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Abstract

Robotic fiber positioner (RFP) arrays are becoming heavily adopted in wide-field massively multiplexed
spectroscopic survey instruments. RFP arrays decrease nightly operational overheads through rapid reconfiguration
between fields and exposures. In comparison to similar instruments, SDSS-V has selected a very dense RFP
packing scheme where any point in a field is typically accessible to three or more robots. This design provides
flexibility in target assignment. However, the task of collisionless trajectory planning is especially challenging. We
present two multiagent distributed control strategies that are highly efficient and computationally inexpensive for
determining collision-free paths for RFPs in heavily overlapping workspaces. We demonstrate that a
reconfiguration path between two arbitrary robot configurations can be efficiently found if a “folded” state, in
which all robot arms are retracted and aligned in a lattice-like orientation, is inserted between the initial and final
states. Although developed for SDSS-V, the approach we describe is generic and thus applicable to a wide range of
RFP designs and layouts. Robotic fiber positioner technology continues to advance rapidly, and in the near future
ultra-densely packed RFP designs may be feasible. Our algorithms are especially capable in routing paths in very
crowded environments, where we see efficient results even in regimes significantly more crowded than the SDSS-
V RFP design.

Unified Astronomy Thesaurus concepts: Astronomy software (1855); Open source software (1866); Wide-field
telescopes (1800); Sky surveys (1464); Astronomical instrumentation (799); Spectroscopy (1558); Algo-
rithms (1883)

1. Introduction

Robotic fiber positioners (RFPs) are emerging as a promising
technology in today’s landscape of wide-field multiobject
spectroscopic instruments and surveys. Many projects (e.g.,
LAMOST Cui et al. 2012, PFS Sugai et al. 2015, DESI
Flaugher & Bebek 2014, MOONS Cirasuolo et al. 2011,
4MOST de Jong 2012, SDSS-V Kollmeier et al. 2017) have
adopted densely packed positioner arrays patrolling the
telescope’s focal plane to obtain massively multiplexed
spectroscopic observations of hundreds to thousands of objects
in a field. These arrays minimize operational overhead through
rapid reconfigurations between fields and exposures. Generally,
each robotic fiber positioner will patrol a relatively small
circular zone of the focal plane. To obtain complete focal plane
coverage, RFP patrol zones or workspaces necessarily overlap.
A system in which RFPs may physically interfere must
therefore have a motion-planning strategy ensuring that robots
do not collide, wedge, or deadlock during reconfiguration.

The difficulty of the reconfiguration problem scales with the
number of positioners able to physically occupy the same
workspace. Both SDSS-V and MOONS have chosen densely
packed fiber positioner layouts that exhibit a large amount of
workspace overlap when compared to similar instruments. For
example, a point in the DESI focal plane will typically be
accessible to only a single positioner, whereas any point in the
SDSS-V focal plane will typically be accessible to three or four

positioners. A heavily shared workspace increases flexibility in
target assignment at the cost of a heightened chance of collision
during reconfiguration. The challenge posed by RFP reconfi-
guration is essentially the “Cocktail Party Problem” (Lumelsky
& Harinarayan 1997), in which mobile agents must navigate
around each other in a crowded environment to reach a
destination—an analogous situation to the trajectory planning
problem humans subconsciously solve when moving around at
a crowded cocktail party.
The Cocktail Party Problem lies in the general field of

distributed multiagent coordination and control, sometimes called
swarm control. Cao et al. (2012) and Rossi et al. (2018) provide
comprehensive overviews of this rapidly advancing subject. The
swarm control objective is to model how collective behavior (e.g.,
pattern formation, motion planning, synchronization) emerges
from networks of individual agents following relatively simple
protocols. As the number of agents in a network increases, a global
(or centralized) optimization strategy becomes computationally
prohibitive. Distributed control strategies often alleviate this
computational burden by delegating the decision-making to the
agents themselves, who then act according to the state of their
immediate environments. Distributed control is well suited for real-
time optimization and decision-making in large networks and
scales well as additional agents are added. Applications in the field
are typically focused on coordinated robotics problems like remote
sensor and surveillance networks or unmanned aerial vehicle
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coordination. The algorithms are diverse with strategies ranging
from game-theory approaches (Marden & Shamma 2018), to
Markov-based processes (Emenheiser et al. 2016), to biologically
inspired artificial potential function (APF) models (Olfati-
Saber 2006).

Makarem et al. (2014) approached the RFP navigation
challenge using control laws based on artificial potential
functions. For array layouts with slightly overlapping fiber
patrol zones (e.g., DESI or PFS), this strategy demonstrates the
successful convergence of robots to targets. However, this
algorithm struggles when directly applied to heavily over-
lapping RFP layouts like those of SDSS-V: large fractions of
positioners experience a deadlocked state, where progress
toward the target halts due to the inability of combinations of
positioners to move past one another. Tao et al. (2018) injected
additional control layers to the existing algorithm to detect and
mitigate deadlock situations. Using this augmented APF
algorithm they report convergence increases from ∼65% to
∼80% for SDSS-V geometries. Recently, Macktoobian et al.
(2019) further improved the APF strategy with the introduction
of cooperative fields, in which they demonstrate completely
successful path solutions for SDSS-V positioner geometries in
grids of various sizes in a set of 12 simulations.

In this work, we present an alternative and simplified approach
to the RFP navigation problem with a pair of closely related
algorithms that are directly applicable to the majority of existing
RFP systems today. The first algorithm is a greedy heuristic, and
the second algorithm is a Markov chain variant of the greedy
heuristic. Collecting statistics from thousands of simulations, we
measure the efficiency of each algorithm as the fraction of targets
assigned to targets acquired under collision-avoidance constraints.
In parameter spaces relevant to SDSS-V, we find the efficiency of
the greedy heuristic to be ∼99.2% and the efficiency of the
Markov variant to be >99.9%. The high efficiencies of these
routines are largely attributable to a reverse-path generation
strategy, rather than overall algorithmic complexity. We discuss
trade-offs between operational overheads and overall targeting
efficiency in the context of each algorithm. We explore the limits
of each algorithm by scaling up the relative size of the robots
within the array to simulate overly crowded environments. The
results suggest that high-efficiency paths can be found for
positioner arrays that are significantly more crowded than the
SDSS-V positioner array. This work provided important feedback
for the SDSS-V positioner design, so these algorithms serve as
useful tools for vetting the feasibility of current and future RFP
instrument designs.

This paper is organized as follows. In Section 2, we provide
an overview of the SDSS-V survey for which the algorithms
presented here have been developed. In Section 3, we present a
layout describing the relevant geometries and kinematics of the
robotic fiber positioners. In Section 4, we present the generic
algorithms followed by a detailed analysis in Section 5. In
Section 6, we discuss methods for the effective deployment of
these algorithms in the presence of realistic hardware
constraints. Finally, in Section 7, we discuss these algorithms
in the context of overall survey optimization and comment on
the general relevance of this work. A pseudocode for all
routines is provided in the Appendix, and SDSS-V’s Kaiju8

package contains source code for the algorithms we present.

2. SDSS-V Survey Overview

The Sloan Digital Sky Survey (York et al. 2000; SDSS I/II)
is currently preparing for a fifth phase of operations. For nearly
two decades, SDSS has continuously served high-quality, well-
documented, and accessible data. The project has evolved over
the years, beginning with SDSS I/II, which provided multi-
band photometry from a large camera that now resides at the
Smithsonian (Gunn et al. 1998) and multiobject optical
spectroscopy (Smee et al. 2013) using plug plates at Apache
Point Observatory (APO). SDSS-III (Eisenstein et al. 2011)
included new instrumentation at APO for conducting a near-
infrared multiobject spectroscopic survey APOGEE (Majewski
et al. 2017), a radial velocity planet-finding survey MARVELS
(Ge et al. 2009), and increased total fiber capacity of the optical
spectrographs. SDSS-IV (Blanton et al. 2017) saw the inclusion
of the MaNGA integral field unit (IFU) survey of nearby
galaxies (Bundy et al. 2015) and built out infrastructure and
instrumentation to extend the APOGEE survey to the southern
hemisphere at Las Campanas Observatory (LCO).
SDSS-V (Kollmeier et al. 2017) is an all-sky, multiepoch

spectroscopic mapping survey, operating for five years in both
hemispheres. SDSS-V has three survey components: the Local
Volume Mapper (LVM), the Black Hole Mapper (BHM), and
the Milky Way Mapper (MWM). The LVM is an optical
spectroscopic IFU survey using small telescopes that will
obtain contiguous coverage over wide regions of the Milky
Way and the Magellanic Clouds; it will not use a robotic fiber
positioner array. The BHM and MWM surveys will operate in
tandem, sharing a common robotic focal plane system (FPS).
One FPS will be installed at the 2.5 meter Sloan Foundation
Telescope at APO (Gunn et al. 2006), and another FPS will be
installed at the 2.5 m du Pont Telescope at LCO (Bowen &
Vaughan 1973). The MWM and BHM surveys have already
begun gathering early data at APO using plug plates. The FPS
systems will come online mid-2021.
The BHM is a very-wide-area dual-hemisphere survey to obtain

multiepoch optical spectroscopy of accreting black holes. It will
provide a comprehensive follow-up of X-ray sources from the
recently launched eROSITA space telescope (Predehl et al. 2010).
With its multiepoch capability, BHM will provide black hole
masses for supermassive black holes through the reverberation
mapping technique (Shen et al. 2015) as well as probe the
dynamics of the black hole environment by obtaining multiepoch
spectroscopy for quasars and active galactic nuclei with sensitivity
to variability on timescales ranging from decades to months when
combined with legacy SDSS data sets.
The MWM science program is an all-sky survey targeting

