
1.  Introduction
As one of the world's driest inhabited continents with a highly variable climate, Australia is frequently sub-
ject to prolonged and intensive droughts on seasonal to interannual timescales (Gallant et al., 2007; King 
et al., 2020; Ummenhofer et al., 2009). The year 2019 was characterized by prominent precipitation defi-
ciencies and an extensive drought with devastating wildfires over Australia (Bureau of Meteorology, 2019a, 
Bureau of Meteorology, 2019b; Ell, 2020; see also Figure 1). It was the driest year on record across Australia 
as a whole in the recent four decades, suffering the strongest fire weather danger with high values in areas 
of all States and Territories (Bureau of Meteorology, 2019b). Understanding the mechanisms that led to this 
disastrous drought is of importance not only for assessing potential predictability of extreme droughts, but 
also for improving future resource management and strategic wildfire prevention.

The 2019 extreme drought witnessed remarkable sea surface temperature (SST) anomalies in the tropical 
Pacific and Indian oceans (Figure 2a). SST warming was evident in the Central Pacific throughout almost 
all seasons of 2019, which was classified as a moderate El Niño event by the Climate Prediction Center 
(CPC). El Niño, the warm phase of the El Niño-Southern Oscillation (ENSO), features a large-scale SST 
warming in the central and eastern equatorial Pacific in concert with coupled changes of the atmospheric 
circulation (McPhaden et al., 2006; Philander, 1990). Impacts of ENSO on Australian precipitation have 
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been comprehensively studied (Allan, 1988; McBride et al., 1983; Nicholls et al., 1996; Taschetto et al., 2009, 
2010). El Niño events are usually accompanied by decreased precipitation over northeastern Australia via 
an increase in surface pressure associated with the Southern Oscillation (SO) western pole (Cai et al., 2011; 
Frauen et al., 2014), or by moving convection away from Australia as it prefers staying over the region of 
warm SSTs (Cai et al., 2010; Chung & Power, 2017). However, the Australian precipitation response to El 
Niño exhibits a certain degree of uncertainty partly owing to inter-El Niño variations in the tropical Pacific 
SST anomaly pattern (Lim et al., 2009; G. Wang & Hendon, 2007) and local SST conditions off the northern 
Australia coast (van Rensch et al., 2015). The inter-El Niño variations are mainly associated with occur-
rences of either so-called eastern-Pacific (EP) or central-Pacific (CP) El Niño events, characterized by max-
imum SST anomalies being located over the EP and CP, respectively (Ashok et al., 2007; Kao & Yu, 2009; 
Kug et al., 2009; Yeh et al., 2009). CP El Niño events tend to coincide with precipitation deficiencies over 
Australia, while EP El Niño events appear to be accompanied by less response in the region (G. Wang & 
Hendon, 2007), possibly due to the disturbance from other co-occurred SST anomalies. Local coastal SST 
anomalies have been proposed to be associated with atmospheric internal variability independent of El 
Niño (Brown et al., 2009), which may complicate isolating the El Niño signal in Australian precipitation 
anomalies (van Rensch et al., 2015).

