and a visualization 

of the simulation (Fig. 8). The 3D musculoskeletal model 

had seven segments connected with eight rotational 

joints and actuated by 22 muscles. Each foot segment 

had three contact spheres that dynamically interacted 

with the ground. A user-developed policy could observe 

97-dimensional body sensory data and 242-dimensional 

target velocity map and produced a 22-dimensional 

Walk Run

Cartwheel Spin-kick

Roll Kick-up

Back-flip Front-flip

Fig. 7 Computer graphics characters performing diverse human motions. Dynamic and acrobatic skills learned to mimic motion capture clips with 

RL in physics simulation [10]
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action containing the muscle excitation signals. The 

reward was designed to give high total rewards for solu-

tions that followed target velocities with minimum mus-

cle effort (Appendix – Reward function). The mean total 

reward of five trials with different target velocities was 

used for ranking.

Top solutions and results
All of the top three teams that succeeded in completing 

the task used deep reinforcement learning [141–143]. 

None of the teams utilized reference motion data for 

training or used domain knowledge in designing the 

policy. The only part of the training process that was spe-

cific to locomotion was using intermediate rewards that 

induced effective gaits or facilitated the training process. 

The top teams used various heuristic RL techniques that 

have been effectively used since the first competition 

[133, 134] and adapted state-of-the-art deep RL training 

algorithms.

Various heuristic RL techniques were used, including 

frame skipping, discretization of the action space, and 

reward shaping. These are practical techniques that con-

strain the problem in certain ways to encourage an agent 

to search successful regions faster in the initial stages of 

HAB

HAD

HFL
GLU

HAM

RF
VAS

BFSH

GAS
SOL TA

action
muscle excitations

...

reward

observation
target

velocity map

minimize
muscle effort

body state

match target
velocity

environment

Controller
(agent/policy)
developed by
participnats

cb

a

Fig. 8 OpenSim-RL environment for the NeurIPS 2019: Learn to Move - Walk Around competition. a A neuromechanical simulation environment 

is designed for a typical RL framework (Fig. 5). The environment took an action as input, simulated a musculoskeletal model for one time-step, and 

provided the resulting reward and observation. The action was excitation signals for the 22 muscles. The reward was designed so that solutions 

following target velocities with minimum muscle effort would achieve high total rewards. The observation consisted of a target velocity map and 

information on the body state. b The environment included a musculoskeletal model that represents the human body. Each leg consisted of four 

rotational joints and 11 muscles. (HAB: hip abductor; HAD: hip adductor; HFL: hip flexor; GLU: glutei, hip extensor; HAM: hamstring, biarticular hip 

extensor and knee flexor; RF: rectus femoris, biarticular hip flexor and knee extensor; VAS: vastii, knee extensor; BFSH: short head of biceps femoris, 

knee flexor; GAS: gastrocnemius, biarticular knee flexor and ankle extensor; SOL: soleus, ankle extensor; TA: tibialis anterior, ankle flexor). c The 

simulation environment provided a real-time visualization of the simulation to users. The global map of target velocities is shown at the top-left. The 

bottom-left shows its local map, which is part of the input to the controller. The right visualizes the motion of the musculoskeletal model
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training. Frame skipping repeats a selected action for a 

given number of frames instead of operating the control-

ler every frame [142]. This technique reduces the sam-

pling rate and thus computations while maintaining a 

meaningful representation of observations and control. 

Discretization of the muscle excitations constrains the 

action space and thus the search space, which can lead 

to much faster training. In the extreme case, binary dis-

cretization (i.e., muscles were either off or fully activated) 

was used by some teams in an early stage of training. 

Reward shaping modifies the reward function provided 

by the environment to encourage an agent to explore cer-

tain regions of the solution space. For example, a term 

added to the reward function that penalizes crossover 

steps encouraged controllers to produce more natural 

steps [142, 143]. Once agents found solutions that seem 

to achieve intended behaviors with these techniques, 

they typically were further tuned with the original prob-

lem formulation.

Curriculum learning [144] was also used by the top 

teams. Curriculum learning is a training method where 

a human developer designs a curriculum that consists 

of a series of simpler tasks that eventually lead to the 

original task that is challenging to train from scratch. 

Zhou et al. [141] trained a policy for normal speed walk-

ing by first training it to run at high speed, then to run 

at slower speeds, and eventually to walk at normal speed. 

