


THE AMERICAN STATISTICIAN

2021, VOL. 00, NO. 0, 1–5: Teacher’s Corner

https://doi.org/10.1080/00031305.2020.1869090
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ABSTRACT

The jackknife is a reliable tool for reducing the bias of a wide range of estimators. This note demonstrates
that even such versatile tools have regularity conditions that can be violated even in relatively simple cases,
and that cautionneeds tobe exercised in their use. In particular, we show that the jackknife does not provide
the expected reliability for bias-reduction for the sample median, because of subtle changes in behavior of
the sample median as one moves between even and odd sample sizes. These considerations arose out of
class discussions in a MS-level nonparametrics course.
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1. Introduction

Suppose that Tn is the estimator of θ based on n independent
and identically distributed (iid) observations.Quenouille (1956)
suggested the jackknife technique for reducing the bias of Tn.
Following Quenouille’s spirit, suppose that the bias of Tn is of
the form

E(Tn) − θ =
a

n
+

b

n2
+ O(n− 5

2 ). (1)

The Jackknife uses the relationship between biases for the statis-
tic based on the entire sample, and subsamples in which one
observation is removed, to estimate bias, and so to produce a
less-biased estimator. Let T∗

n−1,i be the estimator based on the

sample of size n − 1 with observation i omitted. Let T̄∗
n =

∑n
i=1 T

∗
n−1,i/n. Then B = (n − 1)(T̄∗

n − Tn) is the Jackknife
estimator of the bias of Tn. Since

E(B) =
a

n
+ O(n− 3

2 ), (2)

the bias of Tn − B is O(n−3/2).
Efron (1982) and Shao and Tu (1995) presented more recent

surveys of jackknife techniques. Generally speaking, much of
the utility of the jackknife lies in its applicability with only
minimal mathematical analysis. When teaching about the jack-
knife, however, it is useful to examine analytically tractable
situations. The simplest context for jackknife analysis is of the
sample average as the estimate of the expectation of indepen-
dent and identically distributed observations; in this case, the
jackknife provides no correction. The next simple case is that
of the sample median as an estimate of the population median.
Students will likely be surprised at the complexity that arises in
this seemingly simple case. Jeske and Sampath (2003) demon-
strated a similar unexpected complexity arising from resam-
pling techniques, and also demonstrable with elementary math-
ematical tools; their example arises out of an application of the
bootstrap.
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Let Tn be the sample median. A generally accepted defini-
tion of sample median Tn is the following: If n is odd, Tn =
X((n+1)/2); if n is even, Tn = (X(n/2) + X(n/2+1))/2, where X(i)

is the ith order statistic.
Consider the jackknife bias estimator for the sample median

for data from a continuous distribution. For the sake of calculat-
ing T∗

n−1,i, suppose that the data X1,X2, . . . ,Xn are in increas-
ing order. When the sample size n is even, Tn = (X(n/2) +
X(n/2+1))/2, and

T∗
n−1,i =

{

X(n/2+1), if i ≤ n/2;

X(n/2), if i ≥ n/2 + 1.

Then T̄∗
n = (X(n/2) + X(n/2+1))/2 = Tn, and the bias estimate

is always 0.
Harrell and Davis (1982) presented a quantile estimator,

applicable to themedian, that is more efficient than the standard
sample quantile; because our present investigation is primar-
ily a pedagogical investigation of a simple application of the
jackknife, we do not address this more efficient estimator. We
investigate jackknife behavior for the sample median. Section 2
proves that under certain conditions on the density function
f (x), Equation (1) holds for the odd n case and the even n
case separately, and the constant a in Equation (1) is the same,
but the constant b in Equation (1) shows different forms in
both cases. Section 2.3 summarizes the impact of application
of the jackknife to the sample median and concludes that the
jackknife is not conducive to reducing the bias of the sample
median. Section 3 verifies this article in the case of the standard
exponential distribution. Some technical details are provided in
the appendices.

