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The Gilbert–Varshamov bound (non-constructively) establishes the existence of binary
codes of distance 1/2 − ε and rate Ω(ε2) (where an upper bound of O(ε2 log(1/ε)) is
known). Ta-Shma [STOC 2017] gave an explicit construction of ε-balanced binary codes,
where any two distinct codewords are at a distance between 1/2 − ε/2 and 1/2 + ε/2,
achieving a near optimal rate of Ω(ε2+β), where β → 0 as ε → 0.

We develop unique and list decoding algorithms for (a slight modification of) the fam-
ily of codes constructed by Ta-Shma, in the adversarial error model. We prove the follow-
ing results for ε-balanced codes with block length N and rate Ω(ε2+β) in this family:

- For all ε, β > 0, there are explicit codes which can be uniquely decoded up to an error
of half the minimum distance in time NOε,β(1).

- For any fixed constant β independent of ε, there is an explicit construction of codes
which can be uniquely decoded up to an error of half the minimum distance in time
(log(1/ε))O(1) · NOβ(1).

- For any ε > 0, there are explicit ε-balanced codes with rate Ω(ε2+β) which can be list
decoded up to error 1/2 − ε′ in time NOε,ε′ ,β(1), where ε′, β → 0 as ε → 0.

The starting point of our algorithms is the framework for list decoding direct-sum
codes develop in Alev et al. [SODA 2020], which uses the Sum-of-Squares SDP hierarchy.
The rates obtained there were quasipolynomial in ε. Here, we show how to overcome the
far from optimal rates of this framework obtaining unique decoding algorithms for explicit
binary codes of near optimal rate. These codes are based on simple modifications of Ta-
Shma’s construction.
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1 Introduction

Binary error correcting codes have pervasive applications [Gur10, GRS19] and yet we are
far from understanding some of their basic properties [Gur09]. For instance, until very
recently no explicit binary code achieving distance 1/2 − ε/2 with rate near Ω(ε2) was
known, even though the existence of such codes was (non-constructively) established long
ago [Gil52, Var57] in what is now referred as the Gilbert–Varshamov (GV) bound. On
the impossibility side, a rate upper bound of O(ε2 log(1/ε)) is known for binary codes of
distance 1/2 − ε/2 (e.g., [Del75, MRRW77, NS09]).

In a breakthrough result [TS17], Ta-Shma gave an explicit construction of binary codes
achieving nearly optimal distance versus rate trade-off, namely, binary codes of distance
1/2 − ε/2 with rate Ω(ε2+β) where β vanishes as ε vanishes 1. Actually, Ta-Shma obtained
ε-balanced binary linear codes, that is, linear binary codes with the additional property
that non-zero codewords have Hamming weight bounded not only below by 1/2 − ε/2
but also above by 1/2 + ε/2, and this is a fundamental property in the study of pseudo-
randomness [NN90, AGHP92].

While the codes constructed by Ta-Shma are explicit, they were not known to admit
efficient decoding algorithms, while such results are known for codes with smaller rates.
In particular, an explicit binary code due to Guruswami and Rudra [GR06] is known to be
even list decodable at an error radius 1/2 − ε with rate Ω(ε3). We consider the following
question:

Do explicit binary codes near the GV bound admit an efficient decoding algorithm?

Here, we answer this question in the affirmative by providing an efficient 2 unique
decoding algorithm for (essentially) Ta-Shma’s code construction, which we refer as Ta-
Shma codes. More precisely, by building on Ta-Shma’s construction and using our unique
decoding algorithm we have the following result.

Theorem 1.1 (Unique Decoding). For every ε > 0 sufficiently small, there are explicit binary
linear Ta-Shma codes CN,ε,β ⊆ FN

2 for infinitely many values N ∈ N with

(i) distance at least 1/2 − ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β) where β = O(1/(log2(1/ε))1/6), and

(iii) a unique decoding algorithm with running time NOε,β(1).

Furthermore, if instead we take β > 0 to be an arbitrary constant, the running time becomes
(log(1/ε))O(1) · NOβ(1) (fixed polynomial time).

We can also perform “gentle” list decoding in the following sense (note that this par-
tially implies Theorem 1.1).

Theorem 1.2 (Gentle List Decoding). For every ε > 0 sufficiently small, there are explicit binary
linear Ta-Shma codes CN,ε,β ⊆ FN

2 for infinitely many values N ∈ N with

1In fact, Ta-Shma obtained β = β(ε) = Θ(((log log 1/ε)/ log 1/ε)1/3) and thus limε→0 β(ε) = 0.
2By “efficient”, we mean polynomial time. Given the fundamental nature of the problem of decoding

nearly optimal binary codes, it is an interesting open problem to make these techniques viable in practice.
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(i) distance at least 1/2 − ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β) where β = O(1/(log2(1/ε))1/6), and

(iii) a list decoding algorithm that decodes within radius 1/2− 2−Θ((log2(1/ε))1/6) in time NOε,β(1).

We observe that the exponent in the running time NOε,β(1) appearing in Theorem 1.1
and Theorem 1.2 depends on ε. This dependence is no worse than O(log log(1/ε)), and
if β > 0 is taken to be an arbitrarily constant (independent of ε), the running time be-
comes (log(1/ε))O(1) · NOβ(1). Avoiding this dependence in the exponent when β = β(ε) is
an interesting open problem. Furthermore, obtaining a list decoding radius of 1/2 − ε/2
in Theorem 1.2 with the same rate (or even Ω(ε2)) is another very interesting open problem
and related to a central open question in the adversarial error regime [Gur09].

Direct sum codes. Our work can be viewed within the broader context of developing
algorithms for the decoding of direct sum codes. Given a (say linear) code C ⊆ Fn

2 and a
collection of tuples W ⊆ [n]t, the code dsumW(C) with block length |W| is defined as

dsumW(C) = {(zw1 + zw2 + · · ·+ zwt)w∈W | z ∈ C} .

The direct sum operation has been used for several applications in coding and complexity
theory [ABN+92, IW97, GI01, IKW09, DS14, DDG+15, Cha16, DK17, Aro02]. It is easy to
see that if C is ε0-balanced for a constant ε0, then for any ε > 0, choosing W to be a ran-
dom collection of tuples of size O(n/ε2) results in dsumW(C) being an ε-balanced code.
The challenge in trying to construct good codes using this approach is to find explicit con-
structions of (sparse) collections W which are “pseudorandom” enough to yield a similar
distance amplification as above. On the other hand, the challenge in decoding such codes
is to identify notions of “structure” in such collections W, which can be exploited by de-
coding algorithms.

In Ta-Shma’s construction [TS17], such a pseudorandom collection W was constructed
by considering an expanding graph G over the vertex set [n], and generating t-tuples us-
ing sufficiently long walks of length t − 1 over the so-called s-wide replacement product
of G with another (small) expanding graph H. Roughly speaking, this graph product is
a generalization of the celebrated zig-zag product [RVW00] but with s different steps of
the zig-zag product instead of a single one. Ta-Shma’s construction can also be viewed
as a clever way of selecting a sub-collection of all walks in G, which refines an earlier con-
struction suggested by Rozenman and Wigderson [Bog12] (and also analyzed by Ta-Shma)
using all walks of length t − 1.

Identifying structures to facilitate decoding. For the closely related direct product con-
struction (where the entry corresponding to w ∈ W is the entire t-tuple (zw1 , . . . , zwt))
which amplifies distance but increases the alphabet size, it was proved by Alon et al.
[ABN+92] that the resulting code admits a unique decoding algorithm if the incidence
graph corresponding to the collection W is a good sampler. Very recently, it was proved by
Dinur et al. [DHK+19] that such a direct product construction admits list decoding if the
incidence graph is a “double sampler”. The results of [DHK+19] also apply to direct sum,
but the use of double samplers pushes the rate away from near optimality.

For the case of direct sum codes, the decoding task can be phrased as a maximum t-
XOR problem with the additional constraint that the solution must lie in C. More precisely,
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given ỹ ∈ FW
2 within the unique decoding radius of dsumW(C), we consider the following

optimization problem
argmin

z∈C
∆(ỹ, dsumW(z)),

where ∆(·, ·) is the (normalized) Hamming distance. While maximum t-XOR is in general
hard to solve to even any non-trivial degree of approximation [Hås97], previous work
by the authors [AJQ+20] identified a structural condition on W called “splittability” under
which the above constraint satisfaction problem can be solved (approximately) resulting in
efficient unique and list decoding algorithms. However, by itself the splittability condition
is too crude to be applicable to codes such as the ones in Ta-Shma’s construction. The
requirements it places on the expansion of G are too strong and the framework in [AJQ+20]
is only able to obtain algorithms for direct sum codes with rate 2−(log(1/ε))2 ≪ ε2+β.

The conceptual contribution of this work can be viewed as identifying a different re-
cursive structure in direct sums generated by expander walks, which allows us to view
the construction as giving a sequence of codes C0, C1, . . . , Cℓ. Here, C0 is the starting code
C and Cℓ is the final desired code, and each element in the sequence can be viewed as be-
ing obtained via a direct sum operation on the preceding code. Instead of considering a
“one-shot” decoding task of finding an element of C0, this facilitates an iterative approach
where at each step we reduce the task of decoding the code Ci to decoding for Ci−1, using
the above framework from [AJQ+20]. Such an iterative approach with a sequence of codes
was also used (in a very different setting) in a work of Guruswami and Indyk [GI03] con-
structing codes over a large alphabet which are list decodable in linear time via spectral
algorithms.

Another simple and well-known (see e.g., [GI04]) observation, which is very helpful
in our setting, is the use of list decoding algorithms for unique decoding. For a code
with distance 1/2 − ε/2, unique decoding can be obtained by list decoding at a much
smaller error radius of (say) 1/2 − 1/8. This permits a much more efficient application of
the framework from [AJQ+20], with a milder dependence on the expansion of the graphs
G and H in Ta-Shma’s construction, resulting in higher rates. We give a more detailed
overview of our approach in Section 3.

Known results for random ensembles. While the focus in this work is on explicit con-
structions, there are several known (non-explicit) constructions of random ensembles of
binary codes near or achieving the Gilbert–Varshamov bound (e.g., Table 1). Although it
is usually straightforward to ensure the desired rate in such constructions, the distance
only holds with high probability. Given a sample code from such ensembles, certifying
the minimum distance is usually not known to be polynomial time in the block length.
Derandomizing such constructions is also a possible avenue for obtaining optimal codes,
although such results remain elusive to this date (to the best of our knowledge).

One of the simplest constructions is that of random binary linear codes in which the
generator matrix is sampled uniformly. This random ensemble achieves the GV bound
with high probability, but its decoding is believed to be computationally hard [MMT11].

Much progress has been made on binary codes by using results for larger alphabet
codes [Gur09]. Codes over non-binary alphabets with optimal (or nearly optimal) param-
eters are available [vL99, Sti08, GR06] and thanks to this availability a popular approach to
constructing binary codes has been to concatenate such large alphabet codes with binary
ones. Thommesen [Tho83] showed that by concatenating Reed–Solomon (RS) codes with
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random binary codes (one random binary code for each position of the outer RS code)
it is possible to achieve the GV bound. Note that Thommesen codes arise from a more
structured ensemble than random binary linear codes. This additional structure enabled
Guruswami and Indyk [GI04] to obtain efficient decoding algorithms for the non-explicit
Thommesen codes (whose minimum distance is not known to admit efficient certification).
This kind of concatenation starting from a large alphabet code and using random binary
codes, which we refer as Thommesen-like, has been an important technique in tackling
binary code constructions with a variety of properties near or at the GV bound. An im-
portant drawback in several such Thommesen-like code constructions is that they end up
being non-explicit (unless efficient derandomization or brute-force is viable).

Using a Thommesen-like construction, Gopi et al. [GKO+17] showed non-explicit con-
structions of locally testable and locally correctable binary codes approaching the GV
bound. More recently, again with a Thommesen-like construction, Hemenway et al. [HRW17]
obtained non-explicit near linear time unique decodable codes at the GV bound improv-
ing the running time of Guruswami and Indyk [GI04] (and also the decoding rates). We
summarize the results discussed so far in Table 1.

Binary Code Results near the Gilbert–Varshamov bound
Who? Construction GV Explicit Concatenated Decoding Local
[Gil52, Var57] existential yes no no no n/a
[Tho83] Reed–Solomon +

random binary
yes no yes no n/a

[GI04] Thommesen [Tho83] yes no yes unique decoding n/a
[GKO+17] Thommesen-like yes no yes unique decoding LTC/LCC
[HRW17] Thommesen-like yes no yes near linear time

unique decoding
n/a

[TS17] Expander-based Ω(ε2+β) yes no no n/a
this paper Ta-Shma [TS17] Ω(ε2+β) yes no gentle list decoding n/a

Table 1: GV bound related results for binary codes.

There are also non-explicit constructions known to achieve list decoding capacity [GR08,
MRRZ+19] (being concatenated or LDPC/Gallager [Gal62] is not an obstruction to achieve
capacity). Contrary to the other results in this subsection, Guruswami and Rudra [Gur05,
GR06, Gur09], also using a Thommesen-like construction, obtained explicit codes that are
efficiently list decodable from radius 1/2 − ε with rate Ω(ε3). This was done by concate-
nating the so-called folded Reed–Solomon codes with a derandomization of a binary en-
semble of random codes.

Results for non-adversarial error models. All the results mentioned above are for the
adversarial error model of Hamming [Ham50, Gur10]. In the setting of random corrup-
tions (Shannon model), the situation seems to be better understood thanks to the seminal
result on explicit polar codes of Arikan [Ari09]. More recently, in another breakthrough
Guruswami et al. [GRY19] showed that polar codes can achieve almost linear time decod-
ing with near optimal convergence to capacity for the binary symmetric channel. This
result gives an explicit code construction achieving parameter trade-offs similar to Shan-
non’s randomized construction [Sha48] while also admitting very efficient encoding and
decoding. Explicit capacity-achieving constructions are also known for bounded memory
channels [SKS19] which restrict the power of the adversary and thus interpolate between
the Shannon and Hamming models.
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2 Preliminaries and Notation

2.1 Codes

We briefly recall some standard code terminology. Given z, z′ ∈ Fn
2 , recall that the relative

Hamming distance between z and z′ is ∆(z, z′) := |{i | zi ̸= z′i}| /n. A binary code is any
subset C ⊆ Fn

2 . The distance of C is defined as ∆(C) := minz ̸=z′ ∆(z, z′) where z, z′ ∈ C. We
say that C is a linear code if C is a linear subspace of Fn

2 . The rate of C is log2(|C|)/n.

Instead of discussing the distance of a binary code, it will often be more natural to
phrase results in terms of its bias.

Definition 2.1 (Bias). The bias of a word z ∈ Fn
2 is defined as bias(z) :=

⃓⃓⃓
Ei∈[n](−1)zi

⃓⃓⃓
. The

bias of a code C is the maximum bias of any non-zero codeword in C.

Definition 2.2 (ε-balanced Code). A binary code C is ε-balanced if bias(z + z′) ≤ ε for every
pair of distinct z, z′ ∈ C.

Remark 2.3. For linear binary code C, the condition bias(C) ≤ ε is equivalent to C being an
ε-balanced code.

2.2 Direct Sum Lifts

Starting from a code C ⊆ Fn
2 , we amplify its distance by considering the direct sum lifting

operation based on a collection W(k) ⊆ [n]k. The direct sum lifting maps each codeword
of C to a new word in F

|W(k)|
2 by taking the k-XOR of its entries on each element of W(k).

Definition 2.4 (Direct Sum Lifting). Let W(k) ⊆ [n]k. For z ∈ Fn
2 , we define the direct sum

lifting as dsumW(k)(z) = y such that ys = ∑i∈s zi for all s ∈ W(k). The direct sum lifting of a
code C ⊆ Fn

2 is
dsumW(k)(C) = {dsumW(k)(z) | z ∈ C}.

We will omit W(k) from this notation when it is clear from context.

Remark 2.5. We will be concerned with collections W(k) ⊆ [n]k arising from length-(k − 1)
walks on expanding structures (mostly on the s-wide replacement product of two expander graphs).

We will be interested in cases where the direct sum lifting reduces the bias of the base
code; in [TS17], structures with such a property are called parity samplers, as they emulate
the reduction in bias that occurs by taking the parity of random samples.

Definition 2.6 (Parity Sampler). A collection W(k) ⊆ [n]k is called an (ε0, ε)-parity sampler
if for all z ∈ Fn

2 with bias(z) ≤ ε0, we have bias(dsumW(k)(z)) ≤ ε.

2.3 Linear Algebra Conventions

All vectors considered in this paper are taken to be column vectors, and are multiplied on
the left with any matrices or operators acting on them. Consequently, given an indexed
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sequence of operators Gk1 , . . . ,Gk2 (with k1 ≤ k2) corresponding to steps k1 through k2 of a
walk, we expand the product ∏k2

i=k1
Gi as

k2

∏
i=k1

Gi := Gk2 · · · Gk1 .

Unless otherwise stated, all inner products for vectors in coordinate spaces are taken to be
with respect to the (uniform) probability measure on the coordinates. Similarly, all inner
products for functions are taken to be with respect to the uniform measure on the inputs.
All operators considered in this paper are normalized to have singular values at most 1.

3 Proof Overview

The starting point for our work is the framework developed in [AJQ+20] for decoding
direct sum codes, obtained by starting from a code C ⊆ Fn

2 and considering all parities
corresponding to a set of t-tuples W(t) ⊆ [n]t. Ta-Shma’s near optimal ε-balanced codes
are constructed by starting from a code with constant rate and constant distance and con-
sidering such a direct sum lifting. The set of tuples W(t) in his construction corresponds
to a set of walks of length t − 1 on the s-wide replacement product of an expanding graph
G with vertex set [n] and a smaller expanding graph H. The s-wide replacement product
can be thought of here as a way of constructing a much smaller pseudorandom subset of
the set of all walks of length t − 1 on G, which yields a similar distance amplification for
the lifted code.

The simplified construction with expander walks. While we analyze Ta-Shma’s con-
struction later in the paper, it is instructive to first consider a W(t) simply consisting of all
walks of length t − 1 on an expander. This construction, based on a suggestion of Rozen-
man and Wigderson [Bog12], was also analyzed by Ta-Shma [TS17] and can be used to
obtain ε-balanced codes with rate Ω(ε4+o(1)). It helps to illustrate many of the conceptual
ideas involved in our proof, while avoiding some technical issues.

Let G be a d-regular expanding graph with vertex set [n] and the (normalized) second
singular value of the adjacency operator AG being λ. Let W(t) ⊆ [n]t denote the set of
t-tuples corresponding to all walks of length t − 1, with N = |W(t)| = n · dt−1. Ta-Shma
proves that for all z ∈ Fn

2 , W(t) satisfies

bias(z) ≤ ε0 ⇒ bias(dsumW(t)(z)) ≤ (ε0 + 2λ)⌊(t−1)/2⌋ ,

i.e., W(t) is an (ε0, ε)-parity sampler for ε = (ε0 + 2λ)⌊(t−1)/2⌋. Choosing ε0 = 0.1 and
λ = 0.05 (say), we can choose d = O(1) and obtain the ε-balanced code C ′ = dsumW(t)(C)
with rate d−(t−1) = εO(1) (although the right constants matter a lot for optimal rates).

Decoding as constraint satisfaction. The starting point for our work is the framework
in [AJQ+20] which views the task of decoding ỹ with ∆(C ′, ỹ) < (1 − ε)/4 − δ (where the
distance of C ′ is (1 − ε)/2) as an instance of the MAX t-XOR problem (see Fig. 1). The goal
is to find

argmin
z∈C

∆
(︂

dsumW(t)(z), ỹ
)︂

,
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which can be rephrased as

argmax
z∈C

E
w=(i1,...,it)∈W(t)

[︂
1{zi1+···+zit=ỹw}

]︂
.

It is possible to ignore the condition that z ∈ C if the collection W(t) is a slightly stronger
parity sampler. For any solution z̃ ∈ Fn

2 (not necessarily in C) such that

∆(dsumW(t)(z̃), ỹ) <
1 − ε

4
+ δ,

we have
∆(dsumW(t)(z̃), dsumW(t)(z)) <

1 − ε

2
by the triangle inequality, and thus bias(dsumW(t)(z − z̃)) > ε. If W(t) is not just an (ε0, ε)-
parity sampler, but in fact a ((1 + ε0)/2, ε)-parity sampler, this would imply bias(z − z̃) >
(1 + ε0)/2. Thus, ∆(z, z̃) < (1 − ε0)/4 (or ∆(z, z̃) < (1 − ε0)/4) and we can use a unique
decoding algorithm for C to find z given z̃.

Small approximation error δ
(comparable to ε)

ỹ

yUnique decoding radius
((1 − ε)/4)

Figure 1: Unique decoding ball along with error from approximation.

The task of finding such a z ∈ C boils down to finding a solution z̃ ∈ Fn
2 to a MAX t-XOR

instance, up to a an additive loss of O(δ) in the fraction of constraints satisfied by the op-
timal solution. While this is hard to do in general [Hås01, Gri01], [AJQ+20] (building on
[AJT19]) show that this can be done if the instance satisfies a special property called splitta-
bility. To define this, we let W[t1, t2] ⊂ [n]t2−t1+1 denote the collection of (t2 − t1 + 1)-tuples
obtained by considering the indices between t1 and t2 for all tuples in W(t). We also as-
sume that all w ∈ W[t1, t2] can be extended to the same number of tuples in W(t) (which
is true for walks).

