ABSTRACT

Background and aims: Determining surveillance intervals for patients with colorectal polyps is
critical but time-consuming and challenging to do reliably. We present the development and
assessment of a pipeline that leverages natural language processing (NLP) techniques to
automatically extract and analyze relevant polyp findings from free-text colonoscopy and
pathology reports. Using this information, individual patients are categorized into six post-
colonoscopy surveillance intervals defined by the U.S. Multi-Society Task Force on Colorectal
Cancer.

Methods: Using a set of 546 randomly selected colonoscopy and pathology reports from 324
patients in a single health system, we used a combination of statistical classifiers and rule-based
methods to extract polyp properties from each report type, associate properties to unique polyps,
and classify a patient into one of six risk categories by integrating information from both report
types. We then assessed the pipeline’s performance by determining the positive predictive value
(PPV), sensitivity, and F-score of the algorithm, compared to the determination of surveillance
intervals by a gastroenterologist.

Results: The pipeline was developed using 346 (224 colonoscopy and 122 pathology) reports
from 224 patients and evaluated on an independent test set of 200 (100 colonoscopy and 100
pathology) reports from 100 patients. We achieved an average PPV, sensitivity, and F-score of
0.92, 0.95, and 0.93, respectively, across targeted entities for colonoscopy. Pathology extraction
achieved a PPV, sensitivity, and F-score of 0.95, 0.97, and 0.96. The system achieved an overall
accuracy of 92% in assigning the recommended interval for surveillance colonoscopy.
Conclusions: The study demonstrates the feasibility of using machine learning to automatically
extract findings and classify patients to appropriate risk categories and corresponding surveillance
intervals. Incorporating this system can facilitate proactive and timely follow-up after screening
colonoscopy and enable real-time quality assessment of prevention programs and providers.
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INTRODUCTION

Colorectal cancer (CRC) is the second most common cause of cancer-related mortality in
the United States (U.S.). However, 50% of deaths are preventable by screening’ 2. Screening for
CRC reduces incidence and mortality by identifying cancers and precancerous colon polyps,
including high-risk polyps, defined as 1 adenoma or sessile serrated polyp (SSP) > 1cm, 1
adenoma with villous histology, 1 adenoma with high-grade dysplasia, 1 SSP with dysplasia, 1
traditional serrated adenoma (TSA), or 5-10 adenomas or SSP of any size®. High-risk polyps are
associated with a two- to five-fold increased risk for subsequent CRC*, and colonoscopic removal
has been shown to decrease CRC incidence and mortality® ©. Several professional societies have
recommended that individuals with high-risk polyps undergo surveillance with repeat colonoscopy
three years after diagnosis®; yet, over 50% of individuals with these polyp subtypes do not receive

I”"", Recent results from the

colonoscopy within the recommended surveillance interva
Population-based Research Optimizing Screening through Personalized Regimens (PROSPR)
consortium demonstrated surveillance rates between 18% and 53% in four separate integrated
health delivery systems'®. At our institution, only 26% of patients with high-risk polyps complete
surveillance colonoscopy at three years, followed by 40% by 3.5 years and 54% by five years'?,
which is due to many factors, including low rates of surveillance interval documentation, incorrect
documentation of intervals, and lack of patient outreach around the time surveillance is due'.

A primary barrier to the effective management of colorectal polyps is an inefficient and
time-consuming manual process for identifying and tracking patients who require 3-year
colonoscopy surveillance. Clinicians are tasked with synthesizing and interpreting information
about polyp size, number, and histology from semi-structured colonoscopy and pathology reports,
which are usually available at different times and in various locations within the electronic health

record (EHR). Once these two independent reports have been located and reviewed, the

clinicians need to combine information from both reports and reference detailed guidelines to



determine where their patient fits within one of six different surveillance intervals based on CRC
risk'" 15 (Figure 1).

In this study, we describe the development and evaluation of a tool that uses machine
learning (ML) and natural language processing (NLP) techniques in an automated pipeline to help
physicians synthesize information from colonoscopy and pathology reports to assess CRC risk
and recommend the appropriate surveillance interval. We demonstrate how the pipeline can
reliably extract information from both pathology and colonoscopy reports as the basis for tracking
patients to enable timely proactive surveillance of colorectal polyps. The work is one step towards
our team’s overall goal to improve adherence to CRC surveillance guidelines in our large health

system.

