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ABSTRACT  

Background and aims: Determining surveillance intervals for patients with colorectal polyps is 

critical but time-consuming and challenging to do reliably. We present the development and 

assessment of a pipeline that leverages natural language processing (NLP) techniques to 

automatically extract and analyze relevant polyp findings from free-text colonoscopy and 

pathology reports. Using this information, individual patients are categorized into six post-

colonoscopy surveillance intervals defined by the U.S. Multi-Society Task Force on Colorectal 

Cancer.  

Methods: Using a set of 546 randomly selected colonoscopy and pathology reports from 324 

patients in a single health system, we used a combination of statistical classifiers and rule-based 

methods to extract polyp properties from each report type, associate properties to unique polyps, 

and classify a patient into one of six risk categories by integrating information from both report 

types. We then assessed the pipeline’s performance by determining the positive predictive value 

(PPV), sensitivity, and F-score of the algorithm, compared to the determination of surveillance 

intervals by a gastroenterologist.  

Results: The pipeline was developed using 346 (224 colonoscopy and 122 pathology) reports 

from 224 patients and evaluated on an independent test set of 200 (100 colonoscopy and 100 

pathology) reports from 100 patients. We achieved an average PPV, sensitivity, and F-score of 

0.92, 0.95, and 0.93, respectively, across targeted entities for colonoscopy. Pathology extraction 

achieved a PPV, sensitivity, and F-score of 0.95, 0.97, and 0.96. The system achieved an overall 

accuracy of 92% in assigning the recommended interval for surveillance colonoscopy.  

Conclusions: The study demonstrates the feasibility of using machine learning to automatically 

extract findings and classify patients to appropriate risk categories and corresponding surveillance 

intervals. Incorporating this system can facilitate proactive and timely follow-up after screening 

colonoscopy and enable real-time quality assessment of prevention programs and providers. 

Keywords: Natural language processing, quality improvement, high-risk polyps, surveillance. 
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INTRODUCTION 

Colorectal cancer (CRC) is the second most common cause of cancer-related mortality in 

the United States (U.S.). However, 50% of deaths are preventable by screening1, 2. Screening for 

CRC reduces incidence and mortality by identifying cancers and precancerous colon polyps, 

including high-risk polyps, defined as 1 adenoma or sessile serrated polyp (SSP) ≥ 1cm, 1 

adenoma with villous histology, 1 adenoma with high-grade dysplasia, 1 SSP with dysplasia, 1 

traditional serrated adenoma (TSA), or 5-10 adenomas or SSP of any size3. High-risk polyps are 

associated with a two- to five-fold increased risk for subsequent CRC4, and colonoscopic removal 

has been shown to decrease CRC incidence and mortality5, 6. Several professional societies have 

recommended that individuals with high-risk polyps undergo surveillance with repeat colonoscopy 

three years after diagnosis3; yet, over 50% of individuals with these polyp subtypes do not receive 

colonoscopy within the recommended surveillance interval7-11. Recent results from the 

Population-based Research Optimizing Screening through Personalized Regimens (PROSPR) 

consortium demonstrated surveillance rates between 18% and 53% in four separate integrated 

health delivery systems10. At our institution, only 26% of patients with high-risk polyps complete 

surveillance colonoscopy at three years, followed by 40% by 3.5 years and 54% by five years12, 

which is due to many factors, including low rates of surveillance interval documentation, incorrect 

documentation of intervals, and lack of patient outreach around the time surveillance is due13. 

A primary barrier to the effective management of colorectal polyps is an inefficient and 

time-consuming manual process for identifying and tracking patients who require 3-year 

colonoscopy surveillance. Clinicians are tasked with synthesizing and interpreting information 

about polyp size, number, and histology from semi-structured colonoscopy and pathology reports, 

which are usually available at different times and in various locations within the electronic health 

record (EHR). Once these two independent reports have been located and reviewed, the 

clinicians need to combine information from both reports and reference detailed guidelines to 
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determine where their patient fits within one of six different surveillance intervals based on CRC 

risk11, 14, 15 (Figure 1). 

In this study, we describe the development and evaluation of a tool that uses machine 

learning (ML) and natural language processing (NLP) techniques in an automated pipeline to help 

physicians synthesize information from colonoscopy and pathology reports to assess CRC risk 

and recommend the appropriate surveillance interval. We demonstrate how the pipeline can 

reliably extract information from both pathology and colonoscopy reports as the basis for tracking 

patients to enable timely proactive surveillance of colorectal polyps. The work is one step towards 

our team’s overall goal to improve adherence to CRC surveillance guidelines in our large health 

system. 