Definition 3.1 (Splittability (informal)). A collection W(t) ⊆ [n]t is said to be τ-splittable, if
t = 1 (base case) or there exists t′ ∈ [t − 1] such that:

1. The matrix S ∈ RW[1,t′]×W[t′+1,t] defined by S(w, w′) = 1{ww′∈W} has normalized second
singular value at most τ (where ww′ denotes the concatenated tuple).

2. The collections W[1, t′] and W[t′ + 1, t] are τ-splittable.

For example, considering walks in G of length 3 (t = 4) and t′ = 2, we get that
W[1, 2] = W[3, 4] = E, the set of oriented edges in G. Also S(w, w′) = 1 if and only if
the second vertex of w and first vertex of w′ are adjacent in G. Thus, up to permutation
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of rows and columns, we can write the normalized version of S as AG ⊗ Jd/d where AG is
normalized adjacency matrix of G and Jd denotes the d× d matrix of 1s. Hence such a W(t)
satisfies σ2(S) ≤ τ with τ = σ2(AG), and a similar proof works for walks of all lengths.

The framework in [AJQ+20] and [AJT19] gives that if W(t) is τ-splittable for τ =
(δ/2t)O(1), then the above instance of MAX t-XOR can be solved to additive error O(δ)
using the Sum-of-Squares (SOS) SDP hierarchy. Broadly speaking, splittability allows
one to (recursively) treat instances as expanding instances of problems with two “tuple
variables” in each constraint, which can then be analyzed using known algorithms for 2-
CSPs [BRS11, GS11] in the SOS hierarchy. Combined with parity sampling, this yields a
unique decoding algorithm. Crucially, this framework can also be extended to perform list
decoding3 up to a radius of 1/2−

√
ε − δ under a similar condition on τ, which will be very

useful for our application.

While the above can yield decoding algorithms for suitably expanding G, the require-
ment on τ (and hence on λ) makes the rate much worse. We need δ = O(ε) (for unique
decoding) and t = O(log(1/ε)) (for parity sampling), which requires λ = εΩ(1), yield-
ing only a quasipolynomial rate for the code (recall that we could take λ = O(1) earlier
yielding polynomial rates).

Unique decoding: weakening the error requirement. We first observe that it is possible
to get rid of the dependence δ = O(ε) above by using the list decoding algorithm for unique
decoding. It suffices to take δ = 0.1 and return the closest element from the the list of all
codewords up to an error radius 1/2 −

√
ε − 0.1, if we are promised that ∆(ỹ, C) is within

the unique decoding radius (see Fig. 2). However, this alone does not improve the rate as
we still need the splittability (and hence λ) to be 2−Ω(t) with t = O(log(1/ε)).

Code cascades: handling the dependence on walk length. To avoid the dependence
of the expansion on the length t − 1 of the walk (and hence on ε), we avoid the “one-
shot” decoding above, and instead consider a sequence of intermediate codes between C
and C ′. Consider the case when t = k2, and instead of computing t-wise sums of bits
in each z ∈ Fn

2 , we first compute k-wise sums according to walks of length k − 1 on G,
and then a k-wise sum of these values. In fact, the second sum can also be thought of
as arising from a length k − 1 walk on a different graph, with vertices corresponding to
(directed) walks with k vertices in G, and edges connecting w and w′ when the last vertex
of w is connected to the first one in w′ (this is similar to the matrix considered for defining
splittability). We can thus think of a sequence of codes C0, C1, C2 with C0 = C and C2 =
C ′, and both C1 and C2 being k-wise direct sums. More generally, when t = kℓ for an
appropriate constant k we can think of a sequence C = C0, C1, . . . , Cℓ = C ′, where each is an
k-wise direct sum of the previous code, obtained via walks of length k− 1 (hence k vertices)
in an appropriate graph. We refer to such sequences (defined formally in Section 5) as code
cascades (see Fig. 3).

Instead of applying the decoding framework above to directly reduce the decoding
of a corrupted codeword from C ′ to the unique decoding problem in C, we apply it at

3While unique decoding can be thought of as recovering a single solution to a constraint satisfaction prob-
lem, the goal in the list decoding setting can be thought of as obtaining a “sufficiently rich” set of solutions
which forms a good cover. This is achieved in the framework by adding an entropic term to the semidefinite
program, which ensures that the SDP solution satisfies such a covering property.
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List decoding radius
(1/2 −

√
ε)

ỹ

yUnique decoding radius
(1/4 − ε/4)

Constant approximation
error (0.1)

Figure 2: Unique decoding and list decoding balls along with error from approximation.
Note that the list decoding ball contains the unique decoding ball even after allowing for
a relatively large amount of error.

C0 C1 Ci−1 Ci Cℓ· · · · · ·dsum dsum

ε0 ε1 ε i−1 ε i εℓ = ε

Refined parity sampling via Ta-Shma’s walk

Crude parity sampling via Markov chain walk

Figure 3: Code cascading.

each level of a cascade, reducing the unique decoding problem in Ci to that in Ci−1. If
the direct sum at each level of the cascade is an (η0, η)-parity sampler, the list decoding
algorithm at radius 1/2−√

η suffices for unique decoding even if η is a (sufficiently small)
constant independent of ε. This implies that we can take k to be a (suitably large) constant.
This also allows the splittability (and hence λ) to be 2−O(k) = Ω(1), yielding polynomial
rates. We present the reduction using cascades in Section 6 and the parameter choices in
Section 8. The specific versions of the list decoding results from [AJQ+20] needed here are
instantiated in Section 9.

While the above allows for polynomial rate, the running time of the algorithm is still
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exponential in the number of levels ℓ (which is O(log t) = O(log log(1/ε))) since the list
decoding for each level potentially produces a list of size poly(n), and recursively calls
the decoding algorithm for the previous level on each element of the list. We obtain a
fixed polynomial time algorithm by “pruning” the list at each level of the cascade before
invoking the decoding algorithm for the previous level, while only slightly increasing the
parity sampling requirements. The details are contained in Section 6.

Working with Ta-Shma’s construction. Finally, to obtain near-optimal rates, we need to
work with with Ta-Shma’s construction, where the set of tuples W(t) ⊆ [n]t corresponds to
walks arising from an s-wide replacement product of G with another expanding graph H.
One issue that arises is that the collection of walks W(t) as defined in [TS17] does not sat-
isfy the important splittability condition required by our algorithms. However, this turns
out to be easily fixable by modifying each step in Ta-Shma’s construction to be exactly ac-
cording to the zig-zag product of Reingold, Vadhan and Wigderson [RVW00]. We present
Ta-Shma’s construction and this modification in Section 4.

We also verify that the tuples given by Ta-Shma’s construction satisfy the conditions
for applying the list decoding framework, in Section 7. While the sketch above stated this
in terms of splittability, the results in [AJQ+20] are in terms of a more technical condition
called tensoriality. We show in Section 7 that this is indeed implied by splittability, and also
prove splittability for (the modified version of) Ta-Shma’s construction.

4 Ta-Shma’s Construction: A Summary and Some Tweaks

In this section, we first discuss the s-wide replacement product that is central to Ta-Shma’s
construction of optimal ε-balanced codes, and then we describe the construction itself (we
refer the reader to [TS17] for formal details beyond those we actually need here).

As mentioned before, we will also need to modify Ta-Shma’s construction [TS17] a
little to get splittability which is a notion of expansion of a collection W(k) ⊆ [n]k (and
it is formally defined in Definition 7.9). The reason for this simple modification is that
this splittability property is required by the list decoding framework. Note that we are not
improving the Ta-Shma code parameters; in fact, we need to argue why with this modifi-
cation we can still achieve Ta-Shma’s parameters. Fortunately, this modification is simple
enough that we will be able to essentially reuse Ta-Shma’s original analysis. In Section 4.3,
we will also have the opportunity to discuss, at an informal level, the intuition behind
some parameter trade-offs in Ta-Shma codes which should provide enough motivation
when we instantiate these codes in Section 8.

4.1 The s-wide Replacement Product

Ta-Shma’s code construction is based on the so-called s-wide replacement product [TS17].
This is a derandomization of random walks on a graph G that will be defined via a product
operation of G with another graph H (see Definition 4.2 for a formal definition). We will
refer to G as the outer graph and H as the inner graph in this construction.

Let G be a d1-regular graph on vertex set [n] and H be a d2-regular graph on vertex set
[d1]

s, where s is any positive integer. Suppose the neighbors of each vertex of G are labeled
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1, 2, . . . , d1. For v ∈ V(G), let vG[j] be the j-th neighbor of v. The s-wide replacement
product is defined by replacing each vertex of G with a copy of H, called a “cloud”. While
the edges within each cloud are determined by H, the edges between clouds are based on
the edges of G, which we will define via operators G0,G1, . . . ,Gs−1. The i-th operator Gi
specifies one inter-cloud edge for each vertex (v, (a0, . . . , as−1)) ∈ V(G) × V(H), which
goes to the cloud whose G component is vG[ai], the neighbor of v in G indexed by the i-th
coordinate of the H component. (We will resolve the question of what happens to the H
component after taking such a step momentarily.)

Walks on the s-wide replacement product consist of steps with two different parts: an
intra-cloud part followed by an inter-cloud part. All of the intra-cloud substeps simply
move to a random neighbor in the current cloud, which corresponds to applying the oper-
ator I⊗ AH, where AH is the normalized adjacency matrix of H. The inter-cloud substeps
are all deterministic, with the first moving according to G0, the second according to G1,
and so on, returning to G0 for step number s + 1. The operator for such a walk taking t − 1
steps on the s-wide replacement product is

t−2

∏
i=0

Gi mod s(I⊗ AH).

Observe that a walk on the s-wide replacement product yields a walk on the outer
graph G by recording the G component after each step of the walk. The number of (t − 1)-
step walks on the s-wide replacement product is

|V(G)| · |V(H)| · dt−1
2 = n · ds

1 · dt−1
2 ,

since a walk is completely determined by its intra-cloud steps. If d2 is much smaller than
d1 and t is large compared to s, this is less than ndt−1

1 , the number of (t − 1)-step walks
on G itself. Thus the s-wide replacement product will be used to simulate random walks
on G while requiring a reduced amount of randomness (of course this simulation is only
possible under special conditions, namely, when we are uniformly distributed on each
cloud).

To formally define the s-wide replacement product, we must consider the labeling of
neighbors in G more carefully.

Definition 4.1 (Rotation Map). Suppose G is a d1-regular graph on [n]. For each v ∈ [n]
and j ∈ [d1], let vG[j] be the j-th neighbor of v in G. Based on the indexing of the neighbors
of each vertex, we define the rotation map 4 rotG : [n] × [d1] → [n] × [d1] such that for every
(v, j) ∈ [n]× [d1],

rotG((v, j)) = (v′, j′) ⇔ vG[j] = v′ and v′G[j
′] = v.

Furthermore, if there exists a bijection φ : [d1] → [d1] such that for every (v, j) ∈ [n]× [d1],

rotG((v, j)) = (vG[j], φ(j)),

then we call rotG locally invertible.

4This kind of map is denoted rotation map in the zig-zag terminology [RVW00].

11



If G has a locally invertible rotation map, the cloud label after applying the rotation
map only depends on the current cloud label, not the vertex of G. In the s-wide replace-
ment product, this corresponds to the H component of the rotation map only depending
on a vertex’s H component, not its G component. We define the s-wide replacement prod-
uct as described before, with the inter-cloud operator Gi using the i-th coordinate of the H
component, which is a value in [d1], to determine the inter-cloud step.

Definition 4.2 (s-wide replacement product). Suppose we are given the following:

- A d1-regular graph G = ([n], E) together with a locally invertible rotation map rotG : [n]×
[d1] → [n]× [d1].

- A d2-regular graph H = ([d1]
s, E′).

And we define:

- For i ∈ {0, 1, . . . , s − 1}, we define Roti : [n]× [d1]
s → [n]× [d1]

s as, for every v ∈ [n] and
(a0, . . . , as−1) ∈ [d1]

s,

Roti((v, (a0, . . . , as−1))) := (v′, (a0, . . . , ai−1, a′i, ai+1, . . . , as−1)),

where (v′, a′i) = rotG(v, ai).

- Denote by Gi the operator realizing Roti and let AH be the normalized random walk operator
of H. Note that Gi is a permutation operator corresponding to a product of transpositions.

Then t − 1 steps of the s-wide replacement product are given by the operator

t−2

∏
i=0

Gi mod s(I⊗ AH).

Ta-Shma instantiates the s-wide replacement product with an outer graph G that is a
Cayley graph, for which locally invertible rotation maps exist generically.

Remark 4.3. Let R be a group and A ⊆ R where the set A is closed under inversion. For every
Cayley graph Cay(R, A), the map φ : A → A defined as φ(g) = g−1 gives rise to the locally
invertible rotation map

rotCay(R,A)((r, a)) = (r · a, a−1),

for every r ∈ R, a ∈ A.

4.2 The Construction

Ta-Shma’s code construction works by starting with a constant bias code C0 in Fn
2 and

boosting to arbitrarily small bias using direct sum liftings. Recall that the direct sum lifting
is based on a collection W(t) ⊆ [n]t, which Ta-Shma obtains using t − 1 steps of random
walk on the s-wide replacement product of two regular expander graphs G and H. The
graph G is on n vertices (same as blocklength of the base code) and other parameters like
degrees d1 and d2 of G and H respectively are chosen based on target code parameters.
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Figure 4: An example of the 1-wide replacement product with outer graph G = K5 and
inner graph H = C4. Vertices are labeled by their H components. Note that the rotation
map is locally invertible, with φ(1) = 2, φ(2) = 1, φ(3) = 4, and φ(4) = 3.

To elaborate, every t − 1 length walk on the replacement product gives a sequence
of t outer vertices or G-vertices, which can be seen as an element of [n]t. This gives the
collection W(t) with |W(t)| = n · ds

1 · dt−1
2 which means the rate of lifted code is smaller

than the rate of C0 by a factor of ds
1dt−1

2 . However, the collection W(t) is a parity sampler
and this means that the bias decreases (or the distance increases). The relationship between
this decrease in bias and decrease in rate with some careful parameter choices allows Ta-
Shma to obtain nearly optimal ε-balanced codes.

4.3 Tweaking the Construction

Recall the first s steps in Ta-Shma’s construction are given by the operator

Gs−1(I⊗ AH)Gs−2 · · · G1(I⊗ AH)G0(I⊗ AH).

Naively decomposing the above operator into the product of operators ∏s−1
i=0 Gi(I⊗ AH) is

not good enough to obtain the splittability property which would hold provided σ2(Gi(I⊗
AH)) was small for every i in {0, . . . , s − 1}. However, each Gi(I⊗AH) has |V(G)| singular
values equal to 1 since Gi is an orthogonal operator and (I⊗AH) has |V(G)| singular values
equal to 1. To avoid this issue we will tweak the construction to be the following product

s−1

∏
i=0

(I⊗ AH)Gi(I⊗ AH).

The operator (I⊗ AH)Gi(I⊗ AH) is exactly the walk operator of the zig-zag product
G z H of G and H with a rotation map given by the (rotation map) operator Gi. This
tweaked construction is slightly simpler in the sense that G z H is an undirected graph.

13



We know by the zig-zag analysis that (I⊗AH)Gi(I⊗AH) is expanding as long G and H are
themselves expanders. More precisely, we have a bound that follows from [RVW00].

Fact 4.4. Let G be an outer graph and H be an inner graph used in the s-wide replacement product.
For any integer 0 ≤ i ≤ s − 1,

σ2((I⊗ AH)Gi(I⊗ AH)) ≤ σ2(G) + 2 · σ2(H) + σ2(H)2.

This bound will imply splittability as shown in Section 7.2. We will need to argue that
this modification still preserves the correctness of the parity sampling and that it can be
achieved with similar parameter trade-offs.

The formal definition of a length-t walk on this slightly modified construction is given
below.

Definition 4.5. Let t ∈ N, G be a d1-regular graph and H be a d2-regular graph on ds
1 vertices.

Given a starting vertex (v, h) ∈ V(G) × V(H), a (t − 1)-step walk on the tweaked s-wide re-
placement product of G and H is a tuple ((v0, h0), . . . , (vt−1, ht−1)) ∈ (V(G) × V(H))t such
that

- (v0, h0) = (v, h), and

- for every 0 ≤ i < t − 1, we have (vi, hi) adjacent to (vi+1, hi+1) in (I⊗ AH)Gi mod s(I⊗
AH).

Note that each (I⊗ AH)Gi mod s(I⊗ AH) is a walk operator of a d2
2-regular graph. Therefore, the

starting vertex (v, h) together with a degree sequence (m1, . . . , mt) ∈ [d2
2]

t−1 uniquely defines a
(t − 1)-step walk.

4.3.1 Parity Sampling

We argue informally why parity sampling still holds with similar parameter trade-offs.
Later in Section 4.3.2, we formalize a key result underlying parity sampling and, in Sec-
tion 8, we compute the new trade-off between bias and rate in some regimes. In Section 4.1,
the definition of the original s-wide replacement product as a purely graph theoretic oper-
ation was given. Now, we explain how Ta-Shma used this construction for parity sampling
obtaining codes near the GV bound.

For a word z ∈ F
V(G)
2 in the base code, let Pz be the diagonal matrix, whose rows

and columns are indexed by V(G) × V(H), with (Pz)(v,h),(v,h) = (−1)zv . Proving parity
sampling requires analyzing the operator norm of the following product

Pz

s−1

∏
i=0

(I⊗ AH)GiPz(I⊗ AH), (1)

when bias(z) ≤ ε0. Let 1 ∈ RV(G)×V(H) be the all-ones vector and W be the collection of
all (t − 1)-step walks on the tweaked s-wide replacement product. Ta-Shma showed (and
it is not difficult to verify) that

bias (dsumW(z)) =

⃓⃓⃓⃓
⃓
⟨︄

1,Pz

t−2

∏
i=0

(I⊗ AH)Gi mod sPz(I⊗ AH)1

⟩︄⃓⃓⃓⃓
⃓ .
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From the previous equation, one readily deduces that

bias (dsumW(z)) ≤ σ1

(︄
Pz

s−1

∏
i=0

(I⊗ AH)GiPz(I⊗ AH)

)︄⌊(t−1)/s⌋

.

Set B := Pz ∏s−1
i=0 (I⊗ AH)GiPz(I⊗ AH). To analyze the operator norm of B, we will first

need some notation. Note that B is an operator acting on the space V = RV(G) ⊗ RV(H).
Two of its subspaces play an important role in the analysis, namely,

W∥ = span{a ⊗ b ∈ RV(G) ⊗ RV(H) | b = 1} and W⊥ = (W∥)⊥.

Note that the complement subspace is with respect to the standard inner product. Observe
that V = W∥ ⊕W⊥. Given arbitrary unit vectors v, w ∈ V , Ta-Shma considers the inner
product ⟨︄

v,
s−1

∏
i=0

(I⊗ AH)GiPz(I⊗ AH)w

⟩︄
. (2)

Each time an operator (I⊗ AH) appears in the above expression, the next step of the walk
can take one out of d2 possibilities and thus the rate suffers a multiplicative decrease of
1/d2. We think that we are “paying” d2 for this step of the walk. The whole problem lies in
the trade-off between rate and distance, so the crucial question now is how much the norm
decreases as we pay d2. For a moment, suppose that the norm always decreases by a factor
of λ2 := σ2(H) per occurrence of (I⊗ AH). If in this hypothetical case we could further
assume λ2 = 1/

√
d2, then if B was a product containing ⌈logλ2

(ε)⌉ factors of (I⊗ AH), the
final bias would be at most ε and the rate would have suffered a multiplicative decrease of
(essentially) ε2 and we would be done.

Of course, this was an oversimplification. The general strategy is roughly the above,
but a beautiful non-trivial step is needed. Going back to the bilinear form Eq. (2), if w ∈
W⊥ (or v ∈ W⊥), we pay d2 and we do obtain a norm decrease of λ2. More generally, note
that can decompose w = w∥ + w⊥ with w∥ ∈ W∥ and w⊥ ∈ W⊥ (decompose v = v∥ + v⊥

similarly) and we can carry this process iteratively collecting factors of λ2. However, we
are stuck with several terms of the form for 0 ≤ k1 ≤ k2 < s,⟨︄

v∥k1
,

k2

∏
i=k1

(I⊗ AH)GiPz(I⊗ AH)w
∥
k2

⟩︄
,

with v∥k1
, w∥

k2
∈ W∥, and for which the preceding naive norm decrease argument fails. This

is the point in the analysis where the structure of the s-wide replacement product is used.
Since v∥k1

, w∥
k2
∈ W∥, these vectors are uniform on each “cloud”, i.e., copy of H. Recall that

a vertex in H is an s-tuple (m1, . . . , ms) ∈ [d1]
s. Ta-Shma leverages the fact of having a

uniform such tuple to implement k2 − k1 + 1 (up to s) steps of random walk on G. More
precisely, Ta-Shma obtains the following beautiful result:

Theorem 4.6 (Adapted from Ta-Shma [TS17]). Let G be a locally invertible graph of degree d1,
H be a Cayley graph on F

s log d1
2 , and 0 ≤ k1 ≤ k2 < s be integers. If v∥ = v ⊗ 1 and w∥ = w ⊗ 1,

then ⟨︄
v∥,

k2

∏
i=k1

Gi(I⊗ AH)Pzw∥
⟩︄

=
⟨︂

v, (AGMz)
k2−k1+1 w

⟩︂
where Mz ∈ RV(G)×V(G) is the diagonal matrix defined as (Mz)v,v := (−1)zv for v ∈ V(G).
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Remark 4.7. Note that the walk operator in this theorem corresponds to the original construction.
Theorem 4.6 was used by Ta-Shma to obtain Fact 4.9 whose Corollary 4.10 corresponds to the
modified construction.