MATERIALS AND METHODS
Data sources

The process for selecting the data is summarized in Figure 2. Following an institutional
review board-approved protocol, we randomly selected a total of 546 colonoscopy and pathology
reports from UCLA Health’s electronic health record (Epic Systems, Verona, WI) from patients
aged 18 or older who underwent colonoscopy procedures between March 2013 and April 2019.
Excluded cases included patients who had 1) a personal or family history of CRC, 2) a personal
or family history of colorectal polyps, 3) inflammatory bowel disease, 4) familial/hereditary
polyposis syndromes. A subset of 346 colonoscopy and pathology reports (122 paired
colonoscopy and pathology reports and 102 unpaired colonoscopy reports) representing 224
patients were initially annotated and used to train and test each step of our automated pipeline.
During the annotation process, a set of 10 colonoscopy and pathology reports that were
incorrectly paired (e.g., the pathology report was generated after the colonoscopy report but did
not refer to the same colonoscopy procedure). These reports were not used to validate the

surveillance interval recommendation algorithm but were included as part of the training set. Each



colonoscopy and pathology report was split into sections based on heading (e.g., Findings, Final
Diagnosis) to maximize the number of training and testing examples, treating each section with a
mention of polyps as an independent example. Consequently, we used 224 colonoscopy reports
comprised of 417 sections and 122 pathology reports comprised of 241 sections.

A set of 200 reports (100 colonoscopy reports and 100 corresponding pathology reports)
from 100 patients was retrieved from the the EHR to evaluate the complete system. We
independently sampled cases from each surveillance interval group to ensure balanced
representation across groups. Table 1 summarizes the breakdown of reports for each pipeline
development phase and evaluation.

Annotations

The annotation guidelines were developed by a gastroenterologist (FM) and two
pathologists (BN, YK). They identified 13 polyp-related entities of interest found in colonoscopy
and pathology report text (Table 2). The annotation guidelines then defined which entities to target
for extraction from the semi-structured reports and served as a framework for representing
structured polyp data.

Two physicians (AM, CS) and a trained analyst (OK) annotated the reports using the
annotation guidelines and the brat rapid annotation tool'®. An initial set of 50 reports (25
colonoscopy and 25 pathology) was annotated by the analyst and reviewed by a physician (CS
or AM). These reviews occurred in batches, and discrepancies were discussed. Two types of
annotations were used for this task: 1) entities, which assign pre-defined types to spans of text,
and 2) relations, which label connections between entities. Entity annotations were used to train
the statistical classifier to identify those entities containing polyp properties and extract their
values for processing. The relation annotations were used to validate the process by which those
properties, once identified, were grouped and associated with distinct polyps.

To develop and test the surveillance interval classification and to establish the

independent test set, two physicians (FM, CS) independently reviewed and determined a



consensus recommended surveillance interval based on a review of both colonoscopy and
pathology reports for the patient and according to guidelines'’ (Figure 1). Disagreements (15
total; 7%) were discussed, and a consensus was reached in all cases.
Pipeline overview

The overall pipeline (Figure 2) consists of three modules: 1) a polyp property extraction
module identifies mentions of polyps and their relevant properties from colonoscopy and
pathology reports; 2) a polyp grouping module relates properties associated with an individual
polyp (e.g., morphology, location, size); and 3) a surveillance interval classification module
integrates information between colonoscopy and pathology reports to determine the
recommended interval for a repeat colonoscopy. The pipeline was developed using Python and
the spaCy framework, an open-source library for NLP8,

1. Polyp property extraction

The extraction module identifies mentions of polyps and related properties (e.g., size,
location) that are documented in unstructured colonoscopy and pathology reports. We focused
on the Findings and Impressions sections of colonoscopy reports and the Final Diagnosis and
Gross Description sections of pathology reports. Within these sections, sentences are tokenized
into individual words and fed into a statistical classifier followed by a rule-based pattern matcher.
The statistical classifier was trained to identify properties using annotations within the
development set. The classifier calculates the probability of a token (or set of tokens) labeled as
one of 13 entities summarized in Table 2 and chooses the most likely label. The rule-based
pattern matcher serves two purposes: 1) to provide a secondary method for capturing key
information (e.g., histology) that may influence surveillance interval; and 2) to examine each
entity’s context to identify common scenarios that result in the assignment of incorrect entities
(e.g., erroneously assigning the size of a snare as the size of a polyp).