A dipole SST anomaly structure between the western tropical Indian Ocean and the Sumatra-Java coast, 
referred to as the Indian Ocean Dipole (IOD) (Saji et  al.,  1999; Webster et  al.,  1999), is another promi-
nent interannual climate variability pattern that exerts great impacts on Australian precipitation (Dros-
dowsky, 1993; Meyers, 1996; Nicholls, 1989; Vector &Franks, 2005). Concurrent with a CP El Niño event, a 
strong positive IOD event occurred in 2019 with comparable intensity to the strongest events that occurred 
in 1994 and 1997 (Doi et al., 2020; G. Wang et al., 2020). The exact nature of the ENSO-IOD relationship re-
mains controversial, however, a line of research suggests that the IOD might be described as a natural mode 
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Figure 1.  (a) Precipitation anomalies (shading; mm/d) superimposed by 6-month Standardized Precipitation Index 
(SPI; red dots) and all-Australian precipitation anomaly percentage relative to the climatological (1979–2019) condition 
(bar; %) from March to December 2019. (b) May to December averaged all-Australian precipitation anomalies (bar; 
mm/d; left y-axis) and SPI (red line; right y-axis). y-axis is reversed to highlight the severity of the 2019 Australian 
drought.
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Figure 2.  (a) Regressed SST anomalies (shading; °C) upon the all-Australian precipitation anomalies for May to December average, superimposed by the SST 
anomalies during May to December 2019 (contours; value interval: 0.15°C; black and gray for positive and negative values, respectively). The regression pattern 
was multiplied by −1 to focus on the SST anomalies associated with Australian precipitation deficiencies. Regressed May to December precipitation anomalies 
(mm/d) onto the (b) partial DMI and (c) partial Niño4 indices. Dots indicate regression coefficients that are statistically significant at the 95% confidence level. 
(d) May to December averaged DMI(°C) for the top 10 strongest Indian Ocean Dipole (DIO) events. The inset shows the scatterplot between the DMI and all-
Australian precipitation anomalies (r = −0.57, significant at the 95% confidence level). (e) May to December averaged SST anomaly (°C) distribution along the 
equator (2°S-2°N) for CP El Niño events. The inset displays the scatterplot between the zonal location of CP El Niño and all-Australian precipitation anomalies 
(r = 0.89, significant at the 95% confidence level).
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(Saji et al., 1999; Webster et al., 1999), which can also be triggered by remote forcings, particularly by ENSO 
variability (Li et al., 2003; Scott et al., 2009; Stuecker et al., 2017). The IOD typically excites atmospheric 
wave trains from the tropical Indian Ocean to extratropical Australia via an equivalent barotropic Rossby 
wave response (Ashok et al., 2003; Cai et al., 2011), which has been suggested as an important mechanism 
influencing precipitation over southern Australia (Cai et al., 2011; McIntosh & Hendon, 2018). The pres-
ence of a positive IOD event in conjunction with El Niño conditions can extend the precipitation deficien-
cies of either phenomena (Cai et al., 2011). So far, the underlying mechanisms driving the 2019 Australian 
extreme drought remain unclear. In this study, we use observations, reanalysis products, and numerical 
model experiments to investigate which role tropical thermal forcings played for the extreme precipitation 
deficiencies over Australia in 2019.

2.  Data and Methodology
The SST data sets used in this study is based on the global sea ice and SST analyses from the Hadley Centre 
(HadISST) provided by the Met Office Hadley Centre (Rayner et al., 2003). The utilized precipitation data 
set is provided by the Australian Bureau of Meteorology (Jones et al., 2009). The atmospheric circulation 
data, including SLP and geopotential height, are derived from the National Centers for the Environmental 
Prediction-National Center for the Atmospheric Research (NCEP-NCAR) reanalysis (Kalnay et al., 1996). 
The horizontal resolution is 1° × 1° for the SST data set, 0.05° × 0.05° for the precipitation data set, and 
2.5° × 2.5° for the circulation data set. The analyses cover the period from 1979 to 2019, and anomalies for 
all variables are computed by removing the monthly mean climatology (1979–2019). Our analysis is con-
strained to the satellite era after the late 1970s, considering that the SST pattern reconstruction before 1979 
exhibits larger uncertainties (Smith et al., 1996), causing difficulties in accurately determining the zonal 
location of earlier El Niño events. Linear trends are removed from all data sets to avoid possible influences 
associated with global warming. The qualitative conclusions remain the same even if we use the raw data. 
All statistical significance tests are performed using the two-tailed Student's t-test.