over 6 million stars in the Milky Way for multiepoch optical
and near-infrared spectroscopy. The survey will measure
fundamental stellar characteristics (e.g., age, chemistry, kine-
matics), yielding a data set well suited for investigating the
history and evolution of the Galaxy’s structure. The MWM
aims to double the number of spectroscopically observed
objects in SDSS in a span of five years. This target volume
increase would be impossible to meet using the existing SDSS
plug plate system, which requires approximately 20 minutes of
operational overhead between fields. The combined MWM and
BHM target volume drives the need for a nimble robotic fiber-
positioning system in SDSS-V.
To carry out the BHM and MWM surveys, a pair of SDSS-V

robotic fiber-positioning systems are under construction (Pogge
et al. 2020). The FPS at APO will cover a 7 deg2 field of view. The8 https://github.com/sdss/kaiju
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FPS at LCO will cover a 3 deg2 field of view. Each FPS consists
of a hexagonally packed grid of 547 positions. Robotic fiber
positioners will occupy only 500 of these positions. The remainder
of the positions are populated with low-profile fiducial elements for
a visual feedback system. Each robot has the capacity to carry two
science fibers in a common ferrule. All 500 positioners will feed a
BOSS optical spectrograph (Smee et al. 2013), while a subset of
up to 300 robots will simultaneously feed an APOGEE near-
infrared spectrograph (Wilson et al. 2019). The BOSS and
APOGEE spectrographs have a capacity of 500 and 300 fibers,
respectively, so not every robot will be available for near-infrared
targeting.

SDSS-V builds on a heritage of evolution and cooperation
between instrument, infrastructure, science, and data teams to
obtain and deliver a wide and diverse set of data products to the
community. Operationally, SDSS will see major changes with
the inclusion of the FPS instruments, and the teams are
currently tackling the many challenges inherent in organizing,
optimizing, and deploying a successful SDSS survey operating
in a completely new mode. The work presented here outlines
and retires one of the major risks involved with SDSS-V’s
move to a heavily overlapping RFP array: designing a strategy
for safe and efficient robot trajectory planning during array
reconfiguration.

3. Focal Plane System Layout

The following subsections describe the layout and kine-
matics of the SDSS-V RFP array with two benign simplifica-
tions: (1) each robot carries a single fiber, and (2) the focal
plane is a flat, Euclidean plane. In deployment, SDSS-V
routines will account for both a slight focal plane curvature and
support dual-fiber positioning during trajectory generation.
These SDSS-V hardware-specific details unnecessarily com-
plicate the overall generic formulation of the algorithms we
present, so we omit them.

3.1. Positioner Kinematics

A rendering of the SDSS-V RFP is shown in the upper inset
of Figure 1. The lower panel of this figure shows the relative
packing of positioners in the focal plane when viewed edge on.
Fiber positioning in the focal plane is achieved through the
rotations of two arms about two axes. The alpha arm (lower
arm, indicated in gold) rotates about the alpha axis. The alpha
axis is collinear with the lower body of the robot. The beta arm
(upper arm, indicated in blue) rotates about a beta axis near the
edge of the alpha arm. The distance between the alpha axes of
neighboring robots we call the pitch. The beta arm carries the
optical fiber and risks collisions with the beta arms of
neighboring robots. Alpha arms cannot collide with one
another. The left two robots in the lower panel of Figure 1
are in an orientation of closest approach between alpha arms,
showing the tight clearance between them. Beta arms cannot
collide with alpha arms, as they exist in different planes along
the optical axis.

To visualize how a robot positions a fiber, a focal plane view
is helpful. Figure 2 shows the focal plane projection of a fiber
positioner centered at the robot’s xy base position (xb, yb).
Robot arms and rotation axes are indicated on the figure. The
alpha arm length (lα) is the distance from the alpha axis to beta
axis (7.4 mm for SDSS-V). The beta arm length (lβ) is the
distance from the beta axis to the fiber center (15 mm for

SDSS-V). The robot may position a fiber anywhere in the
annular patrol zone through the specification of the alpha angle
(θα) and beta angle (θβ). This coordinate conversion is
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where (xf, yf) corresponds to the position of the fiber in the xy
focal plane.
The physical limits of travel for the SDSS-V positioner are

roughly between −5° and 365° for both the alpha and beta
axes. This permits each axis slightly more than one full rotation
between hard stops. Operationally, we enforce slightly more
restrictive limits of travel during path planning: each axis must
remain in the range [0°, 360°).

Figure 1. Renderings of SDSS-V robots. The upper panel shows a single RFP
unit, and the lower panel shows the relative packing of three units at the focal
plane viewed edge on at the nominal SDSS-V pitch, where the pitch is the
distance between robot centers. The alpha arm (lower arm) is colored gold; the
beta arm (upper arm) is colored blue and holds the optical fiber. Fiber
positioning is accomplished through a rotation of the alpha arm about the alpha
axis and a rotation of the beta arm about the beta axis. Beta arms risk collision
with one another, but alpha arms do not. The left two positioners in the bottom
panel show the level of clearance between alpha arms in an orientation of
closest approach.
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Notice that the orientation in Figure 2 resembles a human’s
view of a right arm, and increasing θβ beyond 180° would
resemble a left arm. Every point in a positioner’s workspace is
physically achievable by both a left and right arm conforma-
tion. We will limit targeting to right-armed configurations,
though positioners may potentially take on left-armed config-
urations while maneuvering. This choice does not impact a
positioner’s ability to cover the available workspace, but it will
eliminate an alternative positioning option during target
assignment. The elimination of the left arm targeting config-
uration serves two practical purposes in SDSS-V.

The first purpose is to avoid degenerate solutions. When the
FPS system is deployed, a fiber-viewing metrology system is
used to determine a robot’s orientation by measuring the
centroid of a back-lit fiber. If the option of a left arm
configuration is eliminated, there is only one possible solution
for (θα, θβ) given a measurement of (xf, yf). This is important
when considering a malfunctioning robot that cannot report its
absolute position. The robot array will be powered down
during science integrations to minimize heat at the focal plane.
If we enforce that robots are only powered down in right arm
configurations, this will minimize confusion that could arise
due to a malfunction after a power cycle. While robots remain
powered, their absolute positions are frequently reported.

The second purpose is of mechanical, rather than mathema-
tical, nature. We achieve higher fiber-positioning accuracy
when 0°<=θβ<=180°. This is due to an interaction
between the beta axis preload spring and the direction of
torque imparted by the optical fiber itself. In right arm
configurations, the fiber torque and preload work together. In
left arm configurations, the fiber torque and preload oppose
each other, leading to slightly higher variance in absolute
positioning when operating in especially cold weather.

3.2. Positioner Arrangement

To obtain full focal plane coverage the robots are spaced at
a pitch of lα+lβ in a hexagonal array (22.4 mm for SDSS-V).
This allows a robot’s neighbor to patrol its central exclusion
zone, leading to heavily overlapping patrol zones between a
robot and its neighbors. Figure 3 shows the overlapping patrol
zones for an array of 19 SDSS-V positioners, indicating the
areas covered by one, two, three, and four fibers in the focal
plane. Scaling up the hexagonal array to hundreds of
positioners, the majority of the focal surface will be covered
by three or more fibers. Only the perimeter of the hexagonal
array will have single-fiber coverage with some gaps. The axes
in the lower left of the figure indicate the orientation of θα with
respect to the hexagonal grid.
The SDSS-V specifications for lα, lβ, and pitch were chosen

to maximize the patrol area for each positioner under the
present constraints of the telescope and spectrograph. The
BOSS spectrograph has a 500 fiber capacity, dictating the total
number of robots. Evenly distributing 500 robots over the
telescope’s field of view yields a desired pitch of 22.4 mm.
Given the pitch, a 7.4 mm alpha arm length grants the largest
possible reach while ensuring that alpha arms cannot physically
collide with one another. With pitch and alpha arm length
selected, a 15 mm beta arm length is required to ensure gap-less
coverage of the focal plane. Hörler et al. (2018) provide further
discussion on the general topic of RFP design and arrangement,
including the densely packed arrangement selected for
SDSS-V.

3.3. Collision Formalism

All physical interference between robots in the grid happens
between beta arms. We use a relatively simple strategy to

Figure 2. A focal plane projection of an SDSS-V robot, showing the annular
patrol zone in gray. The fiber position in the focal plane (white star) is achieved
through the specification of two angular rotations θα and θβ of the alpha and
beta arms. Alpha and beta arms are colored gold and blue. lα and lβ indicate the
alpha and beta arm lengths.

Figure 3. A 19 positioner hexagonal array, showing the high packing density
of SDSS-V RFPs. The area is shaded according to the number of positioners
that patrol the space. The six surrounding neighbors may occupy the space at a
robot’s center (white diamonds). Generally, the area is covered by three to four
positioners. Only the array’s perimeter is covered by fewer than three robots.
The direction of θα is labeled to indicate the orientation of the robot’s
coordinate system with respect to the grid.
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represent a beta arm geometry in Cartesian space. The beta arm
is modeled by two elements: (1) a line segment and (2) a
collision buffer (σcb). The beta line segment is constructed
between two points (xf, yf), and (xe, ye). The former point is
given in Equation (1). The coordinates of the latter point
(elbow point) describe the position of the beta axis:

q
q

= + a a

a a
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y

x
y

l
l
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sin

. 2e

e

b

b

⎛
⎝⎜

⎞
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The orientation of the beta line segment will depend on a
positioner’s (θα, θβ) coordinates, which vary with motion. A
positioner’s base position (xb, yb) and arm lengths (lα, lβ)
remain fixed.