2. Main Result

Suppose that a sample X1,X2, . . . ,Xn is independent and
identically distributed, with a cumulative distribution function
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F(x), and a density function f (x) satisfying the following
conditions:

• Condition 1: the fourth derivative of the density f (4)(x) exists
for all x in F−1((0, 1)).

• Condition 2: the density f (x) > 0 on F−1((0, 1)). (Condi-
tions 1 and 2 imply that F(x) has an inverse function defined
on (0, 1), denoted by g(u) := F−1(u), and that g(u) has a fifth
derivative.)

• Condition 3: there exists a nonnegative integer r such that
h(u) := urg(u)(1 − u)r has a bounded fifth derivative. (We
will elaborate on the Condition 3 in the parts A, B, and C of
the appendices.)

2.1. Case 1: n Is Odd

The sample median is the order statistic X((n+1)/2). Using the
fact that the order statistic X(k) has the density function

n!
(k − 1)!(n − k)!

f (x)(F(x))k−1(1 − F(x))n−k, (3)

and the fact that the beta function B(i, n+ 1− i) = (i− 1)!(n−
i)!/n!, where n and i are positive integers and i ≤ n,

E
(

X( n+1
2 )

)

=
∫ +∞

−∞

1

B(n+1
2 , n+1

2 )
xf (x)F(x)

n−1
2 (1−F(x))

n−1
2 dx.

(4)
Change variables with u = F(x). Recall that g(u) = F−1(u),
the inverse function of F(x). Using the fact that g′(u) =
1/f (F−1(u)),

E
(

X( n+1
2 )

)

=
∫ 1

0

1

B(n+1
2 , n+1

2 )
F−1(u)u

n−1
2 (1 − u)

n−1
2 du

=
1

B(n+1
2 , n+1

2 )

∫ 1

0
u

n−1
2 −r(1 − u)

n−1
2 −rh(u)du.

(5)

Let ω be the median of the population. Then ω = g(1/2).
Under the assumed condition on f (x), h(u) has a fifth derivative.
Expand h(u) about u = 1/2 by a Taylor formula with Lagrange
residual term to obtain

E
(

X( n+1
2 )

)

=
∫ 1

0

u
n−1
2 −r(1 − u)

n−1
2 −r

B(n+1
2 , n+1

2 )

( (

1

2

)2r

ω

+ h′
(

1

2

)(

u −
1

2

)

+
1

2
h(2)

(

1

2

)(

u −
1

2

)2

+
1

6
h(3)

(

1

2

) (

u −
1

2

)3

+
1

24
h(4)

(

1

2

) (

u −
1

2

)4

+
1

120
h(5)(u∗(u))

(

u −
1

2

)5 )

du

(6)

for some u∗(u) between 1/2 and u. By definition of B(a, b),

∫ 1

0

u
n−1
2 −r(1 − u)

n−1
2 −r

B(n+1
2 , n+1

2 )

(

1

2

)2r

ωdu

= ω
n(n − 2)(n − 4) · · · (n + 2 − 2r)

(n − 1)(n − 3)(n − 5) · · · (n + 1 − 2r)

= ω

(

1 +
1

n − 1

)(

1 +
1

n − 3

)

· · ·
(

1 +
1

n + 1 − 2r

)

= ω

(

1 +
1

n
+

1

n2
+ O

(

n−3
)

) (

1 +
1

n
+

3

n2
+ O

(

n−3
)

)

· · ·
(

1 +
1

n
+

2r − 1

n2
+ O

(

n−3
)

)

= ω +
rω

n
+

( 32 r
2 − 1

2 r)ω

n2
+ O

(

n−3
)

.

Since (u − 1/2)2k+1 is symmetric with respect to (1/2, 0),

∫ 1

0

u
n−1
2 −r(1 − u)

n−1
2 −r

B(n+1
2 , n+1

2 )
h′

(

1

2

) (

u −
1

2

)

du = 0

and

∫ 1

0

u
n−1
2 −r(1 − u)

n−1
2 −r

B(n+1
2 , n+1

2 )
h(3)

(

1

2

) (

u −
1

2

)3

du = 0.