 

MATERIALS AND METHODS 

Data sources 

The process for selecting the data is summarized in Figure 2. Following an institutional 

review board-approved protocol, we randomly selected a total of 546 colonoscopy and pathology 

reports from UCLA Health’s electronic health record (Epic Systems, Verona, WI) from patients 

aged 18 or older who underwent colonoscopy procedures between March 2013 and April 2019. 

Excluded cases included patients who had 1) a personal or family history of CRC, 2) a personal 

or family history of colorectal polyps, 3) inflammatory bowel disease, 4) familial/hereditary 

polyposis syndromes. A subset of 346 colonoscopy and pathology reports (122 paired 

colonoscopy and pathology reports and 102 unpaired colonoscopy reports) representing 224 

patients were initially annotated and used to train and test each step of our automated pipeline. 

During the annotation process, a set of 10 colonoscopy and pathology reports that were 

incorrectly paired (e.g., the pathology report was generated after the colonoscopy report but did 

not refer to the same colonoscopy procedure). These reports were not used to validate the 

surveillance interval recommendation algorithm but were included as part of the training set. Each 
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colonoscopy and pathology report was split into sections based on heading (e.g., Findings, Final 

Diagnosis) to maximize the number of training and testing examples, treating each section with a 

mention of polyps as an independent example. Consequently, we used 224 colonoscopy reports 

comprised of 417 sections and 122 pathology reports comprised of 241 sections.  

A set of 200 reports (100 colonoscopy reports and 100 corresponding pathology reports) 

from 100 patients was retrieved from the the EHR to evaluate the complete system. We 

independently sampled cases from each surveillance interval group to ensure balanced 

representation across groups. Table 1 summarizes the breakdown of reports for each pipeline 

development phase and evaluation. 

Annotations 

The annotation guidelines were developed by a gastroenterologist (FM) and two 

pathologists (BN, YK). They identified 13 polyp-related entities of interest found in colonoscopy 

and pathology report text (Table 2). The annotation guidelines then defined which entities to target 

for extraction from the semi-structured reports and served as a framework for representing 

structured polyp data.  

Two physicians (AM, CS) and a trained analyst (OK) annotated the reports using the 

annotation guidelines and the brat rapid annotation tool16. An initial set of 50 reports (25 

colonoscopy and 25 pathology) was annotated by the analyst and reviewed by a physician (CS 

or AM). These reviews occurred in batches, and discrepancies were discussed. Two types of 

annotations were used for this task: 1) entities, which assign pre-defined types to spans of text, 

and 2) relations, which label connections between entities. Entity annotations were used to train 

the statistical classifier to identify those entities containing polyp properties and extract their 

values for processing. The relation annotations were used to validate the process by which those 

properties, once identified, were grouped and associated with distinct polyps. 

To develop and test the surveillance interval classification and to establish the 

independent test set, two physicians (FM, CS) independently reviewed and determined a 



 5 

consensus recommended surveillance interval based on a review of both colonoscopy and 

pathology reports for the patient and according to guidelines17 (Figure 1). Disagreements (15 

total; 7%) were discussed, and a consensus was reached in all cases.  

Pipeline overview 

The overall pipeline (Figure 2) consists of three modules: 1) a polyp property extraction 

module identifies mentions of polyps and their relevant properties from colonoscopy and 

pathology reports; 2) a polyp grouping module relates properties associated with an individual 

polyp (e.g., morphology, location, size); and 3) a surveillance interval classification module 

integrates information between colonoscopy and pathology reports to determine the 

recommended interval for a repeat colonoscopy. The pipeline was developed using Python and 

the spaCy framework, an open-source library for NLP18. 

1. Polyp property extraction 

The extraction module identifies mentions of polyps and related properties (e.g., size, 

location) that are documented in unstructured colonoscopy and pathology reports. We focused 

on the Findings and Impressions sections of colonoscopy reports and the Final Diagnosis and 

Gross Description sections of pathology reports. Within these sections, sentences are tokenized 

into individual words and fed into a statistical classifier followed by a rule-based pattern matcher. 