We measure the proximity between two beta arms by
computing the minimum distance between beta arm segments.
The procedure for this calculation is provided in Appendix and
was adapted from an online source.9 We label the minimum
distance between beta arm segments for positioners i and j as
Dij.

The collision buffer (σcb) specifies a radius from the beta line
segment that safely encloses the physical extent of the beta
arm. We refer to this buffered line segment as the collision
envelope, which is a cigar-shaped area. We say robots i and j
have collided when

sD 2 3ij cb ( )

Figure 4 constructs the geometric representation of the beta
arm segment (dashed gold line), σcb (gold arrow), and collision
envelope (blue area) for two colliding RFPs. The red area in the

figure indicates the colliding area between the two positioners,
where the inequality in Equation (3) is satisfied.
The two-dimensional collision envelope we have drawn is

conservative when considering the three-dimensional shape of
the beta arm. Certain robot orientations would allow the head of a
beta arm to hover directly above a neighbor’s beta axis without
suffering a physical collision between beta arms. Consider the
view in Figure 1 and imagine the central positioner’s beta arm
floating rightward. Such an orientation would not be allowed in
the focal-plane-projected view of Figure 4, as the area around the
elbow joint is encompassed within the collision envelope. The
extent of the collision buffer was chosen to completely allocate
the space below a beta arm as belonging to the optical fiber,
eliminating any chance of physical interaction between a fiber
and a neighboring robot body. Admittedly, reserving all space
below the beta arm is perhaps unnecessarily greedy, as the fiber is
tugged closer to the beta arm body when the arm is extended. The
allowance of some amount of safe physical overlap between beta
arms could be accomplished by either reducing the length of the
beta arm segment to yield space around the elbow or modeling
the beta arm as a segment or curve in three-dimensional space.
Permitting beta arm overlap would provide additional real estate
for both target assignment and path generation, which might
prove beneficial. However, we find the collision buffer as
described in this section sufficient for SDSS-V survey operations,
and the algorithms we present assume these chosen constraints.

4. Algorithms

We present two algorithms for the SDSS-V RFP reconfi-
guration problem: a Greedy Choice (GC) algorithm and a
Markov Chain (MC) algorithm. Both algorithms carve paths in
a stepwise fashion through a series of discrete state transitions
by selecting next-state options from a set of small perturbations
about the current alpha and beta angles. The two algorithms
vary in their implementation: the GC algorithm selects moves
“greedily” according to a simple heuristic, while the MC
algorithm injects a tunable level of randomness into the GC
routine. These algorithms are best classified as Distributed
Model Predictive Control (i.e., Camponogara et al. 2002),
where the positioner’s choice of move depends only on the
current state of its immediate spatial neighbors. As a heuristic,
this simple distributed approach requires minimal computation
and results in quickly solved solutions.
The algorithms that follow generically assume a “perfect”

fiber positioner possessing infinite acceleration and no posi-
tional uncertainty. We describe a postprocessing strategy that
allows for path adaptation to realistic hardware constraints in
Section 6.

4.1. Definitions

We first introduce the parameters, metrics, and general
ingredients before describing the procedures of the GC and MC
algorithms. We focus our analysis using SDSS-V geometries,
although the definitions that follow are generic and can be
applied to any layout of RFPs with similar kinematics.
Arm Angles:θα, θβ—The alpha and beta axis angles define

the physical orientation of a robot. The range of motion for
each axis is [0°, 360°), as described in Section 3.1.
Arm Lengths:lα, lβ—The lengths of the alpha and beta

arms. In this work, we use SDSS-V positioner values of
lα=7.4 mm and lβ=15 mm.

Figure 4. Geometric representation of the collided beta arms. The beta arm is
described by a line segment constructed of two points (xe, ye), (xf, yf), and a
collision buffer σcb (gold arrow), where σcb=1.5 mm in this view. The area
generated by the line segment and σcb is the blue-colored collision envelope,
which contains the physical extent of the beta arm. When collision envelops
intersect (Equation (3), indicated as red in the figure), the two robots have
collided. The overlapping patrol zones are shown in light gray.

9 http://geomalgorithms.com/a07-_distance.html
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Collision Buffer:σcb—This parameter sets the relative size
of the beta arm, a radial distance from the beta arm line
segment (see Section 3.3). We vary σcb between 1.5 and
3.5 mm. A 1.5 mm σcb value exactly encloses the physical
envelope of an SDSS-V RFP. A σcb between 2 and 2.5 mm
maintains a generous amount of positioner separation during
motion, providing an extra safety buffer for both (1) real-time
RFP positional uncertainties along trajectories and (2) path
postprocessing and simplification. We touch on these two
topics further in Section 6. In deployment for the SDSS-V FPS,
values of σcb greater than 2.5 mm are unreasonably large.
However, this parameter space will show the potential of these
algorithms to achieve high-efficiency solutions in regimes more
crowded than our specific application.

Figure 5 shows the minimum, mean, and maximum σcb we
investigate, emphasizing the crowding effect with increasing
σcb. A σcb of 1.5, 2.5, and 3.5 mm correspond to roughly 6%,
12%, and 20% of the focal plane area occupied by the collision
envelopes of positioners when packed into an SDSS-V layout
containing 547 positioners.

Robot Centers:bi=(xb,yb)—Base position in the grid for
positioner i. For this work, we consider hexagonal grids with a
pitch of 22.4 mm, matching the pitch of the SDSS-V FPS. We
vary the number of positioners in the grid.

Robot Neighbors:Ni—The set of robot neighbors for
positioner i. Two robots are considered neighbors only if they
risk collision with one another: when their center-to-center
distance is less than twice the sum of their arm lengths and
collision buffer σcb. If G is the set of all robots in the grid, the
set of neighbors for positioner i is

s= Î ¹ - + +a bb bN j G j i, 2 l l . 4i i j cb{ ∣ ( )} ( ) 

Initial Coordinates:q q q= a b,i
I ( )—The initial alpha and beta

angle coordinates for positioner i, a starting point for the
routine. Initial coordinates must be noncolliding.

Destination Coordinates:q q q= a b,i
D ( )—The desired alpha

and beta axis angles for a positioner i. The algorithms seek to
drive a positioner from its initial coordinates to its destination
coordinates while avoiding collisions with neighbors. Destina-
tion coordinates must be noncolliding.

Current Coordinates:q q q= a b,i
C ( )—The current alpha and

beta axis angles for a positioner i. These coordinates evolve
with the program step, and their history defines the path
followed by a positioner.

Source Coordinates:q q q= a b,i
S ( )—The source coordinates

specify the alpha and beta axis angles for a positioner to receive
light from an astronomical source. In this work, a robot’s
source coordinates are drawn uniformly from the annular fiber
patrol zone. Source coordinates must be noncolliding. All
source coordinates are right armed (Section 3.1). If an initial
source coordinate assignment creates a collision with a
previously assigned robot, source coordinates are redrawn
iteratively until the collision vanishes. In a forward-path
solution, the source coordinates for positioner i are the
destination coordinates, qi

D. In a reverse-path solution, the
source coordinates serve as the initial coordinates, qi

I .
Angular Step:Δθ—The angular step parameter specifies the

step size of the routine: a maximum angular perturbation of
a robot’s current coordinates θC at each program step. This
parameter may be converted into a time step, Δt, by

q
q

D =
D

t , 5( )

where q is the angular speed of the positioner’s alpha and beta axes
(30° s–1 for SDSS-V RFPs). Smaller angular step values produce
more densely sampled paths at the cost of increased program
runtime.
Maximum Steps—The maximum number of steps the routine

will run for. For this work, we set a limit of 1000°/Δθsteps. This
corresponds to 1000 degrees of motion, or roughly 33 s of motion
assuming a 30 degree s−1 angular speed for an SDSS-V RFP.
Minimum Approach Distance—This distance designates the

closest allowed approach between any two beta arm segments
in the routine. For a positioner i with a set of neighbors Ni, we
enforce the inequality

sÎ > +j N Dmin 2 MD, 6i ij cb{ ∣ } ( )

where MD is a bound on the maximum displacement for a beta
arm in a single program step. We choose a conservative value
for MD: the displacement of the fiber (xf, yf) with the beta arm
at full extension (θβ=0), when rotated 2Δθabout the
positioner’s central axis:

q= + Da bMD l l sin 2 . 7( ) ( ) ( )

The inclusion of the maximum displacement term protects
against “tunneling collisions,” where one positioner may
completely jump through a collided orientation in a single

Figure 5. Minimum, mean, and maximum σcb we consider. With increasing σcb, available free space in the focal plane decreases. σcb=1.5, 2.5, 3.5 mm occupy
roughly 6%, 12%, and 20% of the focal plane area for 547 RFP grids. A σcb=1.5 mm represents the physical size of an SDSS-V RFP. A σcb=2.5 mm isolates a
large safe zone around an SDSS-V RFP. A σcb=3.5 mm takes up an unreasonable amount of space for an SDSS-V application but serves to test our algorithms in
extremely cramped environments.
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step. Smaller values of Δθpermit closer approaches between
positioners and thus allow more options for maneuvering.