On the other hand, even terms in u− 1/2 integrate to nonnega-
tive contributions. Note that h(2)(1/2) can be expressed in terms
of ω and g(2)(1/2). Then

∫ 1

0

u
n−1
2 −r(1 − u)

n−1
2 −r

B(n+1
2 , n+1

2 )

h(2)
(

1
2

)

2

(

u −
1

2

)2

du

=
∫ 1

0

u
n−1
2 −r(1 − u)

n−1
2 −r

B(n+1
2 , n+1

2 )

h(2)
(

1
2

)

2

(

u(u − 1) +
1

4

)

du

=
1

2

h(2)
(

1
2

)

B
(

n+1
2 , n+1

2

)

(

− B

(

n + 3

2
− r,

n + 3

2
− r

)

+
1

4
B

(

n + 1

2
− r,

n + 1

2
− r

) )

=
1

2

h(2)
(

1
2

)

B
(

n+1
2 , n+1

2

)

((n−1
2 − r)!)2

(n − 2r)!
(

1

4
−

(

n+1
2 − r

)2

(n + 2 − 2r)(n + 1 − 2r)

)

=
(

−rω +
1

8
g(2)

(

1

2

)) (

1 +
1

n − 1

)(

1 +
1

n − 3

)

· · ·
(

1 +
1

n + 1 − 2r

)

1

n + 2 − 2r

=
(

−rω +
1

8
g(2)

(

1

2

)) (

1 +
1

n
+ O

(

n−2
)

)

(

1 +
1

n
+ O

(

n−2
)

)

· · ·
(

1 +
1

n
+ O

(

n−2
)

)

(

1

n
+

2r − 2

n2
+ O

(

n−3
)

)

=
−rω + 1

8g
(2)( 12 )

n
+

(3r − 2)(−rω + 1
8g

(2)( 12 ))

n2
+ O

(

n−3
)

.
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Similarly,
∫ 1

0

u
n−1
2 −r(1 − u)

n−1
2 −r

B(n+1
2 , n+1

2 )

h(4)( 12 )

24

(

u −
1

2

)4

du

=
( 32 r

2 − 3
2 r)ω − 3

8 rg
(2)( 12 ) + g(4)( 12 )

128

n2
+ O

(

n−3
)

.

Throughout the above calculation, the term involving (u−1/2)k

corresponds to O(n−k/2).
For calculating the term involving (u − 1/2)5, we use a trick

here, as follows:
Suppose that c(u) and d(u) are nonnegative integrable func-

tion on (0, 1). Then
(∫ 1

0
cddu

)2

=
(∫ 1

0

√
c
√
cddu

)2

≤
(∫ 1

0
cdu

) (∫ 1

0
cd2du

)

,

by the Cauchy–Schwarz inequality. Let c(u) = u(n−1)/2(1 −
u)(n−1)/2/B((n + 1)/2, (n + 1)/2) and d(u) = h(5)(u∗(u))|u −
1/2|5/(ur(1− u)r). Condition 3 guarantees that h has bounded
fifth derivative on (0, 1). Then there exists M > 0 such that
|h(5)(u)| ≤ M on (0, 1).

(

∫ 1

0

u
n−1
2 −r(1 − u)

n−1
2 −r

B(n+1
2 , n+1

2 )

h(5)(u∗(u))

120

(

u −
1

2

)5

du

)2

≤

(

∫ 1

0

u
n−1
2 (1 − u)

n−1
2

B
(

n+1
2 , n+1

2

) du

)

⎛

⎝

∫ 1

0

u
n−1
2 (1 − u)

n−1
2

B
(

n+1
2 , n+1

2

)

(

h(5)(u∗(u))
∣

∣u − 1
2

∣

∣

5

ur(1 − u)r

)2

du

⎞

⎠

≤ M2

∫ 1

0

u
n−1
2 −2r(1 − u)

n−1
2 −2r

B(n+1
2 , n+1

2 )

(

u −
1

2

)10

du = O
(

n−5
)

.