El Niño events are identified according to the CPC's definition based on a threshold of 0.5°C of the Niño3.4 
index (averaged SST anomaly in the domain of 5°S-5°N, 120°W-170°W) for five consecutive months. We cal-
culate EP and CP indices (EPI and CPI) by using a mathematic rotation of the Niño3 (averaged SST anomaly 
in the domain of 5°S to 5°N, 90° to 150°W) and Niño4 (averaged SST anomaly in the domain of 5°S to 5°N, 
160°E to 150°W) indices (Ren & Jin, 2011). The El Niño events with CPI greater than EPI are defined as CP 
El Niño events. We identify eight CP El Niño events (1986, 1991, 1994, 2002, 2004, 2006, 2009, and 2019). 
We further define a CP El Niño's zonal location and analyze its relationship with Australian precipitation 
anomalies. The zonal location of CP El Niño events is measured by the longitude of the maximum zonal 
gradient of the equatorial (2°S-2°N) averaged SST anomalies, which well captures the location of anoma-
lous rising motion in the atmosphere west of the warm SST anomaly center (Zhang et al., 2015). The inten-
sity of IOD events is measured by the Dipole Mode index (DMI) (Saji et al., 1999), which is defined as the 
SST anomaly difference between the western (10°S-10°N, 50°E-70°E) and eastern Indian Ocean (10°S-0°S, 
90°E-110°E). The Standardized Precipitation Index (SPI) is one of the commonly used indices for meteor-
ological drought from the perspective of accumulation, describing precipitation deficits on different time 
scales (McKee et al., 1993). Here a 6-month time scale is selected to focus on the seasonal to interannual 
drought over Australia. Drought classification according to the SPI value is based on the definition by the 
National Drought Mitigation Center (http://drought.unl.edu). Moderate drought denotes events with SPI 
values ranging from −1.5 to −1, while severe drought has values from −2 to −1.5, and the extreme drought 
values less than −2. Here, the SPI is chosen to focus on the drought condition associated with precipitation 
deficits while not taking into account temperature effects. Partial regression is employed to isolate impacts 
from ENSO and IOD individually. We refer to the regression with Niño4 when linearly removing the IOD 
associated impact by Niño4|DMI. Similarly, the regression with the DMI is referred to by DMI|Niño4 when 
excluding the linear impact of Niño4. Here, the Niño4 index is used to represent SST variability associated 
with CP El Niño. Similar results can be obtained by using the Niño3.4 index (albeit with weaker magnitude).

Numerical experiments are conducted using the Geophysical Fluid Dynamics Laboratory (GFDL) global 
Atmospheric Model version 2.1 (AM2.1) (Anderson et al., 2004), with a horizontal resolution of 2.5° lon-
gitude × 2° latitude and 24 vertical levels. Several sets of sensitive experiments are designed by forcing the 
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model with time-evolving CP SST anomaly forcing in the Pacific region (25°S-25°N, 150°E-90°W, the blue 
box in Figure S1) and IOD SST anomaly forcing in the tropical Indian Ocean region (25°S-25°N, 40°E-120°E, 
the black box in Figure S1) from April to December. The time-evolving SST anomalies are obtained by lead/
lag regressing the SST anomalies from May to December onto the winter (Dec-Jan-Feb) Niño4 index and 
autumn (Sep-Oct-Nov) DMI index, respectively. Similar time-evolving SST anomalies can be derived by 
composite analyses and qualitative results remain the same. To inspect the individual role of CP El Niño 
and IOD events on Australian precipitation, we first force the model with observed Niño4 regressed (EXP_
CP) and DMI regressed (EXP_IOD) SST anomalies, respectively. Both of the forcings are simultaneously 
prescribed to explore the combined effects of CP El Niño and IOD events (EXP_CP + IOD). We design other 
two sets of experiments to test the sensitivity of Australian precipitation responses to the zonal location of 
CP El Niño by shifting the prescribed CP warming eastward (EXP_CPEast) and westward (EXP_CPWest) 
by 10 degrees of longitude, respectively. Similarly, we also conduct two sets of experiments with regard 
to the intensity of IOD, multiplying the IOD regressed amplitude by a factor of 0.5 (EXP_IOD0.5), and 2 
(EXP_IOD2). SST anomalies outside the forcing area are set to zero and only the positive loading in the Pa-
cific region is used for the CP forcing. These SST anomaly patterns are then added to the 1979–2019 clima-
tological SSTs. Each run is integrated for 20 years and the output from the last 15 years of the integration is 
used for our analysis. Anomalies in GFDL-AM2.1 are relative to a 20-year control simulation (EXP_CTRL) 
in which the model is forced only with seasonally varying climatological SSTs.