Cost:Ci—The cost metric is minimized throughout the
routine for each positioner. It measures a distance between a
positioner’s destination coordinates (qi

D) and current coordi-
nates (qi

C). Note this metric is not equal to the Euclidean
distance between the fiber and its destination in the xy focal
plane. For a positioner i, we define the cost as

q q= -C . 8i i i
DC ( ) 

When the cost is zero, the positioner has arrived at its
destination.

Energy:Ei—Energy is a measure of local crowding: the sum
of inverse square distances to a set of neighbors. We define the
energy for a positioner i with neighbors Ni as

å=
Î

E
D

1
. 9i

j N ij

2

i

⎛
⎝⎜

⎞
⎠⎟ ( )

This metric is only used in the MC algorithm.
Phobia—Phobia is a scalar between 0 and 1, used only in the

MC algorithm. It represents the weighting of relative importance
between the energy metric Ei and the cost metric Ci. A weight of
0 produces a positioner insensitive to crowding. A phobia weight
of 1 produces a positioner only sensitive to crowding and it will
seek to separate from neighbors above all else.

Greed—Greed is a scalar between 0 and 1 used only in the
MC algorithm. It represents how much weight a positioner will
place on taking the best move when minimizing the Ei or Ci

metrics. A greed value of 1 introduces no stochasticity in a
positioner’s move selection sequence, while a greed value of
0.5 resembles a random, undirected walk. A greed value of 0
produces a robot that will remain stationary.

Neighbor Encroachment—Neighbor encroachment is a
proximity threshold that is only considered in the MC
algorithm. A positioner i with neighbors Ni will remain
stationary only while its cost Ci=0 and the following
inequality is satisfied:

sÎ > +j N Dmin 2 3MD 10i ij cb{ ∣ } ( )

This provides a similar constraint to the minimum approach
distance outlined in Equation (6), but is sensitive over a slightly
longer distance. This will cause any robot currently at rest at its
destination to be kicked awake by any neighboring robot
entering its horizon.

4.2. The Greedy Choice Algorithm

The GC algorithm is a stepwise process. At each iteration, each
robot i in a grid of G is visited in turn and presented with a set of
nine options from which to select its next state. The options consist
of the combination of {−Δθ, 0, Δθ} perturbations applied to the
current alpha and beta coordinates qi

C. Perturbations are modified
if limits of travel are violated or destination coordinates are
overshot. The robot will choose the option that both (1) minimizes
its cost (Equation (8)), and (2) satisfies the minimum approach
criterion (Equation (6)). The routine terminates when either (1) all
robots have reached their destination coordinates (∑iäGCi=0) or
(2) the maximum iteration limit is reached.

4.3. The Markov Chain Algorithm

The MC algorithm is an extension of the GC algorithm. In
contrast to the GC algorithm, the MC algorithm selects subsequent

states probabilistically rather than greedily, where the level of
stochasticity is controlled by the greed parameter. Additionally, we
construct a control policy that jointly minimizes both the cost and
energy metrics, where relative weighting between cost and energy
is controlled by the phobia parameter. Greed, phobia, cost, and
energy are described in Section 4.1.
At each program step, a positioner must first select whether

or not to consider a move. If the positioner is at its destination
coordinates and the inequality in Equation (10) is satisfied, it
will remain stationary until the next program step, otherwise, it
will consider a move.
If a positioner considers a move, it must next choose a metric to

minimize: either cost or energy. The probability of selecting the
energy metric is equal to the phobia parameter. With a metric
selected, a positioner will visit each of the nine next-state
candidates in random order, where these options are the
combinations of {−Δθ, 0, Δθ} perturbations applied to the
current alpha and beta coordinates. Perturbations are modified if
limits of travel are violated or destination coordinates are overshot.
As each state is visited, a positioner will choose to accept or reject
the proposed state. A positioner accepts the proposed state with a
probability equal to the greed parameter if the following two
criteria are met: (1) this state represents the minimum value of the
selected metric seen at this step (by the measure of Equations (8) or
(9)), and (2) this state satisfies the minimum approach criterion
(Equation (6)). If no state is selected, it defaults to remain in its
current state until the next program step.
The routine terminates when either (1) all robots have

reached their destination coordinates (∑iäGCi=0) or (2) the
maximum iteration limit is reached.
The GC algorithm represents perhaps the simplest possible

control law in the framework we have described. The MC
algorithm extends upon the GC algorithm through the inclusion
of two additional features: (1) the injection of stochasticity in a
robot’s decision-making process, and (2) a mechanism for
robots to sense and avoid crowded spaces. The greed and
phobia parameters provide a tuning knob for these MC
features. When greed approaches 1 and phobia approaches 0,
the MC algorithm becomes identical to the GC algorithm. In
the analysis that follows, we fix greed and phobia parameters to
0.9 and 0.3. This choice of MC parameter setting is not
necessarily intended to represent an optimal tuning, but rather
to provide a point of comparison between the two approaches.
A complete pseudocode implementation for the GC/MC

routine is provided in Appendix.

5. Analysis

We begin our analysis using a grid of 19 positioners with
σcb=3.5mm. This small, crowded grid will serve to both
visualize the algorithm’s behavior and motivate a reverse-path
solve strategy. Further analysis will implement the reverse-solve
strategy in large grids, comparing behavior between the GC and
MC algorithms at various parameter settings and grid sizes. We
largely focus on 547 positioner grids, as this matches the size of
the SDSS-V FPS layout.10

SDSS-V’s Kaiju11 package is an open-source Python-
wrapped C++ package implementing the collision-avoidance
algorithms. The results we present here were obtained using the

10 As described in Section 2, the FPS will carry only 500 robots. For
simulations here, we elect to fill every available spot with a positioner.
11 https://github.com/sdss/kaiju
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Kaiju package (tag 0.5.0) compiled with clang++ (version
10.0.1) using an -O3 optimization flag running in a single
thread on a 2.9 GHz Intel Core i9 CPU.

5.1. Motivating the Reverse Solver

The performance of the GC and MC algorithms can be
highly dependent on the direction of solved motion. Consider
two array configuration states between which we want to find
collisionless paths for all robots. The first state q =  0 , 180i

F ( )
represents a “folded” state in which all robot arms are retracted
and aligned in a lattice-like orientation. The second state is a
randomized source coordinate configuration qi

S that approx-
imates an orientation of RFPs positioned to receive light from
astronomical sources in a field. When solving the forward path
from initial coordinates θF to destination coordinates θS a vast
number of positioners will deadlock and never their destina-
tion. However, if we swap the initial and destination
coordinates and solve the reverse path θS→θF, we find our
routines yield near-perfect convergence of robots to their
desired destinations.

To demonstrate the forward and reverse solutions, we use the
GC algorithm, a 19 positioner grid, and a step size Δθ=0.5°.
We set σcb=3.5 mm to simulate an abnormally large level
interference between positioners. Noncolliding source coordi-
nates for each positioner are selected randomly from their
respective patrol zones. Initial coordinates are set such that the
robots begin their journey from a folded position, q q=i

I
i
F.

Destination coordinates are set to be the source coordi-
nates q q=i

D
i
S.

Figure 6 shows three snapshots in robot-travel time when
forward motion is propagated according to the GC algorithm.
The first panel shows the initial folded state of the positioners,
the second panel shows an intermediate state in the routine, and
the third panel shows the final state. Stars indicate the source
coordinate locations, circles indicate the fiber position at the
end of the beta arm. When the fiber is aligned with the source,
the positioner has reached its destination. Robots at their
destination are colored tan, robots in motion are colored blue.
Curved streaks drawn behind the fiber indicate the path the
fiber has followed through previous program steps.

In this example, only 4 of 19 positioners arrive at their
destination before the routine’s iteration limit is reached. The
remaining positioners are in a deadlocked state where all

progress is halted due to the inability of robots to navigate
beyond their collective blockade.
The next demonstration uses identical configurations to those

of the previous example with the following modification: initial
coordinates are set to the source coordinates q q=i

I
i
S, and

destination coordinates are set to the folded configuration
q q=i
D

i
F. When solved with the GC algorithm, robots will

begin from a source coordinate orientation and carve out paths
toward a folded configuration. In this case, we are solving
exactly the same problem as the previous example (a path
between a folded and source orientation) by simply reversing
the direction of robot-arm propagation.
Figure 7 shows the results of the reverse GC solve, a

sequence analogous to that presented in Figure 6. Positioners
begin aligned with source coordinates and step toward a folded
destination. In this experiment, we find that all positioners
successfully navigate to their destinations after 12 s of motion.
This result is striking when contrasted with the forward
example in which only a small subset of positioners was able to
obtain their desired destination. This pair of examples
demonstrates that the reverse-path strategy is a surprisingly
good approach.
The irreversible behavior of the algorithm raises eyebrows

(the authors’ included), yet it provides unique leverage in
solving our path-routing problem. Consider the two following
points. First, paths are trivially reversible. If a reverse-path
solution is found, we can obtain a forward-path solution by
simply reflecting the trajectories of all robots. Second, by
building all paths between any source coordinate state and a
common folded state, transitioning between any two source
coordinate states is also trivial given that reconfigurations
always route through the folded state.
The reverse-path approach was discovered somewhat

serendipitously through experimentation and motivated by the
following thought experiment: is it easier to tie a complex knot
or untie a complex knot? Presumably, the latter task is easier,
and if one carefully recorded the steps taken while performing
the latter task, then the reversal of those steps yields a solution
to the former task. Regrettably, we do not have a theoretical
justification as to why the reverse process works so well in the
context of our problem, though we find the behavior interesting
and provide some further discussion in Section 7. In further
sections, we rely on statistics gathered from large numbers of
simulations to gain confidence in the quality of our solutions.