All in all,

E
(

X( n+1
2 )

)

− ω =
a

n
+

b1

n2
+ O

(

n− 5
2

)

, (7)

where a = g(2)(1/2)/8 and b1 = −g(2)(1/2)/4+g(4)(1/2)/128.

2.2. Case 2: n Is Even

The samplemedian is (X(n/2)+X(n/2+1))/2. By a Taylor formula
with Lagrange residual term about u = 1/2,

E
(

X( n2 )

)

=
∫ 1

0

u
n
2−1(1 − u)

n
2

B(n2 ,
n
2 + 1)

F−1(u)du

=
∫ 1

0

u
n
2−1−r(1 − u)

n
2−r

B(n2 ,
n
2 + 1)

h(u)du

=
∫ 1

0

u
n
2−1−r(1 − u)

n
2−r

B(n2 ,
n
2 + 1)

(

h

(

1

2

)

+ h′
(

1

2

) (

u −
1

2

)

+
1

2
h(2)

(

1

2

) (

u −
1

2

)2

+
1

6
h(3)

(

1

2

) (

u −
1

2

)3

+
1

24
h(4)

(

1

2

) (

u −
1

2

)4

+
1

120
h(5)(u∗(u))

(

u −
1

2

)5 )

du,

(8)

for u∗ as in Section 2.1. To evaluate the second term, denote the
sample by X := (X1,X2, . . . ,Xn). Let Y = −X. Then

E
(

X( n2+1)

)

= −E
(

Y( n2 )

)

=
∫ 1

0

u
n
2−1−r(1 − u)

n
2−r

B(n2 ,
n
2 + 1)

h(1 − u)du

=
∫ 1

0

u
n
2−1−r(1 − u)

n
2−r

B(n2 ,
n
2 + 1)

(

h

(

1

2

)

− h′
(

1

2

)(

u −
1

2

)

+
1

2
h(2)

(

1

2

)(

u −
1

2

)2

−
1

6
h(3)

(

1

2

) (

u −
1

2

)3

+
1

24
h(4)

(

1

2

) (

u −
1

2

)4

−
1

120
h(5)(u∗(1 − u))

(

u −
1

2

)5 )

du.

(9)

Add the above two equations and obtain

E

(

X( n2 ) + X( n2+1)

2

)

=
1

B(n2 ,
n
2 + 1)

∫ 1

0
u

n
2−1−r(1 − u)

n
2−r

(

h

(

1

2

)

+
1

2
h(2)

(

1

2

) (

u −
1

2

)2

+
1

24
h(4)

(

1

2

) (

u −
1

2

)4

+
h(5)(u∗(u)) − h(5)(u∗(1 − u))

240

(

u −
1

2

)5 )

du.

(10)

Similar to the case when n is odd,

1

B(n2 ,
n
2 + 1)

∫ 1

0
u

n
2−1−r(1 − u)

n
2−rh

(

1

2

)

du

= ω +
rω

n
+

( 32 r
2 + 1

2 r)ω

n2
+ O

(

n−3
)

.

∫ 1

0

u
n
2−1−r(1 − u)

n
2−r

B(n2 ,
n
2 + 1)

h(2)( 12 )

2

(

u −
1

2

)2

du

=
−rω + g(2)( 12 )

8

n
+

(3r − 1)(−rω + g(2)( 12 )

8 )

n2
+ O

(

n−3
)

.