3.  Results
We first investigate the time evolution of precipitation deficiencies over Australia during 2019 to display its 
extreme character (Figure 1). During March to April, Australia had precipitation deficits over its northwest-
ern part. In the following months, the precipitation deficits extended to almost the entire Australian conti-
nent and persisted through the end of the year. The precipitation deficit pattern exhibited a clear seasonality 
with the center first being over the western and eastern coasts during May, shifting to the southeastern coast 
during June to October, and finally being located over northeastern Australia during November to Decem-
ber. Precipitation deficiencies increased following the seasonal evolution with all-Australian precipitation 
deficits ranging from about 20% to 40% during April to August, exceeding 50% in September to October, 
and reaching about 70% in November to December. We also use a 6-month SPI to measure the drought 
condition. According to this method, severe drought began to strike western Australia from May to August 
and then swept almost all of Australia from September to December. Especially, by the end of the year, 
most of the Australian continent was under extreme drought conditions. We hereinafter focus on the May 
to December average to investigate this long-lasting Australian drought event. The year 2019 was the driest 
year in decades in terms of the drought intensity (Figure 1b), as well as in terms of extent and duration 
(Figure S2). The extensive drought started to struck most of Australia since early spring, which is the most 
long-lasting large-scale drought since 1979 (Figure S2). The May to December cumulative precipitation was 
only about 110 mm, less than half the climatological value (Figure S3).

Concurrent with this long-lasting extensive drought, pronounced SST anomalies occurred in the Indo-Pacif-
ic oceans featuring a moderate CP El Niño and strong IOD-related SST anomaly pattern. This pattern is cap-
tured by a regression of SST anomalies with all-Australian precipitation anomalies (Figure 2a). The CP SST 
warming began in early 2019 and persisted into the winter season with an amplitude comparable to other 
CP El Niño events (Figure S4). CP El Niño events typically affect precipitation mainly over the near-tropical 
portion of Australia (Figure 2c) since the associated deep baroclinic component of the SO is trapped to the 
equatorial region (Figure S5a). Simultaneously, a positive IOD event developed during boreal summer and 
peaked during autumn, in an analogous manner to a typical IOD event but having above average intensity 
(Figure S4). Statistical diagnostics show that IOD events favor precipitation deficits over southern Austral-
ia (Figure 2b), which is tightly linked to IOD-associated equivalent barotropic Rossby wave trains (Chan 
et al., 2008) emanating from the tropical Indian Ocean toward southern Australia (Figures S5c and S5d).

We hypothesize that the combined effects of these two tropical thermal forcings in 2019 are essential to 
understand the mechanism that led to the extreme character of this Australian drought. Interestingly, we 
find that all-Australian precipitation anomalies have a stronger linear relationship (r = 0.89, statistically 
significant at the 95% confidence level) with the zonal location of a CP El Niño event (Figure 2e), than with 

ZHANG ET AL.

10.1029/2020GL090323

5 of 10



Geophysical Research Letters

its intensity as measured for instance by the Niño4 index (r = −0.43, insignificant even at the 80% confi-
dence level). Australian precipitation deficiencies tend to increase as a CP El Niño event shifts its center 
farther westward. Besides, a negative correlation (r = −0.57, statistically significant at the 95% confidence 
level) is obtained between IOD intensity as measured by the DMI and Australian precipitation anomalies 
(Figure 2d), suggesting that Australian precipitation deficiencies increase as IOD intensity increases. Dur-
ing 2019 the westernmost-located CP El Niño event occurred concurrently with an extreme (third-ranking 
in amplitude) IOD event (Figures 2d and 2e), thus we expect that their combined effects could explain the 
extreme drought.