Figure 6. A 19 positioner grid solved with the GC algorithm in the forward direction using Δθ=0.5 deg. We set σcb=3.5 mm to simulate an environment more
crowded than SDSS-V, which increases the optimization challenge. Panels from left to right show the starting configuration, an intermediate state of motion, and the
final state. Stars indicate source coordinates and open circles indicate the fiber. When a star aligns with its fiber, the robot has reached its destination and is colored tan.
Streaks behind the fibers indicate the path followed by a fiber through previous program steps. In this example, the maximum step limit is hit with only four positioners
reaching their destination (right panel), the remainder of positioners are in deadlock.
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5.2. Measuring Efficiency with Source Coordinate
Replacement

Here we formulate a statistical measure of algorithmic
efficiency for the layout described in Section 5.1. We repeat
GC forward/backward pair analysis in a set of 5000 trials,
where source coordinates are randomized between trials.
Figure 8 shows the resulting histogram of positioner deadlock
frequencies for both strategies. The forward strategy will
always result in a deadlock that typically involves half of the
positioners, whereas the reverse strategy only rarely suffers a
deadlock. In these rare cases of reverse-path deadlock, only a
few positioners are involved. The chance of deadlock in the
reverse solution is small but non-negligible.

For the reverse solution to be viable, we require a deadlock-
free path for every positioner in the grid. The full reconfigura-
tion sequence from source coordinates A to subsequent source
coordinates B requires two steps: (step 1) the array moves from
A to an intermediate folded state, then (step 2) the array moves
from the folded state to B. If any single positioner deadlocks
during reverse-path generation, the array has not made it to the
transition state, and thus the set of paths cannot be used.
Having a strategy for eliminating deadlocks is a necessary
feature for the reverse-path solver.

We adopt a brute-force method of deadlock resolution. If a
grid is deadlocked, we randomly select a single deadlocked
robot, replace its source coordinates, and rerun the path
generator. Replacing a source coordinate results in the loss of
the original astronomical source. In large grids of positioners,
deadlocks are typically isolated in small groups throughout the
array. For these cases, we may simultaneously replace one
robot from each deadlocked group, which minimizes the
number of iterations required of the path generator and
improves the total runtime.

This brute-force replacement strategy is illustrated in
Figure 9. The top three panels show a sequence of reverse-
solved motion that results in a four-positioner deadlock. The
lower three panels show the results obtained after replacing a
single positioner’s source coordinates with a new random
position. The array now completely converges to a folded
orientation in 12 s of motion, thus resolving four wedged robots
with a single replacement.

We define an efficiency for the reverse GC and MC
algorithms in terms of the required number of replacements to

solve a grid. For a grid with a total number of positioners nG
requiring source coordinate replacements for a subset of
positioners nR, the efficiency is

=
-n n

n
efficiency . 11G R

G
( )

Note that we count nR as the number of robots requiring a
source coordinate replacement. If a single robot is iteratively
tried with multiple sets of source coordinates, we count this as a
single replacement. This measure of efficiency is the ratio of

Figure 7. A reverse-direction GC solution to the configuration presented in Figure 6. The initial state of the routine is set to the source coordinate configuration (left
panel) in which all fibers are aligned with astronomical targets. The program steps toward a folded destination (right panel). Here all 19 positioners successfully
navigate to the folded destination in 12 s of motion. A forward path may be obtained by reflecting the reversely solved path in time, providing a route for positioners to
go out and back from a folded state when visiting this field of science targets.

Figure 8. Histograms comparing deadlock frequencies between the forward
and reverse-solve methods for abnormally crowded grids. Histograms are
generated from 5000 trials using the GC algorithm, a 19 positioner grid,
σcb=3.5 mm, and Δθ=0.5 deg. Essentially, we have repeated the trajectory
comparisons between Figures 6 and 7 with source coordinates randomized
between trials. In forward solutions (upper panel), every trial experienced a
deadlock, and the typical deadlock involved many positioners. For reverse
solutions (lower panel), the large majority of trials suffered no deadlock, and
those that did typically involved only a few positioners. From this example, the
reverse-path solution is well motivated.
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astronomical targets obtained to astronomical targets assigned.
For the example shown in Figure 9, the efficiency is (19−1)/
19∼0.95.

In our trials, we generally (but not necessarily) find that the
efficiency is higher than the initial convergence of the grid,
where we call convergence the ratio of positioners achieving
the destination to the total number of positioners in the grid. In
the case shown in Figure 9, the initial convergence (top panel
sequence) is (19−4)/19∼0.79. The efficiency increase with
respect to convergence is due to the fact that a single
replacement will often resolve more than one deadlock. We
use efficiency (rather than convergence) to measure algorithmic
performance as it is a more relevant statistic in the context of
astronomical surveys.

5.3. Efficiency versus Crowding

In a cocktail party setting, navigation becomes more
challenging as the free space in the room shrinks. The σcb
parameter is a proxy for either beta arm relative size or collision
safety distance, and as σcb increases, available space for motion
in the grid decreases. Here we investigate the path-routing
performance of the reverse-solve GC and MC algorithms for a
range of σcb values between 1.5 and 3.5 mm to simulate varied
levels of crowding.

We use a grid of 547 positioners and set a step size
Δθ=0.1 deg. This step size limits robot-arm perturbations
(Equation (7)) to less than 100 μm at each iteration. We run
2000 trials at each σcb for each algorithm, amounting to 36,000
trials in total. Initial coordinate assignments are randomized in

all trials. We assign folded destination coordinates θD=
(10°,170°) for all positioners. These destination coordinates
leave the positioners with ±10° of free travel in both alpha and
beta axes when they arrive at their destination. This choice of
parking spot benefits the MC algorithm, in which positioners at
rest may be kicked awake when a neighbor encroaches
(Equation (10)), allowing for a larger set of evasive options
in these situations. The parameter settings for this experiment
are summarized in Table 1.

Figure 9. We illustrate a brute-force method for deadlock resolution using the GC algorithm, a 19 positioner grid, σcb=3.5 mm, and Δθ=0.5 deg. The top three
panels show an example sequence of reversely solved motion that results in a four-positioner deadlock. The bottom three panels show an analogous sequence after a
single positioner’s initial coordinates have been replaced. The bottom sequence converges in 12 s of motion at the loss of a single astronomical target. Arriving at a
fully converging grid is necessary to deploy a reverse-path generator, and thus our procedure requires an iterative search for viable initial conditions when a deadlock
is present. When deadlocks are infrequent, this introduces a small computational overhead.

Table 1
Simulation One-varied Crowding

Parameter Values

n robots 547
n trialsa 36,000
lα (mm) 7.4
lβ (mm) 15
θI (deg) random, right armed
θD (deg) (10,170)
pitch (mm) lα+lβ=22.4
Δθ (deg) 0.1
max steps 1000°/Δθ

σcb (mm) {1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5}
greed 0.9
phobia 0.3
algorithm {GC, MC }

Note.
a Trials split evenly among the varied σcb settings and algorithm type.
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Figure 10 shows the trend of trial-averaged efficiency
versus σcb for the MC and GC algorithms. The GC algorithm
maintains a mean efficiency greater than 0.998 for
σcb<2 mm; the MC algorithm maintains a mean efficiency
is greater than 0.998 for σcb<3 mm. An efficiency of
0.998 corresponds to a single replacement in a grid of 547
positioners. With either routine, only a fraction of a
percent of astronomical targets will be lost in the small σcb
regimes.

The MC algorithm outperforms the GC algorithm in terms
of efficiency at all σcb values. For both algorithms, efficiency
declines monotonically with σcb. Under the highest crowding
conditions (σcb=3.5 mm) mean efficiencies of 0.993 and
0.968 are measured for the MC and GC algorithms. In an
environment three times more crowded than the SDSS-V FPS
design, we are limiting source replacement to less than a
percent using the MC algorithm. This result suggests that very
crowded RFP arrays may be feasible from a collision-
avoidance standpoint.

Figure 11 shows the minimum observed efficiency as a
function of algorithm and σcb in the set of 36,000 trials. The
trends are similar for both algorithms. For σcb�2 mm, the
minimum efficiency remains above 0.98; beyond σcb=2 mm,
the minimum efficiency trends steadily downward. For the
largest σcb, we see minimum efficiencies around 0.92 for the
GC algorithm and 0.97 for the MC algorithm.

Figure 12 presents box plots of measured efficiencies for the
MC (upper panel) and GC (lower panel) algorithms across
trials. Boxes indicate the interquartile range, and whiskers
capture data within 3/2 the interquartile range below and above
the low and high quartiles. Outliers are plotted as diamonds.
Generally, the variance of efficiency increases with increasing
σcb. This figure indicates a median target loss on the subpercent

level for the MC algorithm over the full range of σcb
investigated. Subpercent target loss for the GC algorithm is
typical when σcb<2.5 mm.

Figure 10. Mean efficiency for MC (blue solid line) and GC (red dashed line)
resulting from the suite of trials described in Table 1. The GC mean efficiency
is >0.998 for σcb<2 mm. The MC mean efficiency is >0.998 for σcb<
3 mm. The MC algorithm outperforms the GC algorithm over the full range of
σcb. Both algorithms see monotonic decreases in efficiency as the level of
crowding increases. An efficiency of 0.998 corresponds to a single source
coordinate replacement in a grid of 547 positioners.