Ta-Shma proved Theorem 4.6 under the more general condition that H is 0-pseudorandom.
Roughly speaking, this property means that if we start with a distribution that is uniform
over the clouds, and walk according to fixed H-steps j0, j1, · · · , js−1, then the distribution
of G-vertices obtained will be identical to the distribution obtained if we were doing the
usual random walk on G. We will always choose H to be a Cayley graph on F

s log d1
2 , which

will imply that H is also 0-pseudorandom. The proof of Theorem 4.6 crucially uses the
product structure of F

s log d1
2 : every vertex of H can be represented by s registers of log d1

bits each, and both inter-cloud and intra-cloud steps can be seen as applying register-wise
bijections using some canonical mapping between [d1] and F

log d1
2 .

Ta-Shma’s original parity sampling proof required ε0 + 2θ + 2σ2(G) ≤ σ2(H)2, where
ε0 is the initial bias and θ is an error parameter arising from a number theoretic construc-
tion of Ramanujan graphs for the outer graph G. This is because ε0 + 2θ + 2σ2(G) is the
reduction of bias in every two steps while taking a walk on G (see Theorem 5.2). Having
ε0 + 2θ + 2σ2(G) ≤ σ2(H)2 ensured that after establishing Theorem 4.6, we were collecting
enough reduction for d2

2 price we paid for two steps. In the modified construction, we now
have d2

2 possibilities for each step in (I⊗ A2
H) (so d4

2 price for two steps), and so if instead
we have ε0 + 2θ + 2σ2(G) ≤ σ2(H)4 in the modified construction, we claim that the cor-
rectness of the parity sampling analysis is preserved as well as (essentially) the trade-off
between walk length and norm decay. Fortunately, Ta-Shma’s parameters decouple and
we can choose parameters to satisfy the above requirement.

Remark 4.8. This modification on the s-replacement product of G and H essentially 5 amounts to
taking a different inner graph H which can be factored as H =

√
H
√

H (and is still 0-pseudorandom).

4.3.2 Spectral Analysis of the Modified Construction

We formally show that we don’t loose much by going from Ta-Shma’s original s-wide
product construction to its tweaked version. The key technical result obtained by Ta-Shma
is the following, which is used to analyze the bias reduction as a function of the total
number walk steps t − 1.

Fact 4.9 (Theorem 24 abridged [TS17]). If H is a Cayley graph on F
s log d1
2 and ε0 + 2 · θ + 2 ·

σ2(G) ≤ σ2(H)2, then⃦⃦⃦⃦
⃦s−1

∏
i=0

PzGi(I⊗ AH)

⃦⃦⃦⃦
⃦

op

≤ σ2(H)s + s · σ2(H)s−1 + s2 · σ2(H)s−3,

where Pz ∈ R(V(G)×V(H))×(V(G)×V(H)) is the sign operator of a ε0 biased word z ∈ F
V(G)
2 defined

as a diagonal matrix with (Pz)(v,h),(v,h) = (−1)zv for every (v, h) ∈ V(G)× V(H).

We reduce the analysis of Ta-Shma’s tweaked construction to Fact 4.9. In doing so, we
only lose one extra step as shown below.

5Except at the first and last factors in the product of operators.
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Corollary 4.10. If H2 is a Cayley graph on F
s log d1
2 and ε0 + 2 · θ + 2 · σ2(G) ≤ σ2(H)4, then⃦⃦⃦⃦

⃦s−1

∏
i=0

(I⊗ AH)PzGi(I⊗ AH)

⃦⃦⃦⃦
⃦

op

≤ σ2(H2)s−1 + (s − 1) · σ2(H2)s−2 + (s − 1)2 · σ2(H2)s−4,

where Pz is the sign operator of an ε0-biased word z ∈ F
V(G)
2 as in Fact 4.9.

Proof. We have⃦⃦⃦⃦
⃦s−1

∏
i=0

(I⊗ AH)PzGi(I⊗ AH)

⃦⃦⃦⃦
⃦

op

≤ ∥(I⊗ AH)∥op

⃦⃦⃦⃦
⃦s−1

∏
i=1

PzGi(I⊗ A2
H)

⃦⃦⃦⃦
⃦

op

∥PzG0(I⊗ AH)∥op

≤
⃦⃦⃦⃦
⃦s−1

∏
i=1

PzGi(I⊗ A2
H)

⃦⃦⃦⃦
⃦

op

≤ σ2(H2)s−1 + (s − 1) · σ2(H2)s−2 + (s − 1)2 · σ2(H2)s−4,

where the last inequality follows from Fact 4.9.

Remark 4.11. We know that in the modified construction H2 is a Cayley graph since H is a Cayley
graph.

From this point onward, we will be working exclusively with the modified construc-
tion instead of using it in its original form. Any references to Ta-Shma’s construction or
the s-wide replacement product will actually refer to the modified versions described in
this section.

5 Code Cascading

A code cascade is a sequence of codes generated by starting with a base code C0 and recur-
sively applying lifting operations.

Definition 5.1. We say that a sequence of codes C0, C1, . . . , Cℓ is a code cascade provided Ci =
dsumWi(ti)(Ci−1) for every i ∈ [ℓ]. Each Wi(ti) is a subset of [ni−1]

ti , where ni−1 = |Wi−1(ti−1)|
is the block length of the code Ci−1.

Let us see how code cascades may be useful for decoding. Suppose we wish to lift the
code C0 to Cℓ, and there is some W(t) ⊆ [n0]t such that Cℓ = dsumW(t)(C0). In our case of
bias boosting, this t will depend on the target bias ε. However, the expansion requirement
of the list-decoding framework of [AJQ+20] has a poor dependence on t. A way to work
around this issue is to go from C0 to Cℓ via a code cascade as above such that each ti is a

constant independent of the final bias but
ℓ

∏
i=1

ti = t (which means ℓ depends on ε). The

final code Cℓ of the cascade is the same as the code obtained from length-(t − 1) walks.
While decoding will now become an ℓ-level recursive procedure, the gain from replacing
t by ti will outweigh this loss, as we discuss below.
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5.1 Warm-up: Code Cascading Expander Walks

We now describe the code cascading construction and unique decoding algorithm in more
detail. Let G = (V, E) be a d-regular graph with uniform distribution over the edges. Let
m be a sufficiently large positive integer, which will be the number of vertices of the walks
used for the lifting between consecutive codes in the cascade. At first, it will be crucial
that we can take m = O(1) so that the triangle inequality arising from the analysis of the
lifting between two consecutive codes involves a constant number of terms. We construct
a recursive family of codes as follows.

- Start with a code C0 which is linear and has constant bias ε0.

- Define the code C1 = dsumW(m)(C0), which is the direct sum lifting over the collec-
tion W(m) of all length-(m − 1) walks on G using the code C0.

- Let ˆ︁Gi = (Vi, Ei) be the (directed) graph where Vi is the collection of all walks on
mi vertices on G with two walks (v1, . . . , vmi) and (u1, . . . , umi) connected iff vmi is
adjacent to u1 in G.

- Define Ci to be the direct sum lifting on the collection Wi(m) of all length-(m − 1)
walks on Gi−1 using the code Ci−1, i.e., Ci = dsumWi(m)(Ci−1).

- Repeat this process to yield a code cascade C0, . . . , Cℓ.

Thanks to the definition of the graphs ˆ︁Gi and the recursive nature of the construction,
the final code Cℓ is the same as the code obtained from C0 by taking the direct sum lifting
over all walks on t = mℓ vertices of G. We can use Ta-Shma’s analysis (building on the
ideas of Rozenman and Wigderson [Bog12]) for the simpler setting of walks over a single
expander graph to determine the amplification in bias that occurs in going from C0 all the
way to Cℓ.

Theorem 5.2 (Adapted from Ta-Shma [TS17]). Let C be an ε0-balanced linear code, and let
C ′ = dsumW(t)(C) be the direct sum lifting of C over the collection of all length-(t − 1) walks
W(t) on a graph G. Then

bias(C ′) ≤ (ε0 + 2σ2(G))⌊(t−1)/2⌋.

If σ2(G) ≤ ε0/2 and ℓ =
⌈︂

logm(2 log2ε0
(ε) + 3)

⌉︂
, taking t = mℓ ≥ 2 log2ε0

(ε) + 3 in
the above theorem shows that the final code Cℓ is ε-balanced. Observe that the required
expansion of the graph G only depends on the constant initial bias ε0, not on the desired
final bias ε. It will be important for being able to decode with better parameters that both
σ2(G) and m are constant with respect to ε; only ℓ depends on the final bias (with more
care we can make σ2(G) depend on ε, but we restrict this analysis to Ta-Shma’s refined
construction on the s-wide replacement product).

As mentioned before, to uniquely decode Cℓ we will inductively employ the list decod-
ing machinery for expander walks from [AJQ+20]. The list decoding algorithm can decode
a direct sum lifting C ′ = dsumW(m)(C) as long as the graph G is sufficiently expanding, the
walk length m − 1 is large enough, and the base code C has an efficient unique decoding
algorithm (see Theorem 6.1 for details).
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The expansion requirement ultimately depends on the desired list decoding radius of
C ′, or more specifically, on how close the list decoding radius is to 1/2. If the distance of C ′

is at most 1/2, its unique decoding radius is at most 1/4, which means list decoding at the
unique decoding radius is at a constant difference from 1/2 and thus places only a constant
requirement on the expansion of G. In the case of the code cascade Ci = dsumWi(m)(Ci−1),
unique decoding of Ci−1 is guaranteed by the induction hypothesis. It is not too difficult to
see that each graph ˆ︁Gi will have the same second singular value as G, so we can uniquely
decode Ci if G meets the constant expansion requirement and m is sufficiently large.

5.2 Code Cascading Ta-Shma’s Construction

We will now describe how to set up a code cascade based on walks on an s-wide replace-
ment product. Consider the s-wide replacement product of the outer graph G with the
inner graph H. The first s walk steps are given by the walk operator

s−1

∏
i=0

(I⊗ AH)Gi(I⊗ AH).

Let As−1 := (I⊗ AH)Gs−2(I⊗ AH) · · · (I⊗ AH)G0(I⊗ AH). If the total walk length t − 1 is a
multiple of s, the walks are generated using the operator

((I⊗ AH)Gs−1(I⊗ AH)As−1)
(t−1)/s .

Here (I⊗AH)Gs−1(I⊗AH) is used as a “binding” operator to connect two walks containing
s vertices at level C2, s2 vertices at level C3, and so on. More precisely, we form the following
code cascade.

- C0 is an ε0-balanced linear code efficiently uniquely decodable from a constant ra-
dius.

- C1 = dsumW1(s)(C0), where W1(s) is the set of length-(s-1) walks given by the opera-
tor

(I⊗ AH)Gs−2(I⊗ AH)⏞ ⏟⏟ ⏞
(s − 2)th step

· · · (I⊗ AH)G0(I⊗ AH)⏞ ⏟⏟ ⏞
0th step

.

- C2 = dsumW2(s)(C1), where W2(s) is the set of length-(s − 1) walks over the vertex
set W1(s) (with the latter being the set of length-(s − 1) walks on the replacement
product graph as mentioned above).

- Ci+1 = dsumWi+1(s)(Ci), where Wi+1(s) is the set of length-(s − 1) walks 6 over the
vertex set Wi(s). Similarly to the cascade of expander walks above, the lift can be
thought of as being realized by taking walks using a suitable operator analogous
to ˆ︁Gi. Since its description is more technical we postpone its definition (see Defini-
tion 7.2) to Section 7.2 where it is actually used.

- Cℓ denotes the final code in the sequence, which will later be chosen so that its bias
is at most ε.

6For simplicity we chose the number of vertices in all walks of the cascade to be s, but it could naturally be
some si ∈ N depending on i.
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(I ⊗ H)Gs−1(I ⊗ H)(I ⊗ H)Gs−2(I ⊗ H) (I ⊗ H)G0(I ⊗ H)· · · (I ⊗ H)Gs−1(I ⊗ H) (I ⊗ H)Gs−2(I ⊗ H) (I ⊗ H)G0(I ⊗ H)· · ·

(s − 1) steps
(s − 1) steps

· · ·

(s − 1)-steps

Binding operator Binding operator

Figure 5: Two levels of code cascading for Ta-Shma’s construction involving codes C0, C1
and C2 (to make the notation compact we used H to denote AH).

6 Unique Decoding of Ta-Shma Codes

We show how code cascading together with list decoding for each level of the cascade al-
low us to obtain an efficient unique decoding algorithm for Ta-Shma’s construction. We
obtain a sequence of results of increasing strength culminating in Theorem 1.1 (which we
recall below for convenience). The approach is as follows: we use several different instan-
tiations of Ta-Shma’s construction, each yielding a value of s (for the s-wide replacement
product) and expansion parameters for the family of outer and inner graphs, and show
how the list decoding framework can be invoked in the associated cascade for each one.

Theorem 1.1 (Unique Decoding). For every ε > 0 sufficiently small, there are explicit binary
linear Ta-Shma codes CN,ε,β ⊆ FN

2 for infinitely many values N ∈ N with

(i) distance at least 1/2 − ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β) where β = O(1/(log2(1/ε))1/6), and

(iii) a unique decoding algorithm with running time NOε,β(1).

Furthermore, if instead we take β > 0 to be an arbitrary constant, the running time becomes
(log(1/ε))O(1) · NOβ(1) (fixed polynomial time).

In this section, we will fit these objects and tools together assuming the parameters
are chosen to achieve the required rates and the conditions for applying the list decoding
results are satisfied. The concrete instantiations of Ta-Shma codes are done in Section 8.
Establishing that the list decoding framework can be applied to this construction is done
in Section 7 after which the framework is finally instantiated in Section 9.

Ta-Shma uses the direct sum lifting on an s-wide replacement product graph to con-
struct a family of ε-balanced codes CN,ε,β with rate Ω(ε2+β) and finds parameters for such
codes to have the required bias and rate. We will discuss unique decoding results for sev-
eral versions of these codes. Throughout this section, we will use collections W(k) which
will always be either the set of walks with k = s vertices on an s-wide replacement product
graph (corresponding to the first level of the code cascade), which we denote W[0, s − 1],
or a set of walks where the vertices are walks on a lower level of the code cascade.
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6.1 Unique Decoding via Code Cascading

To perform unique decoding we will use the machinery of list decoding from Theorem 6.1
(proven later in Section 9), which relies on the list decoding framework of [AJQ+20]. Prov-
ing that this framework can be applied to Ta-Shma’s construction is one of our technical
contributions.

Theorem 6.1 (List decoding direct sum lifting). Let η0 ∈ (0, 1/4) be a constant, η ∈ (0, η0),
and

k ≥ k0(η) := Θ(log(1/η)).

Suppose C ⊆ Fn
2 is an η0-balanced linear code and C ′ = dsumW(k)(C) is the direct sum lifting of

C on a τ-splittable collection of walks W(k). There exists an absolute constant K > 0 such that if

τ ≤ τ0(η, k) :=
η8

K · k · 24k ,

then the code C ′ is η-balanced and can be efficiently list decoded in the following sense:

If ỹ is (1/2 −√
η)-close to C ′, then we can compute the list

L(ỹ, C, C ′) :=
{︃
(z, dsumW(k)(z)) | z ∈ C, ∆

(︂
dsumW(k)(z), ỹ

)︂
≤ 1

2
−√

η

}︃
in time

nO(1/τ0(η,k)4) · f (n),

where f (n) is the running time of a unique decoding algorithm for C. Otherwise, we return
L(ỹ, C, C ′) = ∅ with the same running time of the preceding case.

Note that the requirement on k in the above theorem is necessary for the lifted code
C ′ to be η-balanced. Splittability will imply that the walk collection W(k) is expanding,
which gives us parity sampling for large k. Specifically, k must be large enough for W(k)
to be a (1/2 + η0/2, η)-parity sampler.

Applying the list decoding tool above, we can perform unique decoding in the regime
of η0, η, and k being constant. With these choices the expansion required for splittability
and the parity sampling strength are only required to be constants.

Lemma 6.2 (Decoding Step). Let η0 ∈ (0, 1/4) and η < min{η0, 1/16}. If W(k) is a walk
collection on vertex set [n] with k ≥ k0(η) and splittability τ ≤ τ0(η, k), where k0 and τ0 are as
in Theorem 6.1, we have the following unique decoding property:

If C ⊆ Fn
2 is an η0-balanced linear code that can be uniquely decoded in time f (n), then

C ′ = dsumW(k)(C) is an η-balanced code that can be uniquely decoded in time nO(1/τ0(η,k)4) · f (n).

Proof. Using Theorem 6.1, we can list decode C ′ up to a radius of 1/2 −√
η for any η if

we have the appropriate parameters k and τ. Let ỹ ∈ F
W(k)
2 be a received word within

the unique decoding radius of C ′. To perform unique decoding, we simply run the list
decoding algorithm on ỹ and return the codeword on the resulting list which is closest
to ỹ; this will yield the correct result as long as the list decoding radius is larger than the
unique decoding radius. It suffices to have 1/2 − √

η > 1/4 ≥ ∆(C ′)/2. We choose
parameters as follows:
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1. Take η < 1/16 to ensure 1/2 −√
η > 1/4.

2. Let k0 = Θ(log(1/η)) be the smallest integer satisfying the assumption in Theo-
rem 6.1 with the chosen η. Take k ≥ k0.

3. Take τ ≤ τ0(η, k) = η8/(K · k · 24k).

Note that k and τ satisfy the conditions of Theorem 6.1, so we can use this theorem to
list decode a received word ỹ in time nO(1/τ0(η,k)4) · f (n). To unique decode, we return the
closest y on the list to ỹ (or failure if the list is empty).

Iteratively using the decoding step given by Lemma 6.2 above, we obtain unique de-
codability of all codes in a cascade (under suitable assumptions).

Lemma 6.3 (Code Cascade Decoding). Let η0 ∈ (0, 1/4) and η < min{η0, 1/16}. Suppose
C0 ⊆ F

n0
2 , C1 ⊆ F

n1
2 , . . . , Cℓ ⊆ F

nℓ
2 is a code cascade where C0 is an η0-balanced linear code that

can be uniquely decoded in time g(n0).

If for every i ∈ [ℓ] we have that Ci is obtained from Ci−1 by a τi-splittable walk collection Wi(ki)
on vertex set [ni−1] with ki ≥ k0(η) and τi ≤ τ0(η, ki), where k0 and τ0 are as in Theorem 6.1,
then Cℓ is uniquely decodable in time

g(n0) ·
ℓ

∏
i=1

nO(1/τ0(η,ki)
4)

i−1 .

Proof. Induct on i ∈ [ℓ] applying Lemma 6.2 as the induction step. The code Ci produced
during each step will have bias at most η < η0, so the hypothesis of Lemma 6.2 will be met
at each level of the cascade.

We are almost ready to prove our first main theorem establishing decodability close to
the Gilbert–Varshamov bound. We will need parameters for an instantiation of Ta-Shma’s
code that achieves the desired distance and rate (which will be developed in Section 8.1)
and a lemma relating splittability to the spectral properties of the graphs used in the con-
struction (to be proven in Section 7.2).

Lemma 6.4 (Ta-Shma Codes I). For any β > 0, there are infinitely many values of ε ∈ (0, 1/2)
(with 0 as an accumulation point) such that for infinitely many values of N ∈ N, there are explicit
binary Ta-Shma codes CN,ε,β ⊆ FN

2 with

(i) distance at least 1/2 − ε/2 (actually ε-balanced), and

(ii) rate Ω(ε2+β).

Furthermore, CN,ε,β is the direct sum lifting of a base code C0 ⊆ F
n0
2 using the collection of walks

W[0, t − 1] on the s-wide replacement product of two graphs G and H, with the following parame-
ters:

- s ≥ s0 := max{128, 26/β}.

- The inner graph H is a regular graph with σ2(H) ≤ λ2, where λ2 = (16s3 log s)/s2s2
.
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- The outer graph G is a regular graph with σ2(G) ≤ λ1, where λ1 = λ4
2/6.

- The base code C0 is unique decodable in time nO(1)
0 and has bias ε0 ≤ λ4

2/3.

- The number of vertices t in the walks satisfies λ
2(1−5/s)(1−1/s)(t−1)
2 ≤ ε.