They found that the policy trained through this process 

resulted in more natural gaits than policies that were 

directly trained to walk at normal speeds. This is proba-

bly because there is a limited set of very high-speed gaits 

that are close to human sprinting, and starting from this 

human-like sprinting gait could have guided the solu-

tion to a more natural walking gait out of a large variety 

of slow gaits, some of which are unnatural and ineffective 

local minima. Then they obtained their final solution pol-

icy by training this basic walking policy to follow target 

velocities and to move with minimum muscle effort.

All of the top teams used off-policy deep RL algo-

rithms. The first place entry by Zhou et  al. [141] used 

DDPG [115], the second place entry by Kolesnikov and 

Hrinchuk [142] used TD3 [116], and the third place entry 

by Akimov [143] used SAC [117]. Since off-policy algo-

rithms allow updating the policy using data collected in 

previous iterations, they can be substantially more sam-

ple efficient than their on-policy counterparts and could 

help to compensate for the computationally expensive 

simulation. Off-policy algorithms are also more ame-

nable to distributed training, since data-collection and 

model updates can be performed asynchronously. Kole-

snikov and Hrinchuk [142] leveraged this property of 

off-policy methods to implement a population-based 

distributed training framework, which used an ensemble 

of agents whose experiences were collected into a shared 

replay buffer that stored previously collected (observa-
tion, action, reward, next observation) pairs. Each agent 

was configured with different hyperparameter settings 

and was trained using the data collected from all agents. 

This, in turn, improved the diversity of the data that was 

used to train each policy and also improved the explora-

tion of different strategies for solving a particular task.

The winning team, Zhou et  al., proposed risk averse 

value expansion (RAVE), a hybrid approach of model-

based and model-free RL [141]. Their method fits an 

ensemble of dynamics models (i.e., models of the envi-

ronment) to data collected from the agent’s interac-

tion with the environment, and then uses the learned 

models to generate imaginary trajectories for training a 

Q-function. This model-based approach can substantially 

improve sample efficiency by synthetically generating a 

large volume of data but can also be susceptible to bias 

from the learned models, which can negatively impact 

performance. To mitigate potential issues due to model 

bias, RAVE uses an ensemble of dynamics models to esti-

mate the confidence bound of the predicted values and 

then trains a policy using DDPG to maximize the confi-

dence lower bound. Their method achieved impressive 

results on the competition tasks and also demonstrated 

competitive performance on standard OpenAI Gym 

benchmarks [131] compared to state-of-the-art algo-

rithms [141].

Implications for human locomotion control
The top solution shows that it is possible to produce 

many locomotion behaviors with the given 3D human 

musculoskeletal model, despite its simplifications. The 

musculoskeletal model simplifies the human body by, for 

example, representing the upper body and the pelvis as a 

single segment. Moreover, the whole body does not have 

any degree of freedom for internal yaw motion (Fig. 8a). 

Such a model was selected for the competition as it can 

produce many locomotion behaviors including walking, 

running, stair and slope climbing, and moderate turning 

as shown in a previous study [6]. On the other hand, the 

missing details of the musculoskeletal model could have 

been crucial for generating other behaviors like sharp 

turning motions and gait initiation. The top solution 

was able to initiate walking from standing, quickly turn 

towards a target (e.g., turn 180◦ in one step; Fig. 9), walk 

to the target at commanded speeds, and stop and stand at 

the target. To our knowledge, it is the first demonstration 

of rapid turning motions with a musculoskeletal model 

with no internal yaw degree of freedom. The solution 

used a strategy that is close to a step-turn rather than a 

spin-turn, and it will be interesting to further investigate 
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how the simulated motion compares with human turning 

[145, 146].

The top solutions had some limitations in produc-

ing human-like motions. In the top solution [141], the 

human model first turned to face the target then walked 

forward towards the target with a relatively natural gait. 

However, the gait was not as close to human walking as 

motions produced by previous neuromechanical mod-

els and trajectory optimization [6, 49]. This is not sur-

prising as the controllers for the competition needed to 

cover a broad range of motions, and thus were more dif-

ficult to fully optimize for specific motions. The second 

and third solutions [142, 143] were further from human 

motions as they gradually moved towards a target often 

using side steps. As policy gradient methods use gradient 

ascent, they often get stuck at local optima resulting in 

suboptimal motions [129] even though natural gaits are 

more efficient and agile. Although the top solution over-

came some of these suboptimal gaits through curriculum 

learning, better controllers could be trained by utilizing 

imitation learning for a set of optimal motions [10–12] or 

by leveraging control models that produce natural gaits 

[6, 20]. Different walking gaits, some of which are pos-

sibly suboptimal, are also observed in toddlers during the 

few months of extensive walking experience [147, 148], 

and interpreting this process with an RL framework will 

be instructive to understanding human motor learning.