We reconstruct the atmospheric anomalies in 2019 by a linear regression to identify the relative importance 
of the two tropical SST forcings. Note that the nonorthogonality between the CP El Niño and the IOD events 
may prohibit simple superposition of their individual climate effects. The intensity of IOD events can be 
easily measured as the DMI in a linear regression equation, while the CP El Niño's zonal location cannot be 
effectively expressed due to its event dependence. Still, if we use both the Niño4 index and DMI as predic-
tors in a linear reconstruction, the key atmospheric circulation anomalies associated with the 2019 Austral-
ian drought can be largely reproduced, including a sea level pressure (SLP) increase over Australia and its 
adjacent seas (Figures 3a and 3c) and atmospheric Rossby wave trains associated with the CP warming and 
IOD events (Figures 3b and 3d). However, the reconstructed upper-level pattern over the South Pacific, the 
so-called Pacific-Southern American (PSA) teleconnection (Ghil & Mo, 1991; Lau et al., 1994) emanating 
from the central tropical Pacific and arching toward South America (Figure S5b), is confined to the central 
and eastern Pacific (Figure 3d). It fails to capture the PSA-like pattern in 2019, which extended much fur-
ther westward. Distinct from the traditional recognition that the PSA pattern is usually arching far away 
from the Australian continent (Cai et al., 2011), the westward-shifted PSA pattern in 2019 allowed impacts 
on the Australian climate by reducing precipitation locally. The importance CP El Niño zonal location is 
supported by the statistical analysis above (Figure 2e) and further by the correlation between CP El Niño 
zonal location and upper-level atmospheric circulation (Figure S6). However, the observational sample size 
is limited and CP El Niño events usually co-occur with other climate phenomena, such as the IOD. There-
fore, we next explore the effect CP El Niño zonal location with a series of numerical model experiments.

The SST anomaly patterns used to force the various experiments are shown in Figure S1. We here show only 
upper-level atmospheric responses to highlight their sensitivity to different SST forcings since the low-level 
responses such as SLP exhibit a similar pattern with inter-experiment differences in intensity. In response 
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Figure 3.  (a) Observed sea level pressure anomalies and (b) 200-hPa geopotential height anomalies (m) for May to December 2019. (c) Reconstruction of SLP 
anomalies and (d) 200-hPa geopotential height anomalies (m) based on the multiple linear regression using Niño4 and DMI.
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to the CP El Niño SST forcing, upper-tropospheric anticyclonic anomalies straddle the positive CP diabatic 
heating source in the central-western equatorial Pacific (Figure 4d) consistent with a deep baroclinic re-
sponse (Gill, 1980; Matsuno, 1966). Simultaneously, upper-level divergence excites equivalent barotropic 
atmospheric Rossby wave trains toward off-equatorial South Pacific and America. The dominant charac-
teristics of the observed atmospheric responses are well reproduced by the experiments. The atmospheric 
anomaly pattern over the Indian Ocean is different from the observed regressed Niño4 regression pattern, 
possibly due to absence of realistic Indian Ocean SST forcing. The experiment with IOD SST forcing can also 
well simulate the observed Rossby wave train curving southeastward from the tropical Indian Ocean toward 
the mid-latitudes (Figure 4e). Both experiments with the CP El Niño- and IOD SST forcings cause precip-
itation deficits over Australia despite some systematic biases, such as too weak responses over northern 
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Figure 4.  (a) Simulated all-Australian precipitation deficits (solid bar; mm/d; left y-axis) and corresponding spatial extents (striped bar; right y-axis) in 
experiments with different SST forcings (see details in Section 2). The spatial extent is defined as the percent of the grid points that have significant precipitation 
anomalies less than −0.2 mm/d. (b–g) 200-hPa geopotential height anomalies (m) in experiments with different SST forcings. Dots indicate composite values 
that are statistically significant at the 95% confidence level.
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Australia (Figure S7). When both SST forcing patterns are prescribed simultaneously, the simulated atmos-
pheric anomaly pattern reproduces the observed pattern (Figure  3d) more realistically compared to the 
experiments with individual SST forcing patterns (Figure S8). Correspondingly, the Australian precipitation 
deficits are more severe and cover larger areas (Figures 4a and S7e), suggesting that the superimposed ef-
fects of the CP- and IOD-related SST anomalies tend to amplify their individual impacts on the Australian 
climate in terms of both the drought intensity and its spatial extent.