Lemma 6.5. Let W(k) be either the collection W[0, s− 1] of walks of length s on the s-wide replace-
ment product with outer graph G and inner graph H or the collection of walks over the vertex set
W[0, r], where r ≡ −1 (mod s). Then W(k) is τ-splittable with τ = σ2(G) + 2σ2(H) + σ2(H)2.

The statement of this first decoding theorem is more technical than Theorem 1.1, but
it will be easier to prove while the latter will build on this theorem with a more careful
tuning of parameters.

Theorem 6.6 (Main I). For every β > 0, there are infinitely many values ε ∈ (0, 1/2) (with 0 an
accumulation point) such that for infinitely many values of N ∈ N there are explicit binary linear
Ta-Shma codes CN,ε,β ⊆ FN

2 with

(i) distance at least 1/2 − ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β), and

(iii) a unique decoding algorithm with running time NOβ(log(log(1/ε))).

Proof. We proceed as follows:

1. Let η0 = 1/10 and η = 1/100 (these choices are arbitrary; we only need η0 < 1/4,
η < 1/16, and η < η0). Let k0 = k0(η) be the constant from Theorem 6.1 with this
value of η.

2. Given β > 0, Lemma 6.4 provides a value s0 such that the direct sum lifting on the
s-wide replacement product with s ≥ s0 can achieve a rate of Ω(ε2+β) for infinitely
many ε ∈ (0, 1/2). Choose s to be an integer larger than both k0 and s0 that also
satisfies

s2 ·
(︂ s

16

)︂−s2

≤ η8

4K
, (3)

where K is the constant from Theorem 6.1.

3. Use Lemma 6.4 with this value of s to obtain graphs G and H and a base code C0
having the specified parameters λ1, λ2, ε0, and t, with the additional requirement
that t = sℓ for some integer ℓ. These parameter choices ensure that the result-
ing code CN,ε,β has the desired distance and rate. Since s ≥ 128, we have λ2 =

(16s3 log s)/s2s2 ≤ s−s2
. From the choice of t satisfying λ

2(1−5/s)(1−1/s)(t−1)
2 ≤ ε, we

deduce that ℓ = O(log(log(1/ε))). Note also that the bias ε0 of the code C0 is smaller
than η0.

4. Create a code cascade with ℓ levels using the s-wide replacement product of the
graphs G and H as in Section 5.2, starting with C0 and ending with the final code
Cℓ = CN,ε,β. As the total number of vertices in a walk is t = sℓ, each level of the code
cascade will use walks with s vertices. Let C0, C1, . . . , Cℓ be the sequence of codes in
this cascade.
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5. In order to satisfy the splittability requirement of Lemma 6.3, the walk collection
Wi(s) at each level of the code cascade must be τ-splittable, where τ ≤ τ0(η, s2). (We
use k = s2 instead of k = s in the requirement for a technical reason that will be clear
in Section 8.2.) The bounds on the singular values of G and H and Lemma 6.5 ensure
that

τ = σ2(G) + 2σ2(H) + σ2(H)2 ≤ 4λ2 ≤ 4s−s2
,

which is smaller than τ0(η, s2) = η8/(K · s2 · 24s2
) by Eq. (3)

6. As all hypotheses of Lemma 6.3 are satisfied by the code cascade, we apply it to
conclude that CN,ε,β is uniquely decodable in time

g(n0) ·
ℓ

∏
i=1

nO(1/τ0(η,s)4)
i−1 ≤ NO(1) ·

ℓ

∏
i=1

NOβ(1) = NOβ(log(log(1/ε))),

where we use that C0 is uniquely decodable in time nO(1)
0 , 1/τ0(η, s) = 2O(1/β), ni−1 <

nℓ = N for every i ∈ [ℓ], and ℓ = O(log(log(1/ε))).

In the code cascade constructed in Theorem 6.6, the final number of vertices in a walk
is t = sℓ, where s is a sufficiently large constant that does not depend on ε. The limited
choices for t place some restrictions on the values of the final bias ε that can be achieved.
To achieve any bias ε for Cℓ we need to choose the parameters more carefully, which will
be done in Section 8.2 to yield our next main result.

Theorem 6.7 (Main II). For every β > 0 and every ε > 0 with β and ε sufficiently small, there
are explicit binary linear Ta-Shma codes CN,ε,β ⊆ FN

2 for infinitely many values N ∈ N with

(i) distance at least 1/2 − ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β), and

(iii) a unique decoding algorithm with running time NOβ(log(log(1/ε))).

Ta-Shma obtained codes of rate Ω(ε2+β) with vanishing β as ε goes to zero. We ob-
tain a unique decoding algorithm for this regime (with slightly slower decreasing β as ε
vanishes). More precisely, using the parameters described in Section 8.3 and the running
time analysis in Section 6.2, we obtain the following theorem which is our main result for
unique decoding.

Theorem 6.8 (Main Unique Decoding (restatement of Theorem 1.1)). For every ε > 0 suffi-
ciently small, there are explicit binary linear Ta-Shma codes CN,ε,β ⊆ FN

2 for infinitely many values
N ∈ N with

(i) distance at least 1/2 − ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β) where β = O(1/(log2(1/ε))1/6), and

(iii) a unique decoding algorithm with running time NOε,β(1).

Furthermore, if instead we take β > 0 to be an arbitrary constant, the running time becomes
(log(1/ε))O(1) · NOβ(1) (fixed polynomial time).
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Theorem 1.2 about gentle list decoding is proved in Section 8.4 after instantiating Ta-
Shma codes in some parameter regimes in the preceding parts of Section 8.

6.2 Fixed Polynomial Time

In Theorem 6.7, a running time of NOβ(log(log(1/ε))) was obtained to decode Ta-Shma codes
CN,ε,β of distance 1/2 − ε/2 and rate Ω(ε2+β) for constant β > 0 and block length N. The
running time contains an exponent which depends on the bias ε and is therefore not fixed
polynomial time. We show how to remove this dependence in this regime of β > 0 being
an arbitrary constant. More precisely, we show the following.

Theorem 6.9 (Fixed PolyTime Unique Decoding). Let β > 0 be an arbitrary constant. For
every ε > 0 sufficiently small, there are explicit binary linear Ta-Shma codes CN,ε,β ⊆ FN

2 for
infinitely many values N ∈ N with

(i) distance at least 1/2 − ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β), and

(iii) a unique decoding algorithm with fixed polynomial running time (log(1/ε))O(1) · NOβ(1).

The list decoding framework finds a list of pairs (z, y = dsum(z)) of size at most
N(1/τ0(η,k))O(1)

at each level of the code cascade and recursively issues decoding calls to all
z in this list. Since the number of lifts in the cascade is Ω(log(log(1/ε))), we end up with
an overall running time of NOβ(log(log(1/ε))).

We will describe a method of pruning these lists which will lead to fixed polynomial
running time. Let 1/2−√

η, where η > 0 is a constant, be the list decoding radius used for
a unique decoding step in the cascade. To achieve fixed polynomial time we will prune this
polynomially large list of words to a constant size at each inductive step in Lemma 6.3. As
we are working with parameters within the Johnson bound, the actual list of codewords
has constant size (1/η)O(1). At every step, we will be able to find a small sublist whose
size only depends on η that has a certain covering property, and then issue decoding calls
to this much smaller list.

Definition 6.10 (ζ-cover). Let W(k) ⊆ [n]k, C ⊆ Fn
2 be a code, A ⊆ C, and L = {(z, dsumW(k)(z)) |

z ∈ A}. We say that L′ = {(z(1), dsumW(k)(z(1))), . . . , (z(m), dsumW(k)(z(m)))} is a ζ-cover of
L if for every (z, y) ∈ L, there exists some (z′, y′) ∈ L′ with bias(z − z′) > 1− 2ζ (that is, either
∆(z, z′) < ζ or ∆(z, z′) > 1 − ζ).

Lemma 6.11 (Cover Compactness). Let W(k) ⊆ [n]k, C ⊆ Fn
2 be a linear η0-balanced code,

C ′ = dsumW(k)(C) be an η-balanced code, and ỹ ∈ F
W(k)
2 . Define

L(ỹ, C, C ′) :=
{︃
(z, dsumW(k)(z)) | z ∈ C, ∆

(︂
dsumW(k)(z), ỹ

)︂
≤ 1

2
−√

η

}︃
.

Suppose L′ is a ζ-cover of L(ỹ, C, C ′) for some ζ < 1/2. Further, suppose that for every (z′, y′) ∈
L′, we have ∆(y′, ỹ) ≤ 1/2 − √

η. If W(k) is a (1 − 2ζ, η)-parity sampler, then there exists
L′′ ⊆ L′ with |L′′| ≤ 1/η which is a (2ζ)-cover of L.
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Proof. Build a graph where the vertices are pairs (z′, y′) ∈ L′ and two vertices (z(i), y(i)),
(z(j), y(j)) are connected iff bias(z(i) − z(j)) > 1 − 2ζ. Let L′′ be any maximal independent
set of this graph. Any two vertices (z(i), y(i)), (z(j), y(j)) ∈ L′′ have bias(z(i) − z(j)) ≤ 1 −
2ζ and thus bias(y(i) − y(j)) ≤ η since W(k) is a (1 − 2ζ, η)-parity sampler. This means
that {y′′ | (z′′, y′′) ∈ L′′} is a code of distance at least 1/2 − η/2. By the condition that
∆(y′′, ỹ) ≤ 1/2 −√

η for all (z′′, y′′) ∈ L′′ and the Johnson bound, we have |L′′| ≤ 1/η.

Finally, we will show that L′′ is a (2ζ)-cover of L. Let (z, y) ∈ L. As L′ is a ζ-cover
of L, there exists a pair (z′, y′) ∈ L with bias(z − z′) > 1 − 2ζ, so z is within distance ζ
of either z′ or its complement z′. The construction of L′′ as a maximal independent set
ensures that there is some (z′′, y′′) ∈ L′′ with bias(z′ − z′′) > 1 − 2ζ, so z′′ is also within
distance ζ of either z′ or its complement z′. Applying the triangle inequality in all of the
possible cases, we see that either ∆(z, z′′) < 2ζ or ∆(z, z′′) > 1 − 2ζ, which implies L′′ is a
(2ζ)-cover of L.

To decode in fixed polynomial time, we use a modification of the list decoding re-
sult Theorem 6.1 that outputs a ζ-cover L′ of the list of codewords L instead of the list
itself. Theorem 6.1 recovers the list L by finding L′ and unique decoding every element
of it. To get L′, we use the same algorithm, but stop before the final decoding step. This
removes the unique decoding time f (n) of the base code from the running time of the
list decoding algorithm. We will apply Lemma 6.11 after each time we call this ζ-cover
algorithm to pare the list down to a constant size before unique decoding; note that this
loses a factor of 2 in the strength of the cover. To compensate for this, we will use a collec-
tion W(k) with stronger parity sampling than required for Theorem 6.1. In that theorem,
W(k) was a (1/2 + η0/2, η)-parity sampler to ensure that we obtained words within the
list decoding radius (1/4 − η0/4) of the base code. By using a stronger parity sampler,
the words in the pruned list L′′ will still be within the unique decoding radius even after
accounting for the loss in the bias from cover compactness, which means decoding will
still be possible at every level of the cascade. Fortunately, improving the parity sampling
only requires increasing the walk length k by a constant multiplicative factor. The cover
retrieval algorithm below will be proven in Section 9.

Theorem 6.12 (Cover retrieval for direct sum lifting). Let η0 ∈ (0, 1/4) be a constant, η ∈
(0, η0), ζ = 1/8 − η0/8, and

k ≥ k′0(η) := Θ(log(1/η)).

Suppose C ⊆ Fn
2 is an η0-balanced linear code and C ′ = dsumW(k)(C) is the direct sum lifting of

C on a τ-splittable collection of walks W(k). There exists an absolute constant K > 0 such that if

τ ≤ τ0(η, k) :=
η8

K · k · 24k ,

then the code C ′ is η-balanced, W(k) is a (1 − 2ζ, η)-parity sampler, and we have the following:

If ỹ is (1/2 −√
η)-close to C ′, then we can compute a ζ-cover L′ of the list

L(ỹ, C, C ′) :=
{︃
(z, dsumW(k)(z)) | z ∈ C, ∆

(︂
dsumW(k)(z), ỹ

)︂
≤ 1

2
−√

η

}︃
in which ∆(y′, ỹ) ≤ 1/2 −√

η for every (z′, y′) ∈ L′, in time

nO(1/τ0(η,k)4).
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Otherwise, we return L′ = ∅ with the same running time of the preceding case.

We now have all of the pieces necessary to prove Theorem 6.9. The process is essen-
tially the same as our earlier unique decoding algorithm, except we use the cover retrieval
algorithm from Theorem 6.12 instead of the full list decoding from Theorem 6.1. This al-
lows us to insert a list pruning step in between obtaining the ζ-cover and calling the unique
decoding algorithm for the previous level of the cascade.

Proof of Theorem 6.9. We use the code CN,ε,β from Theorem 6.7 to get the desired distance
and rate, with the slight modification of ensuring s is larger than k′0 from Theorem 6.12
rather than k0 from Theorem 6.1.

Each level of the code cascade between Ci−1 and Ci uses constant η0 < 1/4 and η <
min{η0, 1/16}, which allows for decoding in a similar fashion to Lemma 6.2 and Lemma 6.3.
The difference is that we use Theorem 6.12 as the decoding step to obtain a ζ-cover L′ of the
list L(ỹ, Ci−1, Ci) for ỹ ∈ F

ni
2 , where ζ = 1/8 − η0/8. By Lemma 6.11 and the fact that the

walk collection is a (1 − 2ζ, η)-parity sampler, L has a (2ζ)-cover L′′ ⊆ L′ of size at most
1/η. The covering property says that for every (z, y) ∈ L, there exists some (z′′, y′′) ∈ L′′

such that z is within distance 2ζ = 1/4 − η0/4 of either z′′ or its complement z′′. This is
the unique decoding radius of the η0-balanced code Ci−1, so we can recursively decode the
list

L′′ ∪ {(z′′, dsum(z′′)) | (z′′, dsum(z′′)) ∈ L′′}

to obtain the complete list of codewords in Ci−1.

Now we analyze the running time. On each level of the code cascade, we run the cover
retrieval algorithm once to get L′, prune the cover to get L′′, and then feed the union of
L′′ and its complement (which has size at most 2/η) into the unique decoding algorithm
for the next level of the cascade. Letting Ti(ni) be the running time of unique decoding a
single word in the code Ci ⊆ F

ni
2 , we have the following recurrence:

Ti(ni) ≤ nO(1/τ0(η,k)4)
i +

2
η
· Ti−1(ni−1) and T0(n0) = nO(1)

0 .

Note that the base code C0 has constant bias ε0 and thus it has a fixed polynomial time
decoding algorithm (e.g. Theorem 6.7). The height of the recursive call tree is the number
of levels in the code cascade, which is ℓ = O(log(log(1/ε))), as in the proof of Theo-
rem 6.6. Each node of this tree has a constant branching factor of 2/η. Thus, the tree has

(log(1/ε))O(1) nodes, each of which costs at most nO(1/τ0(η,k)4)
i ≤ NO(1/τ0(η,k)4) time. Fur-

thermore, in this regime of β > 0 being a constant, k is constant as well as η, so we have
NO(1/τ0(η,k)4) = NOβ(1) and the total running time is (log(1/ε))O(1) · NOβ(1).

7 Satisfying the List Decoding Framework Requirements

The list decoding framework of [AJQ+20] is capable of decoding codes obtained from di-
rect sum liftings, provided they satisfy a few requisite properties. The framework was
originally shown to work for expander walks; we need to adapt it to our case of a code
cascade based on walks on the s-wide replacement product. We will start with a broad
overview of the list decoding algorithm and point out where various requirements arise.
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The problem of finding a list of codewords in a direct sum lifting close to a received
word can be viewed as finding approximate solutions to a k-XOR instance. This is done
by solving a particular SOS program and rounding the resulting solution. The algorithm
is unable to perform rounding if the k-XOR instance is based on an arbitrary collection
of walks W(k); it can only handle liftings in which W(k) satisfies a property called tenso-
riality. If W(k) is tensorial, the SOS local variables in the solution can be approximated
by product distributions, which will allow us to obtain a list of solutions by independent
rounding. Tensoriality for expander walks is a consequence of a simpler property known
as splittability, which is a certain measure of the expansion of a walk collection.

Unfortunately, the list returned by the rounding process will not contain codewords
directly—instead, we only get a guarantee that all of the codewords we are looking for
have a weak agreement (just over 1/2) with something on this list. We will find the desired
codewords by relying on the parity sampling of W(k). If W(k) is a sufficiently strong parity
sampler, weak agreement in the lifted space corresponds to a much stronger agreement in
the ground space. This will allow us to recover the codewords using the unique decoding
algorithm of the base code.

To recap, applying the list decoding framework in our setting requires doing the fol-
lowing:

1. Proving parity sampling for the walks used in the code cascade (Section 7.1).

2. Showing that the walk collection of the s-wide replacement product is splittable (Sec-
tion 7.2).

3. Making Ta-Shma’s construction compatible with the Sum-of-Squares machinery (Sec-
tion 7.3) and then obtaining tensoriality from splittability (Section 7.4).

An additional complication is introduced by using a code cascade instead of a single
decoding step: the above requirements need to be satisfied at every level of the cascade.
The details of the proofs will often differ between the first level of the cascade, which is
constructed using walks on the s-wide replacement product, and higher levels, which are
walks on a directed graph whose vertices are walks themselves. Once we have established
all of the necessary properties, we will instantiate the list decoding framework in Section 9.

We will first define some convenient notation which will be used throughout this sec-
tion.

Notation 7.1. Let G be a d1-regular outer graph and H be a d2-regular inner graph used in Ta-
Shma’s s-wide replacement product.

Let 0 ≤ k1 ≤ k2 be integers. We define W[k1, k2] to be the set of all walks starting at time
k1 and ending at time k2 in Ta-Shma’s construction. More precisely, since G and H are regular
graphs, the collection W[k1, k2] contains all walks obtained by sampling a uniform vertex (v, h) ∈
V(G)× V(H) and applying the operator

(I⊗ AH)Gk2−1(I⊗ AH) · · · (I⊗ AH)Gk1(I⊗ AH),

where the index i of each Gi is taken modulo s. Observe that when k1 = k2, we have W[k1, k2] =
V(G)× V(H).
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We define a family of Markov operators which will play a similar role to the graphsˆ︁Gi from the cascade described in Section 5.1, but for Ta-Shma’s construction rather than
expander walks.

Definition 7.2 (Split Operator). Let 0 ≤ k1 ≤ k2 < k3. We define the graph walk split operator

Sk1,k2,k3 : RW[k2+1,k3] → RW[k1,k2]

such that for every f ∈ RW[k2+1,k3],

(Sk1,k2,k3( f )) (w) := Ew′ :ww′∈W[k1,k3][ f (w′)],

where ww′ denotes the concatenation of the walks w and w′. The operator Sk1,k2,k3 can be defined
more concretely in matrix form such that for every w ∈ W[k1, k2] and w′ ∈ W[k2 + 1, k3],

(Sk1,k2,k3)w,w′ =
1ww′∈W[k1,k3]

|{w̃ : ww̃ ∈ W[k1, k3]}|
=

1ww′∈W[k1,k3]

d2(k3−k2)
2

.

7.1 Parity Sampling for the Code Cascade

To be able to apply the list decoding machinery to the code cascade C0 ⊆ F
n0
2 , C1 ⊆

F
n1
2 , . . . , Cℓ ⊆ F

nℓ
2 , we need the direct sum lifting at every level to be a parity sampler.

The first level in the cascade uses walks directly on the s-wide replacement product, which
we can show is a good parity sampler using the spectral properties proven in Section 4.3.1.
However, it will be more convenient for calculating parameters later on to prove a weaker
result, which will suffice for our purposes since we only need to obtain constant bias for
every level of the cascade. We analyze the parity sampling of these walks with the same
strategy Ta-Shma employed to show parity sampling for walks on expander graphs (which
resulted in Theorem 5.2).

Claim 7.3. Let W[0, s − 1] be the collection of walks on the s-wide replacement product of the
graphs G and H and z ∈ F

V(G)
2 be a word with bias(z) ≤ η0. Let Pz be the diagonal matrix with

entries (Pz)(v,h),(v,h) = (−1)zv for (v, h) ∈ V(G)× V(H). If σ2((I⊗ AH)Gi(I⊗ AH)) ≤ γ for
all 0 ≤ i ≤ s − 2, then⃦⃦⃦⃦

⃦s−2

∏
i=0

(I⊗ AH)Gi(I⊗ AH)Pz

⃦⃦⃦⃦
⃦

2

≤ (η0 + 2γ)⌊(s−1)/2⌋.