Future directions
Deep reinforcement learning could be a powerful tool in 

developing neuromechanical control models. The best 

solutions of the Learn to Move competition, which used 

deep RL without reference motion data, produced rapid 

turning and walk-to-stand motions that had not previ-

ously been demonstrated with physiologically plausible 

models. However, it is difficult to fully optimize a deep 

neural network, suggesting that it is very challenging to 

train a single network that can produce a wide range of 

human-like motions. Moreover, only the top three teams 

in the competition were able to conduct the task of fol-

lowing target velocities [141–143], and such brute force 

deep RL may not easily extend for tasks that require long-

term motion planning, such as navigating in a dynamic 

and complex environment.

Various deep reinforcement learning approaches, such 

as imitation learning and hierarchical learning, could be 

used to produce more optimized and complex motions. 

Humans can perform motions that are much more chal-

lenging than just walking at various speeds and direc-

tions. Parkour athletes, for example, can plan and execute 

jumping, vaulting, climbing, rolling, and many other 

acrobatic motions to move in complex environments, 

which would be very difficult to perform with brute 

force RL methods. Imitation learning [10, 11, 126] could 

be used to train multiple separate networks to master a 

set of acrobatic skills (Fig. 7). These networks of motion 

primitives can then be part of the lower layer of a hierar-

chical controller [149–151], where a higher-layer network 

could be trained to coordinate the motion skills. A physi-

ologically plausible control models that produces human-

like walking, for instance, can also be part of the lower 

layer. More control layers that analyze dynamic scenes 

and plan longer-term motion sequences [152, 153] can 

be added if a complex strategy is required for the task. 

We will design future competitions to promote research 

in these directions of performing motions that would be 

difficult to produce with brute force deep RL. The task 

can be something like the World Chase Tag competition, 

where two athletes take turns to tag the opponent, using 

athletic movements, in an arena filled with obstacles 

[154].

Deep RL could also help to advance our understand-

ing of human motor control. First, RL environments and 

solutions could have implications for human movement. 

While interpreting individual connections and weights 

of general artificial neural networks in terms of biologi-

cal control circuits may not be plausible, rewards and 

policies that generate realistic motions could inform us 

about the objectives and control structures that underlie 

human movement. Also, perturbation responses of the 

trained policies that signify sensory-motor connections 

could be used to further analyze the physiological plausi-

bility of the policies by comparing the responses to those 

observed in human experiments [81, 155–157]. Second, 

we could use deep RL as a means of training a black-box 

controller that complements a physiologically plausible 

model in simulating motions of interest. For instance, 

one could test an ankle control model in the context of 

Fig. 9 Rapid turning motion. The top solution can make the musculoskeletal model with no internal yaw degree of freedom to turn 180◦ in a single 

step. Snapshots were taken every 0.4 s
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walking if there is a black-box controller for the other 

joints that in concert produces walking. Third, we may be 

able to use data-driven deep RL, such as imitation learn-

ing, to train physiologically plausible control models. 

We could establish such a training framework by using 

existing plausible control models as baseline controllers 

to produce (simulated) training data, and then determin-

ing the size and scope of gait data needed to train policies 

that capture the core features of the baseline control-

lers. Once the framework is established and validated 

with these existing control models, we could train new 

policies using human motion data. These control mod-

els could better represent human motor control than the 

ones that have been developed through imitation RL with 

only target motions as reference data. Also, these models 

could produce reliable predictions and could be custom-

ized to individuals.

