Session 1: Methodology

FODS 20, October 19-20, 2020, Virtual Event, USA

Tree Space Prototypes:
Another Look at Making Tree Ensembles Interpretable

Sarah Tan Matvey Soloviev
ht395@cornell.edu ms2837@cornell.edu
Cornell University Cornell University

ABSTRACT

Ensembles of decision trees perform well on many problems, but
are not interpretable. In contrast to existing approaches in inter-
pretability that focus on explaining relationships between features
and predictions, we propose an alternative approach to interpret
tree ensemble classifiers by surfacing representative points for
each class — prototypes. We introduce a new distance for Gradient
Boosted Tree models, and propose new, adaptive prototype selec-
tion methods with theoretical guarantees, with the flexibility to
choose a different number of prototypes in each class. We demon-
strate our methods on random forests and gradient boosted trees,
showing that the prototypes can perform as well as or even better
than the original tree ensemble when used as a nearest-prototype
classifier. In a user study, humans were better at predicting the
output of a tree ensemble classifier when using prototypes than
when using Shapley values, a popular feature attribution method.
Hence, prototypes present a viable alternative to feature-based
explanations for tree ensembles.

CCS CONCEPTS

« Computing methodologies — Instance-based learning; Clas-
sification and regression trees; « Human-centered computing;

KEYWORDS
Interpretability; Tree Ensemble Classifiers; Prototypes

ACM Reference Format:

Sarah Tan, Matvey Soloviev, Giles Hooker, and Martin T. Wells. 2020. Tree
Space Prototypes: Another Look at Making Tree Ensembles Interpretable.
In Proceedings of the 2020 ACM-IMS Foundations of Data Science Conference
(FODS °20), October 19-20, 2020, Virtual Event, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3412815.3416893

1 INTRODUCTION

As machine learning is increasingly employed alongside human
reasoning in a wide range of tasks, it has been recognized that it
is desirable for these systems to be made interpretable: a human
user working alongside an ML system should be able to maintain
a mental model of why and how the system arrives at its outputs,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FODS °20, October 19-20, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8103-1/20/10...$15.00
https://doi.org/10.1145/3412815.3416893

23

Martin T. Wells
mtwl@cornell.edu
Cornell University

Giles Hooker
gih27@cornell.edu
Cornell University

so she may either obtain confidence in the outputs or conversely
recognize when they are wrong [8].

Ensembles of decision trees such as random forests [3] and
boosted trees [11] perform well across a variety of problems [7].
However, while their decision tree components may be interpretable
[10], this is no longer true for ensembles with hundreds or thou-
sands of trees. Current attempts to interpret tree ensembles include
seeking one tree that best represents the ensemble [18, 54], model-
agnostic explanations not exclusive to tree ensembles [43], feature
importance [20], partial dependence plots [11], etc. However, many
of these describe how features affect predictions, and their com-
plexity increases with the number of features.

Prototypes are representative points that provide a condensed
view of a dataset [2, 19]. The value of prototypes for case-based
reasoning [44] has been discussed in studies of human decision
making [24]. Prototypes have also been used to summarize large
datasets [39] when not all points can be inspected. In this paper,
we propose an alternative to feature-based explanations for tree
ensemble classifiers: rather than explaining which features led to a
certain class being predicted, we propose to explain a prediction
by presenting similar points that “represent” that class (Figure 1).
Since these prototypes will be identified using distance functions
derived from the tree ensemble, we call them tree space prototypes.

A key question is how to define similarity. Unsupervised dis-
tances such as Euclidean distance in feature space do not capture
relationships between features and labels, whether actual or pre-
dicted. Instead, we need a distance that takes into account: (1) the
predictions made by the tree ensemble; (2) how the predictions
came about (i.e. how the tree ensemble used the features to arrive
at the predictions). Such a distance has been defined for random
forest models (RF) where each tree contributes equally to the over-
all prediction. We generalize this to gradient boosted trees (GBTs),
where individual trees that make up a GBT model can have different
contributions to the overall prediction.

By adapting a known approximation algorithm for the k-medoids
problem, we can efficiently search for prototypes that are “cen-
tral” for a class according to these proximity functions. Nearest-
prototype classifiers using these prototypes sometimes even exceed
the accuracy of the original tree ensemble. However, this algorithm
has no notion of when one class may benefit from more prototypes
than another class (e.g. if one class is more complex: consider for
instance a disease which affects many different types of individuals,
but does not affect one type of individual, so the class of sick indi-
viduals is more complex to characterize than the class of healthy
individuals). Hence, we introduce new class-aware prototype selec-
tion methods with the flexibility to choose a variable number of
prototypes per class.

https://doi.org/10.1145/3412815.3416893
https://doi.org/10.1145/3412815.3416893

Session 1: Methodology

Prototypes (Euclidean distance)
4.3% 3.7% 3.5%

49994
73929

Prototypes (RF distance)

44449
11997

26.5%

FODS 20, October 19-20, 2020, Virtual Event, USA

444 g
99 4 f

7
Y

7
7

Nearest positive and negative test samples

assigned to the first prototype of each class

{44

999
q 9 94

Figure 1: Left: Prototypes with largest coverage for the classes 4 and 9 on the MNIST dataset when using Euclidean distance
and random forest distance to find the prototypes. The number in blue denotes the coverage of the prototypes (percentage of
test points assigned to that prototype) while the number in orange denotes the accuracy of the prototype (percentage of points
assigned to that prototype that have the same label as the prototype). Note the hooked 9 and closed 4, which are only captured
by RF distance but not Euclidean distance. Right: Nearest correct and incorrect test points assigned to the top prototypes. The
first row denotes points with the same label as the prototype, second row are points incorrectly classified by the prototype.

To evaluate the interpretability of tree space prototypes, we con-
ducted a user study in which human subjects anticipated the output
of a tree ensemble classifier on a dataset of car fuel efficiency, using
either prototypes or Shapley values, a popular feature attribution
method [37]. Our results suggest (p ~ 0.035) that prototypes convey
better understanding of the tree ensemble classifier’s behavior.

To summarize, the contributions of this paper are: (1) An alterna-
tive approach to interpreting tree ensemble classifiers by selecting
representative points — prototypes — for each class; (2) a new dis-
tance function for GBT models; (3) new prototype selection methods
with theoretical guarantees, that have the flexibility to choose a
different number of prototypes in each class.

2 BACKGROUND AND NOTATION

2.1 RF Distance

Let ¢ be the number of trees in the RF model. The ith tree (i € [¢])
has 7; leaves, each of which represents a region Rj; (j € [7;]) of
feature space. Each individual tree induces a classifier cl.Tree(s) =
Z;izl ajil(s € Rj;), where a; ; is the predicted value in the jth leaf
of the ith tree (for binary classification, this is just the proportion
of points in that leaf with label 1) and I is the indicator function.
The RF classifier is the average of this, taken over all trees:

1 t
CRF(S) -2 Z c;free.
t
i=1

Using the above notation, we can re-write the random forest
classifier as
t Ti N

N
RF 1 1 1
)= Z Z I Zl(s € Rji)l(sk € Rji)ye = ;K(s, Sk) Yk

i=1 j=1 k=1

24

for the kernel

’ 1 . L 4
K(s:s) = ; ;1(3 € Rj)I(s” € Rj).
This connection has allowed the study of random forests in which
tree structure is generated independently of the data; in particular
[45] provides explicit formulae for the corresponding K (s,s”), al-
though this is much more challenging for supervised trees which
adapt to the contours of the underlying response. This same repre-
sentation results in the proximity function between two points:

DEFINITION 1. [4] The RF proximity of a pair of points is an
unweighted average of the number of trees in the RF model in which
the points end up in the same leafix

proximityRF(s, s")

t
B % Z Z I(s € R;,)I(s" € R;,5). (1)

i=1 j=1
The RF distance between a pair of points is then:
d® (s,5") = 1 - proximityRF (s, s”).