Proof. Let 0 ≤ j < s − 2 be even. Take a vector v ∈ RV(G)×V(H) with ∥v∥2 = 1 and let v∥

and v⊥ be its parallel and orthogonal components to the all ones vector. For 0 ≤ i ≤ s − 2,
let Ai = (I⊗ AH)Gi(I⊗ AH). Consider two terms Aj+1PzAjPz of the product appearing in

29



the claim. Since Pz is unitary,
⃦⃦
Aj+1PzAjPz

⃦⃦
2 =

⃦⃦
Aj+1PzAj

⃦⃦
2. We have⃦⃦

Aj+1PzAjv
⃦⃦

2 ≤
⃦⃦⃦
Aj+1PzAjv∥

⃦⃦⃦
2
+
⃦⃦⃦
Aj+1PzAjv⊥

⃦⃦⃦
2

≤
⃦⃦⃦
Aj+1PzAjv∥

⃦⃦⃦
2
+
⃦⃦⃦
Ajv⊥

⃦⃦⃦
2

≤
⃦⃦⃦
Aj+1Pzv∥

⃦⃦⃦
2
+ σ2(Aj)

≤
⃦⃦⃦
Aj+1(Pzv∥)∥

⃦⃦⃦
2
+
⃦⃦⃦
Aj+1(Pzv∥)⊥

⃦⃦⃦
2
+ σ2(Aj)

≤
⃦⃦⃦
(Pzv∥)∥

⃦⃦⃦
2
+ σ2(Aj+1) + σ2(Aj)

≤ η0 + 2γ.

Applying this inequality to every two terms of the product, the result follows.

Corollary 7.4. Let W[0, s − 1] be the collection of walks on the s-wide replacement product of
the graphs G and H and η0 > 0. If σ2((I⊗ AH)Gi(I⊗ AH)) ≤ γ for all 0 ≤ i ≤ s − 2, then
W[0, s − 1] is an (η0, η)-parity sampler, where η = (η0 + 2γ)⌊(s−1)/2⌋.

Proof. Let z ∈ Fn
2 have bias at most η0. The bias of dsumW[0,s−1](z) is given by 7

bias(dsumW[0,s−1](z)) =

⃓⃓⃓⃓
⃓
⟨︄

1,Pz

(︄
s−2

∏
i=0

(I⊗ AH)Gi(I⊗ AH)Pz

)︄
1

⟩︄⃓⃓⃓⃓
⃓ ,

where Pz is the diagonal matrix with entries (Pz)(v,h),(v,h) = (−1)zv for (v, h) ∈ V(G) ×
V(H) and 1 is the all-ones vector. Since Pz is unitary, we have

bias(dsumW[0,s−1](z)) ≤
⃦⃦⃦⃦
⃦s−2

∏
i=0

(I⊗ AH)Gi(I⊗ AH)Pz

⃦⃦⃦⃦
⃦

2

≤ (η0 + 2γ)⌊(s−1)/2⌋ = η

by Claim 7.3. Hence W[0, s − 1] is an (η0, η)-parity sampler.

For higher levels of the cascade, we need to prove parity sampling for collections of
walks over walks. Since the walks on the first level contain s vertices, when we take walks
on higher levels, the operator linking different walks together will always use Gs−1 as
the walk operator for the G step. Thus we can consider a more specific form of the split
operator where we split at a time parameter that is one less than a multiple of s.

Definition 7.5. Let r ≡ −1 (mod s) be a positive integer. We define the operator S△r,r as

S△r,r = Sk1,k2,k3 ,

where k1 = 0, k2 = r, and k3 = 2r + 1. In this case, W[k1, k2] = W[k2 + 1, k3].

All levels of the code cascade beyond the first use walks generated by the directed
operator S△r,r. Proving parity sampling for these walks is analogous to the proof of Corol-
lary 7.4, but slightly simpler since the walk operator doesn’t change with each step.

7This is slightly different from the expression for the bias given in Section 4.3, but both are equal since
moving on the H component of the graph doesn’t affect the bit assigned to a vertex.
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Claim 7.6. Let r ≡ −1 (mod s) be a positive integer and z ∈ F
W[0,r]
2 be a word with bias(z) ≤

η0. Let ˜︁Pz be the diagonal matrix with entries (˜︁Pz)w,w = (−1)zw for w ∈ W[0, r]. For every
integer k ≥ 1, we have ⃦⃦⃦⃦(︂

S△r,r˜︁Pz

)︂k−1
⃦⃦⃦⃦

2
≤
(︂

η0 + 2 · σ2

(︂
S△r,r

)︂)︂⌊(k−1)/2⌋
.

Proof. Take a vector v ∈ RW[0,r] with ∥v∥2 = 1 and let v∥ and v⊥ be its parallel and orthog-

onal components to the all ones vector. Since ˜︁Pz is unitary,
⃦⃦⃦
S△r,r˜︁PzS

△
r,r˜︁Pz

⃦⃦⃦
2
=
⃦⃦⃦
S△r,r˜︁PzS

△
r,r

⃦⃦⃦
2
.

We have ⃦⃦⃦
S△r,r˜︁PzS

△
r,rv
⃦⃦⃦

2
≤
⃦⃦⃦
S△r,r˜︁PzS

△
r,rv∥

⃦⃦⃦
2
+
⃦⃦⃦
S△r,r˜︁PzS

△
r,rv⊥

⃦⃦⃦
2

≤
⃦⃦⃦
S△r,r˜︁PzS

△
r,rv∥

⃦⃦⃦
2
+
⃦⃦⃦
S△r,rv⊥

⃦⃦⃦
2

≤
⃦⃦⃦
S△r,r˜︁Pzv∥

⃦⃦⃦
2
+ σ2(S

△
r,r)

≤
⃦⃦⃦
S△r,r(˜︁Pzv∥)∥

⃦⃦⃦
2
+
⃦⃦⃦
S△r,r(˜︁Pzv∥)⊥

⃦⃦⃦
2
+ σ2(S

△
r,r)

≤
⃦⃦⃦
(˜︁Pzv∥)∥

⃦⃦⃦
2
+ σ2(S

△
r,r) + σ2(S

△
r,r)

≤ η0 + 2 · σ2(S
△
r,r).

As
⃦⃦⃦
(S△r,r˜︁Pz)k−1

⃦⃦⃦
2
≤
⃦⃦⃦
(S△r,r˜︁Pz)2

⃦⃦⃦⌊(k−1)/2⌋
, the result follows.

Corollary 7.7. Let r ≡ −1 (mod s) be a positive integer and η0 > 0. The collection of walks
W(k) with k vertices over the vertex set W[0, r] using random walk operator S△r,r is an (η0, η)-parity
sampler, where η = (η0 + 2 · σ2(S

△
r,r))

⌊(k−1)/2⌋.

Proof. Let z ∈ F
W[0,r]
2 have bias at most η0. The bias of the direct sum lifting of z is given by

bias(dsumW(k)(z)) =
⃓⃓⃓⟨︂

1, ˜︁Pz(S
△
r,r˜︁Pz)

k−11
⟩︂⃓⃓⃓

,

where ˜︁Pz is the diagonal matrix with entries (˜︁Pz)w,w = (−1)zw for w ∈ W[0, r] and 1 is the
all-ones vector. Since ˜︁Pz is unitary, we have⃓⃓⃓⟨︂

1, ˜︁Pz(S
△
r,r˜︁Pz)

k−11
⟩︂⃓⃓⃓

≤
⃦⃦⃦⃦(︂

S△r,r˜︁Pz

)︂k−1
⃦⃦⃦⃦

2
≤
(︂

η0 + 2 · σ2

(︂
S△r,r

)︂)︂⌊(k−1)/2⌋
= η

by Claim 7.6. Hence W(k) is an (η0, η)-parity sampler.

7.2 Splittability of Ta-Shma’s Construction

We investigate the splittability of the collection of walks generated by Ta-Shma’s construc-
tion. In order to formally define this property, we will need the concept of an interval
splitting tree, which describes how a walk is split into smaller and smaller pieces.

Definition 7.8 (Interval Splitting Tree). We say that a binary rooted tree T is a k-interval split-
ting tree if it has exactly k leaves and
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- the root of T is labeled with (0, m, k − 1) for some m ∈ {0, 1, . . . , k − 2}, and

- each non-leaf non-root vertex v of T is labeled with (k1, k2, k3) for some integer k2 ∈ [k1, k3 −
1]. Suppose (k′1, k′2, k′3) is the label assigned to the parent of v. If v is a left child, we must
have k1 = k′1 and k3 = k′2; otherwise, we must have k1 = k′2 + 1 and k3 = k′3.

Given an interval splitting tree T , we can naturally associate a split operator Sk1,k2,k3

to each internal node (k1, k2, k3). The splittability of a collection W[0, k − 1] of k-tuples is a
notion of expansion at every node in the splitting tree.

Definition 7.9 ((T , τ)-splittability). The collection W[0, k − 1] is said to be (T , τ)-splittable if
T is a k-interval splitting tree and

σ2(Sk1,k2,k3) ≤ τ

for every internal node (k1, k2, k3) of T .

If there exists some k-interval splitting tree T such that W[0, k − 1] is (T , τ)-splittable, then
W[0, k − 1] will be called τ-splittable.

In order to prove that the collection of walks in Ta-Shma’s construction is splittable,
a split operator Sk1,k2,k3 can be related to the walk operator (I⊗ AH)Gk2(I⊗ AH) as shown
below. This structural property will allow us to deduce spectral properties of Sk1,k2,k3 from
the spectrum of (I⊗ AH)Gk2(I⊗ AH).

Lemma 7.10. Let 0 ≤ k1 ≤ k2 < k3. Suppose G is a d1-regular outer graph on vertex set [n] with
walk operator Gk2 used at step k2 of a walk on the s-wide replacement product and H is a d2-regular
inner graph on vertex set [m] with normalized random walk operator AH. Then there are orderings
of the rows and columns of the representations of Sk1,k2,k3 and AH as matrices such that

Sk1,k2,k3 = ((I⊗ AH)Gk2(I⊗ AH))⊗ J/d2(k3−k2−1)
2 ,

where J ∈ R[d2]
2(k2−k1)×[d2]

2(k3−k2−1)
is the all ones matrix.

Proof. Partition the set of walks W[k1, k2] into the sets W1,1, . . . , Wn,m, where w ∈ Wi,j if the
last vertex of the walk wk2 = (vk2 , hk2) satisfies vk2 = i and hk2 = j. Similarly, partition
W[k2 + 1, k3] into the sets W ′

1,1, . . . , W ′
n,m, where w′ ∈ W ′

i,j if the first vertex of the walk

w′
1 = (v1, h1) satisfies v1 = i and h1 = j. Note that

⃓⃓
Wi,j

⃓⃓
= d2(k2−k1)

2 and
⃓⃓⃓
W ′

i,j

⃓⃓⃓
= d2(k3−k2−1)

2

for all (i, j) ∈ [n]× [m], since there are d2
2 choices for each step of the walk.

Now order the rows of the matrix Sk1,k2,k3 so that all of the rows corresponding to walks
in W1,1 appear first, followed by those for walks in W1,2, and so on in lexicographic order
of the indices (i, j) of Wi,j, with an arbitrary order within each set. Do a similar re-ordering
of the columns for the sets W ′

1,1, . . . , W ′
1,m. Observe that

(Sk1,k2,k3)w,w′ =
1ww′∈W[k1,k3]

d2(k3−k2)
2

=
d2

2 · (weight of transition from (vk2 , hk2) to (v′1, h′1) in (I⊗ AH)Gk2(I⊗ AH))

d2(k3−k2)
2

,
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which only depends on the adjacency of the last vertex of w and the first vertex of w′. If
the vertices wk2 = (vk2 , hk2) and w′

1 = (v1, h1) are adjacent, then

(Sk1,k2,k3)w,w′ = ((I⊗ AH)Gk2(I⊗ AH))(vk2 ,hk2 ),(v
′
1,h′1)

/d2(k3−k2−1)
2 ,

for every w ∈ Wwk2
and w′ ∈ W ′

wk1
; otherwise, (Sk1,k2,k3)w,w′ = 0. Since the walks in the

rows and columns are sorted according to their last and first vertices, respectively, the
matrix Sk1,k2,k3 exactly matches the tensor product ((I⊗ AH)Gk2(I⊗ AH))⊗ J/d2(k3−k2−1)

2 .

Corollary 7.11. Let 0 ≤ k1 ≤ k2 < k3. Suppose G is a d1-regular outer graph with walk operator
Gk2 used at step k2 of a walk on the s-wide replacement product and H is a d2-regular inner graph
with normalized random walk operator AH. Then

σ2(Sk1,k2,k3) = σ2((I⊗ AH)Gk2(I⊗ AH)).

Proof. Using Lemma 7.10 and the fact that

σ2(((I⊗ AH)Gk2(I⊗ AH))⊗ J/d2(k3−k2−1)
2 ) = σ2((I⊗ AH)Gk2(I⊗ AH)),

the result follows.

Remark 7.12. Corollary 7.11 is what causes the splittability argument to break down for Ta-Shma’s
original construction, as σ2(Gk2(I⊗ AH)) = 1.

By combining this result with the spectral bound from Fact 4.4, we find that the col-
lection of walks of length s on the s-wide replacement product is (T , τ)-splittable for any
splitting tree T , where τ is controlled by the second singular values of the graphs G and
H. This analysis can also be applied to walks on higher levels of the cascade where the
vertex set is W[0, r].

Corollary 7.13 (Restatement of Lemma 6.5). The collection of walks W[0, s − 1] on the s-wide
replacement product with outer graph G and inner graph H and the collection of walks W(k) on
the vertex set W[0, r] with random walk operator S△r,r and r ≡ −1 (mod s) are both τ-splittable
with τ = σ2(G) + 2σ2(H) + σ2(H)2.

Proof. By Corollary 7.11 and Fact 4.4, the split operator Sk1,k2,k3 for any 0 ≤ k1 ≤ k2 < k3
satisfies

σ2(Sk1,k2,k3) = σ2((I⊗ AH)Gk2(I⊗ AH)) ≤ σ2(G) + 2σ2(H) + σ2(H)2,

so W[0, s − 1] is τ-splittable with τ = σ2(G) + 2σ2(H) + σ2(H)2, as any internal node
(k1, k2, k3) of any s-interval splitting tree will have σ2(Sk1,k2,k3) ≤ τ. The split operators
of any k-interval splitting tree for the collection W(k) are of the form Sk1,k2,k3 with k1 ≡ 0
(mod s) and k2, k3 ≡ −1 (mod s), which means W(k) is τ-splittable as well.

7.3 Integration with Sum-of-Squares

Before defining tensoriality and obtaining it in our setting, we examine how the Sum-of-
Squares hierarchy is used in the list decoding algorithm in more detail.
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7.3.1 SOS Preliminaries: p-local PSD Ensembles

The SOS hierarchy gives a sequence of increasingly tight semidefinite programming re-
laxations for several optimization problems, including CSPs. Since we will use relatively
few facts about the SOS hierarchy, already developed in the analysis of Barak, Raghaven-
dra and Steurer [BRS11], we will adapt their notation of p-local distributions to describe the
relaxations.

Solutions to a semidefinite relaxation of a CSP on n boolean variables using p levels of
the SOS hierarchy induce probability distributions µS over FS

2 for any set S ⊆ [n] with |S| ≤
p. These distributions are consistent on intersections: for T ⊆ S ⊆ [n], we have µS|T =
µT, where µS|T denotes the restriction of the distribution µS to the set T. We use these
distributions to define a collection of random variables Z1, . . . , Zn taking values in F2 such
that for any set S with |S| ≤ p, the collection of variables {Zi}i∈S has joint distribution µS.
Note that the entire collection {Z1, . . . , Zn} may not have a joint distribution: this property
is only true for sub-collections of size at most p. We will refer to the collection {Z1, . . . , Zn}
as a p-local ensemble of random variables.

For any T ⊆ [n] with |T| ≤ p − 2 and any ξ ∈ FT
2 , we can define a (p − |T|)-local en-

semble {Z′
1, . . . , Z′

n} by “conditioning” the local distributions on the event ZT = ξ, where
ZT is shorthand for the collection {Zi}i∈T. For any S with |S| ≤ p − |T|, we define the
distribution of Z′

S as µ′
S := µS∪T|{ZT = ξ}.

Finally, the semidefinite program also ensures that for any such conditioning, the con-
ditional covariance matrix

M(S1,α1)(S2,α2) = Cov
(︂

1[Z′
S1
=α1], 1[Z′

S2
=α2]

)︂
is positive semidefinite, where |S1| , |S2| ≤ (p − |T|)/2. Here, for each pair S1, S2 the co-
variance is computed using the joint distribution µ′

S1∪S2
. In this paper, we will only con-

sider p-local ensembles such that for every conditioning on a set of size at most (p − 2),
the conditional covariance matrix is PSD. We will refer to these as p-local PSD ensembles.
We will also need a simple corollary of the above definitions.

Fact 7.14. Let {Z1, . . . , Zn} be a p-local PSD ensemble and W(k) ⊆ [n]k For 1 ≤ i < k, define
W(i) ⊆ [n]i to be the collection of tuples of size i appearing in elements of W(k). For all p′ ≤ p/2,
the collection

{︂
Zset(w)

}︂
w∈W(≤p′)

is a (p/p′)-local PSD ensemble, where W(≤ p′) =
⋃︁p′

i=1 W(i).

For random variables ZS in a p-local PSD ensemble, we use the notation {ZS} to denote
the distribution of ZS (which exists when |S| ≤ p). As we will work with ordered tuples
of variables instead of sets, we define Zw for w ∈ [n]k based on the set Sw = set(w), taking
care that repeated elements of w are always assigned the same value.

Definition 7.15 (Plausible assignment). Given w = (w1, . . . , wk) ∈ [n]k and an assignment
α ∈ Fw

2 , we say that α is plausible for w if there are no distinct i, j ∈ [k] such that wi = wj but
αi ̸= αj.

The distribution {Zw} = µw is defined as µw(α) = µSw(α|Sw) if α ∈ Fw
2 is plausible for

w, and µw(α) = 0 otherwise.
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7.3.2 Tensoriality

A key algorithm in the list decoding framework is propagation rounding (Algorithm 7.16),
which solves a CSP to find solutions close to a codeword. Suppose W(k) ⊆ [n]k is a collec-
tion of walks, or more generally, a collection of any k-tuples. The algorithm starts with a
local PSD ensemble {Z1, . . . , Zn} which is the solution to an SOS program for list decoding.
Propagation rounding takes this solution and conditions some of the variables according
to a random assignment to these variables to yield another local PSD ensemble Z′.

Algorithm 7.16 (Propagation Rounding Algorithm, adapted from [AJQ+20]).
Input An (L + 2k)-local PSD ensemble {Z1, . . . , Zn} and collection W(k) ⊆ [n]k.

Output A random assignment (σ1, . . . , σn) ∈ Fn
2 and 2k-local PSD ensemble Z′.

1. Choose m ∈ {1, . . . , L/k} uniformly at random.

2. For j = 1, . . . , m, sample a walk wj independently and uniformly from W(k).

3. Write S =
⋃︁m

j=1 set(wj) for the set of the seed vertices.

4. Sample an assignment σ : S → F2 according to the local distribution {ZS}.

5. Set Z′ = {Z1, . . . , Zn|ZS = σ}, i.e. the local ensemble Z conditioned on agreeing with σ.

6. For all i ∈ [n], sample independently σi ∼ {Z′
i}.

7. Output (σ1, . . . , σn) and Z′.

If the collection W(k) ⊆ [n]k used in the direct sum lifting is amenable to SOS rounding,
the conditioned ensemble Z′ will be able to recover a word close to some codeword on
the list. This is quantified by the following tensorial properties. We will see shortly how
splittability will be used to obtain tensoriality in our setting.

Definition 7.17 (Tensorial Walk Collection). Let W(k) ⊆ [n]k, µ ∈ [0, 1], and L ∈ N. Define
Ω to be the set of all tuples (m, S, σ) obtainable in propagation rounding (Algorithm 7.16) on W(k)
with SOS degree parameter L. We say that W(k) is (µ, L)-tensorial if the local PSD ensemble Z′

returned by propagation rounding satisfies

E
Ω

E
w∈W(k)

⃦⃦⃦
{Z′

w} −
{︂

Z′
w(1)

}︂
· · ·
{︂

Z′
w(k)

}︂⃦⃦⃦
1
≤ µ. (4)

The framework actually uses a strengthening of the above property, in which variables
for pairs of walks chosen independently approximately behave as a product.

Definition 7.18 (Two-Step Tensorial Walk Collection). Let W(k) ⊆ [n]k, µ ∈ [0, 1], and
L ∈ N. Define Ω to be the set of all tuples (m, S, σ) obtainable in propagation rounding (Algo-
rithm 7.16) on W(k) with SOS degree parameter L. We say that W(k) is (µ, L)-two-step tensorial
if it is (µ, L)-tensorial and the local PSD ensemble Z′ returned by propagation rounding satisfies
the additional condition

E
Ω

E
w,w′∈W(k)

⃦⃦
{Z′

wZ′
w′} −

{︁
Z′

w
}︁{︁

Z′
w′
}︁⃦⃦

1 ≤ µ.

35



7.3.3 From Directed to Undirected

In order to apply the list decoding framework using the directed split operator Sk1,k2,k3 , we
will replace it with the symmetrized version

U (Sk1,k2,k3) =

(︃
0 Sk1,k2,k3

(Sk1,k2,k3)
† 0

)︃
and show how U (Sk1,k2,k3) corresponds to a particular undirected graph.