Figure 11. Lowest observed efficiencies for MC (blue solid line) and GC (red
dashed line) seen in the suite of 36,000 trials described in Table 1. For
σcb�2 mm, the minimum observed efficiency is >0.98. For σcb>2 mm, the
minimum seen efficiency steadily drops, reaching a minimum of around 0.92
for the GC algorithm and 0.97 for the MC algorithm.

Figure 12. Box plots of the underlying efficiency distributions for the MC (top
panel) and GC (bottom panel) algorithms from the suite of trials described in
Table 1. Boxes capture the interquartile range, and whiskers capture the data
lying within 3/2 of the interquartile range below and above the low and high
quartiles. Points lying outside the whiskers are marked as diamonds. With the
MC algorithm, target loss will be limited to a small fraction of a percent over
the whole σcb range. Even in the most crowded regime, the MC algorithm will
see only a small target loss percentage of ∼1%. The GC algorithm limits target
loss 1% for the lower half of σcb values investigated.
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5.4. Reconfiguration Time

Reconfiguration times for RFP arrays are usually measured
in seconds. However, when integrated over years of a survey,
these seconds add up to significant hours of observational
overheads. Here we analyze the reconfiguration times from the
simulation suite described in Table 1 using SDSS-V positioner
velocities. In this section, we measure the “fold time,” which is
the time required to move between a source (or astronomical
target) orientation to a folded state. The total field-to-field
reconfiguration time is twice this value, as the positioner array
must move first to the folded state before moving to the next
desired orientation.

Figure 13 shows the mean fold time as a function of σcb and
algorithm. The GC outperforms the MC algorithm by a factor
of ∼2, depending slightly on σcb. The longer path lengths
observed in the MC algorithm are due to two effects: (1) the
injection of random motion along its path, tuned by the greed
parameter, and (2) the additional policy of Ei (energy)
minimization, tuned by the phobia parameter. Recall that, as
greed approaches 1 and phobia approaches 0, the MC
algorithm becomes identical to the GC algorithm. In this
sense, the fold time curve for the GC algorithm in Figure 13
represents a lower bound for the MC algorithm. By varying
greed and phobia, one might tune the MC algorithm to produce
an optimal balance between efficiency and fold time in the
context of an astronomical survey. Here we have fixed greed
and phobia to 0.9 and 0.3 to provide a point comparison
between the two methods.

Figure 14 shows box plots for fold time across σcb and
between algorithms. Boxes indicate the interquartile range, and
whiskers capture data within 3/2 of the interquartile range
below and above the low and high quartiles. Data falling
outside whiskers are indicated with diamonds. For the GC
algorithm, we see median reconfiguration times less than 30 s
for SDSS-V positioners across the full range of σcb. For the MC
algorithm, we expect reconfiguration times closer to 45 s for the
lower half of σcb values, and reconfiguration times nearing a
minute for the upper half of the σcb value range. The GC
algorithm generally achieves the SDSS-V benchmark goal of a
30 s RFP reconfiguration time, whereas the MC would require
greed and phobia parameter adjustments to reach this
benchmark.

5.5. Runtime and Efficiency versus Step Size

Navigating through a moving crowd is more effective when
one takes small steps in the right direction, rather than waiting
for the opportunity of a big step to present itself. This analogy
holds true for the algorithms we have presented. However, a
small step comes at the price of an extended runtime.
A fast-running routine is desirable for at least two reasons. A

fast path generator allows for dynamic decision-making
throughout a night’s observations, as optimal plans are subject
to change on short notice. Another benefit of a fast path
generator is that it may be incorporated in the optimization
stages of survey planning and design. In a large astronomical
survey, field assignment for millions of objects is a
computationally intensive task, so if path verification is
required at this stage, it must have a low computational
overhead. Carrying out path planning during field assignment is

Figure 13. Average time for an SDSS-V robot array to transition between a
folded state and a source coordinate (on-target) state, representing half the time
of a complete reconfiguration. Results are compiled from the trials described in
Table 1 for MC (blue solid line) and GC (red dashed line) algorithms. The GC
algorithm yields a total reconfiguration time less than 30 s. The MC algorithm
experiences longer reconfiguration durations due to the injection of stochastic
motion along a robot’s trajectory. The amount of stochasticity is tunable, and
thus the GC fold time curve represents a lower bound for the MC method
dependent on parameter tuning.

Figure 14. Box plots for the distribution of fold times seen across the σcb range
for the trials described in Table 1. Boxes capture the interquartile range, and
whiskers capture the data lying within 3/2 of the interquartile range below and
above the low and high quartiles. Data outside whiskers are plotted as
diamonds. The MC algorithm yields longer median fold times with a higher
level of variance when compared to the GC algorithm.
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desirable as it will inform which specific targets ultimately get
observed, providing an opportunity for vetting long before a
field is visited by the telescope.

We measure two distinct runtimes in our routines. The first
runtime is the source replacement runtime τsr. This is the
computation time accumulated during the source replacement
procedure described in Section 5.2. The source replacement
procedure requires iterative runs of the path generator to find
valid initial coordinates. τsr is largely an overhead during target
assignment, as once initial coordinates have been assigned and
paths shown to converge, they do not need to be recomputed.

The second runtime τpg is the computational time required to
build paths from a set of initial coordinates that are known to
converge. Observing conditions during nightly operations may
require that RFP trajectories remain flexible on short notice.
For example, the airmass of observation may require slight
adjustments to a precomputed set of initial coordinates. Or
perhaps a robot malfunctions and must be taken offline during
the night while remaining in a position that obstructs neighbors.
In cases where we envision small adjustments to initial
coordinates, we expect the overall runtime of path generation
to be much closer to τpg than τsr.

For this experiment, we vary Δθ, σcb, and the algorithm. We
run 300 trials at each unique parameter combination, yielding a
total of 18000 trials. An analysis of the resulting trends informs
a smart decision on step size: a value that produces a
reasonable balance between efficiency and runtime. The
parameters for this simulation are listed in Table 2.

Figure 15 shows the effects of Δθ on efficiency for both GC
and MC algorithms. Efficiency declines as both Δθ and σcb
increase. At small σcb (1.5–2 mm), there is little variation in
efficiency, so large step sizes (0.75–1 deg) seem permissible.
However, as σcb increases, smaller step sizes are required to
remain near the high end of efficiency. This is especially true
for σcb=3.5 mm, where efficiency is strongly influenced by
the step size. The efficiency degradation with increased step
size is due to the maximum displacement (MD) factor entering
in Equation (6), which defends against moves during which
robots may undetectably jump through a colliding orientation
in a single step.

Figure 16 presents the average observed runtimes across σcb,
Δθ, and algorithm. Here we only consider results for which the

trial-averaged efficiency is greater than 0.9. The two left-hand
panels show the average runtime τpg. Over the full range of Δθ,
the runtime decreases exponentially, ranging between ∼1–25 s
for the GC algorithm. The MC algorithm runtime requires
roughly twice the runtime of the GC algorithm, with a slight
dependence on σcb. The right-hand panels of Figure 16 show
the average runtime τsr, which includes the iterative process of
source coordinate replacement (Section 5.2). When including
the source replacement procedure, the runtime scales by
roughly an order of magnitude over the full range of σcb. This
scaling is largely due to the decrease in overall efficiency as σcb
increases. As σcb increases, the chance of deadlock increases,
and so the required number of iterations of the path generator
increase.
The trends indicated in Figures 16 and 15 provide the

information we need to select decent Δθ settings for each
algorithm over a range of σcb. Table 3 contains a summary of
results for each algorithm under some reasonable parameter
choices. The table contains runtime, fold time, and efficiency
metrics over the full range of σcb, providing a concise summary
of the performance of the algorithms we have tested over a
range of parameter space.
In nightly operations, SDSS-V FPS path computations τpg

will typically require only a few seconds, even when choosing
a conservative σcb=2.5 mm. Should a sudden RFP reconfi-
guration be desired, the overhead due to path-planning
computations will be negligible when compared to the duration
of robot motion. The computational speed of these algorithms
provides SDSS-V with a nimble observing system that suffers
almost no additional overhead when unscheduled reconfigura-
tions are requested at a moment’s notice.

5.6. Runtime and Efficiency versus Grid Size

In this section, we provide a brief analysis of how
algorithmic performance scales with the number of positioners.
We use relatively few trials (6000) and choose a midrange
crowding level of σcb=2.5 mm. The complete set of
simulation parameters are described in Table 4. The results
here will give a general feel for behavior in grids more massive
than the typical 547 robot array we have focused on thus far.
Figure 17 plots the mean efficiency against grid size for the

simulations described in Table 4. The shaded region around
each line represents the 95% confidence interval of the mean.
For grids larger than the SDSS-V array, the efficiency remains
relatively constant. For smaller grids, a direct comparison of
efficiency versus grid size should be taken with a grain of salt
for two reasons: (1) smaller grids have a larger fraction of
positioners without neighbors, and (2) efficiency is computed
relative to the total number of positioners in a trial, where
smaller grids contain fewer positioners. Despite this, we see
that efficiency is not strongly affected by the total number of
positioners.
Figure 18 plots the mean τsr and τpg runtimes for each

algorithm at various grid sizes for the simulation set described
in Table 4. For each line in the plot, a 95% confidence interval
of the mean is indicated by the shaded region. Runtime τpg
increases linearly with grid size for both MC and GC
algorithms, as is typical for distributed control algorithms.
Runtime τsr does not show a tight linear response, as larger
grids will experience a higher frequency of deadlock events and
thus require a higher number of source replacement iterations
to solve a grid.