Since the regions {Rj ; };l:l partition the feature space, each point
s € S can be in at most one region, and so the inner sum in Equation
(1) takes on value 0 or 1 for each tree. Thus the proximity, as a
convex combination of these, lies between 0 and 1, and so does
the distance function. It is easily confirmed that the proximity of
a point to itself is 1, and hence d(s, s) = 0, but it should be noted
that d is not in general a metric, but a pseudosemimetric as it does
not satisfy the triangle inequality — as noted by [50]. This it not
uncommon in the metric learning literature, and in fact, no locally
adaptive distance - distance that varies across feature space [33]

Session 1: Methodology

- can satisfy the triangle inequality [50]. Later, we will adapt RF
distance to construct a distance function for GBTs.

2.2 The k-Medoids Problem

Given a proximity function, it is natural to construct a classifier
by taking those points that are particularly close to some point or
region considered representative (prototypical) of a class to belong
to that class. How should these prototypes be selected?

For accuracy, we would want every point in a class to be closer to
a prototype of that class than any prototype of another class. This
is generally hard; a more tractable related approach is to instead
seek to simply make the points in each class as close to a prototype
as possible. If we further take the tradeoff between different points’
distance from a prototype to be linear, this is known as the k-
medoids clustering problem (see e.g. [2] for another application to
prototypes). The objective of this problem is to find a subset M C S
of medoids, |[M| = k, such that the sum distance from each object
to the nearest medoid is minimized. Formally, we seek to minimize
the objective function

F(M) = Z min d(s,m).

seS

@)

This problem is known to be NP-hard [41]. However, [13] present
a greedy algorithm that starts with an empty set and repeatedly
adds the single point s € S\ M that increases the value of a related
function by the most, which they show produces a reasonable
approximation in polynomial time.

If the points are labelled by a classifier, it is natural to only
consider, for each point, medoids that belong to the same class.
Thus, we define the g-classwise k-medoids problem as finding the
subset M C S of k medoids such that the sum distance from each
point to the nearest medoid of the same class is minimized, i.e. that
minimizes

fon =31 min 3)

= meM:c(m)=c(s

Even in the presence of multiple classes, it is possible to use the
single-class algorithm of [13] by applying it separately to every class
in turn to generate ki, ..., kq prototypes for each class (3; k; = k).
However, it is not clear what the right choice of k; for each class
is, and one could easily lose accuracy by overprovisioning one
compact class that would be adequately covered by a small number
of prototypes while not having sufficiently many prototypes for
another class whose points are spread into many clusters. With
the naive choice that k; = ... = kq= k/q, we call this the uniform
greedy submodular (SM-U) prototype selection method, and use it
as one of our baselines.

However, it turns out that an analysis similar to that for the
single-class case can also be applied directly to the g-classwise ob-
jective function. Based on this, we will introduce a greedy algorithm
that operates on all classes in the g-classwise k-medoids problem
simultaneously. Since this algorithm in effect chooses the class
where adding another prototype yields the largest improvement,
we will call it adaptive in contrast with the uniform algorithm.

)d(s, m).

3 METHOD

Our goal is to find prototypes for tree ensemble classifiers. In this
section, we describe two methodological contributions of this paper:

25

FODS 20, October 19-20, 2020, Virtual Event, USA

defining a distance function for GBT models, and new, adaptive
prototype selection methods that choose a variable number of pro-
totypes based on which class could benefit the most from another
prototype.

3.1 Constructing a Distance Function for GBT

We start by considering the prediction function of the GBT classifier,
which is learned iteratively:

T () = ¢ (5) +yie] ™ (s)

where the initial value c(()}BT is initialized, depending on implemen-

tation, as zero, or the fraction of elements of S with label 1 in the
case of binary classification, etc. y; is a step size, typically found
using line-search, that provides a correction to account for the qua-
dratic approximation to the loss that is used by gradient boosting.
The GBT classifier then is the one that incorporates all ¢ trees:

¢SBT () = (OBT ().

Unlike RF, GBTs cannot be expressed directly as kernel methods:
the values in each leaf are not given by averages of the corre-
sponding responses. Further, each tree is no longer generated by
an identical process or contributes equally to the prediction. Hence,
each tree can no longer be weighted equally, unlike in RF models.
Instead, we propose that a natural way is to weigh the contribution
of each tree to the proximity function by the size of its contribution
to the overall prediction. By using the Ly norm to measure size, we
arrive at the following definition:

DEFINITION 2. The GBT proximity of a pair of points is a weighted
average of the number of trees in the GBT model in which the points
end up in the same leaf:

proximity®PT (s, s")
LT
= Z Z 7 ! AI[(S € Rj)i)l[(s, € Rj,i),
i=1 j=1 Zi=1 Wi

where the ith tree’s weight wj is
wi = yl.z ~Var{c;.rree(s) :se€Sh
The GBT distance between a pair of points is then:
dOBT(s,s") = 1 — proximity®BT (s, s).

The choice of the Ly norm to measure the size of a tree’s contribu-
tion to the overall prediction has a natural equivalence to measuring
the variance among the predictions made by c;rree (s). As an alter-
native to the L2 norm used here, one may instead consider the Lt
norm, which we leave for future work. In Section 6.3, we study the
implications of selecting this weight on the constructed distance.

3.2 Adaptive Prototype Selection Methods

We now introduce two new prototype selection methods that ex-
ploit approximation guarantees for submodular objective functions,
and one that tries to directly optimize for accuracy.

Our goal is to find a good approximately optimal solution for the
q-classwise k-medoids problem (3). We will achieve this by using
a greedy algorithm on an appropriate non-negative, monotone,
submodular function (see Prop. 1). However, the function (3) itself
is not monotone submodular: in fact, adding more prototypes to

Session 1: Methodology

M decreases the value of f(M). This can be averted by negating
f, but then the function will take non-positive values. Therefore,
adapting an idea of [13], we will define a related function g as

g(M) = f(P) = f(PUM), 4

where P is a set of phantom exemplars, one from each class. In order
to get the best possible theoretical guarantee on the approximation
(Section 4), this set needs to be chosen in a particular fashion. The
resulting algorithm is Algorithm 1.

Algorithm 1: Adaptive greedy submodular prototype se-
lection (SM-A)

Input: Set of points S, distance function d : $2 - [0, 1],
class assignment ¢ : S — [q]

Output: Set of prototypes M, |[M| = k

1 Create set of phantom exemplars P = {p,.

d(pi,s) =d(s,p;) = 1 forall s

2 M—©Q

3 for i=1to k do

4 L s* «—argmax [f(P) — f(PUMU {s})]

SES
5

M — MU {s*}
We also consider a variant of this algorithm that we call weighted
adaptive greedy submodular (SM-WA), in which each class is weighed
differently: line 4 is replaced by

[f(P) = fF(PUMU {s})],

..,pq} and set

1
*
s* « argmax ——
ses [1CGs)]
where C(S) denotes all points in S that are in the same class as s. It
is easily verified that this objective function is also submodular.

3.3 Supervised Greedy Prototype Selection

Instead of optimizing the k-medoids value function f of equation
(3), we can instead directly pick prototypes, in a greedy fashion, that
yield the best (training or validation set) improvement in classifica-
tion performance. The resulting method, which we call supervised
greedy (SG), beats the unsupervised k-medoids approaches in terms
of accuracy in several cases (Table 1), but we do not know of any
theoretical guarantees that it satisfies, as these accuracy metrics
are not submodular. This is nearly identical to Algorithm 1, except
that line 1 is unnecessary and we replace line 4 with

s* « arg max [accuracy(S,M U {s})],
SeS

where accuracy denotes the accuracy metric used for evaluation.