The statistical classifier was trained to identify properties using annotations within the 

development set. The classifier calculates the probability of a token (or set of tokens) labeled as 

one of 13 entities summarized in Table 2 and chooses the most likely label. The rule-based 

pattern matcher serves two purposes: 1) to provide a secondary method for capturing key 

information (e.g., histology) that may influence surveillance interval; and 2) to examine each 

entity’s context to identify common scenarios that result in the assignment of incorrect entities 

(e.g., erroneously assigning the size of a snare as the size of a polyp). 

2. Polyp grouping 
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The grouping module aims to associate the extracted properties (e.g., number, size) with 

their unique polyp mentions. Colonoscopy and pathology reports frequently document more than 

one polyp finding. Accurately enumerating the total number of polyps is important in determining 

the appropriate surveillance interval. Figure 3 illustrates how polyps and their properties are 

associated. In colonoscopy reports, individual sentences often refer to a single polyp (Figure 3a). 

Alternatively, a sentence may describe two or more unique polyp findings, in which case they 

might be distinguished by anatomical location (Figure 3b). In pathology reports, polyp mentions 

are often grouped based on location and the order that the samples were collected (Figure 3c). 

To handle these scenarios, the pipeline processes each property in sequence, creating a new 

polyp finding each time a unique location or histology is encountered.   

3. Surveillance interval classification 

The final module combines all polyp findings extracted from the colonoscopy and 

pathology reports to classify the patient into one of six risk-stratified categories (1, 2, 3, 4, 5, 6), 

each corresponding to a surveillance interval. Comparing the structured polyp findings to the 

conditions in Figure 1, patients are assigned to these intervals based on a rule-out strategy. 

Figure 4 provides an illustrative example. Given the example polyps extracted from the 

colonoscopy and pathology reports, the module first considers the total number of polyps and the 

size of the largest polyp from the colonoscopy report. Based on the finding that a single, small (< 

10mm) polyp was identified, risk categories 4 and 6 can be ruled out. Considering information 

from the pathology report, we can determine that the polyp is ‘sessile serrated’ without cytologic 

dysplasia. Therefore, categories 1 and 2 can be ruled out. Finally, the intersection of the two 

independently created sets of candidate categories is considered. Based on the combined 

summary of all extracted properties—a quantity of 1, no large polyp, no cytologic dysplasia—we 

rule out category 5. Thus, the patient falls into category 3, and a surveillance procedure in 5-10 

years is recommended. 

Evaluation 
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The primary study outcomes were performance measures for the final end-to-end NLP 

pipeline, as measured by positive predictive value, sensitivity, and F-Score based on a 

comparison of pipeline outputs to human annotations. Performance of the pipeline was assessed 

in four parts. First, the polyp extraction module was evaluated using a held-out set of 67 

colonoscopy and 37 pathology reports. Second, the polyp grouping module was evaluated using 

a held-out test set of 180 colonoscopy and 96 pathology reports. Third, the surveillance interval 

classification module was evaluated using a held-out test set of 89 paired colonoscopy and 

pathology reports. The polyp grouping and surveillance interval classification models were given 

human annotations as inputs to characterize the upper bound of the module’s performance. 

Finally, we performed a final end-to-end assessment of the entire pipeline using an independent 

test set of paired colonoscopy and pathology reports from 100 patients. For all assessments, we 

determined PPV, sensitivity, and F-score based on comparing the output of each module and the 

recommended surveillance interval as determined by human readers (AM, CS, FM). 

 

RESULTS 

NLP reliably extracts polyp descriptions from free-text reports  

Our polyp extraction pipeline performed consistently high across both colonoscopy 

(overall F-score 0.93) and pathology reports (overall F-score 0.96) (Table 3). Descriptions such 

as morphology that have relatively consistent terminology achieved the highest PPV and 

sensitivity. Performance on pathology reports was higher overall, likely due to the structured 

pathology reports that utilize more standardized terminology than colonoscopy reports. 

Polyp properties are accurately associated with unique polyp mentions 

Our approach for associating extracted properties to the correct polyp mention achieved 

overall F-scores of 0.95 and 0.96 for colonoscopy and pathology reports, respectively (Table 4). 