Table 2
Simulation Two-varied Crowding and Step Size

Parameter Values

n robots 547
n trialsa 18000
lα (mm) 7.4
lβ (mm) 15
θI (deg) random, right armed
θD (deg) (10,170)
pitch (mm) lα+lβ=22.4 mm
Δθ (deg) {0.05, 0.1, 0.25, 0.5, 0.75, 1}
max steps 1000°/Δθ

σcb (mm) {1.5, 2, 2.5, 3, 3.5}
greed 0.9
phobia 0.3
algorithm {GC, MC }

Note.
a Trials split evenly among the varied σcb, Δθ, and algorithm.
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6. Deployment Considerations

We have made an effort to present generic routines that may
be directly applied to many of today’s RFP instruments via
configurable parameters (pitch, lα, lβ, σcb, etc). To remain
hardware-agnostic, we have inherently assumed grids of
“ideal” positioners, where the ideal positioner (1) possesses
infinite acceleration, (2) has sufficient onboard resources to
follow an arbitrarily complex path, (3) has no positional
uncertainty along a trajectory, and (4) never malfunctions.
When deploying the path generator in a realistic setting, points
(1)–(4) above need to be considered carefully, and the optimal
handling of these constraints may vary from one positioner
design to another. This section outlines specific strategies for
addressing these issues for SDSS-V positioners, though we
suspect they will be relevant for most other positioner designs
and interfaces.

First we address points (1) and (2): a path postprocessing
strategy to account for the acceleration limits and finite onboard
memory of an SDSS-V positioner. The raw paths output by
Kaiju intrinsically wiggle: when robot arms encounter each
other, they switch the direction of motion frequently. Applying
a running-average filter to the velocity profiles for each axis
sufficiently damps these wiggles to adhere to the acceleration
limits of the hardware. SDSS-V positioners accept a maximum
of 1024 points per alpha or beta axis to define a trajectory,
where a point is described by an (angle, time) tuple. The
embedded program of the SDSS-V positioner linearly inter-
polates between the supplied points. We simplify the velocity-
smoothed paths using the Ramer–Douglas–Peucker algorithm
(Ramer 1972), which reduces the total number of points
required to describe a path. In the regime of small σcb, a
significant fraction of positioners are free to simply move at
constant velocity to their destination without ever encountering
a neighbor. In these situations, we find that many paths
(especially GC paths with no random motion) are specified by

only a handful of points. This can be quickly realized from the
left panel of Figure 5, where more than a few positioners have
enough space to fold without interference. As σcb increases, the
probability of interactions increases, and the paths necessarily
become more complex. We are generally able to represent the
most complex paths in less than 250 points after velocity
smoothing and point simplification. After a simplified path is
computed, Kaiju is used to verify it (with a slightly reduced
σcb) to ensure that no collisions were created in the
postprocessing procedure. As a consequence, path smoothing
and simplification will require some amount of the overall σcb
budget.
To address point (3) we must choose σcb large enough to

account for the uncertainty of a robot’s position along a path.
The dominant source of positional uncertainty is due to slight
imperfections in the manufacture and assembly of a robot’s
gearbox. This manifests as a nonlinear relationship between a
positioner’s commanded angular velocity and the true angular
velocity, where a positioner’s true velocity will oscillate about
the expected velocity by a small amount in a repeatable way.
Kronig et al. (2020) provide a comprehensive analysis of all the
various sources of mechanical error in an SDSS-V positioner.
Collecting points (1)–(3), the selection of σcb must be the

summation of three factors:

s s s s= + +  . 12cb arm smooth ( )

σarm is the half-width of the beta arm (1.5 mm for SDSS-V).
σsmooth is an extra buffer required for path smoothing and
simplification. We have found that σsmooth∼0.03 mm is
sufficient for ensuring collision-free trajectories after path
smoothing at small step sizes (Δθ∼0.1). σò is the maximum
lateral uncertainty of the beta arm’s absolute position due to
mechanical errors. Algorithmic performance increases as σcb
shrinks, so this will encourage finding tight bounds on σò for an
SDSS-V RFP.

Figure 15. Plots of efficiency for GC (left panel) and MC (right panel) algorithms over a range of crowding (σcb) and step size (Δθ) settings, averaged across trials
from the simulation set described in Table 2. Efficiency declines as the step size is increased. The combination of large step size and high crowding shows drastic
reductions in efficiency. In low crowding environments, the choice of step size has only a minor effect on overall efficiency. This figure ultimately illustrates the trade-
off between runtime and efficiency, as larger step sizes are preferable from a program runtime perspective.
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An a priori choice of σò can be informed directly from the
SDSS-V positioner requirements where bounds on four
independent sources of angular error are specified: nonlinearity,
hysteresis, fiber torque, and dynamic control error. When these
bounds are constructively summed, the maximum angular error
is ±1.50 and ±1.48 deg for the alpha and beta axes. σò will be
maximized at the location of the fiber (at the end of beta arm)
when the positioner is at full extension (θβ=0). A simple
computation for σò can be constructed using Equation (1). For
simplicity, take the positioner’s base position to be b=(0,0).
Take θ1=(0,0) deg to be the expected angular coordinates of
a robot at full extension, with corresponding Cartesian fiber
coordinates f1=(0,22.4) mm. Take θ2=(1.50,1.48) deg to
be the actual angular coordinates after the maximum angular
uncertainties have been applied. The corresponding Cartesian
fiber coordinates are f2=(22.38,0.97) mm. The resulting

lateral uncertainty can be estimated as

s = - = f f 0.97 mm. 131 2 ( ) 

Thus, a setting of σcb=1.5+0.03+0.97=2.5 mm
would be selected based on the summation of toleranced errors
from SDSS-V positioner requirements.
Note that the calculation of σò by Equation (13) represents a

“worst-case scenario” in which all positioner errors are
maximized and summed constructively, and this situation is
unlikely to happen. SDSS-V robots are in active production,
and a comprehensive calibration and quality assurance
procedure is in place for each positioner. The QA process
provides accurate measurements of positioner error as a
function of angular coordinates and direction of motion. Initial
results show that positioners are significantly exceeding
specifications, and the nonlinear and hysteresis effects are

Figure 16. Mean runtimes from the Table 2 simulation set. Only results where mean efficiency >0.9 are included. The left two panels show the mean runtime for a
single converging run of the path generator (τpg). For the GC algorithm, a step size of 1° requires ∼1 s to compute paths for a grid of 547 positioners, a step size of
0.05 requires ∼20 s. The MC algorithm requires roughly twice the runtime of the GC algorithm and exhibits a slight dependence on crowding. The two right panels
show the cumulative runtime τsr, which includes the iterative procedure of source coordinate replacement. τsr is strongly influenced by crowding.
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highly repeatable. By modeling nonlinearity and hysteresis, we
can more accurately predict the absolute orientation of a beta
arm. Based on initial calibration results, we expect that a setting
of σcb=2 mm will be achievable. Ultimately, SDSS-V’s
selection for σcb will be assessed after the full characterization
for each positioner is received. We will likely begin operations
with a larger than necessary σcb to ensure protection against
unexpected sources of positional error.
Finally, we comment on point (4): the case of a

malfunctioning robot. Throughout the duration of a multiyear
survey operating with 1000 robots distributed between two
hemispheres, it is plausible to assume that a robot may be
required to be taken offline for a period of time while
remaining as a fixed interfering obstacle within the grid. The
anticollision routine we have presented can model this
situation by simply setting the greed parameter to zero for
any broken positioner in any orientation. Operational robots
will still be required to complete successful fold and unfold
sequences, but any offline robot will remain fixed between
subsequent target orientations. In this sense, it will be the
duty of neighbors to navigate around a static obstacle. A

Table 3
Selected Results from Simulation Two

Algorithm σcb (mm) Δθ (deg) Mean τpg (s)
a Mean τsr (s)

b Mean Fold Time (s)c Mean Efficiency

GC 1.50 1.00 1.10 2.10 12.32 0.9980
GC 2.50 0.25 4.34 14.67 12.55 0.9918
GC 3.50 0.10 11.32 107.11 13.17 0.9688
MC 1.50 1.00 2.14 2.55 22.94 0.9997
MC 2.50 0.25 8.74 14.71 24.29 0.9987
MC 3.50 0.10 24.04 105.82 27.90 0.9925

Notes.
a Runtime of a single path generator pass.
b Runtime of a multiple path generator pass with source replacement.
c Half of the expected duration of robot motion during reconfiguration.

Table 4
Simulation Three-varied Grid Size

Parameter Values

n robots {37, 91, 169, K, 2269, 2611, 2977}
n trialsa 6000
lα (mm) 7.4
lβ (mm) 15
θI (deg) random, right armed
θD (deg) (10,170)
pitch (mm) lα+lβ=22.4
Δθ (deg) 0.1
max steps 1000°/Δθ

σcb (mm) 2.5
greed 0.9
phobia 0.3
algorithm {GC, MC}

Note.
a Trials split evenly among the varied grid sizes and algorithm type.

Figure 17. A comparison of mean efficiency between MC and GC algorithms
at various grid sizes using the parameters set in Table 4. Shaded regions
indicate a 95% confidence interval of the mean. Efficiencies for smaller grids
are computed from smaller samples of positioners and thus are more variable
than efficiencies measured from large grids. For grids larger than SDSS-V’s
(>500 positioners), efficiency is not strongly affected by the total number of
positioners in a grid.

Figure 18. A comparison of mean runtimes between MC and GC algorithms at
various grid sizes using the parameters set in Table 4. Shaded regions indicate a
95% confidence interval of the mean.