4 THEORETICAL ANALYSIS

We will now briefly review the rationale behind the design of Algo-
rithm 1 and derive an approximation guarantee for it. Optimization
problems such as (3) are often approached using approximation
algorithms that are guaranteed to find solutions within some factor
of the optimum. Previous work on k-medoids [13, 39] has achieved
this by identifying a related positive monotone submodular func-
tion and finding a good element of its domain by greedy search.
Such an element is guaranteed to be within a factor of (1 — 1/e) of

26

FODS 20, October 19-20, 2020, Virtual Event, USA

the optimum for that function, where e is the Euler constant. We
quickly review the relevant result.

DEFINITION 3. A function f : P(S) — R that maps subsets of S to
reals is monotone if f(X) < f(Y) whenever X C Y. It is submodular
if whenever X C Y, adding a particular elements € S to Y is not
more useful than adding it to X :

FYULsh - f(Y) < fFX U {s}) = f(X).

PROPOSITION 1. [40] Suppose f : P(S) — R* is a non-negative
monotone submodular function. Let Ty = @ and

Ty = T—y U argmaxf(Tj—; U {s})

seS

be the result of greedily maximizing f fori steps. Also, let

T = argmax f(T)

TcS:|T|=k
be the set of size i that maximizes f. Then
f(T) =2 (1-1/e)f(T}).

We want to derive a similar approximation guarantee for Al-
gorithm 1. To that end, we first need to show that g satisfies the
necessary conditions.

LEMMA 1. The objective function (4) is non-negative, monotone
and submodular.

PROOF. See appendix. O

By selecting the set of phantom exemplars P in such a fashion
that d(p,s) > d(s’,s) forall p € P and s,s” € S, we ensure that
f(TUP) = f(T) for all nonempty sets T C S. Hence, the set T;*
that maximizes g among all sets of size i also minimizes f among
all such sets.

Let T; be the result of running the greedy maximization algorithm
on (4) for i steps, and f be the original objective function (3). Then
by Prop. 1 and choice of P,

f(T) < f(P)+ (1 =1/e)(f(T}) = f(P)).

i.e. the approximation T; takes us 1—1/e of the way from f(P) to the
optimum. Crucially, this means that the approximation guarantee
depends on f(P), i.e. how good the phantom exemplars alone would
be as a solution to the g-classwise k-medoids problem.

Complexity analysis. Evaluating f(M) takes time O(|S||M] -
T(d)), where T(d) is the time to compute the distance d(s, m) for
a single pair of points. This computation can be made efficient by
prepopulating an [S| X |S| matrix with all pairwise distances, and
then simply implementing d as an array lookup. The same com-
plexity bound applies to calculating accuracy (S, M), which iterates
over |S| points and finds the d-closest of |M| medoids to check if it
belongs to the correct class. The submodular (SM-A, SM-WA) and
supervised greedy (SG) variants of Algorithm 1 essentially only
differ in whether they invoke f or accuracy with an O(k)-sized set
M of medoids in the arg max (Algorithm 1, Line 4). Either way, this
arg max is over |S| points, and the loop runs for k iterations. There-
fore, all our instantiations of Algorithm 1 have time complexity
O(|SI?k? - T(d)).

Session 1: Methodology

5 RELATED WORK

Tree ensemble distance. Breiman and Cutler defined RF proxim-
ity in the documentation accompanying their software [4]. It is
common to set distance as 1 — proximity [46, 50, 52], as we do in
this paper. RF proximity has found a variety of applications, in-
cluding clustering [46], outlier detection [53], imputation [47], etc.,
however less is known of its theoretical properties. The connection
between random forests and kernel methods has been pointed out
[33, 45] and proximity itself can be expressed as a kernel [35]. While
we were inspired by RF distance, to the best of our knowledge, our
paper presents the first proposal for GBT distance and the first
method to seek prototypes for GBT models.

Not many RF implementations provide prototypes. The excep-
tions are the R randomForest package [31] and RAFT, a random
forests visualization tool [4]. The RAFT documentation describes a
heuristic prototype-finding procedure that is partially implemented
in the randomForest package. It generates a single new point not
from the dataset, a distinct goal from ours, which is to select a
subset of representative points from existing points.

Prototype selection. There is a long line of literature on pro-
totype selection methods, also known as instance reduction, data
summarization, exemplar extraction, etc. We point the reader to the
review by [12] that suggested that prototype selection methods can
be grouped into three categories: condensation [19], edition [49],
or hybrid methods that remove both noisy and redundant points
from the prototype selection set. We briefly mention a few meth-
ods: k-medoids clustering is a classic problem for which different
algorithms have been proposed, such as PAM [21] and greedy sub-
modular approaches [13, 32], which we compare against and extend
by adding the flexibility to choose varying numbers of prototypes
by class. Kim et al. used a similar greedy submodular approach
with maximum mean discrepancy objective to select prototypes
and criticisms [23]; we provide a comparison to their prototype (not
criticisms) selection method. We do not compare against set cover
methods [2] as they tend to select significantly more prototypes
than k-medoids [2] to achieve their objective of maximal coverage,
at the cost of interpretability.

Point-based explanations. Besides feature-based explanations
such as Shapley values [37] and LIME [43], point-based explanations
have been proposed to explain model predictions. Examples include
counterfactual explanations that determine the changes necessary
to flip a point’s prediction [48], models that automatically provide
prototypes [24, 30], and identifying points most “influential” for a
prediction [22, 25, 51]. There is a subtle distinction between proto-
type selection methods and influential point methods, as points that
best represent a class (prototypes) may not be the most influential.
Moreover, since trees are not differentiable except trivially within
each node, influential point methods that typically take gradients of
loss functions are not easily applicable. Hence we do not compare
against them, but mention them for completeness.

The work most similar in spirit to ours is by Caruana et al. [6]
who proposed to generate case-based explanations for non-case-
based learning models such as neural networks and decision trees.
However, unlike this paper, they do not take advantage of naturally-
learned distance functions from these models.

27

FODS 20, October 19-20, 2020, Virtual Event, USA

6 EXPERIMENTAL RESULTS

We evaluate the proposed prototype selection methods and tree
ensemble distances quantitatively as well as qualitatively. We also
describe results from a user study that demonstrates that humans
are able to use prototypes effectively.

Datasets. We use multiple image and tabular datasets with bi-
nary classification labels. For image datasets, we select two standard
image classification benchmarks, MNIST and CALTECH-256. The
goal in MNIST is to recognize handwritten digits [29]; the goal
in CALTECH-256 is to predict one of 256 object categories for an
image [16]. For both datasets, we select two classes that are either
easily-confused [17] or visually-similar — digits 4 and 9 in MNIST,
guitar and mandolin in CALTECH-256 - to evaluate our prototypes
on not just easily predicted classes, but also classes commonly con-
fused by the model. For MNIST, we use the raw pixel values as
features. For CALTECH-256, we extracted deep features using a
ResNet-50 model pre-trained on ImageNet.

For tabular datasets, we selected four datasets from critical do-
mains such as healthcare and criminal justice where the need for in-
terpretability has been suggested. These four datasets are: sklearn
breastcancer and UCI diabetes, where the prediction task is to pre-
dict incidence of that disease, the Right Heart Catherization (RHC)
dataset (http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/
rhc.html), on the impact of performing a medical procedure on
patients, and T-COMPAS [9], a dataset that examines if COMPAS
risk scores [28] agree with Mechanical Turk workers’ predictions
of recidivism [9]. The first two datasets are common tabular data
benchmarks, and we selected the last two datasets because their
prediction tasks are known to be hard [9], again to validate our
prototypes on a diversity of cases, not just easy ones.