Next, we show two sets of experiments that are designed to depict the sensitivity of the Australian precip-
itation response to the zonal location of a CP El Niño event. When shifting the prescribed CP warming 
eastward by 10 degrees of longitude (EXP_CPEast), the upper-level Rossby wave response is displaced east-
ward with a relatively smaller amplitude (Figure 4b). In contrast, the atmospheric response is strengthened 
and extend westward (Figure 4f) when the CP SST forcing is shifted westward by 10 degrees of longitude 
(EXP_CPWest). These model experiments support our hypothesis that a farther westward-displaced CP 
warming (such as in 2019) exerts greater impacts on Australian climate via a modulation of the associated 
teleconnection patterns. Therefore, increased Australian precipitation deficits can be attributed to a more 
westward-displaced CP El Niño event (Figure 4a). Similarly, two sets of experiments are also conducted to 
investigate the sensitivity to IOD amplitude. In these experiments, the observed Rossby wave train pattern 
emanating from the tropical Indian Ocean can be approximately simulated, increasing in amplitude with 
increasing forcing (Figures 4c, 4e, and 4g). Accordingly, Australia receives more precipitation deficits with 
a strengthened IOD forcing (Figure 4a).

4.  Discussion
In this study, we found that the long-lasting extreme Australian drought of 2019 can be attributed to the 
extraordinary combination of tropical Indo-Pacific thermal forcings, including the westernmost-located CP 
El Niño event and the third-most-extreme positive IOD event in the observational record (1979–2019). Both 
observations and numerical model experiments show that both farther westward-displaced CP El Niño 
events and stronger IOD events are conducive to Australian drought conditions. A similar combination 
of Indo-Pacific thermal conditions occurred in 1994 with the second ranking for both CP El Niño zonal 
location and IOD intensity (Figures 2d and 2e), which caused another devastating Australian drought (Fig-
ure 1b). We emphasize that Australian drought conditions can be severely impacted by tropical Indo-Pacific 
thermal conditions, which hints to potential predictability of future Australian extreme droughts analogous 
to the 2019 case several months in advance due to skill in seasonal tropical SST predictions (Doi et al., 2020). 
Our results further highlight the importance of pan-tropical SST patterns for regional climate impacts (e.g., 
Cai et al., 2019).

ENSO predictability has experienced a pronounced shift around 2000 with a skillful lead time decrease 
from about three seasons to one season (Hendon et al., 2009; McPhaden, 2012; W. Wang et al., 2010), which 
has been attributed to an ENSO regime shift with more frequent CP El Niño events occurring post-2000 
(Zhang et al., 2019). The seasonal prediction of Australian precipitation is expected to struggle with the 
significantly reduced ENSO predictability in recent decades (Hendon et al., 2009; W. Wang et al., 2010). The 
current operational seasonal forecast skill for the IOD is limited to about one season lead time, which can 
be improved by utilizing the observed statistical ENSO-IOD relationship in combination with operational 
ENSO forecasts considering coupled Indo-Pacific climate variability (Doi et al., 2020; Luo et al., 2007; Zhao 
et al., 2019). Nevertheless, during recent decades the statistical El Niño-IOD relationship has weakened, 
likely due to an increased frequency of CP El Niño events (Zhang et al., 2015), suggesting their stronger 
independence (compared to EP El Niño events). Challenges for skillful seasonal prediction of extreme Aus-
tralian droughts can be partially attributed to biases in current models in capturing both the zonal position 
of CP El Niño events as well as the intensity of IOD events realistically. A larger effort needs be made to 
improve model performances in accurately simulating Indo-Pacific SST anomalies as well as their remote 
climate impacts.

In a warming world, both CP El Niño and extreme positive IOD events are projected to become more fre-
quent (Cai et al., 2014; Yeh et al., 2009). While these projections remain to be further refined as coupled gen-
eral circulation models continue to evolve, these studies hint at an increased probability in co-occurrence 
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of these two phenomena with global warming. This could increase the risk of severe Australian droughts, 
causing extensive damage to vegetation ecosystems, drinking-water shortages, and substantial pecuniary 
loss. These tropical-induced extreme events are expected to be further intensified by the long-term arid-
ification trends in Australia due to global warming (Trenberth et al., 2014). Other process in the climate 
system such as the stratospheric polar vortex (Lim et al., 2019) and temperature extremes (via its impact on 
evapotranspiration), likely also contributed to this devasting drought, which should be further explored in 
future studies.

Data Availability Statement
The data used to reproduce the results of this paper are located at https://www.metoffice.gov.uk/hadobs/
hadisst/data/download.html, http://www.bom.gov.au/climate/maps/rainfall/ and https://www.esrl.noaa.
gov/psd/data/gridded/data.ncep.reanalysis.html.
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