2. Polyp grouping



The grouping module aims to associate the extracted properties (e.g., number, size) with
their unique polyp mentions. Colonoscopy and pathology reports frequently document more than
one polyp finding. Accurately enumerating the total number of polyps is important in determining
the appropriate surveillance interval. Figure 3 illustrates how polyps and their properties are
associated. In colonoscopy reports, individual sentences often refer to a single polyp (Figure 3a).
Alternatively, a sentence may describe two or more unique polyp findings, in which case they
might be distinguished by anatomical location (Figure 3b). In pathology reports, polyp mentions
are often grouped based on location and the order that the samples were collected (Figure 3c).
To handle these scenarios, the pipeline processes each property in sequence, creating a new
polyp finding each time a unique location or histology is encountered.

3. Surveillance interval classification

The final module combines all polyp findings extracted from the colonoscopy and
pathology reports to classify the patient into one of six risk-stratified categories (1, 2, 3, 4, 5, 6),
each corresponding to a surveillance interval. Comparing the structured polyp findings to the
conditions in Figure 1, patients are assigned to these intervals based on a rule-out strategy.
Figure 4 provides an illustrative example. Given the example polyps extracted from the
colonoscopy and pathology reports, the module first considers the total number of polyps and the
size of the largest polyp from the colonoscopy report. Based on the finding that a single, small (<
10mm) polyp was identified, risk categories 4 and 6 can be ruled out. Considering information
from the pathology report, we can determine that the polyp is ‘sessile serrated’ without cytologic
dysplasia. Therefore, categories 1 and 2 can be ruled out. Finally, the intersection of the two
independently created sets of candidate categories is considered. Based on the combined
summary of all extracted properties—a quantity of 1, no large polyp, no cytologic dysplasia—we
rule out category 5. Thus, the patient falls into category 3, and a surveillance procedure in 5-10
years is recommended.

Evaluation



The primary study outcomes were performance measures for the final end-to-end NLP
pipeline, as measured by positive predictive value, sensitivity, and F-Score based on a
comparison of pipeline outputs to human annotations. Performance of the pipeline was assessed
in four parts. First, the polyp extraction module was evaluated using a held-out set of 67
colonoscopy and 37 pathology reports. Second, the polyp grouping module was evaluated using
a held-out test set of 180 colonoscopy and 96 pathology reports. Third, the surveillance interval
classification module was evaluated using a held-out test set of 89 paired colonoscopy and
pathology reports. The polyp grouping and surveillance interval classification models were given
human annotations as inputs to characterize the upper bound of the module’s performance.
Finally, we performed a final end-to-end assessment of the entire pipeline using an independent
test set of paired colonoscopy and pathology reports from 100 patients. For all assessments, we
determined PPV, sensitivity, and F-score based on comparing the output of each module and the

recommended surveillance interval as determined by human readers (AM, CS, FM).

RESULTS
NLP reliably extracts polyp descriptions from free-text reports

Our polyp extraction pipeline performed consistently high across both colonoscopy
(overall F-score 0.93) and pathology reports (overall F-score 0.96) (Table 3). Descriptions such
as morphology that have relatively consistent terminology achieved the highest PPV and
sensitivity. Performance on pathology reports was higher overall, likely due to the structured
pathology reports that utilize more standardized terminology than colonoscopy reports.
Polyp properties are accurately associated with unique polyp mentions

Our approach for associating extracted properties to the correct polyp mention achieved
overall F-scores of 0.95 and 0.96 for colonoscopy and pathology reports, respectively (Table 4).