Metrics. Since some datasets are imbalanced, we use balanced
accuracy [5] as our primary performance metric. We do not use
ranking metrics such as AUC because nearest-neighbor classifiers
do not output scores. We also count the number of prototypes
selected.

Training and tuning tree ensembles. Whenever a fixed train-
test split was not provided (i.e. for all datasets besides MNIST,
where the training set has 60,000 images and the test set has 10,000
images), we created 60-20-20% training-validation-test splits. For RF,
we use Python’s scikit-1learn package, training random forests
with 1,000 trees without restricting maximum tree depth. We cross-
validated the number of features to consider when looking for the
best split (1/p, 0.33p, 0.5p, 0.7p, where p is the number of features,
and the constant 7). For GBT, we modified scikit-learn to train
GBT models with one gamma multiplier per tree. We cross-validated
the number of trees (up to 200), maximum tree depth (3 to 5), and
learning rate (0.1 or 0.01).

Implementations. For the comparison to Kim et al. [23], we use
the authors’ code for greedy prototypes (not criticisms) selection
provided at https://github.com/BeenKim/MMD-critic. To obtain
Shapley values [37] and associated graphs for the user study, we
use the authors’ Python Shap package which can be found at https:
//github.com/slundberg/shap.

http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/rhc.html
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/rhc.html
https://github.com/BeenKim/MMD-critic
https://github.com/slundberg/shap
https://github.com/slundberg/shap

Session 1: Methodology

FODS 20, October 19-20, 2020, Virtual Event, USA

Model Prototype Selection Method Breastcancer Diabetes =~ T-COMPAS RHC MNIST 4-9 CALTECH256 G-M
None (original tree ensemble) 0.92 0.72 0.56 0.68 0.97 0.81
0.91 (341) 0.67 (460) 0.57 (600) 0.65 (3441) 0.97 (3000) 0.78 (129)
Baselines SM-U 0.92 (12) 0.76 (5) 0.61 (10) 0.69 (11) 0.97 (187) 0.83 (16)
RF Kim et al [23] 0.92 (19) 0.68 (36) 0.62(32) 0.68 (3) 0.96 (65) 0.81 (6)
SG 0.90 (4) 0.77(5) 0.68 (5) 0.66 (12) 0.97(18) 0.83(3)
Proposed 0.92 (11) 0.77(4) 057 (15) 0.68 (9) 0.97 (163) 0.79 (15)
SM-WA 0.92 (15) 0.77(6) 0.60 (13) 0.69(13) 0.97(243) 0.86 (18)
None (original tree ensemble) 0.94 0.69 0.55 0.70 0.97 0.84
0.92 (341) 0.70 (460) 0.58 (600) 0.65(3441) 0.97 (3000) 0.84 (129)
Baselines SM-U 0.92 (21) 070 (12) 0.53 (26) 0.65 (62) 0.96 (249) 0.84 (11)
GBT Kim et al [23] 0.94 (6) 0.66 (16) 0.63 (53) 0.61(33) 0.94 (45) 0.86 (26)
SG 0.95 (3) 0.78(4) 0.67(5) 0.69 (15) 0.96 (23) 0.82 (2)
Proposed 0.92 (22) 0.69(12) 057 (4) 0.65 (4) 096 (247) 0.84 (11)
SM-WA 0.92 (20) 0.69(12) 056 (27) 0.65 (4) 0.96 (261) 0.84 (11)
0.91 (341) 0.68 (460) 0.53 (600) 0.59 (3441) 0.96 (3000) 0.81 (129)
Baselines SM-U 0.89 (19) 0.71(26) 0.51(62) 0.61 (40) 093 (313) 0.82(6)
Kim et al [23] 0.88 (60) 0.66 (29) 0.51(49) 0.60 (5) 0.92(384) 0.78 (64)
EUCL SG 087 (3) 075(1) 058(22) 0.67(19 090(65) 074(9)
Proposed 0.88 (18) 0.68 (3) 0.52 (51) 0.60 (8) 0.93(377) 0.88 (6)
SM-WA 0.91 (15) 0.73 (5) 0.51 (61) 0.61 (33) 0.93(380) 0.88 (6)

Table 1: Best test-set balanced accuracy with corresponding optimal number of prototypes, k, in parentheses. Three distances
are provided: Random Forest (RF), Gradient Boosted Tree (GBT), and Euclidean (EUCL). We compare the proposed supervised
greedy (SG), adaptive greedy submodular (SM-A), and weighted adaptive greedy submodular (SM-WA) prototype selection
methods against the uniform greedy submodular (SM-U) and
prototype selection method from Kim et al [23]. Best results for each dataset and distance in bold.

6.1 Quantitative Evaluation

We quantitatively evaluate the selected prototypes by using them
in a nearest-prototype classifier [2, 23]. This is in line with recent
ideas on evaluating explanations by checking their accuracy on
independent test-data [43].

In general, the accuracy of each prototype selection method
varies non-monotonically with k, the number of prototypes, sug-
gesting that k should be tuned. Moreover, different selection meth-
ods operate at different regimes, e.g, supervised greedy (SG) obtains
very good results with very few prototypes, but is sometimes out-
performed by other methods when they use a larger number of
prototypes. Comparing different selection methods using the same k
may therefore not accurately characterize each method. Instead, we
follow [2], tuning k separately for each prototype selection method
and dataset, and comparing different methods at their optimal k.

It should be noted that in the limit, when k equals the size of the
training set, any nearest-prototype classifier simply reduces to the

classifier. This classifier is hence one
of our s, along with the original tree ensembles and the uniform
greedy submodular (SM-U) approach. We also compare RF and GBT
distance functions to Euclidean distance in feature space.

Table 1 summarizes the nearest-prototype classifier results. It
provides test set balanced accuracy at the optimal number of proto-
types, k, tuned separately for each prototype selection method. We
make several observations:

(1) For all datasets besides MNIST 4-9, at least one prototype se-
lection method outperformed 1-NN, suggesting the value of
prototype selection not just for data condensation and inter-
pretability (reducing the number of points that need to be shown
to a user), but also classification accuracy.

28

baselines. We also compare our results with the greedy

(2) Tree ensemble distances, as supervised distances, tend to out-
perform Euclidean distance.

(3) SM-WA is competitive against SM-U.

(4) Despite the lack of theoretical guarantees and simplicity of the
method, SG had clear advantages on a number of datasets with
high achieving high accuracy.

(5) SG tends to select fewer prototypes than the other methods.

(6) At least one of our proposed prototype selection methods out-
performs Kim et al. [23], with higher accuracy, lower prototype
count, or both on each dataset.

6.2 Visualizing Distances and Prototypes

Figure 2 visualizes RF distance for the MNIST 4-9 dataset embedded
in a two-dimensional space using t-sne [38] . On the left side are
prototypes found by SM-A; on the right side are prototypes selected
by SG.

We see that the prototypes selected by SM-A cover the space of
points well, which is not the case for SG. We confirm this by com-
puting the distance from each point to its nearest-prototype (SM-A:
mean 0.23, sd 0.26; SG: mean 0.61, sd 0.23). Instead, the prototypes
selected by SG are on the border between the two classes, and it
is common to see these prototypes alternating (i.e. a 9 prototype
followed by a nearby point of class 4 being selected as a prototype).

This has an intuitive explanation: as the only supervised pro-
totype selection method, to maximize accuracy and minimize the
chances of misclassification, SG selects discriminative prototypes
that can separate points that are of different classes yet are close to
each other, while the other proposed prototype selection methods,
being non-supervised, do not select prototypes discriminatively.