Definition 7.19. Let 0 ≤ k1 ≤ k2 < k3. We define the operator Sk2,k3,k1 : RW[k1,k2] → RW[k2+1,k3]

such that for every f ∈ RW[k1,k2],

(Sk2,k3,k1( f )) (w′) := Ew:ww′∈W[k1,k3][ f (w)],

for every w′ ∈ W[k2 + 1, k3].

The operator U (Sk1,k2,k3) defines an undirected weighted bipartite graph on the vertices
W[k1, k2]∪W[k2 + 1, k3]. We can see that Sk2,k3,k1 is the adjoint of Sk1,k2,k3 , which means that
each edge ww′ in this graph is weighted according to the transition probability from one
walk to the other whenever one of w, w′ is in W[k1, k2] and the other is in W[k2 + 1, k3].

Claim 7.20.
(Sk1,k2,k3)

† = Sk2,k3,k1 .

Proof. Let f ∈ CW[k1,k2] and g ∈ CW[k2+1,k3]. For i ≤ j, define Πi,j to be the uniform distribu-
tion on W[i, j]. We show that ⟨ f ,Sk1,k2,k3 g⟩ = ⟨Sk2,k3,k1 f , g⟩. On one hand we have

⟨ f ,Sk1,k2,k3 g⟩ = Ew∈W[k1,k2]

[︂
f (w)Ew′ :ww′∈W[k1,k3][g(w

′)]
]︂

= Ew∈W[k1,k2]

[︄
f (w) ∑

w′∈W[k2+1,k3]

Πk1,k3(ww′)

Πk1,k2(w)
g(w′)

]︄

= ∑
w∈W[k1,k2]

Πk1,k2(w) f (w) ∑
w′∈W[k2+1,k3]

Πk1,k3(ww′)

Πk1,k2(w)
g(w′)

= ∑
ww′∈W[k1,k3]

f (w)g(w′)Πk1,k3(ww′).

On the other hand we have

⟨Sk2,k3,k1 f , g⟩ = Ew′∈W[k2+1,k3]

[︂
Ew:ww′∈W[k1,k3][ f (w)]g(w′)

]︂
= Ew′∈W[k2+1,k3]

[︄
∑

w∈W[k1,k2]

Πk1,k3(ww′)

Πk2+1,k3(w′)
f (w)g(w′)

]︄

= ∑
w′∈W[k2+1,k3]

Πk2+1,k3(w
′) ∑

w∈W[k1,k2]

Πk1,k3(ww′)

Πk2+1,k3(w′)
f (w)g(w′)

= ∑
ww′∈W[k1,k3]

f (w)g(w′)Πk1,k3(ww′).

Hence, Sk2,k3,k1 = (Sk1,k2,k3)
† as claimed.
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7.3.4 Variables for Walks on the s-wide Replacement Product

When analyzing walks on the s-wide replacement product, we actually need to use two
separate, but related, local PSD ensembles. In Ta-Shma’s construction, the vertices of the
outer graph G correspond to positions in the base code C0 ⊆ Fn

2 , where n = |V(G)|. Given
a vertex (v, h) ∈ V(G)× V(H) in the s-wide replacement product and codeword z ∈ C0,
(v, h) is assigned bit zv, regardless of the vertex h of the inner graph. We will enforce
this property by working with variables in V(G) rather than the full V(G)× V(H). The
local PSD ensemble Z = {Zv}v∈V(G) contains one variable for every vertex of G, with
local distributions for sets of variables up to a given size. For a walk w on the s-wide
replacement product, we will use Zw as an abbreviation for ZSw , where Sw is the set of all
G-components of vertices visited on the walk.

The constraints of the CSP are placed on walks on the s-wide replacement product that
do care about the H-component of the vertices, so we define a second local PSD ensemble
Y = {Y(v,h)}(v,h)∈V(G)×V(H) with a variable for each vertex of the s-wide replacement prod-
uct of G and H. It is this collection Y for which we need to prove tensoriality in order to
use the list decoding framework. When we perform propagation rounding, we condition
the ensemble Z on a random assignment σ to a subset S ⊆ V(G), rather than condition-
ing Y on a random assignment to a subset of V(G)× V(H). Working with Z ensures that
the rounded assignments will be consistent on each cloud of the s-wide replacement prod-
uct. Since the bit assigned to a vertex (v, h) only depends on v, independent rounding of
{Z | ZS = σ} will also yield the desired rounding of {Y | ZS = σ}.

We can define Y based on the ensemble Z more concretely. Suppose S′ ⊆ V(G)×V(H)
is a subset of size at most p, where p is the locality of the ensemble, and define T = {v |
(v, h) ∈ S′}. The distribution µS′ of YS′ is defined based on the distribution µT of ZT by
µS′(α) = µT(α|T), where α ∈ FS′

2 is an assignment to S′ whose value on each vertex (v, h)
only depends on v.

Observe that the introduction of the ensemble Y is only necessary on the first level of
the Ta-Shma code cascade between the codes C0 and C1, which takes place on the s-wide
replacement product. Higher levels of the cascade use walks on graphs whose vertices are
the walks from the level below. The association of the bits of a codeword to the vertices
of this graph has no consistency requirement, so we simply use a single local ensemble Z
with a variable for each vertex.

7.4 Splittability Implies Tensoriality

The connection between splittability and tensoriality will be made with the help of a ver-
sion of the triangle inequality.

Claim 7.21 (Triangle inequality, adapted from [AJQ+20]). Let s ∈ N+ and T be an s-interval
splitting tree. Then

E
w∈W[0,s−1]

⃦⃦⃦⃦
⃦{Zw} −

s−1

∏
i=0

{︂
Zw(i)

}︂⃦⃦⃦⃦⃦
1

≤ ∑
(k1,k2,k3)∈T

E
w∈W[k1,k3]

⃦⃦⃦
{Zw} −

{︂
Zw(k1,k2)

}︂{︂
Zw(k2+1,k3)

}︂⃦⃦⃦
1
,

where the sum is taken over the labels of the internal nodes of T .
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To prove tensoriality, we will use the method of [BRS11] and [AJT19] to show that we
can break correlations over expanding collections of tuples arising in the s-wide replace-
ment product of the form

E
ww′∈W[k1,k3]

w∈W[k1,k2],w′∈W[k2+1,k3]

∥{Zww′} − {Zw}{Zw′}∥1

appearing on the right-hand side of the triangle inequality.

7.4.1 The First Level of the Cascade

We now check the technical details to obtain tensoriality for the first lifting in the code cas-
cade between the codes C0 and C1, which corresponds to taking s steps in Ta-Shma’s con-
struction. Recall that in order to obtain an assignment z′ ∈ Fn

2 whose lifting is consistent
on vertices with the same G-component, we need to prove tensoriality for the ensemble Y
with a variable for each vertex in V(G)× V(H).

The proof of tensoriality will make use of a specific entropic potential function. For an
arbitrary random variable X taking values in a finite set [q], define the function H(X) as

H(X) :=
1
q ∑

a∈[q]
H(1[X=a]) = Ea∈[q]H(1[X=a]),

where H is the binary entropy function. Using this, we define a potential function for a
weighted undirected graph G.

Definition 7.22 (Graph Potential). Let G = (V, E) be a weighted graph with edge distribution
ΠE. Let ΠV be the marginal distribution on V. Suppose that {Yi}i∈V is a p-local PSD ensemble
for some p ≥ 1. We define ΦG to be

ΦG := E
i∼ΠV

[H(Yi)] .

Let T be an s-interval splitting tree associated with the s-wide replacement product of
graphs G and H. We define

ΦT := ∑
(k1,k2,k3)∈T

ΦU (Sk1,k2,k3 ),

where U (Sk1,k2,k3) is the associated bipartite undirected graph of the operator Sk1,k2,k3 .

Lemma 7.23 (Splittability Implies Tensoriality). Let W[0, s − 1] be the walk collection of the
s-wide replacement product of two graphs G and H. If L ≥ 128 · (s4 · 24s/µ4) and W[0, s − 1] is
τ-splittable with τ ≤ µ/(4s · 24s), then W[0, s − 1] is (µ, L)-tensorial.

Proof. We need to show that

E
w∈W[0,s−1]

⃦⃦⃦⃦
⃦{Y′

w} −
s−1

∏
i=0

{︂
Y′

w(i)

}︂⃦⃦⃦⃦⃦
1

≤ µ,
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which can be proven by adapting a potential argument technique from [BRS11]. First, set
the potential

Φm = E
S∼Πm

E
σ∼{ZS}

ΦT
|ZS=σ, (5)

where the distribution Πm on S ⊆ V(G) is obtained from the process of choosing S in
propagation rounding (Algorithm 7.16) once m has been fixed. Consider the error term

µm := E
S∼Πm

E
σ∼{ZS}

D(S, σ), (6)

where D(S, σ) := Ew∈W[0,s−1]

⃦⃦⃦
{Yw | ZS = σ} − ∏s−1

i=0

{︂
Yw(i) | ZS = σ

}︂⃦⃦⃦
1
. If µm ≥ µ/2,

then
P

S∼Πm,σ∼{ZS}
[D(S, σ) ≥ µm/2] ≥ µ

4
.

For each choice of S and σ such that D(S, σ) ≥ µ/2, applying the triangle inequality
from Claim 7.21 to the conditioned variables gives us

µ

2
≤ E

w∈W[0,s−1]

⃦⃦⃦⃦
⃦{Yw | ZS = σ} −

s−1

∏
i=0

{︂
Yw(i) | ZS = σ

}︂⃦⃦⃦⃦⃦
1

≤ ∑
(k1,k2,k3)∈T

E
w∈W[k1,k3]

⃦⃦⃦
{Yw | ZS = σ} −

{︂
Yw(k1,k2) | ZS = σ

}︂{︂
Yw(k2+1,k3) | ZS = σ

}︂⃦⃦⃦
1
.

Hence, there exists (k1, k2, k3) such that

µ

2s
≤ E

w∈W[k1,k3]

⃦⃦⃦
{Yw | ZS = σ} −

{︂
Yw(k1,k2) | ZS = σ

}︂{︂
Yw(k2+1,k3) | ZS = σ

}︂⃦⃦⃦
1
.

Note that choosing w ∈ W[0, s− 1] uniformly and restricting to w(k1, k3) gives a uniformly
random element of W[k1, k3]. If we choose w(k1, k2) or w(k2 + 1, k3) with equal probability,
then the final walk is distributed according to the stationary measure of U (Sk1,k2,k3). Let w′

denote the chosen walk. Observe that Yw′ is a deterministic function of Zw′ | ZS = σ. Now,
we sample Zw′ | ZS = σ, which gives us a sample of Yw′ . Applying Lemma A.1, we have

Φ
U (Sk1,k2,k3 )

|{Yw′ |ZS=σ} ≤ Φ
U (Sk1,k2,k3 )

ZS=σ − µ2

16s2 · 24s .

This conditioning on an assignment to Zset(w′) | ZS = σ does not increase the other terms
of ΦT associated to split operators other than U (Sk1,k2,k3) since entropy is non-increasing
under conditioning. Similarly, conditioning on the remaining variables that are part of w
but not w′ does not increase ΦT . Then, we obtain

Φm − Φm+1 ≥ P
S∼Πm,σ∼{ZS}

[D(S, σ) ≥ µm/2] · µ2

16s2 · 24s .

Since s ≥ Φ1 ≥ · · · ≥ ΦL/(s+1) ≥ 0, there can be at most 32s3 · 24s/µ3 indices m ∈ [L/s]
such that µm ≥ µ/2. In particular, since the total number of indices is L/s, we have

E
m∈[L/s]

[µm] ≤
µ

2
+

s
L
· 32s3 · 24s

µ3 .

Our choice of L is more than enough to ensure Em∈[L/s][µm] ≤ µ.
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Applying the list decoding framework will require the stronger property of two-step
tensoriality, which we can obtain under the same assumptions.

Lemma 7.24 (Splittability Implies Two-step Tensoriality). Let W[0, s − 1] be the walk collec-
tion of the s-wide replacement product of two graphs G and H. If L ≥ 128 · (s4 · 24s/µ4) and
W[0, s − 1] is τ-splittable with τ ≤ µ/(4s · 24s), then W[0, s − 1] is (µ, L)-two-step tensorial.

Proof. Under our assumptions the (µ, L)-tensorial property follows from Lemma 7.23 (which
is the only place where the assumption on τ is used), so we only need to show

E
w,w′∈W[0,s−1]

⃦⃦
{Y′

wY′
w′} −

{︁
Y′

w
}︁{︁

Y′
w′
}︁⃦⃦

1 ≤ µ,

which can be proven by adapting a potential argument technique from [BRS11]. First, set
the potential

Φm = E
S∼Πm

E
σ∼{ZS}

E
w∈W[0,s−1]

H(Yw | ZS = σ), (7)

where the distribution Πm on S ⊆ V(G) is obtained from the process of choosing S in
propagation rounding (Algorithm 7.16) once m has been fixed. Consider the error term

µm := E
S∼Πm

E
σ∼{ZS}

D(S, σ), (8)

where D(S, σ) := Ew,w′∈W[0,s−1][∥{YwYw′ | ZS = σ} − {Yw|ZS = σ}{Yw′ |ZS = σ}∥1]. If µm ≥
µ/2, then

P
S∼Πm,σ∼{ZS}

[D(S, σ) ≥ µm/2] ≥ µ

4
.

Let G′ = (V = W[0, s − 1], E) be the graph with edges E = {{w, w′} | w, w′ ∈ W[0, s −
1]}. Local correlation (expectation over the edges) on this graph G′ is the same as global
correlation (expectation over two independent copies of vertices). Then, we obtain 8

Φm − Φm+1 ≥ P
S∼Πm,σ∼{ZS}

[D(S, σ) ≥ µm/2] · µ2

2 · 22s .

Since 1 ≥ Φ1 ≥ · · · ≥ ΦL/(s+1) ≥ 0, there can be at most 8 · 22s/µ3 indices m ∈ [L/s] such
that µm ≥ µ/2. In particular, since the total number of indices is L/s, we have

E
m∈[L/s]

µm ≤ µ

2
+

k
L
· 8 · 22s

µ3 .

Our choice of L is more than enough to ensure Em∈[L/s][µm] ≤ µ.

We have already established that W[0, s − 1] is τ-splittable with τ = σ2(G) + 2σ2(H) +
σ2(H)2 in Corollary 7.13, so we can obtain (µ, L)-two-step tensoriality for any µ if this
quantity is small enough.

8See [AJT19] or [BRS11] for the details.
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7.4.2 Higher Levels of the Cascade

We now discuss tensoriality of the other levels of the cascade between Ci−1 and Ci for i ≥ 2.
Tensorial properties are simpler to establish here than on the first level of the cascade. The
relevant split operators are special cases of Sk1,k2,k3 where k1 ≡ 0 (mod s) and k2, k3 ≡ −1
(mod s). The main difference now is that we can associate the parity bits of Ci−1 with
the vertices of U (S△r,r), which themselves represent walks. As this association of parity
bits doesn’t need to satisfy a consistency condition, we only need to work with a single
ensemble Z instead of working with two different ensembles as in the previous case. The
proofs of Lemma 7.23 and Lemma 7.24 with these slight modifications give us two-step
tensoriality.

Lemma 7.25 (Two-step Tensoriality for Higher Levels). Let W(k) be the set of walks defined
using (k − 1) steps of the operator S△r,r. If L ≥ 128 · (k4 · 24k/µ4) and W(k) is τ-splittable with
τ ≤ µ/(4k · 24k), then W(k) is (µ, L)-two-step tensorial.

We know from Corollary 7.13 that the collection of walks obtained from σ2(S
△
r,r) is

(σ2(G) + 2 · σ2(H) + σ2(H)2)-splittable, so the parameters necessary to obtain two-step
tensoriality are the same as in the first level of the cascade.

8 Choosing Parameters for Ta-Shma’s Construction

We explore how some choices of parameters for Ta-Shma’s construction interact with the
requirements of our decoding algorithm. The analysis is divided into rounds of increas-
ingly stronger decoding guarantees with later rounds relying on the codes obtained in pre-
vious rounds. Naturally, the stronger guarantees come with more delicate and technical
considerations. We briefly summarize the goals of each round and some key parameters.

1. Round I: For any constant β > 0, we obtain efficient unique decodable codes Cℓ with
distance at least 1/2 − ε and rate Ω(ε2+β) for infinitely many discrete values of ε > 0
(with ε as close to 0 as desired). In this regime, it suffices for the expansion of H to be
constant. This round leads to Theorem 6.6.

2. Round II: Similar to Round I, but now ε can be any value in an interval (0, b) with
b < 1/2 being a function of β. Again the expansion of H can be constant. This round
leads to Theorem 6.7.

3. Round III: We want β to vanish as ε vanishes (this is qualitatively similar to Ta-Shma’s
result). In this regime, we make the expansion of H be a function of ε, and we rely
on the uniquely decodable codes of Round II. This round leads to Theorem 1.1.

4. Round IV: For any constant β0 > 0, we obtain efficient list decodable codes Cℓ with list
decoding radius 1/2 − β0 and rate Ω(ε2+β) with β → 0 as ε → 0. In this regime, we
make the expansion of H be a function of ε, and we rely on the uniquely decodable
codes of Round III. This round leads to Theorem 1.2.

The way we choose parameters for Ta-Shma’s construction borrows heavily from Ta-
Shma’s arguments in [TS17]. We fix some notation common to all rounds. A graph is
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said to be an (n, d, λ)-graph provided it has n vertices, is d-regular, and has second largest
singular value of its normalized adjacency matrix at most λ.

Notation 8.1. We use the following notation for the graphs G and H used in the s-wide replacement
product.

- The outer graph G will be an (n′, d1, λ1)-graph.

- The inner graph H will be a (ds
1, d2, λ2)-graph.

The parameters n′, d1, d2, λ1, λ2 and s will be chosen in the subsequent sections.

8.1 Round I: Initial Analysis

We are given the dimension D of the desired code and ε ∈ (0, 1/2). We set a parameter
α ≤ 1/128 such that (for convenience) 1/α is a power of 2 and

α5

4 log2(1/α)
≥ 1

log2(1/ε)
. (9)

We can assume that α ≤ 1/128 satisfy Eq. (9) since otherwise ε is a constant and we can use
the list decodable codes from [AJQ+20]. The use of Eq. (9) will be clear shortly. It becomes
a necessity from round III onward. For rounds I and II, the parameter α will be a constant,
but it will be useful to establish the analysis in more generality now so that subsequent
rounds can reuse it.

The inner graph H. The choice of H is similar to Ta-Shma’s choice. More precisely, we
set s = 1/α and d2 = s4s2

(Ta-Shma took d2 = s4s). We obtain a Cayley graph H =

Cay(F4s log2(d2)
2 , A) such that H is an (n2 = d4s

2 , d2, λ2) graph where λ2 = b2/
√

d2 and
b2 = 4s log2(d2). (The set of generators, A, comes from a small bias code derived from a
construction of Alon et al. [AGHP92], but we will rely on Ta-Shma’s analysis embodied
in Lemma B.2 and not discuss it further.)

The base code C0. Set ε0 = 1/d2
2 = λ4

2/b4
2 ≤ λ4

2/3 (this choice differs from Ta-Shma’s and
it appears because we are essentially working with H2 rather than H). We will choose a
base code C0 such that the desired code will be obtained as a direct sum lifting of C0, and
because this lifting preserves the dimension, the dimension of C0 should be D. We choose
C0 to be an ε0-balanced code with dimension D and block length n = Oε0(D). For instance,
we can start with any good (constant rate and relative distance) linear base code C0 that
has an efficient unique decoding algorithm and obtain a ε0-balanced lifted code that can
be efficiently unique decoded (as long as ε0 is constant) using the framework in [AJQ+20].

The outer graph G. Set d1 = d4
2 so that n2 = ds

1 as required by the s-wide replacement
product. We apply Ta-Shma’s explicit Ramanujan graph Lemma B.1 with parameters n,
d1 and θ to obtain an (n′, d1, λ1) Ramanujan graph G with λ1 ≤ 2

√
2/

√
d1 and n′ ∈ [(1 −

θ)n, n] or n′ ∈ [(1 − θ)2n, 2n]. Here, θ is an error parameter that we set as θ = λ4
2/6 (this

choice of θ differs from Ta-Shma). Because we can construct words with block length 2n
(if needed) by duplicating each codeword, we may assume w.l.o.g. that n′ is close to n and
(n − n′) ≤ θn ≤ 2θn′. See Appendix B for a more formal description of this graph.

Note that λ1 ≤ λ4
2/6 since λ1 ≤ 3/

√
d1 = 3/d2

2 = 3 · λ4
2/b4

2 ≤ λ4
2/6. Hence, ε0 + 2θ +

2λ1 ≤ λ4
2.
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The walk length. Set the walk length t − 1 to be the smallest integer such that

(λ2
2)

(1−5α)(1−α)(t−1) ≤ ε.