∫ 1

0

u
n
2−1−r(1 − u)

n
2−r

B(n2 ,
n
2 + 1)

h(4)( 12 )

24

(

u −
1

2

)4

du

=
( 32 r

2 − 3
2 r)ω − 3

8 rg
(2)( 12 ) + 1

128g
(4)( 12 )

n2
+ O

(

n−3
)

,

and
(

1

B(n2 ,
n
2 + 1)

∫ 1

0
u

n
2−1−r(1 − u)

n
2−r

h(5)(u∗(u)) − h(5)(u∗(1 − u))

240

(

u −
1

2

)5

du

)2

≤
M2

B(n2 ,
n
2 + 1)

∫ 1

0
u

n
2−1−2r(1 − u)

n
2−2r

(

u −
1

2

)10

d

u = O
(

n−5
)

.
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Figure 1. The plots of n5/2 ∗ dodd and n
5/2 ∗ deven versus n.

Hence

E

(

X( n2 ) + X( n2+1)

2

)

− ω =
a

n
+

b2

n2
+ O

(

n− 5
2

)

, (11)

where the constant a is exactly the same as the constant a in the
odd case and b2 = −g(2)(1/2)/8 + g(4)(1/2)/128.

2.3. The Jackknife Does Not Adequately Reduce the Bias of

the SampleMedian

Recall the sample median Tn and the other notations T∗
n−1,i,T̄

∗
n

and B in the introduction section and note that b1 − b2 =
−g(2)(1/2)/8 = −a.

When n is odd,

E(B) = (n − 1)

(

ω +
a

n − 1
+

b2

(n − 1)2
− ω −

a

n
−

b1

n2

)

+ O
(

n− 3
2

)

=
2a

n
+ O

(

n− 3
2

)

.

When n is even,

E(B) = 0

as illustrated in the introduction.
Note that g(2)(u) = −f ′(F−1(u))/(f (F−1(u)))3. Recall that

ω is the median of the population.
When the density function f (x) satisfies Conditions 1, 2, and

3 at the beginning of Section 2, the impact of application of the
jackknife to the sample median can be summarized below.

1. When f ′(ω) = 0, the jackknife increases the bias of the
sample median since a = 0 and E(B) = O

(

n−3/2
)

and bias

of Tn is O
(

n−2
)

, but the bias of Tn − B is O
(

n−3/2
)

.
2. When f ′(ω) �= 0, the jackknife fails for the sample median

since a �= 0 and the bias of Tn − B is still O
(

n−1
)

.

All in all, the delete-1 jackknife is not conducive to reducing
the bias of the samplemedian. However, fromEquations (7) and
(11), one can deduce that a delete-2 jackknife will achieve the
bias reduction.

3. Verification of the Theoretical Results in This

Article in the Case of the Standard Exponential

Distribution

This section verifies Equations (7) and (11) in the case of the
exponential distribution with rate = 1.We rely on the following
result (David and Nagaraja 2003, chap.3).

E
(

X(r)

)

=
n

∑

i=n−r+1

i−1. (12)

Denote the difference between the result fromEquation (12) and
ω + a/n + b1/n

2 in the odd case according to Equation (7) or
ω + a/n + b2/n

2 in the even case according to Equation (11)
by dodd and deven, respectively. Note that by direct calculation
the median of standard exponential distribution is ω = ln 2,
a = 1/2, b1 = −1/4 and b2 = 1/4. Specifically,

dodd = ln 2 +
1

2n
−

1

4n2
−

n
∑

i= n+1
2

i−1; (13)

deven = ln 2 +
1

2n
+

1

4n2
−

1

n
−

n
∑

i= n
2+1

i−1. (14)

According to Equations (7) and (11), both dodd and deven should
beO

(

n−5/2
)

. Figure 1 presents n5/2∗dodd and n5/2∗deven versus
n, where n = 11, 13, 15, . . . , 1001 and n = 10, 12, 14, . . . , 1000,
respectively. In accordancewith this figure, n5/2∗dodd and n5/2∗
deven areO(1), which advocates the correctness of Equations (7)
and (11).

Supplementary Materials

Supplementary material includes additional supporting mathematical cal-
culation.
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