Session 1: Methodology

&
60 * % i
#;.-Fiy -
<’
; MliEeh
B -5 :'h.ﬁﬁ”'
P 5y 0 LTSN
g .) PR
o N) * o . - A g
5 Bl ﬂ:"’k
-20 a ‘B Uh.:i -

-20 0 20 60

Dimension 1

~60

Dimension 2

FODS 20, October 19-20, 2020, Virtual Event, USA

60

40

20

-20 0 20 60

Dimension 1

~60

Figure 2: Visualization of distances using t-sne for optimal RF with mean depth 16 on the MNIST 4-9 dataset, using the adaptive

greedy submodular (SM-A) prototype selection method (left) and supervised greedy (SG) (right) method.

represents the

digit 9, blue represents the digit 4. and the black and white images are prototypes.

6.3 Understanding GBT Distance

Many default implementations of RF algorithms allow trees to grow
to unrestricted depth [3]. As a consequence, on any given dataset,
the trees in RF models tend to be deeper than those in GBT models.
Table 2, which presents statistics of tree depth in RF and GBT
models, confirms this. The shallower the tree, the fewer leaves, and
the higher the probability of a pair of points ending up in the same
leaf. With larger datasets, conversely, RF trees tend to get deeper
(Table 2). However, the GBT trees we generate remain limited to
depth 3 to 5. Hence, the larger the dataset, the more different we
expect RF and GBT distances to be.

GBT RF Depth
Dataset n Depth Min Mean Max Var
Breastcancer 569 3 2 3.02 4 0.40
Diabetes 768 3 5 7.36 12 1.04
T-COMPAS 1000 4 6 8.70 14 1.18
RHC 5735 3 11 14.7 21 1.41
MNIST 4-9 5000 3 8 1095 16 1.44
CAL256 G-M 215 2 2 2.51 3 0.50

Table 2: Statistics of RF and GBT models tree depth across
different datasets. n is the number of observations in the
dataset. All RF models had 1000 trees. All GBT models had
an optimal number of trees (based on validation set loss) less
than or equal to 200.

Figure 3 visualizes RF and GBT distances embedded in a two-
dimensional space using t-sne and several MNIST prototypes. While
digits 4 and 9 are clearly separable in Figure 3, consistent with the
high performance (97% accuracy in Table 1) of the RF and GBT
models, the models appear to be learning different representations,
with GBT grouping points together in smaller and more compact
clusters than RF. Accordingly, the prototypes selected for the RF
distance are also different from those selected for GBT.

A natural next question may be the following: to what degree
are differences between GBT and RF distances caused by different
tree depth, different weights used in constructing the distance, or

29

that different patterns in the data are being learned by RF compared
to GBT models? While the top right corner of Figure 3 visualizes
distances from GBT models trained with default settings (short),
and the bottom right corner of the same figures depicts distances
from RF models trained with default settings (unrestricted depth),
the bottom left corner shows RF models trained to the same depth
as the corresponding default GBT model on that dataset. While the
short RF model has smaller and more compact clusters than the
default RF model, the RF and GBT models of same depth can still
be told apart.

Finally, the top left corner of Figure 3 visualizes an unweighted
distance function derived from the same GBT model as in the top
right corner, which uses a weighted distance function. This un-
weighted GBT distance (top left corner) looks more similar to the
default RF model’s distance (bottom right corner).

6.4 Evaluating Interpretability: User Study

To evaluate if prototypes are interpretable to humans - the intended
end users of our method — we follow the human-grounded evalua-
tion framework outlined by Doshi-Velez and Kim [8], and design
a user study where the task is to predict what the model would
predict, after being presented with an explanation and inputs to
the model. This task is exactly the “forward simulation/prediction”
experiment described by Doshi-Velez and Kim [8], and fulfills the
simulatability criterion for interpretability, one of several criteria
proposed by Lipton [34].

We compare prototypes to TreeExplainer [36], a Shapley val-
ues feature attribution method [37] for tree ensembles. Here, we
compare to Shapley values because it is a state-of-the-art feature
attribution method that satisfies several axiomatic guarantees [37],
is popular in practice [1], and, as a feature-based explanation, is pre-
sented differently to users. Hence, this comparison can inform us
whether prototypes are indeed a viable alternative to feature-based
explanations for tree ensembles. The hypothesis we investigate
in this user study is therefore whether users are able to correctly
predict a tree ensemble model’s output using prototypes, and more-
over, if they are able to do so with greater accuracy than when
using Shapley values.

Session 1: Methodology

60

40

| §
~ 20 &i"'
c o ‘@ e fa.
5 W ’
2 o) e RS miy
€ LY b
o o 28y B don
» *_ P S'."v
-40 .. . ~ * L ‘"
- ‘g. fliy
-60 . % -
80 -60 -40 -20 0 20 40 60
Dimension 1
60 fn
401 . “
&

Y 20 : a «
5] 9
a Sallo F ‘ar
[
g o P -
8 [/} 4, .

- . >®

20 _— .o “_p,

AL B 28 -
s N “m
-40 -20 0 20 40 60 80

Dimension 1

FODS 20, October 19-20, 2020, Virtual Event, USA

60 ‘s a-
P
40 5 §
2 a ,
~ 20 : " § - .
c oo a0).' ﬂ
(<} H o o'y =
2 o By o
@ > & ©
g -20 “o¥ 'Q;" o -
-’&1_-},‘ é o
w.‘ o " ooed o o\ Bl
—40) & .)’. P '™
o ."2&. Weore N
-60 R R kPO
O
-80
~60 -40 -20 0 20 40 60

Dimension 1

&
60 L ‘.'&
* “‘;"?‘ * .
< & W .
1 a.. 4‘74»&"'3’5?'-' ~
SR |57 T
N 2 ‘c; ad Y “"5' :
o
k] # ?
§ 0 A “ T . 0o ®
£ B) /1
e % 2 i ,;' >
4] 2
—40
—-60
~60 —20 —20 0 20 40 60

Dimension 1

Figure 3: Visualization of distances using t-sne for optimal GBT with unweighted trees (top left), trees weighted by vg? (top
right), RF with short trees matching GBT depth of 3 (bottom left), and optimal RF (bottom right) with mean depth 16 on the

MNIST 4-9 dataset, using the adaptive greedy submodular (SM-A) prototype selection method.

represents the digit 9,

blue represents the digit 4. The two points marked by x and + are the same across all subfigures, to indicate how points move
across different distance representations. Note that the bottom right subfigure is the same as the left subfigure in Figure 2.

6.4.1 User Study Design. We recruited participants on Amazon
Mechanical Turk to participate in the study. We selected a dataset on
vehicle fuel efficiency, from the R ggplot2 package (https://ggplot2.
tidyverse.org/reference/mpg.html). The label is whether the vehicle
is fuel efficient (greater than 19 highway miles per gallon), which
does not require expert domain knowledge to understand.

Each user was randomly assigned to either the prototypes or
Shapley condition, with no users in both conditions. Users were
presented with model inputs (Figure Al in the appendix); users
in the prototype condition were presented with prototype expla-
nations (Figure A3) obtained by applying our prototype selection
method to a tree ensemble; users in the Shapley condition were
presented with a set of Shapley plots (Figure A4) with added guide-
lines on how to interpret the plots. Then, users were presented a
question (Figure A2) and asked to predict what the model would
predict for that vehicle. Each user was asked to evaluate 13 vehicles.
These vehicles were randomly selected from the test set, while en-
suring that every combination of 13 vehicles seen by a user in the
prototype condition was also seen by another user in the Shapley
condition, to account for certain vehicles being more difficult to
predict according to either the model or human intuition.