This will imply using Ta-Shma’s analysis that the bias of the final code is at most ε as shown
later.

s = 1/α, such that α5

4 log2(1/α)
≥ 1

log2(1/ε)

H : (n2, d2, λ2), n2 = ds
1, d2 = s4s2

, λ2 = b2√
d2

, b2 = 4s log d2

G : (n′, d1, λ1), n′ ≈ n = O(D/εc
0), d1 = d4

2, λ1 ≤ 2
√

2
d1

t : smallest integer such that (λ2
2)

(1−5α)(1−α)(t−1) ≤ ε

Claim 8.2. We have t − 1 ≥ s/α = s2.

Proof. Using d2 = s4s2
and Eq. (9), we have(︃

1
λ2

2

)︃(1−5α)(1−α)s/α

≤
(︃

1
λ2

2

)︃s/α

=

(︃
d2

b2
2

)︃s/α

≤ (d2)
s/α = s4s3/α

= 24s3 log2(s)/α = 24 log2(1/α)/α4 ≤ 2log2(1/ε) =
1
ε

.

Hence, ε ≤ (λ2
2)

(1−5α)(1−α)s/α and thus t − 1 must be at least s/α.

Remark 8.3. By our choice of t, we have (λ2
2)

(1−5α)(1−α)(t−2) ≥ ε. Since 1/(t − 1) ≤ α, we get
(λ2

2)
(1−5α)(1−α)2(t−1) ≥ ε.

Final Bias. We denote by Cℓ the final code obtained by t steps of the s-wide replacement
product. The bias of Cℓ is given by Corollary 4.10 (which in turn is a simple corollary of
Ta-Shma’s Fact 4.9) as shown next.

Corollary 8.4. The code Cℓ is ε-balanced.

Proof. Using Corollary 4.10, we have that the final bias

b :=
(︂

σ2(H2)s−1 + (s − 1) · σ2(H2)s−2 + (s − 1)2 · σ2(H2)s−4
)︂⌊(t−1)/s⌋

is bounded by

b ≤ (3(s − 1)2σ2(H2)s−4)((t−1)/s)−1 (Using σ2(H2) ≤ 1/3s2)

≤ ((σ2(H2)s−5)(t−1−s)/s

= σ2(H2)(1−5/s)(1−s/(t−1))(t−1)

≤ σ2(H2)(1−5α)(1−α)(t−1)

=
(︁
λ2

2
)︁(1−5α)(1−α)(t−1) ≤ ε,

where the last inequality follows from s = 1/α and t − 1 ≥ s/α, the latter from Claim 8.2.
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Rate. The proof of the rate follows a similar structure of Ta-Shma’s original argument ex-
cept that we take s to be a constant independent of ε so that ε0, λ1, and λ2 are also constants
independent of ε. Note that we previously said α = 1/s needs to satisfy Equation 9, but
that implies only an upper bound for s, and smaller (even constant) values for s are still
permissible.

Claim 8.5. Cℓ has rate Ω(ε2+26·α) provided ε0 > 0 is constant.

Proof. The support size is the number of walks of length t on the s-wide replacement prod-
uct of G and H (each step of the walk has d2

2 options), which is

|V(G)||V(H)|d2(t−1)
2 = n′ · ds

1 · d2(t−1)
2 = n′ · d2(t−1)+4s

2 ≤ n · d2(t−1)+4s
2

= Θε0

(︂
D · d2(t−1)+4s

2

)︂
= Θ

(︂
D · (d2

2)
t−1+2s

)︂
= O

(︂
D · (d2

2)
(1+2α)(t−1)

)︂
,

where the penultimate equality follows from the assumption that ε0 is a constant.

Note that dα
2 = d1/s

2 = s4s ≥ b2 since b2 = 4s log2(d2) = 16s3 log2(s) ≤ s4 (recall that
s = 1/α ≥ 128). Thus,

d1−2α
2 =

d2

d2α
2

≤ d2

b2
2
=

1
σ2(H2)

.

We obtain

(d2
2)

(t−1) ≤
(︃

1
σ2(H2)

)︃ 2(t−1)
1−2α

≤
(︃

1
ε

)︃ 2
(1−2α)(1−5α)(1−α)2

(Using Remark 8.3)

≤
(︃

1
ε

)︃2(1+10α)

,

which implies a block length of

O
(︂

D · (d2
2)

(1+2α)(t−1)
)︂
= O

(︄
D
(︃

1
ε

)︃2(1+10α)(1+2α)
)︄

= O

(︄
D
(︃

1
ε

)︃2(1+13α)
)︄

.

Lemma 8.6 (Codes Near the GV bound I). For every constant β > 0, there exists a sufficiently
large constant s in the above analysis so that for any dimension value D ∈ N+ (sufficiently large)
and ε > 0 (sufficiently small) the final code CN,ε,β, where N is the block length, satisfies

- CN,ε,β is ε-balanced,

- CN,ε,β has rate Ω(ε2+β), and

- CN,ε,β is a linear code of dimension D.
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Remark 8.7. As a consequence of code cascading, the final attainable walk lengths have the form
sℓ − 1 where ℓ is a positive integer. Given β > 0, we have infinitely many values of ε attainable
by such walk lengths which gives infinitely many codes CN,ε,β. This means that although the bias ε
cannot be arbitrary, we have an infinite sequence of values of ε for which the rates of the codes CN,ε,β
are near the GV bound. In Section 8.2, we show how to bypass this artificial limitation. These codes
are used in the proof of Theorem 6.6.

We can view the above analysis as defining a function Γ that receives

- the dimension D ∈ N+,

- the final bias ε > 0,

- the approximating error α ∈ (0, 1/128] with s := 1/α being a power of two, and

- a multiplying factor Q ∈ N+ such that d2 = s4s2·Q (in the above Q was 1).

and outputs a tuple of parameters (t, ε0, θ, d1, λ1, n′), graphs G and H (as above) where, in
particular, the number of steps t ∈ N+ is such that the final code Cℓ has bias at most ε and
rate Ω(ε2+26·α).

In future rounds, Γ may be called with Q = s instead of Q = 1. This will cause d2 to
increase from s4s2

to s4s2·Q, and so in the proof of Claim 8.2, 24 log2(1/α)/α4
will be replaced

by 24 log2(1/α)/α5
. This explains why Eq. (9) has a stricter requirement than needed in the

Q = 1 case above.

8.2 Round II: A More Careful Analysis

We are given the dimension of the code D and ε ∈ (0, 1/2). As before, we set a parameter
α ≤ 1/128 such that (for convenience) 1/α is a power of 2. Set s = 1/α and Q = s.

Apply Γ to (D, ε, α, Q) to obtain all parameters except t. Choose t to be the smallest
integer satisfying

(λ2
2)

(1−5α)(1−2α)(1−α)(t−1) ≤ ε,

where observe that an extra (1 − 2α) factor appears in the exponent. This change in t will
worsen the rate but by losing a factor of 1

1−2α in the exponent, we can lower bound the

rate. That is, (d2
2)

−(t−1) = Ω(ε
2+26·α
1−2α ).

Set ℓ ∈ N+ to be the smallest value such that sℓ ≥ t (here we are implicitly assuming
that t > s). If sℓ = t, we are done since we can use all the parameters returned by Γ for the
construction of Cℓ. Now assume sℓ > t and let ζ = t/sℓ−1. Note that ζ ∈ (1, s). Choose P
to be the integer in the interval [Q, s · Q] such that

0 ≤ P
Q

− ζ ≤ 1
Q

.

Because sℓ > t, and only powers of s may be chosen for walk length, we might over-
shoot in walk length by a multiplicative factor of s. This will cause a corresponding decay
in rate computation that we cannot afford. To overcome this, in the last level of the cascade
between codes Cℓ−1 and Cℓ, perform the direct sum over walks of length (P − 1) instead of
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length (s − 1). The new total number of vertices is t′ = Psℓ−1. Note that P can be as large
as s2, so our splittability guarantee of W(P) (the walk collection from the lift between Cℓ−1
and Cℓ) has to be strong enough to accommodate this larger arity and not only arity s.

Claim 8.8. We have t − 1 ≤ t′−1
Q ≤ (1 + 2α)(t − 1).

Proof. By construction, we have the sequence of implications

0 ≤ P
Q

sℓ−1 − ζsℓ−1 ≤ sℓ−1

Q

⇒0 ≤ t′

Q
− t ≤ sℓ−1

Q
≤ t

Q

⇒t − 1
Q

≤ t′ − 1
Q

≤ (t − 1)
(︃

1 +
1
Q

)︃
+ 1,

from which we obtain

t − 1 ≤ t − 1
Q

≤ t′ − 1
Q

and
t′ − 1

Q
≤ (t − 1)

(︃
1 +

1
Q

)︃
+ 1 = (1 + α)(t − 1) + 1 < (1 + 2α)(t − 1),

the latter using Q = s = 1/α.

We apply Γ again but this time to (D, ε, α, 1) to obtain new parameters (t′′, ε′0, θ′, d′1, λ′
1,

n′′), and graphs G′ and H′.

Claim 8.9. The code C ′
ℓ obtained by t′ walk steps on the s-wide replacement product of G′ and H′

from the second application of Γ has bias at most ε and rate Ω(ε2+40α).

Proof. Let d2 = s4s2·Q, b2 = 4s log2(d2) and λ2 = b2/
√

d2 be the parameters of the first
invocation of Γ. Recall that t was chosen to be the smallest integer satisfying

(λ2
2)

(1−5α)2(1−α)(t−1) ≤ ε.

Let d′2 = s4s2
, b′2 = 4s log2(d

′
2) and λ′

2 = b′2/
√︁

d′2 be the parameters of the second invocation
of Γ. Observe that

(λ′
2)

Q =
(b′2)

Q√︂
(d′2)Q

=
(b′Q2 )√

d2
=

(16s3 log2(s))
Q

s2s2·Q

≤ s4Q

s2s2·Q =
1

s2s2·Q(1− 2
s2 )

=

(︃
1

s2s2·Q

)︃1−2α

≤
(︃

b2√
d2

)︃1−2α

= λ1−2α
2 .

Then the bias of C ′
ℓ is at most

(((λ′
2)

Q)2)(1−5α)(1−α)(t′−1)/Q ≤ (λ2
2)

(1−5α)(1−2α)(1−α)(t′−1)/Q

≤ (λ2
2)

(1−5α)(1−2α)(1−α)(t−1) ≤ ε.
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For the rate computation of C ′
ℓ, we will lower bound the term ((d′2)

2)−(t′−1). Since d2 =

(d′2)
Q, (d2

2)
−(t−1) = Ω(ε

2+26·α
1−2α ) and t′−1

Q ≤ (1 + 2α)(t − 1) (the latter by Claim 8.8), the rate
of C ′

ℓ is

Ω(((d′2)
2)−(t′−1)) = Ω((d2

2)
−(t′−1)/Q) = Ω((d2

2)
−(1+2α)(t−1)) = Ω((ε2+26·α)

1+2α
1−2α ) = Ω(ε2+40·α).

8.3 Round III: Vanishing β as ε Vanishes

We are given the dimension of the code D and ε ∈ (0, 1/2). As before, we set a parameter
α ≤ 1/128 such that (for convenience) 1/α is a power of 2. Set s := 1/α.

We will consider the regime where s is a function of ε. As a consequence, the pa-
rameters d2, λ2, d1, λ1, ε0 will also depend on ε. Since x ≤ 1/ log2(1/x) for x ≤ 1/2 (and
α ≤ 1/2), if α satisfies α6/4 ≥ 1/ log2(1/β), it also satisfies Eq. (9) (we lose a log factor by
replacing 1/ log2(1/α) by α, but we will favor simplicity of parameters). In particular, we
can set α so that s is

s = Θ((log2(1/ε))1/6),

and satisfy Eq. (9).

We follow the same choices as in Round II except for the base code C0.

The base code C0. Set ε0 = 1/d2
2 = λ4

2/b4
2 ≤ λ4

2/3. We choose an ε0-balanced code C0
with support size n = O(D/εc

0) where c = 2.001 (this choice of c is arbitrary, it is enough
to have c as a fixed small constant) using the construction from Round II. It is crucial that
we can unique decode C0 (using our algorithm), since this is required in order to apply the
list decoding framework.

Note that ε0 is no longer a constant. For this reason, we need to consider the rate
computation of the final code Cℓ more carefully. The proof will follow an argument similar
to Ta-Shma’s.

Claim 8.10. Cℓ has rate Ω(ε2+26·α) where α = Θ(1/(log2(1/ε))1/6).

Proof. The support size is the number of walks of length t − 1 on the s-wide replacement
product of G and H (each step of the walk has d2

2 options), which is

|V(G)||V(H)|d2(t−1)
2 = n′ · ds

1 · d2(t−1)
2 = n′ · d2(t−1)+4s

2 ≤ n · d2(t−1)+4s
2

= Θ
(︃

D
εc

0
· d2(t−1)+4s

2

)︃
= Θ

(︂
D · (d2

2)
(t−1)+2s+2.001

)︂
= O

(︂
D · (d2

2)
(1+2α)(t−1)

)︂
.

From this point the proof continues exactly as the proof of Claim 8.5.

8.4 Round IV: Arbitrary Gentle List Decoding

In round III, when we take
s = Θ((log2(1/ε))1/6),
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we will have λ2 = 4s log(s4s2
)/s2s2 ≤ s−s2

provided s is large enough. This non-constant
λ2 will allow us perform “gentle” list decoding with radius arbitrarily close to 1/2. More
precisely, we have the following.

Theorem 8.11 (Gentle List Decoding (restatement of Theorem 1.2)). For every ε > 0 suffi-
ciently small, there are explicit binary linear Ta-Shma codes CN,ε,β ⊆ FN

2 for infinitely many values
N ∈ N with

(i) distance at least 1/2 − ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β) where β = O(1/(log2(1/ε))1/6), and

(iii) a list decoding algorithm that decodes within radius 1/2− 2−Θ((log2(1/ε))1/6) in time NOε,β(1).

Proof. We consider some parameter requirements in order to apply the list decoding frame-
work Theorem 9.1 between Cℓ−1 and Cℓ. Suppose we want to list decode within radius
1/2 −√

η. For parity sampling, we need

s ≥ Θ(log2(1/η)).

Since the number of vertices in a walk can be at most s2, for splittability we need

η8/(s2 · 22s2
) ≥ 2 · s−s2

.

In particular, we can take η = 2−Θ(s) and satisfy both conditions above.

9 Instantiating the List Decoding Framework

We established the tensoriality (actually two-step tensoriality) and parity sampling prop-
erties of every lifting between consecutive codes Ci−1 and Ci in Ta-Shma’s cascade. Using
these properties, we will be able to invoke the list decoding framework from [AJQ+20] to
obtain the following list decoding result.

Theorem 9.1 (Restatement of Theorem 6.1). Let η0 ∈ (0, 1/4) be a constant, η ∈ (0, η0), and

k ≥ k0(η) := Θ(log(1/η)).

Suppose C ⊆ Fn
2 is an η0-balanced linear code and C ′ = dsumW(k)(C) is the direct sum lifting

of C on a τ-splittable collection of walks W(k), where W(k) is either the set of walks W[0, s] on
an s-wide replacement product graph or a set of walks using the random walk operator S△r,r. There
exists an absolute constant K > 0 such that if

τ ≤ τ0(η, k) :=
η8

K · k · 24k ,

then the code C ′ is η-balanced and can be efficiently list decoded in the following sense:

If ỹ is (1/2 −√
η)-close to C ′, then we can compute the list

L(ỹ, C, C ′) :=
{︃
(z, dsumW(k)(z)) | z ∈ C, ∆

(︂
dsumW(k)(z), ỹ

)︂
≤ 1

2
−√

η

}︃
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in time
nO(1/τ0(η,k)4) · f (n),

where f (n) is the running time of a unique decoding algorithm for C. Otherwise, we return
L(ỹ, C, C ′) = ∅ with the same running time of the preceding case 9.

9.1 List Decoding Framework

We recall the precise statement of the list decoding framework tailored to direct sum lifting.

Theorem 9.2 (List Decoding Theorem (Adapted from [AJQ+20])). Suppose dsumW(k) is an
(η8/230, L)-two-step tensorial direct sum lifting from an η0-balanced code C ⊆ Fn

2 to C ′ on a
multiset W(k) ⊆ [n]k which is a (1/2 + η0/2, η)-parity sampler.

Let ỹ ∈ F
W(k)
2 be (1/2 − √

η)-close to C ′. Then the List Decoding algorithm returns the
coupled code list L(˜︁y, C, C ′). Furthermore, the running time is nO(L+k) (polylog(1/η) + f (n))
where f (n) is the running time of an unique decoding algorithm of C.

We apply the list decoding framework of Theorem 9.2 to the liftings arising in the Ta-
Shma cascade to obtain Theorem 9.1. This requires choosing parameters so that both the
parity sampling and tensoriality requirements are met at every level of the cascade, which
we do by appealing to our results from Section 7.

Proof of Theorem 9.1. We want to define parameters for τ-splittability so that W(k) satisfies
strong enough parity sampling and tensoriality assumptions to apply Theorem 9.2.

For parity sampling, we require W(k) to be an (1/2+ η0/2, η)-parity sampler. Suppose
W(k) is τ-splittable with τ < 1/16. By Corollary 7.4 or Corollary 7.7 and splittability, the
collection of walks W(k) is an (η′

0, η′)-parity sampler, where η′ ≤ (η′
0 + 2τ)⌊(k−1)/2⌋. To

achieve the desired parity sampling, we take η′
0 = 1/2 + η0/2 and choose a value of k

large enough so that η′ ≤ η. Using the assumption η0 < 1/4, we compute

η′ = (η′
0 + 2τ)⌊(k−1)/2⌋ ≤ (1/2 + η0/2 + 2τ)k/2−1 < (3/4)k/2−1,

which will be smaller than η as long as k is at least

k0(η) = 2
(︃

1 +
log(1/η)

log(4/3)

)︃
= Θ(log(1/η)).

Achieving this level of parity sampling also ensures that the lifted code C ′ is η-balanced.

The list decoding theorem also requires (η8/230, L)-two-step tensoriality. Lemma 7.24
(with s = k) and Lemma 7.25 each provide (µ, L)-two-step tensoriality for τ-splittable walk
collections on the s-wide replacement product and using S△r,r, respectively, with

L ≥ 128k4 · 24k

µ4 and τ ≤ µ

4k · 24k .

9In the case ỹ is not (1/2 −√
η)-close to C ′, but the SOS program turns out to be feasible, some of the calls

to the unique decoding algorithm of C (issued by the list decoding framework) might be outside all unique
decoding balls. Such cases may be handled by returning failure if the algorithm does not terminate by the
time f (n). Even if a codeword in C is found, the pruning step of list decoding [AJQ+20] will return an empty
list for L(ỹ, C, C ′) since ỹ is not (1/2 −√

η)-close to C.
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To get µ = η8/230, we require

L ≥ K′ · k4 · 24k

η32 and τ ≤ τ0(η, k) =
η8

K · k · 24k ,

where K and K′ are (very large) constants. This ensures that τ is small enough for the
parity sampling requirement as well. With these parameters, the running time for the list
decoding algorithm in Theorem 9.2 becomes

nO(L+k)(polylog(1/η) + f (n)) = nO(L) · f (n) = nO(1/τ0(η,k)4) · f (n).

For decoding in fixed polynomial time, we also need a variation of list decoding where
we don’t run the unique decoding algorithm of the base code and only obtain an approxi-
mate list of solutions. The proof is very similar to the proof of Theorem 9.1 above.

Theorem 9.3 (Restatement of Theorem 6.12). Let η0 ∈ (0, 1/4) be a constant, η ∈ (0, η0),
ζ = 1/8 − η0/8, and

k ≥ k′0(η) := Θ(log(1/η)).

Suppose C ⊆ Fn
2 is an η0-balanced linear code and C ′ = dsumW(k)(C) is the direct sum lifting

of C on a τ-splittable collection of walks W(k), where W(k) is either the set of walks W[0, s] on
an s-wide replacement product graph or a set of walks using the random walk operator S△r,r. There
exists an absolute constant K > 0 such that if

τ ≤ τ0(η, k) :=
η8

K · k · 24k ,

then the code C ′ is η-balanced, W(k) is a (1 − 2ζ, η)-parity sampler, and we have the following:

If ỹ is (1/2 −√
η)-close to C ′, then we can compute a ζ-cover L′ of the list

L(ỹ, C, C ′) :=
{︃
(z, dsumW(k)(z)) | z ∈ C, ∆

(︂
dsumW(k)(z), ỹ

)︂
≤ 1

2
−√

η

}︃
in which ∆(y′, ỹ) ≤ 1/2 −√

η for every (z′, y′) ∈ L′ 10, in time

nO(1/τ0(η,k)4).

Otherwise, we return L′ = ∅ with the same running time of the preceding case.

Proof. The list decoding framework produces a cover L′ of the list L(ỹ, C, C ′), and, as its
final step, corrects the cover to obtain the actual list L(ỹ, C, C ′) by running the unique
decoding algorithm of C on each entry of L′ (see [AJQ+20] for details). Using Theorem 9.2
with a (1 − 2ζ, η)-parity sampler and omitting this final step of the algorithm, we can
obtain the ζ-cover L′ in time nO(L+k)polylog(1/η).