Surveillance intervals are assigned with high precision and recall



The distribution of cases used to test our recommendation approach across all six
surveillance interval categories is summarized in Table 1. Table 5 reports the performance across
all risk categories. Performance ranged from a PPV of 0.91-1.00, a sensitivity of 0.85-1.00, and
an F-score of 0.88-1.00 across all categories. The lowest-performing category, Category 4, was
most often misclassified as Category 5, reflecting the highly overlapping nature of these risk
categories. Category 5 is considered higher risk with a “3 year” surveillance interval compared to
Category 4, which calls for surveillance in “3-5 years”.

Independent test set evaluation

Reports from 100 patients that were not previously used to develop or test pipeline
modules were used to evaluate the entire pipeline. Surveillance intervals that were outputted by
the system were compared to the surveillance recommendations generated by human readers
(AM, CS, FM). Each of the module steps was executed in sequence without any manual
correction. Overall, our system achieved F-scores ranging from 0.89 to 0.97 across all categories
(Table 6). Category 5 achieved the lowest F-score (0.89), reflecting the limitations of our defined

rules in disambiguating Category 5 from Category 6.

DISCUSSION

This study demonstrates that an algorithm using NLP and ML techniques can integrate
information from colonoscopy and pathology reports to accurately categorize patients into groups
by guideline-concordant surveillance intervals. On average, our system achieved a PPV of 0.92
and a sensitivity of 0.95 when extracting targeted polyp properties from colonoscopy reports. For
pathology report extraction, the average PPV was 0.95, and sensitivity was 0.97. Using integrated
data from colonoscopy and pathology reports, the complete system's overall accuracy was 92%
for assigning the recommended interval for surveillance colonoscopy. Our methods and findings
are consistent with other studies that have used NLP to determine surveillance intervals; however,

our method is unique in implementing the recent post-polypectomy surveillance guidelines,



including sessile serrated lesions and large hyperplastic polyps, and improving generalizable of
our algorithm by using a training set that reflects the high variability of language and structure of
clinical reports written by multiple authors' %,

The detection and removal of high-risk polyps is the cornerstone of CRC prevention and
screening. Thus, it is essential to accurately determine surveillance intervals for patients who
undergo screening and surveillance to minimize CRC and CRC-related mortality. The automated
approach presented can help minimize error seen in the manual determination of surveillance
intervals, automate surveillance interval determination, simplify clinical processes, and potentially
increase adherence to surveillance guidelines. The system also has the potential to assist busy
providers who must access data from several areas of the patient chart over multiple encounters
to determine the appropriate CRC surveillance interval for each patient. Given the sheer number
of screening colonoscopy performed daily, our system has great potential to improve CRC
outcomes in health systems that face challenges to identifying and then achieving timely
surveillance for patients with colorectal polyps®.

A growing number of studies have shown the promise of applying artificial intelligence (Al)
to gastrointestinal endoscopy, including polyp detection and characterization?'. NLP applications
have been explored in various contexts, primarily to calculate quality improvement metrics. For
example, NLP has been used to extract mentions of adenomas and sessile serrated polyps to
compute the adenoma detection rate, a common metric for colonoscopy quality improvement®.
In studies like ours, NLP has been demonstrated to be an efficient alternative to manual synthesis
of colonoscopy and pathology findings with high accuracy for polyp risk stratification (>84%) and
guideline-concordant surveillance recommendations (>90%), performing better than clinicians in
some cases'® ?*2 NLP has also been used to improve documentation of colonoscopy findings,

assess colonoscopy quality, and generate colonoscopy result letters to patients and providers 2*

25,29



We envision several potential applications of our ML and NLP approach in health systems
and gastroenterology practices. First, it can be used as a proactive and real-time approach to
surveillance colonoscopy. By serving as a clinical decision support tool, this innovative and
efficient approach can reduce the workload necessary to determine surveillance intervals and
assist with the recall of patients with high-risk polyps (e.g., adenomas with high-risk features) for
on-time surveillance. It can also be expanded to address other types of polyps (e.g., low-risk
adenoma) that require longer surveillance intervals (e.g., 5 or 10 years). Second, the pipeline
facilitates data-driven quality improvement programs that can help ensure timely follow-up.
Metrics such as adenoma detection rate and adherence to recommended surveillance intervals
can be easily calculated, allowing health systems to understand their screening programs'
performance. Third, information extracted and structured from colonoscopy and pathology reports
can be incorporated into risk models being developed to estimate the lifetime risk of CRC. Models
that incorporate more detailed clinical information may achieve higher PPV than existing risk
stratification methods.