30

To ensure that participants were paying attention and trying to
answer the questions to the best of their ability, we designed two
of these 13 questions to be ability and attention checks, known to
help in identifying inattentive participants [14]. In particular, for
the attention check, users were asked to select "fuel efficient" for a
specific vehicle, regardless of what they believe the true answer is.
Users were compensated $3.00 upon completion of the study. After
removing users who failed either catch trial, 42 users remained.

6.4.2 User Study Results. We evaluate the results using a human
accuracy metric: the fraction of vehicles where users predicted
correctly the model’s prediction for that vehicle. We also report
user responses to a question at the end of the survey about how
confident they felt about their answers.

Table 3 presents the results of two-sample t-tests comparing
these metrics for the prototype and Shapley conditions. The p-
values are one-sided, testing the alternative hypothesis if the metric
is greater in the prototype condition than Shapley condition (i.e.
higher accuracy, or greater confidence). The average self-reported
confidence (on a scale of 1-4, higher is more confident) among
users who used prototypes was 2.783, with users who used Shapley
values self-reporting confidence of 2.736. This difference was not

https://ggplot2.tidyverse.org/reference/mpg.html
https://ggplot2.tidyverse.org/reference/mpg.html

Session 1: Methodology

statistically significant. We note that self-reported user confidence
has not been found to be indicative of actual performance and can
sometimes even be misleading [15, 27], with studies finding that
humans cannot accurately assess their own performance [26, 42]. In
contrast, there is a statistically significant improvement in human
accuracy when using prototypes compared to Shapley values (0.79
compared to 0.72 human accuracy; p-value 0.035), demonstrating
that prototypes are a viable alternative to feature-based explanation
methods.

Metrics Prototypes Shapley values t-test p-value
Human accuracy 0.79 0.72 0.035*
Confidence 2.783 2.736 0.238

Table 3: Results from user study. Statistically significant dif-
ferences are marked by *. The difference in human accu-
racy between prototype and Shapley conditions is statisti-
cally significant, with a one-sided t-test with alternative hy-
pothesis that accuracy is higher in the prototype condition
than Shapley condition returning p-value of 0.035.

We also collected qualitative feedback on the explanations and
user interface. When asked “Was anything confusing? Is there
anything you would have liked to know that would have helped you
better answer these questions?” at the end of the survey, one user
in the Shapley values condition responded “It would have helped if
[Shapley values] showed the difference better”, and another user
reported “The way the values were weighted seemed a bit strange to
me”. On the other hand, in response to the same question, one user
in the prototypes condition was able to articulate a simple mental
model of what s/he thought the model was doing, saying “Knowing
the make and model of the vehicle would have been helpful, but
maybe I think that because I'm familiar with cars. (...) [The model]
seems to think that vehicles with smaller engines will automatically
be more fuel efficient, which is why I made the choices that I did
because the instructions said to guess the predictions of the model.”.

6.5 A Use Case of Fixing Mislabeled Points

We now demonstrate how the ideas presented in this paper can
assist with certain tasks that machine learning model users may
wish to leverage explanations for, such as debugging a dataset.
We focus on the specific task of correcting mislabeled points in a
dataset, where we wish to present a reasonable number of points
to the user, in some meaningful ordering, for the user to correct
any wrong labels. This experiment is similar to that ran by [25, 51].

We corrupt the MNIST 4-9 dataset by flipping the labels of 33% of
points, and use RF distance to construct a ranking of points, which
we compare to two baselines: (1) random ranking; (2) ranking based
on loss of training points. The distance ranking is constructed thus:
for every training point, compute k = 10 nearest neighbors based
on the distance, then compute the proportion of neighbors that
share the same label as the point. Note that the loss ranking is
strong baseline, as found by [25].

We present a simulated user with a proportion (up to 30%) of
training points, as ranked by the different methods, to inspect and
correct. Similar to [25, 51], the simulated user is an oracle who only

31

FODS 20, October 19-20, 2020, Virtual Event, USA

corrects points that are flipped, of all the points presented to her.
The model is then retrained on the corrected data. We repeat the
experiment 20 times, randomizing the points corrupted each time,
and average the results. Figure 4 plots the mean test set performance
of the model retrained on simulated user corrected data. With the
same interpretability budget (amount of points the simulated user
had to inspect), tree ensemble distance based ranking was better at
assisting in correcting mislabeled points, generating corrected data
that had higher test set accuracy than other rankings.

0.89 4
0.88
>
9
e
2 087
]
©
7
2 0.86 -
<
=
@ 0.85
—— Tree Ensemble Distance
0.84 4 — Loss
—— Random
0.83 4 T T T T T
0 5 10 15 20 25 30

Fraction of train data checked

Figure 4: Performance of different algorithms, including
one based on tree ensemble distance, to select points from
MNIST 4-9 with corrupted labels for a simulated user to in-
spect. The simulated user flips the labels of points checked,
and a model is retrained on the corrected data.

7 CONCLUDING REMARKS

We have proposed that tree ensemble classifiers can be made inter-
pretable using prototypes that are central according to a distance
function derived from the tree ensemble. Our user study suggests
that this is indeed the case, as humans were better at predicting the
output of a tree ensemble classifier using prototypes than Shapley
values, a popular feature-based approach. At the same time, our
quantitative evaluation (Table 1) suggests that in many cases, tree
space prototypes are able to capture much of the power of the
original classifier, or sometimes even constitute a superior separate
classifier, since these prototypes when used as a nearest-prototype
classifier sometimes outperform the original tree ensemble. This
suggests that to the extent that tree ensemble proximity is an in-
tuitive measure of similarity, users with longer-term experience
with prototypes may attain even better accuracy at anticipating
the behavior of the tree ensemble. Another intriguing possibility is
that we ought to consider a slightly different question: if a nearest-
prototype classifier is the superior classifier, should we perhaps
analyse its interpretability in its own right, as opposed to the origi-
nal tree ensemble?

Another open question is the impact of the number of prototypes
on interpretability, as opposed to accuracy alone. Intuition suggests
that humans should be better at dealing with a smaller number
of prototypes, but how does this trade off against the generally
greater accuracy nearest-prototype classifiers tend to exhibit with
more prototypes? Subjectively, our adaptive prototype selection

Session 1: Methodology

methods that can select different numbers of prototypes per class
tend to lead to better coverage for classes that are more diverse,
but our analysis shows that there do exist some datasets on which
they do not benefit classification. A quantitative analysis of the
relationship between prototype count and human predictions in
multiple settings could provide further arguments for or against
adaptive methods, and constitutes an attractive direction for future
work.

ACKNOWLEDGMENTS

We thank Jacob Bien and Albert Gordo for helpful discussion. GH
was supported by NSF grant DMS-1712554. MTW was supported
by NIH grants R01 GM135926 and U19 AI111143.

REFERENCES

(1]

(2]

(9]

[10]
[11]

[12]

[13]

[14]

[15]
[16]
[17]
(18]
[19]

[20

[21

[22]
[23]

[24]

[25]

Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly, Yunhan
Jia, Joydeep Ghosh, Ruchir Puri, Jose MF Moura, and Peter Eckersley. 2020.
Explainable machine learning in deployment. In FAT™.

Jacob Bien and Robert Tibshirani. 2011. Prototype selection for interpretable
classification. The Annals of Applied Statistics (2011).

Leo Breiman. 2001. Random forests. Machine Learning 45, 1 (2001).

Leo Breiman and Adele Cutler. 2002. Random Forests Manual. https://www.stat.
berkeley.edu/~breiman/RandomForests. Accessed July 6, 2019. Year 2002 based
on copyright year indicated in the authors’ Fortran code.

Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and Joachim M
Buhmann. 2010. The Balanced Accuracy and Its Posterior Distribution. In Inter-
national Conference on Pattern Recognition.

Rich Caruana, Hooshang Kangarloo, John David Dionisio, Usha Sinha, and David
Johnson. 1999. Case-based explanation of non-case-based learning methods.. In
Proceedings of the AMIA Symposium. American Medical Informatics Association.
Rich Caruana and Alexandru Niculescu-Mizil. 2006. An Empirical Comparison
of Supervised Learning Algorithms. In ICML.

Finale Doshi-Velez and Been Kim. 2017. Towards A Rigorous Science of Inter-
pretable Machine Learning. arXiv preprint arXiv:1702.08608 (2017).

Julia Dressel and Hany Farid. 2018. The accuracy, fairness, and limits of predicting
recidivism. Science Advances (2018). Data accessed from www.cs.dartmouth.edu/
farid/downloads/publications/scienceadvances17.

Alex A Freitas. 2014. Comprehensible classification models: a position paper.
ACM SIGKDD Explorations (2014).

Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of Statistics (2001).

Salvador Garcia, Joaquin Derrac, Jose Ramon Cano, and Francisco Herrera. 2011.
Prototype selection for nearest neighbor classification: Taxonomy and empirical
study. TPAMI (2011).

Ryan Gomes and Andreas Krause. 2010. Budgeted Nonparametric Learning from
Data Streams. In ICML.

Joseph K Goodman, Cynthia E Cryder, and Amar Cheema. 2013. Data Collection
in a Flat World: The Strengths and Weaknesses of Mechanical Turk Samples.
Journal of Behavioral Decision Making 26 (2013).

Ben Green and Yiling Chen. 2019. Disparate interactions: An algorithm-in-the-
loop analysis of fairness in risk assessments. In FAT™.

Gregory Griffin, Alex Holub, and Pietro Perona. 2006. Caltech-256 Object Cate-
gory Dataset. Technical Report, California Institute of Technology (2006).

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality Reduction
by Learning an Invariant Mapping. In CVPR.

Satoshi Hara and Kohei Hayashi. 2018. Making tree ensembles interpretable: A
Bayesian Model Selection Approach. In AISTATS.

Peter Hart. 1968. The condensed nearest neighbor rule. IEEE Transactions on
Information Theory (1968).

Hemant Ishwaran. 2007. Variable importance in binary regression trees and
forests. Electronic Journal of Statistics (2007).

Leonard Kaufman and Peter] Rousseeuw. 1987. Clustering by means of medoids.
In Statistical Data Analysis Based on the L1 Norm. Birkhduser Basel.

Rajiv Khanna, Been Kim, Joydeep Ghosh, and Oluwasanmi Koyejo. 2019. Inter-
preting black box predictions using fisher kernels. In AISTATS.

Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. 2016. Examples are not
enough, learn to criticize! criticism for interpretability. In NIPS.

Been Kim, Cynthia Rudin, and Julie A Shah. 2014. The Bayesian Case Model: A
generative approach for case-based reasoning and prototype classification. In
NIPS.

Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via
influence functions. In ICML.

32

[26

[27

(28]

[29

[30

[32

[33

[34

[35

[36

w®
=)

[38

[39

[40

[41

[42

"~
&

[44

[45]

[46

[47

(48

N
X2

[50

[51]

[52

[53

[54

FODS 20, October 19-20, 2020, Virtual Event, USA

Vivian Lai and Chenhao Tan. 2019. On human predictions with explanations and
predictions of machine learning models: A case study on deception detection. In
FAT".

Himabindu Lakkaraju and Osbert Bastani. 2020. " How do I fool you?" Manipu-
lating User Trust via Misleading Black Box Explanations. In AIES.

Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. 2016. How We
Analyzed the COMPAS Recidivism Algorithm. ProPublica.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. In Proceedings of the IEEE.
Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. 2018. Deep learning for
case-based reasoning through prototypes: A neural network that explains its
predictions. In AAAL

Andy Liaw and Matthew Wiener. 2002. Classification and regression by random-
Forest. R News (2002).

Hui Lin and Jeff Bilmes. 2011. A class of submodular functions for document
summarization. In ACL.

Yi Lin and Yongho Jeon. 2006. Random forests and adaptive nearest neighbors. J.
Amer. Statist. Assoc. (2006).

Zachary C. Lipton. 2016. The Mythos of Model Interpretability. arXiv preprint
arXiv:1606.03490 (2016).

Gilles Louppe. 2014. Understanding random forests: From theory to practice.
arXiv preprint arXiv:1407.7502 (2014).

Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin,
Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. 2020.
From local explanations to global understanding with explainable Al for trees.
Nature Machine Intelligence 2 (2020).

Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model
Predictions. In NIPS.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
JMLR (2008).

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. 2013.
Distributed submodular maximization: Identifying representative elements in
massive data. In NIPS.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. 1978. An analysis
of approximations for maximizing submodular set functions—I. Mathematical
Programming (1978).

Christos H Papadimitriou. 1981. Worst-Case and Probabilistic Analysis of a
Geometric Location Problem. SIAM J. Comput. (1981).

Forough Poursabzi-Sangdeh, Daniel G Goldstein, Jake M Hofman, Jennifer Wort-
man Vaughan, and Hanna Wallach. 2018. Manipulating and measuring model
interpretability. arXiv preprint arXiv:1802.07810 (2018).

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In KDD.

Michael M Richter and Agnar Aamodt. 2005. Case-based reasoning foundations.
The Knowledge Engineering Review (2005).

Erwan Scornet. 2016. Random forests and kernel methods. IEEE Transactions on
Information Theory (2016).

Tao Shi and Steve Horvath. 2006. Unsupervised learning with random forest
predictors. Journal of Computational and Graphical Statistics (2006).

Daniel J Stekhoven. 2015. missForest: Nonparametric missing value imputation
using random forest. Astrophysics Source Code Library (2015).

Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2017. Counterfactual
explanations without opening the black box: Automated decisions and the GDPR.
Harvard Journal of Law & Technology 31, 2 (2017).

Dennis L Wilson. 1972. Asymptotic properties of nearest neighbor rules using
edited data sets. Transactions on Systems, Man and Cybernetics (1972).

Caiming Xiong, David Johnson, Ran Xu, and Jason J Corso. 2012. Random forests
for metric learning with implicit pairwise position dependence. In KDD.
Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. 2018.
Representer point selection for explaining deep neural networks. In NeurIPS.
Peng Zhao, Xiaogang Su, Tingting Ge, and Juanjuan Fan. 2016. Propensity score
and proximity matching using random forest. Contemporary Clinical Trials
(2016).

Qi-Feng Zhou, Hao Zhou, Yong-Peng Ning, Fan Yang, and Tao Li. 2015. Two
approaches for novelty detection using random forest. Expert Systems with
Applications (2015).

Yichen Zhou, Zhengze Zhou, and Giles Hooker. 2018. Approximation trees:
Statistical stability in model distillation. arXiv preprint arXiv:1808.07573 (2018).

https://www.stat.berkeley.edu/~breiman/RandomForests
https://www.stat.berkeley.edu/~breiman/RandomForests
www.cs.dartmouth.edu/farid/downloads/publications/scienceadvances17
www.cs.dartmouth.edu/farid/downloads/publications/scienceadvances17

Session 1: Methodology

A USER STUDY MATERIALS

FODS 20, October 19-20, 2020, Virtual Event, USA

A predictive model has been trained to predict whether a vehicle is fuel efficient (highway miles per gallon at least
19) or not fuel efficient (highway miles per gallon less than 19). The following inputs were provided to the model:

« Engine size (specifically, engine displacement in liters): ranges from 1.6 to 6.5

Year of manufacture: ranges from 1999 to 2008

Number of cylinders the engine has: ranges from 4 to 8

« Drive system: 4-wheel drive, front wheel drive, rear wheel drive

Fuel type: premium, regular, electric, diesel

Vehicle class: truck, SUV, minivan, midsize, compact, subcompact, 2-seater
« Transmission: auto, manual

The model is not perfect (i.e. it does not always predict correctly), however we would still like to try to understand
how it makes predictions.