Surveillance intervals are assigned with high precision and recall 
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The distribution of cases used to test our recommendation approach across all six 

surveillance interval categories is summarized in Table 1. Table 5 reports the performance across 

all risk categories. Performance ranged from a PPV of 0.91-1.00, a sensitivity of 0.85-1.00, and 

an F-score of 0.88-1.00 across all categories. The lowest-performing category, Category 4, was 

most often misclassified as Category 5, reflecting the highly overlapping nature of these risk 

categories. Category 5 is considered higher risk with a “3 year” surveillance interval compared to 

Category 4, which calls for surveillance in “3-5 years”.  

Independent test set evaluation 

Reports from 100 patients that were not previously used to develop or test pipeline 

modules were used to evaluate the entire pipeline. Surveillance intervals that were outputted by 

the system were compared to the surveillance recommendations generated by human readers 

(AM, CS, FM). Each of the module steps was executed in sequence without any manual 

correction. Overall, our system achieved F-scores ranging from 0.89 to 0.97 across all categories 

(Table 6). Category 5 achieved the lowest F-score (0.89), reflecting the limitations of our defined 

rules in disambiguating Category 5 from Category 6. 

 

DISCUSSION 

This study demonstrates that an algorithm using NLP and ML techniques can integrate 

information from colonoscopy and pathology reports to accurately categorize patients into groups 

by guideline-concordant surveillance intervals. On average, our system achieved a PPV of 0.92 

and a sensitivity of 0.95 when extracting targeted polyp properties from colonoscopy reports. For 

pathology report extraction, the average PPV was 0.95, and sensitivity was 0.97. Using integrated 

data from colonoscopy and pathology reports, the complete system's overall accuracy was 92% 

for assigning the recommended interval for surveillance colonoscopy. Our methods and findings 

are consistent with other studies that have used NLP to determine surveillance intervals; however, 

our method is unique in implementing the recent post-polypectomy surveillance guidelines, 
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including sessile serrated lesions and large hyperplastic polyps, and improving generalizable of 

our algorithm by using a training set that reflects the high variability of language and structure of 

clinical reports written by multiple authors19, 20. 

The detection and removal of high-risk polyps is the cornerstone of CRC prevention and 

screening. Thus, it is essential to accurately determine surveillance intervals for patients who 

undergo screening and surveillance to minimize CRC and CRC-related mortality. The automated 

approach presented can help minimize error seen in the manual determination of surveillance 

intervals, automate surveillance interval determination, simplify clinical processes, and potentially 

increase adherence to surveillance guidelines. The system also has the potential to assist busy 

providers who must access data from several areas of the patient chart over multiple encounters 

to determine the appropriate CRC surveillance interval for each patient. Given the sheer number 

of screening colonoscopy performed daily, our system has great potential to improve CRC 

outcomes in health systems that face challenges to identifying and then achieving timely 

surveillance for patients with colorectal polyps4.  

A growing number of studies have shown the promise of applying artificial intelligence (AI) 

to gastrointestinal endoscopy, including polyp detection and characterization21. NLP applications 

have been explored in various contexts, primarily to calculate quality improvement metrics. For 

example, NLP has been used to extract mentions of adenomas and sessile serrated polyps to 

compute the adenoma detection rate, a common metric for colonoscopy quality improvement22. 

In studies like ours, NLP has been demonstrated to be an efficient alternative to manual synthesis 

of colonoscopy and pathology findings with high accuracy for polyp risk stratification (>84%) and 

guideline-concordant surveillance recommendations (>90%), performing better than clinicians in 

some cases19, 23-28. NLP has also been used to improve documentation of colonoscopy findings, 

assess colonoscopy quality, and generate colonoscopy result letters to patients and providers 24, 

25, 29.  
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We envision several potential applications of our ML and NLP approach in health systems 

and gastroenterology practices. First, it can be used as a proactive and real-time approach to 

surveillance colonoscopy. By serving as a clinical decision support tool, this innovative and 

efficient approach can reduce the workload necessary to determine surveillance intervals and 

assist with the recall of patients with high-risk polyps (e.g., adenomas with high-risk features) for 

on-time surveillance. It can also be expanded to address other types of polyps (e.g., low-risk 

adenoma) that require longer surveillance intervals (e.g., 5 or 10 years). Second, the pipeline 

facilitates data-driven quality improvement programs that can help ensure timely follow-up. 