This work is not without limitations. Because polyps are often not uniquely identified in
colonoscopy reports at our institution, accurately estimating the total number of polyps is
challenging. Polyp quantity and histology type have the largest impact on surveillance interval.
Subtle differences in these two entities distinguish risk categories 2, 4, and 5; in some cases, the
algorithm overestimates the number of polyps, which results in an incorrect classification.
Moreover, finding a set of rules that will consistently disambiguate multiple polyps grouped
together and correctly assign their individual properties is challenging. In particular, colonoscopy
reports can have variable sentence structure depending on the physician. As such, our approach's
performance may vary across providers and institutions. Electronic reporting systems that
standardize individual polyps reporting would help in this regard. Another source of error is our
preference to assign patients to the higher risk category (and more frequent surveillance) if

uncertain. For example, Category 5 cases were often incorrectly assigned by our algorithm as
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Category 6. While shorter surveillance intervals could potentially catch CRCs earlier when risk is
uncertain, the incorrect classification may promote colonoscopy overuse in some cases. Lastly,
the development and implementation of NLP algorithms like this one require resource allocation,
both in constructing the pipeline, its validation, deployment in practice, and maintenance. Despite
the high performance reported, a human-in-the-loop paradigm where a patient coordinator
oversees and reviews assigned surveillance intervals is still recommended to ensure that patients
receive timely and appropriate care.

The next steps in this multi-phase effort are to prospectively validate our NLP algorithm
for patients who present for screening and to compare surveillance classifications to provider
classifications. Once the system achieves consistent performance, we will incorporate the
algorithm into our health system’s preventive care EHR health maintenance module. This
integration will allow us to automate surveillance reminders to patients (mailed and electronic
messaging through the EHR-based patient portal) and providers (electronic messaging through
the EHR) and improve physician-patient communication about screening colonoscopy findings in
our health system. We plan to study the implementation, effectiveness, and acceptability of this
multi-level intervention and to disseminate our findings and code to other health system partners
to further study the algorithm in different patient populations and settings. This work will streamline
provider workload and improve health outcomes in our health system and beyond for one of the

most common and deadly malignancies in the U.S.
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FIGURE AND TABLES
FIGURES
Figure 1: Conditions for each polyp risk category and corresponding CRC colonoscopy

surveillance interval recommendation; summarizes guidelines published in Gupta et al'’.

Figure 2: (a) Overview of the NLP pipeline. Inputs are free-text colonoscopy and pathology
reports. Output is a colonoscopy surveillance interval recommendation (as categorized in Figure
1). (b) Summary of the case selection process. A “mismatched pair” refers to a colonoscopy and

pathology report that did not reference the same procedure and was removed during annotation.

Figure 3: lllustration of the inputs/outputs of the polyp grouping module. (a) Example of a
colonoscopy report with one polyp finding per sentence. (b) Example of a colonoscopy report with
multiple polyp findings in one sentence. (¢) Example of a pathology report with single and multiple
polyp findings per sample that are grouped by anatomical location. (Note: properties highlighted

in yellow are being shared across multiple polyp observations by the grouping algorithm)

Figure 4: Example of colonoscopy surveillance interval recommendation process. First,
properties of polyps extracted from colonoscopy report (left) and pathology report (right) are
independently summarized and used to narrow down possible risk categories. Then a combined
summary is used to determine the final category and recommend the corresponding surveillance

interval.
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TABLES
Table 1: (A) Distribution of colonoscopy and pathology reports used to train and test each module
of the NLP pipeline. (B) Surveillance interval distribution of patients used during pipeline

development. (C) Surveillance interval distribution of patients included in the independent test set.