Figure A1l: Model inputs presented to users in both proto-
type and Shapley conditions.

Please look at the above examples carefully. In the next few questions, you will be asked to use information you obtained
from these examples to guess what predictions the model would make for 13 other vehicles.

1. What do you think the model will predict for this vehicle?

+ SUV vehicle manufactured in 2008 with 4.0 liter engine and 6 cylinders. 4-wheel drive, auto transmission, and uses premium fuel.

O Fuel efficient (highway miles per gallon at least 19)

O Not fuel efficient (highway miles per gallon less than 19)

Figure A2: An example question answered by users in both
conditions. Each question represents a vehicle. Each user is
asked to evaluate 13 such questions.

The ing are of vehicles whose fuel efficiency was predicted correctly by the model,

as well as examples where the model actually made wrong predictions.

Examples of vehicles predicted correctly by the model as fuel efficient:
« Compact vehicle manufactured in 2008 with 2.0 liter engine and 4 cylinders. Front wheel drive, manual transmission, and uses
premium fuel.
» Compact vehicle manufactured in 2008 with 2.0 liter engine and 4 cylinders. 4-wheel drive, auto transmission, and
uses premium fuel.

Examples of vehicles predicted correctly by the model as not fuel efficient:
« Truck vehicle manufactured in 1999 with 3.9 liter engine and 6 cylinders. 4-wheel drive, manual transmission, and uses regular
fuel.
» SUV vehicle manufactured in 2008 with 5.3 liter engine and 8 cylinders. 4-wheel drive, auto transmission, and uses

regular fuel.

Examples of vehicles predicted wrongly by the model as not fuel efficient, but were actually fuel efficient:

+ SUV vehicle manufactured in 2008 with 4.0 liter engine and 6 cylinders. 4-wheel drive, auto transmission, and uses regular fuel.
« 2-seater vehicle manufactured in 2008 with 6.2 liter engine and 8 cylinders. Rear wheel drive, manual transmission,
and uses premium fuel.

Examples of vehicles predicted wrongly by the model as fuel efficient, but were actually not fuel efficient:
« Truck vehicle manufactured in 1999 with 3.4 liter engine and 6 cylinders. 4-wheel drive, manual transmission, and uses regular
fuel.
« SUV vehicle manufactured in 1999 with 3.3 liter engine and 6 cylinders. 4-wheel drive, manual transmission, and uses
regular fuel.

Figure A3: Prototypes presented to users in prototypes con-
dition.

33

The following two plots illustrate how these inputs impact the model's predictions.

The plot below summarizes the overall importance of each input to the model. The longer the bar, the greater the impact of that
input on the model's predictions.

engine_size |
Drive_System 4 wheel drive _
Drive_system.front.wheel.drive -
Number_of Cylinders -
Class.suv -
Drive_System.rear.wheel.drive .
Class.truck l
Year I
Transmission.manual |
Fuelregular |
Transmission.auto
Fuel.premium
Class.midsize
Class.compact
Fuel electric
Fuel.diesel
Class 2seater
Class subcompact

Class minivan

0.00 0.05 010 015 020 025
mean(|SHAP value|) (average impact on model output magnitude)

The plot below shows how different input values (represented by color) impact model predictions (represented by horizontal
position in the plot).

Red points are vehicles with high values of that input, blue points are vehicles with low values of that input, and purple points are in
the middle. If the point is on the left of the center vertical line, the vehicle is more likely to be predicted as less fuel efficient, all other
things equal. If the point is on the right of the center vertical line, the vehicle is more likely to be predicted as more fuel efficient. The
further to the left or right a point is, the more weight will be given to this input in the prediction.

High

. -

Engine_Size I LRl
Drive_System 4 wheel drive ll
Drive_System front.wheel.drive L
Number_of_Cylinders * +
Class.suv L
Drive_System.rear.wheel.drive

Class.truck

Year
Transmission manual
Fuel.regular

Transmission auto

Feature value

Fuel.premium
Class midsize
Class_compact
Fuel electric
Fuel.diesel

Class 2seater
Class.subcompact

Class minivan

———————— g
.

Low
—0.4 -0.3 -02 -0.1 0.0 01 0.2 03

SHAP value (impact on model output)

For example, take a look at the row for the Number_of_Cylinders input:

Ared point to the left of the center line means that a vehicle with a high number of cylinders is predicted to have lower fuel
efficiency, all other things equal.

Ared point to the right of the center line means that a vehicle with a high number of cylinders is predicted to have higher fuel
efficiency, all other things equal.

Ablue pointto the left of the center line means that a vehicle with a low number of cylinders is predicted to have lower fuel
efficiency, all other things equal.

« Ablue pointto the right of the center line means that a vehicle with a low number of cylinders s predicted to have higher fuel
efficiency, all other things equal.

Figure A4: Shapley values feature attribution plots pre-
sented to users in Shapley condition.

Session 1: Methodology

B PROOF OF LEMMA 1

LEMMA 1. The objective function (4) is non-negative, monotone
and submodular.

Proor (LEMMA 1). Observe that whenever X C Y, we have
f(X) = f(Y), since adding more points to a set can only make
the closest point to a given point closer. From this, monotonicity
and non-negativity is immediate, since f(P) > f(P U M).

To establish submodularity, we will show that the function f of
(3) satisfies

f) - fYufe}) < f(X) - f(XU{t})
whenever X C Y C S. The inequality of definition 3 then follows
for g by plugging into its definition (4).
For any point s € S, define pps(s) to be the closest point to s in
M of the same class, that is,

pm(s)= argmin d(s,m).

meM:c(m)=c(s)

34

FODS 20, October 19-20, 2020, Virtual Event, USA

Then we can rewrite f(M) as

D d(s.pum(s)),

seS
and it suffices to show that
d(s, py (s)) —d(s, pyu(ey(s))
< d(s,px(s)) —d(s, pxuiey (5))-

for all s € S. Both sides of this inequality are non-negative (+),
since adding points can only shorten the distance to the closest
point. Suppose pyyy;) (s) € Y. Then it must be equal to py (s), since
the closest point is present in Y, and so the first line is 0, and the
inequality follows from (+).

Suppose instead pyy (4} (s) ¢ Y. Then it mustbe t.So px (4} (s) =
t as well (since X C Y), and the inequality reduces to d(s, py(s)) <
d(s, px(s)). But this is immediate, since Y 2 X and adding more
points can only shorten the distance to the closest point. O

	Abstract
	1 Introduction
	2 Background and Notation
	2.1 RF Distance
	2.2 The k-Medoids Problem

	3 Method
	3.1 Constructing a Distance Function for GBT
	3.2 Adaptive Prototype Selection Methods
	3.3 Supervised Greedy Prototype Selection

	4 Theoretical Analysis
	5 Related Work
	6 Experimental Results
	6.1 Quantitative Evaluation
	6.2 Visualizing Distances and Prototypes
	6.3 Understanding GBT Distance
	6.4 Evaluating Interpretability: User Study
	6.5 A Use Case of Fixing Mislabeled Points

	7 Concluding remarks
	Acknowledgments
	References
	A User Study Materials
	B Proof of Lemma 1