Metrics such as adenoma detection rate and adherence to recommended surveillance intervals 

can be easily calculated, allowing health systems to understand their screening programs' 

performance. Third, information extracted and structured from colonoscopy and pathology reports 

can be incorporated into risk models being developed to estimate the lifetime risk of CRC. Models 

that incorporate more detailed clinical information may achieve higher PPV than existing risk 

stratification methods. 

 This work is not without limitations. Because polyps are often not uniquely identified in 

colonoscopy reports at our institution, accurately estimating the total number of polyps is 

challenging. Polyp quantity and histology type have the largest impact on surveillance interval. 

Subtle differences in these two entities distinguish risk categories 2, 4, and 5; in some cases, the 

algorithm overestimates the number of polyps, which results in an incorrect classification. 

Moreover, finding a set of rules that will consistently disambiguate multiple polyps grouped 

together and correctly assign their individual properties is challenging. In particular, colonoscopy 

reports can have variable sentence structure depending on the physician. As such, our approach's 

performance may vary across providers and institutions. Electronic reporting systems that 

standardize individual polyps reporting would help in this regard. Another source of error is our 

preference to assign patients to the higher risk category (and more frequent surveillance) if 

uncertain. For example, Category 5 cases were often incorrectly assigned by our algorithm as 
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Category 6. While shorter surveillance intervals could potentially catch CRCs earlier when risk is 

uncertain, the incorrect classification may promote colonoscopy overuse in some cases. Lastly, 

the development and implementation of NLP algorithms like this one require resource allocation, 

both in constructing the pipeline, its validation, deployment in practice, and maintenance. Despite 

the high performance reported, a human-in-the-loop paradigm where a patient coordinator 

oversees and reviews assigned surveillance intervals is still recommended to ensure that patients 

receive timely and appropriate care.   

The next steps in this multi-phase effort are to prospectively validate our NLP algorithm 

for patients who present for screening and to compare surveillance classifications to provider 

classifications. Once the system achieves consistent performance, we will incorporate the 

algorithm into our health system’s preventive care EHR health maintenance module. This 

integration will allow us to automate surveillance reminders to patients (mailed and electronic 

messaging through the EHR-based patient portal) and providers (electronic messaging through 

the EHR) and improve physician-patient communication about screening colonoscopy findings in 

our health system. We plan to study the implementation, effectiveness, and acceptability of this 

multi-level intervention and to disseminate our findings and code to other health system partners 

to further study the algorithm in different patient populations and settings. This work will streamline 

provider workload and improve health outcomes in our health system and beyond for one of the 

most common and deadly malignancies in the U.S.  
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FIGURE AND TABLES 

FIGURES 

Figure 1: Conditions for each polyp risk category and corresponding CRC colonoscopy 

surveillance interval recommendation; summarizes guidelines published in Gupta et al17.  

 

Figure 2: (a) Overview of the NLP pipeline. Inputs are free-text colonoscopy and pathology 

reports. Output is a colonoscopy surveillance interval recommendation (as categorized in Figure 

1). (b) Summary of the case selection process. A “mismatched pair” refers to a colonoscopy and 

pathology report that did not reference the same procedure and was removed during annotation. 

 

Figure 3: Illustration of the inputs/outputs of the polyp grouping module. (a) Example of a 

colonoscopy report with one polyp finding per sentence. (b) Example of a colonoscopy report with 

multiple polyp findings in one sentence. (c) Example of a pathology report with single and multiple 

polyp findings per sample that are grouped by anatomical location. (Note: properties highlighted 

in yellow are being shared across multiple polyp observations by the grouping algorithm) 

 

Figure 4: Example of colonoscopy surveillance interval recommendation process. First, 

properties of polyps extracted from colonoscopy report (left) and pathology report (right) are 

independently summarized and used to narrow down possible risk categories. Then a combined 

summary is used to determine the final category and recommend the corresponding surveillance 

interval. 

 

  



 17 

TABLES  

Table 1: (A) Distribution of colonoscopy and pathology reports used to train and test each module 

of the NLP pipeline. (B) Surveillance interval distribution of patients used during pipeline 

development. (C) Surveillance interval distribution of patients included in the independent test set. 