(A)
Module Report Type Training Testing Total
Colonoscopy 157 67 224
Polyp Extraction
Pathology 85 37 122
Colonoscopy 44 180 224
Polyp Grouping
Pathology 26 96 122
Colonoscopy 23 89 112
Surveillance Interval
Pathology 23 89 112
(B)
Total 7-10 5-10 3-5
10 1
Set Patients Yl years years years 3 years U
Training 23 4 4 4 4 4 3
Testing 89 16 10 10 13 31
Total 112 20 14 14 17 35 12
(C)
Total Patients 10 years 7-10 years 5-10 years 3-5 years 3 years 1vyear
100 15 15 15 20 20 15
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Table 2: Entities targeted from colonoscopy and pathology reports

Colonoscopy Entities

Pathology Entities

Entity Description Entity Description
. Mention of polyp, lesion, Mention of polyp tissue in
Polyp finding adenoma, etc Polyp sample pathology sample
: Specific position in colon where : Specimen  source as
Location Location .
polyp was found designated by sample label
Quantity Number of distinct polyps in Quantity Number of tissue

observation group

fragments in sample

Measured size

Numeric size of polyp (mm or cm)

Measured size

Numeric size of polyp (mm
or cm)

Diagnosis of polyp
General size G(l-:‘ntlaral.descnphve size of polyp Histology histology . (tubular
(diminutive, large, etc) adenoma, sessile serrated
polyp, etc)
- . Presence or absence of
Morpholo Polyp characteristic | High-grade high-arade  dvsplasia  in
P gy (pedunculated, broad-based, etc) | dysplasia 9n-g ysp
sample
. Presence or absence of
Cytologic ) . )
. cytologic  dysplasia in
dysplasia
sample
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Table 3: Performance of polyp entity extraction module on a test set of 67 colonoscopy and 37 pathology reports.

Report Morpholog Measure
PPV 0.96 0.99 0.97

Colonosco SENSITIVI

Py TY 0.90
F-SCORE 0.93
PPV 0.97
Pathology .?.:E(NSITIVI 0.98
F-SCORE 0.97

PPV: positive predictive value

0.98

0.98

0.96

0.96

0.98

0.98

0.98

General
Size

0.87

0.97

0.92

Quantity

0.81

0.91

0.86

0.87

0.90

0.88

0.90

0.97
0.94

0.91

0.95

0.93

Histology

0.96

0.98

0.97

High-
Grade

Dysplasia

0.99

0.99

0.99

Cytologic
Dysplasia

0.96

0.99

0.97

0.95

0.93

0.95

0.97

0.96
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Table 4: Performance of the polyp grouping module on a test set of 276 reports.

Measur General Quanti | Histolo
ed Size Size ty

Colonosc PPV 0.97 0.98 0.98 0.99 : - - 0.98
(0]
B/ SENSITI 0.88 0.94 0.98 0.99 ; - - 0.93
VITY
F-SCORE  0.92 0.96 0.98 0.99 ; - - 0.95
Patholog PPV 0.95 - ; ; 0.94 0.91 0.88 0.93
y SENSITI 1.00 - ; - 0.99 0.99 1.00 1.00
VITY
F-SCORE  0.97 - ; - 0.97 0.95 0.94 0.96

PPV: positive predictive value

Table 5: Performance of the surveillance interval classification module on a test set of 89 patients.

m Category 1 | Category 2 | Category 3 | Category 4 | Category 5 | Category 6 m

SENSITIVITY 1.00 1.00 0.90 0.85 0.97 1.00 0.95

F-SCORE 1.00 0.95 0.95 0.88 0.95 1.00 0.96

PPV: positive predictive value

Table 6: Performance of full pipeline (extraction, grouping, classification) on an independent test

set of 100 patients.

m Category 1 | Category 2 | Category 3 | Category 4 | Category5 | Category 6 m

PPV 0.93 1.00 0.94 0.90 0.94 0.83 0.92
SENSITIVITY 0.93 0.87 1.00 0.90 0.85 1.00 0.92
F-SCORE 0.93 0.93 0.97 0.90 0.89 0.91 0.92

PPV: positive predictive value
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