While this paper focuses on the potential synergy 

of neuromechanical simulations and deep reinforce-

ment learning, combining a broader range of knowl-

edge, models, and methodologies will be vital in further 

understanding and modeling human motor control. For 

instance, regarding motor learning, there are a number of 

hypotheses and models of the signals that drive learning 

[102, 158], the dynamics of the adaptation process [103, 

159], and the mechanisms of constructing and adapting 

movements [160–163]. Most of these learning models 

seek to capture the net behavioral effects, where a body 

motion is often represented by abstract features; imple-

menting these learning models together with motion 

control models (such as those discussed in this paper) 

could provide a holistic evaluation of both motor control 

and learning models [164–166]. There are also different 

types of human locomotion models, including simple 

dynamic models and data-driven mathematical mod-

els. These models have provided great insights into the 

dynamic principles of walking and running [167–170], 

the stability and optimality of steady and non-steady gaits 

[171–177], and the control and adaptation of legged loco-

motion [166, 178–181]. As these models often account 

for representative characteristics, such as the center of 

mass movement and foot placement, they could be used 

in modeling the higher layer of hierarchical controllers.

Conclusion
In this article, we reviewed neuromechanical simula-

tions and deep reinforcement learning with a focus on 

human locomotion. Neuromechanical simulations pro-

vide a means to evaluate control models, and deep RL is 

a promising tool to develop control models for complex 

movements. Despite some success of using controllers 

based on deep RL to produce coordinated body motions 

in physics-based simulations, producing more complex 

motions involving long-term planning and learning phys-

iologically plausible models remain as future research 

challenges. Progress in these directions might be accel-

erated by combining domain expertise in modeling 

human motor control and advanced machine learning 

techniques. We hope to see more interdisciplinary stud-

ies and collaborations that are able to explain and pre-

dict human behaviors. We plan to continue to develop 

and disseminate the Learn to Move competition and its 

accompanying simulation platform to facilitate these 

advancements toward predictive neuromechanical simu-

lations for rehabilitation treatment and assistive devices.

Appendix—Reward function
The reward function, in the NeurIPS 2019: Learn to 

Move competition, was designed based on previous neu-

romechanical simulation studies [6, 28] that produced 

human-like walking. The total reward, J (π) , consisted of 

three reward terms:

where Ralive (with balive = 0.1 ) was for not falling down, 

Rstep was for making footsteps with desired velocities and 

small effort, and Rtarget was for reaching target locations. 

The indexes isim ∈ {1, 2, ..., 2500} , istep ∈ {1, 2, ...} and 

itarget ∈ {1, 2} were for the simulation step, footstep, and 

target location, respectively. The step reward, Rstep con-

sists of one bonus term and two cost terms. The step 

bonus, bs = �tistep =
∑

i in istep
�t , where �t = 0.01 s is 

the simulation time step, is weighted heavily with ws to 

ensure the step reward is positive for every footstep. The 

velocity cost, cv =

∥∥∥
∑

i in istep

(
vpel − vtgt0

)
�t

∥∥∥
2
 , penal-

izes the deviation of average velocity during the footstep 

from the average of the target velocities given during that 

step. As the velocity cost is calculated with average veloc-

ity, it allows instantaneous velocity to naturally fluctuate 

within a footstep as in human walking [182]. The effort 

cost, ce =
∑

i in istep

∑
m Am

2�t , penalizes the use of 

muscles, where Am is the activation level of muscle 

m ∈ {HABL,HADL, ...,TAR} . The time integration of 

muscle activation square approximates muscle fatigue 

and is often minimized in locomotion simulations [26, 

28]. The step bonus and costs are proportioned by the 

simulation time step so that the total reward does not 

favor many small footsteps over fewer large footsteps or 

vice versa. The weights were ws = 10 , wv = 3 , and we = 1 . 

Lastly, the target reward, Rtarget , with high bonuses of 

btarget = 500 were to reward solutions that successfully 

follow target velocities. At the beginning of a simulation 

(1)

J (π) = Ralive + Rstep + Rtarget

=
∑

isim

balive +
∑

istep

(wsbs − wvcv − wece) +
∑

itarget

btarget



Page 14 of 17Song et al. J NeuroEngineering Rehabil          (2021) 18:126 

trial, target velocities pointed toward the first target loca-

tion ( itarget = 1 ), and if the human model reached the tar-

get location and stayed close to it ( ≤ 0.3 m) for a while 

( 2 ∼ 4 s), btarget was awarded. Then the target velocities 

were updated to point toward a new target location 

( itarget = 2 ) with another bonus btarget . The hypothetical 

maximum total reward of a trial, with zero velocity and 

effort costs, is max(Ralive) + max
(
Rstep

)
+ max

(
Rtarget

)

= 250 + 250 + 1000 = 1500.

Abbreviations
CPG: Central pattern generators; RAVE: Risk averse value expansion; RL: Rein-

forcement learning.
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