 

  

(A) 
 

Module Report Type Training Testing Total 

Polyp Extraction  
Colonoscopy 157 67 224 
Pathology 85 37 122 

Polyp Grouping 
Colonoscopy 44 180 224 

Pathology 26 96 122 

Surveillance Interval 
Colonoscopy 23 89 112 

Pathology 23 89 112 
 

(B) 

Set Total  
Patients 10 years 7-10 

years 
5-10 
years 

3-5  
years 3 years 1 year 

Training 23 4 4 4 4 4 3 
Testing 89 16 10 10 13 31 9 
Total 112 20 14 14 17 35 12 

 

(C) 

Total Patients 10 years 7-10 years 5-10 years 3-5 years 3 years 1 year 

100 15 15 15 20 20 15 
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Table 2: Entities targeted from colonoscopy and pathology reports 

Colonoscopy Entities Pathology Entities 

Entity Description Entity Description 

Polyp finding Mention of polyp, lesion, 
adenoma, etc Polyp sample Mention of polyp tissue in 

pathology sample 

Location Specific position in colon where 
polyp was found Location Specimen source as 

designated by sample label 

Quantity Number of distinct polyps in 
observation group Quantity Number of tissue 

fragments in sample 

Measured size Numeric size of polyp (mm or cm) Measured size Numeric size of polyp (mm or cm) 

General size General descriptive size of polyp 
(diminutive, large, etc) Histology 

Diagnosis of polyp 
histology (tubular 
adenoma, sessile serrated 
polyp, etc) 

Morphology Polyp characteristic 
(pedunculated, broad-based, etc) 

High-grade 
dysplasia 

Presence or absence of 
high-grade dysplasia in 
sample 

  Cytologic 
dysplasia 

Presence or absence of 
cytologic dysplasia in 
sample 
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Table 3: Performance of polyp entity extraction module on a test set of 67 colonoscopy and 37 pathology reports.  

Report 
Type Metric Polyp Morpholog

y 
Measure
d Size 

General 
Size Quantity Location Histology 

High-
Grade 

Dysplasia 

Cytologic 
Dysplasia Overall 

Colonosco
py 

PPV 0.96 0.99 0.97 0.87 0.81 0.90 - - - 0.92 

SENSITIVI
TY 0.90 0.98 0.96 0.97 0.91 0.97 - - - 0.95 

F-SCORE 0.93 0.98 0.96 0.92 0.86 0.94 - - - 0.93 

Pathology 

PPV 0.97 - 0.98 - 0.87 0.91 0.96 0.99 0.96 0.95 

SENSITIVI
TY 0.98 - 0.98 - 0.90 0.95 0.98 0.99 0.99 0.97 

F-SCORE 0.97 - 0.98 - 0.88 0.93 0.97 0.99 0.97 0.96 

PPV: positive predictive value 
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Table 4: Performance of the polyp grouping module on a test set of 276 reports.  

Report 
Type 

Metric Locatio
n 

Measur
ed Size 

General 
Size 

Quanti
ty 

Histolo
gy 

High-
Grade 
Dyspla
sia 

Cytolog
ic 

Dyspla
sia 

Overall 

Colonosc
opy  

PPV 0.97 0.98 0.98 0.99 - - - 0.98 

SENSITI
VITY 

0.88 0.94 0.98 0.99 - - - 0.93 

F-SCORE 0.92 0.96 0.98 0.99 - - - 0.95 

Patholog
y 

PPV 0.95 - - - 0.94 0.91 0.88 0.93 

SENSITI
VITY 

1.00 - - - 0.99 0.99 1.00 1.00 

F-SCORE 0.97 - - - 0.97 0.95 0.94 0.96 

PPV: positive predictive value 

Table 5: Performance of the surveillance interval classification module on a test set of 89 patients.  

Metric Category 1 Category 2 Category 3 Category 4 Category 5 Category 6 Overall 

PPV 1.00 0.91 1.00 0.92 0.94 1.00 0.96 

SENSITIVITY 1.00 1.00 0.90 0.85 0.97 1.00 0.95 

F-SCORE 1.00 0.95 0.95 0.88 0.95 1.00 0.96 

PPV: positive predictive value 

Table 6: Performance of full pipeline (extraction, grouping, classification) on an independent test 

set of 100 patients.  

Metric Category 1 Category 2 Category 3 Category 4 Category 5 Category 6 Overall 

PPV 0.93 1.00 0.94 0.90 0.94 0.83 0.92 

SENSITIVITY 0.93 0.87 1.00 0.90 0.85 1.00 0.92 

F-SCORE 0.93 0.93 0.97 0.90 0.89 0.91 0.92 

PPV: positive predictive value 