16

The Astronomical Journal, 161:92 (24pp), 2021 February Sayres et al.



robot stuck in an unfortunate (e.g., outstretched) orientation
will increase the probability of deadlock in its immediate
area. In certain orientations, a stationary robot could require
additional neighboring robots to be taken offline. A robot
fixed in a folded orientation will have little adverse effect on
path generation. In summary, operations may proceed even in
the case of stationary robots using the anticollision algorithm
we have presented, although lower efficiencies would be
expected.

The complete path generation and postprocessing procedure
has been successfully applied to SDSS-V positioners in a lab
setting, and a video demonstration of reconfiguration tests is
available online.12 A σcb= 2 mm setting was used in this video
demonstration.

7. Discussion

In addition to path routing, Kaiju is an important component
of higher-level algorithms that seek to globally optimize SDSS-
V survey planning, design, and overall strategy. Note that Kaiju
possess no notion of concepts like target priority. In SDSS-V,
certain targets (e.g., calibration sources) may be more
important than others in a field. In this work, we have only
presented a very simple deadlock resolution strategy that
iteratively and randomly tosses away targets until a converging
grid is achieved. In practice, target assignment algorithms will
preferentially select targets to throwaway only after searching
for viable target replacements first. In a grid of 500 heavily
overlapping positioners, many opportunities for target swaps
between positioners exist, which may serve to eliminate either
source coordinate collisions or deadlocked pairs with no loss of
original targets. Furthermore, deadlocks may be rectified via
focused manipulation of an individual robot’s greed and phobia
parameters in repeated trials. The options are vast. The
targeting optimization challenge is arguably at least as complex
as the problem of safe path generation, and it is an active area
of algorithmic development for SDSS-V that will likely see
continuous improvement throughout the survey. In the
hierarchy we describe, the selective mitigation of target
attrition due to collision-avoidance constraints is expected to
be delegated to a higher-level piece of software with an
awareness of the bigger picture. The fast runtime and high
efficiency of Kaiju make this division of duty computationally
feasible, especially in the small σcb regime.

SDSS-V fields span a wide range of target densities, though
the majority of fields lie in the densely populated Galactic
plane. In dense fields, we plan to use the GC algorithm, which
provides maximal reconfiguration speed and minimal runtime.
Though the GC algorithm is slightly less efficient, dense fields
have a surplus of targets from which to select suitable
replacements. For sparser fields, where target replacement
opportunities are less abundant, we plan to use the MC
algorithm to maximize targeting efficiency. With the options
provided between the MC and GC algorithms, we may balance
runtime, efficiency, and reconfiguration time to maximize
survey productivity over the whole sky. We expect to see
overall targeting efficiencies of >99.9% and average reconfi-
guration times <30 s for SDSS-V. For SDSS-V, a 30 s
reconfiguration time is comfortably less than the readout
duration for the BOSS spectrograph. With target transitioning

happening during readout, robot reconfiguration should
introduce no extra overhead in the nightly observing sequence.
For projects outside the SDSS-V context, a quicker

reconfiguration time may be important. Our reconfiguration
process requires that every RFP array transition routes through
a common folded state, where the folded state is near the edge
of travel for each positioner. In this case, the total distance
traveled by a positioner between targets will usually be large
when compared to the distance between the subsequent targets.
Makarem et al. (2014) modeled direct transitions between
random positioner configurations with good results in slightly
overlapping RFP workspace regimes. In heavily overlapping
RFP regimes, Macktoobian et al. (2019) comment on the
challenge of fitting the durations of both path computation and
robot reconfiguration within timescales that do not introduce
significant operational overheads.
The common state transition we present does provide

benefits, as it decouples the dependency of robot trajectory
planning from the nightly observing sequence. As all paths are
built between a target state and a common state, transitioning
between any two target states becomes trivial. This permits all
paths to be computed and vetted during the survey design
phases well ahead of observations. For SDSS-V, the runtimes
we experience are suitable for on-the-fly path generation,
should the need arise. However, for a theoretically large and
crowded positioner array, a completely offline path generator
could prove necessary, and thus a common state transition
would be mandatory to ensure that program runtime is not a
hindrance to observing cadence.
Improvements in reconfiguration time might be found by

allowing robot movement to end at a step prior to a completely
folded state. In the SDSS-V layout, collisionless motion is
guaranteed while all positioners maintain θβ155°, where
this minimum value of θβ is a level of folding that brings the
beta arm completely within a radius of half the pitch. The exact
condition is given by
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RFP arrays with small overlap zones would benefit most
from an earlier exit criterion like Equation (14), as beta arms
need only to retract a small amount before finding themselves
in a guaranteed collisionless environment. Although shortcuts
between target transitions for SDSS-V exist, the complete fold/
unfold sequence we have presented is sufficiently fast to not
rate-limit SDSS-V survey pacing.
It has become increasingly popular to retrofit existing telescopes

with robotically filled focal plane arrays. In the case of SDSS-V,
positioner density was ultimately limited by the fiber capacity of
the existing spectrographs. In proposed future RFP projects with
purpose-built spectrographs (e.g., MegaMapper Schlegel et al.
2019), the potential multiplexing power may be limited only by the
density of positioners in the focal plane. As RFP technology
continues to progress, the possibility of ultra-densely packed arrays
may be on the horizon. In our analysis, we have shown high
efficiencies (>0.99 for MC) in heavily overlapping and highly
crowded arrays, where as much as 20% of the focal plane space
may be occupied by interfering robot arms (right panel, Figure 5).
The algorithms we present can be used to inform and verify layout
choices in future RFP instrument design. Most importantly, our12 https://www.youtube.com/watch?v=jV3Uz_C8W0c
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simulations suggest that ultra-densely packed positioner layouts
may be operationally feasible.

The success of our collision-avoidance method is mainly
attributed to the realization that reverse-solved paths are
extremely efficient. We show that even an algorithm based
on a simple greedy heuristic obtains an efficient solution to a
challenging problem. It may seem suspicious that the
directionality should matter at all. However, the reverse-solve
strategy resembles a situation that arises in multiagent pattern
formation theory. Multiagent pattern formation problems are
often concerned with deriving control laws that drive agents
from random states to lattice-like structures and determining
where convergence can be guaranteed (Olfati-Saber 2006). By
adopting a reverse-solve direction for RFP arrays, we frame our
problem in the same way, where the initial (target) state is
random and the final (folded) state is a lattice. A lattice
configuration only requires that all positioners share the same
(θα, θβ) coordinates. Here we have specifically selected the
folded lattice configuration for two reasons. The first reason: as
positioners fold, they are driving toward a guaranteed collision-
free environment (see Equation (14)), and the chance of
interaction decreases with program step. The second reason:
throughout the routine θα will decrease and θβ will increase as a
positioner moves from a right arm orientation toward a fold.
When alpha and beta axes move in opposite directions, the
overall motion of the beta arm resembles a thrust rather than a
swipe or a swing. Given the elongated shape of a beta arm, a
thrust presents a smaller cross section for interaction during
motion. We suspect that other existing RFP control codes will
improve in efficiency if a reverse solution is employed,
especially in heavily overlapping regimes.

The reverse-solve method is obviously beneficial when
considering the geometries and kinematics specific to RFP
arrays, though a cursory search of the robotics literature at large
yields sparse mention of reversely solved paths. In one
example, Zhao et al. (2012) find a reverse-path strategy to
optimize the routing problem faced in minimally invasive
surgeries. We wonder if the concept of path-direction
preference is generally extendable to path-planning problems
in the context of robotic control theory and multiagent
optimization.

The landscape of survey-based astronomy is progressing
rapidly, largely due to the continuing development of highly
automated telescope and instrument systems. As the complex-
ity of observing systems continues to increase, overall survey
productivity may become limited by our ability to design and
implement effective control algorithms. This was realized in
SDSS-V, where the effective utilization of the full suite of
SDSS-V positioners was an unsolved problem prior to this
work. Ultimately, robotic path routing occupies a small part of
a larger picture of overall survey control. Optimization of target
assignment, survey scheduling, and feedback from data
acquisition are all spaces in which further algorithmic
development may have significant effects on the overall
productivity of current and future astronomical surveys.

8. Conclusion

We have presented a generic, computationally fast, and
highly efficient method to determine noncolliding paths for a

two-armed robotic fiber positioner system, where we measure
efficiency in terms of astronomical targets ultimately acquired
under collision-avoidance constraints. The RFP design we
describe has become typical in today’s growing number of
robotic wide-field multiobject spectroscopic instruments, and
so our methods are applicable to a wide range of astronomical
surveys and instruments. We have focused our analysis on a
layout in which robot arms have heavily overlapping patrol
zones, a design currently unique to the SDSS-V and MOONS
instruments for which the collision-avoidance problem is
especially challenging. We find that efficiency remains high
even in environments significantly more crowded than the
SDSS-V layout, suggesting the feasibility of ultra-densely
packed positioner arrays in future RFP designs.
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Appendix
Pseudocode Implementation

A pseudocode implementation of the anticollision algorithm
to generate a reverse path for an RFP array follows below,
favoring clarity over computational efficiency. The routine
assumes that a few functions are defined. dot(v1, v2) and norm
(v1) return the dot product and Euclidean norm for input
vectorsv1,v2. rand() returns a uniform random value between
0 and 1. shuffle(array) randomizes the order of elements in the
input array. Vector subtraction and scalar multiplication is
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defined in the normal linear algebra sense.
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