The tensoriality part of the proof of Theorem 9.1 applies here unchanged, so we need
only make sure k is large enough to yield the stronger parity sampling necessary for this
theorem. As in that proof, we have that W(k) is an (η′

0, η′)-parity sampler with η′ ≤ (η′
0 +

10A randomized rounding will ensure this, but see Appendix D for obtaining this property deterministically.
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2τ)⌊(k−1)/2⌋. Take η′
0 = 1 − 2ζ = 3/4 + η0/4. Using η0 < 1/4 and assuming τ < 1/16, we

have
η′ ≤ (η′

0 + 2τ)⌊(k−1)/2⌋ ≤ (3/4 + η0/4 + 2τ)k/2−1 < (15/16)k/2−1,

which will be smaller than η as long as k is at least

k′0(η) = 2
(︃

1 +
log(1/η)

log(16/15)

)︃
= Θ(log(1/η)).

Acknowledgement

We thank Amnon Ta-Shma for suggesting the problem of decoding in fixed polynomial
running time (with the exponent of N independent of ε) which led us to think about The-
orem 6.9. Part of this work was done when some of the authors were visiting the Simons
Institute in Berkeley, and we thank them for their kind hospitality.

References

[ABN+92] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construction of asymptot-
ically good, low-rate error-correcting codes through pseudo-random graphs.
IEEE Transactions on Information Theory, 28:509–516, 1992. 2

[AGHP92] N. Alon, O. Goldreich, J. Håstad, and R. Peralta. Simple constructions of
almost k-wise independent random variables. Random Structures and Algo-
rithms, 3(3):289–304, 1992. 1, 42, 58

[AJQ+20] Vedat Levi Alev, Fernando Granha Jeronimo, Dylan Quintana, Shashank Sri-
vastava, and Madhur Tulsiani. List decoding of direct sum codes. In Proceed-
ings of the 31st ACM-SIAM Symposium on Discrete Algorithms, pages 1412–1425.
SIAM, 2020. 3, 6, 7, 8, 9, 10, 17, 18, 21, 27, 35, 37, 42, 48, 49, 50, 60

[AJT19] Vedat Levi Alev, Fernando Granha Jeronimo, and Madhur Tulsiani. Approx-
imating constraint satisfaction problems on high-dimensional expanders. In
Proceedings of the 60th IEEE Symposium on Foundations of Computer Science,
pages 180–201, 2019. 7, 8, 38, 40

[Ari09] E. Arikan. Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels. IEEE
Transactions on Information Theory, 55(7):3051–3073, July 2009. 4

[Aro02] Sanjeev Arora. How NP got a new definition: a survey of probabilistically
checkable proofs. In Proceedings of the International Congress of Mathematicians,
pages 637–648, 2002. Volume 3. 2

[Bog12] Andrej Bogdanov. A different way to improve the bias via expanders. Lecture
notes, April 2012. URL: http://www.cse.cuhk.edu.hk/~andrejb/csc5060/
notes/12L12.pdf. 2, 6, 18

51

http://www.cse.cuhk.edu.hk/~andrejb/csc5060/notes/12L12.pdf
http://www.cse.cuhk.edu.hk/~andrejb/csc5060/notes/12L12.pdf


[BRS11] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite
programming hierarchies via global correlation. In Proceedings of the 52nd
IEEE Symposium on Foundations of Computer Science, pages 472–481, 2011. 8,
34, 38, 39, 40, 55

[Cha16] Siu On Chan. Approximation resistance from pairwise-independent sub-
groups. J. ACM, 63(3), August 2016. 2

[Chu97] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.
55

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing). Wiley-Interscience, New
York, NY, USA, 2006. 56

[DDG+15] Roee David, Irit Dinur, Elazar Goldenberg, Guy Kindler, and Igor Shinkar.
Direct sum testing. ITCS ’15, pages 327–336, New York, NY, USA, 2015. ACM.
2

[Del75] P. Delsarte. The association schemes of coding theory. In Combinatorics, pages
143–161. Springer Netherlands, 1975. 1

[DHK+19] Irit Dinur, Prahladh Harsha, Tali Kaufman, Inbal Livni Navon, and Amnon
Ta-Shma. List decoding with double samplers. In Proceedings of the 30th ACM-
SIAM Symposium on Discrete Algorithms, pages 2134–2153, 2019. 2

[DK17] Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement
expanders. In Proceedings of the 58th IEEE Symposium on Foundations of Com-
puter Science, pages 974–985, 2017. 2

[DS14] Irit Dinur and David Steurer. Direct product testing. In Proceedings of the 29th
IEEE Conference on Computational Complexity, CCC ’14, pages 188–196, 2014. 2

[Gal62] R. Gallager. Low-density parity-check codes. IRE Transactions on Information
Theory, 8(1):21–28, 1962. 4

[GI01] Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of
efficiently decodable codes. In Proceedings of the 42nd IEEE Symposium on
Foundations of Computer Science, pages 658–667, 2001. 2

[GI03] Venkatesan Guruswami and Piotr Indyk. Linear time encodable and list de-
codable codes. In Proceedings of the 35th ACM Symposium on Theory of Comput-
ing, 2003. 3

[GI04] Venkatesan Guruswami and Piotr Indyk. Efficiently decodable codes meeting
Gilbert-Varshamov bound for low rates. In Proceedings of the 15th ACM-SIAM
Symposium on Discrete Algorithms, SODA ’04, pages 756–757, 2004. 3, 4

[Gil52] E.N. Gilbert. A comparison of signalling alphabets. Bell System Technical Jour-
nal, 31:504–522, 1952. 1, 4

52



[GKO+17] Sivakanth Gopi, Swastik Kopparty, Rafael Oliveira, Noga Ron-Zewi, and
Shubhangi Saraf. Locally testable and locally correctable codes approaching
the Gilbert-Varshamov bound. In Proceedings of the 28th ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA ’17, pages 2073–2091, 2017. 4

[GR06] Venkatesan Guruswami and Atri Rudra. Explicit capacity-achieving list-
decodable codes. In Proceedings of the 38th ACM Symposium on Theory of Com-
puting, pages 1–10, 2006. 1, 3, 4

[GR08] Venkatesan Guruswami and Atri Rudra. Concatenated codes can achieve list-
decoding capacity. In Proceedings of the 19th ACM-SIAM Symposium on Discrete
Algorithms, SODA ’08, pages 258–267, 2008. 4

[Gri01] Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus
proofs for the parity. Theor. Comput. Sci., 259(1-2):613–622, 2001. 7

[GRS19] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding
theory. 2019. 1

[GRY19] Venkatesan Guruswami, Andrii Riazanov, and Min Ye. Arikan meets Shan-
non: Polar codes with near-optimal convergence to channel capacity. Elec-
tronic Colloquium on Computational Complexity (ECCC), 26:154, 2019. 4

[GS11] Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher
eigenvalues, and approximation schemes for graph partitioning and
quadratic integer programming with psd objectives. In FOCS, pages 482–491,
2011. 8

[Gur05] Venkatesan Guruswami. Algebraic-geometric generalizations of the
Parvaresh-Vardy codes. Electronic Colloquium on Computational Complexity
(ECCC), (132), 2005. 4

[Gur09] Venkatesan Guruswami. List decoding of binary codes–a brief survey of
some recent results. In Coding and Cryptology, pages 97–106. Springer Berlin
Heidelberg, 2009. 1, 2, 3, 4

[Gur10] Venkatesan Guruswami. Bridging Shannon and Hamming: List error-
correction with optimal rate. In ICM, 2010. 1, 4

[Ham50] Richard Hamming. Error detecting and error correcting codes. Bell System
Technical Journal, 29:147–160, 1950. 4

[Hås97] J. Håstad. Some optimal inapproximability results. In Proceedings of the 29th
ACM Symposium on Theory of Computing, pages 1–10, 1997. 3

[Hås01] Johan Håstad. Some optimal inapproximability results. Journal of the ACM,
48(4):798–859, 2001. 7

[HRW17] B. Hemenway, N. Ron-Zewi, and M. Wootters. Local list recovery of high-
rate tensor codes applications. In Proceedings of the 58th IEEE Symposium on
Foundations of Computer Science, pages 204–215, Oct 2017. 4

53



[IKW09] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. New direct-
product testers and 2-query PCPs. In Proceedings of the 41st ACM Symposium
on Theory of Computing, STOC ’09, pages 131–140, 2009. 2

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP unless E has sub-
exponential circuits. In Proceedings of the 29th ACM Symposium on Theory of
Computing, pages 220–229, 1997. 2

[LPS88] Alexander Lubotzky, R. Phillips, and Peter Sarnak. Ramanujan graphs. Com-
binatorica, 8:261–277, 1988. 58

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random
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A Auxiliary Results to Obtain Tensoriality

A key result used in the SOS rounding analysis is embodied in Lemma A.1 below. Roughly
speaking, it quantifies the decrease in the potential ΦG, under conditioning on a random
Yi for i ∼ V, when the ensemble {Yi} has non-trivial correlation over the edges and G
is a strong enough expander graph. A generalization of this result to low threshold rank
graphs was present in [BRS11]. To derive sharper parameters in the simpler expander case
and to make the presentation self-contained, we give (essentially) a full proof of this result.

Lemma A.1 (Progress Lemma). Suppose G satisfies λ2(G) ≤ β2/q4. If

E
i∼j

[︂⃦⃦
{YiYj} − {Yi}{Yj}

⃦⃦
1

]︂
≥ β,

then

E
j∼V

[︂
ΦG

|Yj

]︂
≤ ΦG − β2

4 · q4 .

A.1 Expander Case

We will need the following characterization of the spectral gap of regular graph G. We
denote by AG its adjacency operator and by LG its Laplacian operator [Chu97].

Fact A.2 (Spectral Gap [Chu97]).

λ2(LG) = min
v1,...,vn∈Rn

Ei∼j
⃦⃦

vi − vj
⃦⃦2

Ei,j∼V
⃦⃦

vi − vj
⃦⃦2 .

Using the above characterization, we derive the following local-to-global result.

Lemma A.3 (Local-to-Global). Let v1, . . . , vn ∈ Rn be vectors in the unit ball. Suppose λ2(LG) ≥
1 − β/2 (equivalently λ2(AG) ≤ β/2). If Ei∼j

⟨︁
vi, vj

⟩︁
≥ β, then

Ei,j∼V
⟨︁
vi, vj

⟩︁
≥ β

2
.

Proof. Using Fact A.2, we have

λ2(LG) ≤
Ei∼V ∥vi∥2 − Ei∼j

⟨︁
vi, vj

⟩︁
Ei∼V ∥vi∥2 − Ei,j∼V

⟨︁
vi, vj

⟩︁ .
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Set λ2 = λ2(LG). We consider two cases: λ2 ≤ 1 and λ2 > 1. First, suppose λ2 ≤ 1. Then

Ei,j∼V
⟨︁
vi, vj

⟩︁
≥ 1

λ2
Ei∼j

⟨︁
vi, vj

⟩︁
−
(︃

1 − λ2

λ2

)︃
Ei∼V ∥vi∥2

≥ 1
λ2

(β − (1 − λ2))

≥ 1
λ2

(︃
β −

(︃
β

2

)︃)︃
≥ β

2
.

Now suppose λ2 > 1. Then

Ei,j∼V
⟨︁
vi, vj

⟩︁
≥ 1

λ2
Ei∼j

⟨︁
vi, vj

⟩︁
−
(︃

1 − λ2

λ2

)︃
Ei∼V ∥vi∥2

≥ 1
λ2

Ei∼j
⟨︁
vi, vj

⟩︁
≥ 1

λ2
· β ≥ β

2
,

where the last inequality follows from λ2 ≤ 2 for any graph G.

More Preliminaries

We will need some standard notions in information theory [CT06].

Definition A.4 (Relative Entropy/Kullback-Leibler Divergence). The relative entropy of two
distributions D1 and D2 with support contained in Q is

KL(D1, D2) := ∑
a∈Q

D1(a) log
(︃

D1(a)
D2(a)

)︃
.

Notation A.5. Let X be a random variable. We denote by {X} the distribution of X.

Definition A.6 (Mutual Information). Let X, Y be two random variables. The mutual informa-
tion I(X, Y) is

I(X, Y) := KL({X, Y}, {X}{Y}).

Fact A.7.
I(X, Y) = H(X)− H(X|Y).

Fact A.8 (Fact B.5 of Raghavendra and Tan [RT12]). Let Xa and Xb be indicator random vari-
ables. Then

Cov(Xa, Xb)
2 ≤ 2 · I(Xa, Xb).

Progress Lemma

We are ready to prove Lemma A.1 which we restate below for convenience.

Lemma A.9 (Progress Lemma (restatement of Lemma A.1)). Suppose G satisfy λ2(G) ≤
β2/q4. If

E
i∼j

[︂⃦⃦
{YiYj} − {Yi}{Yj}

⃦⃦
1

]︂
≥ β,

then

E
j∼V

[︂
ΦG

|Yj

]︂
≤ ΦG − β2

4 · q4 .
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Proof. Firstly, we show how to relate the distances
⃦⃦
{YiYj} − {Yi}{Yj}

⃦⃦
1 over the edges

i ∼ j to certain covariances. Let a, b ∈ [q]2. Observe that⃓⃓
Cov

(︁
Yi,a, Yj,b

)︁⃓⃓
=
⃓⃓
Pr[Yi = a ∧ Yj = b]− Pr[Yi = a]Pr[Yj = b]

⃓⃓
.

We have

E
i∼j

⎡⎣ 1
q2 ∑

a,b∈[q]2
Cov

(︁
Yi,a, Yj,b

)︁2

⎤⎦ ≥

⎛⎝E
i∼j

⎡⎣ 1
q2 ∑

a,b∈[q]2

⃓⃓
Cov

(︁
Yi,a, Yj,b

)︁⃓⃓⎤⎦⎞⎠2

≥ 1
q4

(︃
E
i∼j

[︂⃦⃦
{YiYj} − {Yi}{Yj}

⃦⃦
1

]︂)︃2

≥ β2

q4 .

Note that the graph F := G ⊗ J/q is an expander with λ2(G ⊗ J/q) = λ2(G). More-
over, the matrix C := {Cov

(︁
Yi,a, Yj,b

)︁
}i,j∈V;a,b∈[q]2 is PSD since the vectorization {vi,a −

E[Yi,a] · v∅}i∈V;a∈[q] gives a Gram matrix decomposition of C. Thus, the covariance ma-

trix {Cov
(︁
Yi,a, Yj,b

)︁2}i,j∈V;a,b∈[q]2 is also PSD since it is the Schur product (i.e., entrywise
product) of two PSD matrices, namely, C ◦ C. Therefore, we are in position of applying the
local-to-global Lemma A.3 with the expander F and a vectorization for C ◦ C. We have

β2

q4 ≤ E
i∼j

⎡⎣ 1
q2 ∑

a,b∈[q]2
Cov

(︁
Yi,a, Yj,b

)︁2

⎤⎦
≤ 2 E

i,j∼V⊗2

⎡⎣ 1
q2 ∑

a,b∈[q]2
Cov

(︁
Yi,a, Yj,b

)︁2

⎤⎦ (local-to-global Lemma A.3)

≤ 4
q2 E

i,j∼V⊗2

⎡⎣ ∑
a,b∈[q]2

I
(︁
Yi,a, Yj,b

)︁⎤⎦ (Fact A.8)

≤ 4
q2 E

i,j∼V⊗2

⎡⎣ ∑
a,b∈[q]2

H (Yi,a)− H
(︁
Yi,a|Yj,b

)︁⎤⎦
≤ 4

q

⎡⎣ E
i∼V

⎡⎣ ∑
a∈[q]

H (Yi,a)

⎤⎦− E
i,j∼V⊗2

⎡⎣ ∑
a∈[q]

H
(︁
Yi,a|Yj

)︁⎤⎦⎤⎦
= 4

[︃
E

i∼V
[H (Yi)]− E

i,j∼V⊗2

[︁
H
(︁
Yi|Yj

)︁]︁]︃
= 4

[︃
ΦG − E

j∼V

[︂
ΦG

|Yj

]︂]︃
.

Therefore, we have Ej∼V [ΦG
|Yj
] ≤ ΦG − β2/(4 · q4), as claimed.

B Explicit Structures

We recall some explicit structures used in Ta-Shma’s construction.
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B.1 Explicit Ramanujan Graphs

The outer graph G in the s-wide replacement product was chosen to be a Ramanujan
graph. Ta-Shma provides a convenient lemma to efficiently obtain explicit Ramanujan
graphs given the intended number of vertices n (which might end up being nearly twice
this much), the expansion λ and an error parameter θ > 0. These Ramanujan graphs are
based on the LPS construction [LPS88]. Due to number theoretic reasons, we might be
forced to work with slightly different parameters, but this is not an issue.

Lemma B.1 (Lemma 12 [TS17]). For every θ > 0, there exists an algorithm that given n and
λ ∈ (0, 1) runs in time poly(n) and outputs a Ramanujan graph G such that

- G has degree d ≤ 8/λ2,

- σ2(G) ≤ λ, and

- |V(G)| is either in the range [(1 − θ)n, n] or in the range [(1 − θ)2n, 2n].

Moreover, the algorithm outputs a locally invertible function φ : [d] → [d] computable in polyno-
mial time in its input length.

B.2 Explicit Biased Distribution

The inner graph H in the s-wide replacement product is chosen to be a Cayley graph on
Zm

2 for some positive integer m. Ta-Shma uses the construction of Alon et al. [AGHP92]
(AGHP) to deduce a result similar to Lemma B.2 below. To compute the refined parameter
version of our main result Theorem 1.1, we will need the specifics of the AGHP construc-
tion.

Lemma B.2 (Based on Lemma 6 [TS17]). For every β = β(m), there exists a fully explicit set
A ⊆ Zm

2 such that

- |A| ≤ 4 · m2/β2, and

- for every S ⊆ [m], we have |Ez∈AχS(z)| ≤ β.

Furthermore, if m/β is a power of 2, then |A| = m2/β2. In particular, the graph Cay(Zm
2 , A) is a

(n = 2m, d = |A| , λ = β) expander graph.

Remark B.3. Given d, m ∈ N+ such that d is the square of a power of 2 with d ≤ 2m, by setting
β = m/

√
d we can use Lemma B.2 with β and m (note that m/β is a power of 2) to obtain a Cayley

graph Cay(Zm
2 , A) with parameters (n = 2m, d = |A| , λ = β).

C Zig-Zag Spectral Bound

We prove the zig-zag spectral bound Fact 4.4.

Claim C.1. Let G be an outer graph and H be an inner graph used in the s-wide replacement
product. For any integer 0 ≤ i ≤ s − 1,

σ2((I⊗ AH)Gi(I⊗ AH)) ≤ σ2(G) + 2 · σ2(H) + σ2(H)2.
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Proof. Let v be a unit vector such that v⊥1, and decompose it into v = u + w such that
u ∈ W∥ = span{a ⊗ b ∈ RV(G) ⊗ RV(H) | b = 1} and w ∈ W⊥ = (W∥)⊥.

|⟨v, (I⊗ AH)Gi(I⊗ AH)v⟩| ≤ |⟨u, (I⊗ AH)Gi(I⊗ AH)u⟩|+ |⟨u, (I⊗ AH)Gi(I⊗ AH)w⟩|+
|⟨w, (I⊗ AH)Gi(I⊗ AH)u⟩|+ |⟨w, (I⊗ AH)Gi(I⊗ AH)w⟩|

≤ |⟨u,Giu⟩|+ ∥(I⊗ AH)w∥+
∥(I⊗ AH)w∥+ ∥(I⊗ AH)w∥2

≤ |⟨u,Giu⟩|+ 2σ2(H) + σ2
2 (H)

To bound |⟨u, (I⊗ AH)Gi(I⊗ AH)u⟩|, observe that u = x ⊗ 1 for some x ∈ RV(G). Then,

0 = ⟨v, 1⟩ = ⟨u, 1⟩+ ⟨w, 1⟩ = ⟨u, 1⟩ = ⟨x, 1G⟩

so that x⊥1G. Because u is uniform over the H-component, |⟨u,Giu⟩| = |⟨x,Gx⟩| ≤ σ2(G),
which completes the proof.

We also derive a (simple) tighter bound for the expansion of the zig-zag product in a
particular parameter regime.

Claim C.2. Let G be a λ1-two-sided expander and H be a λ2-two-sided expander such that both
are regular graphs. If λ1 ≤ λ2, then

σ2(G z H) ≤ 2 · λ2.

Proof. Let v = a · v∥ + b · v⊥ with a2 + b2 = 1 be such that v ⊥ 1. In particular, if v∥ =
vG ⊗ 1H, then vG ⊥ 1G since otherwise ⟨v, 1⟩ =

⟨︁
vG, 1G⟩︁ ̸= 0. We have

max
a,b∈R : a2+b2=1

a2 · λ1 + 2ab · λ2 + b2 · λ2
2 ≤ max

a,b∈R : a2+b2=1
a2 · λ2 + 2ab · λ2 + b2 · λ2

= max
a,b∈R : a2+b2=1

λ2 + 2ab · λ2,

where the inequality follows from the assumption λ1 ≤ λ2 (and trivially λ2
2 ≤ λ2) and the

equality follows from a2 + b2 = 1. Since we also have 2ab = (a + b)2 − (a2 + b2) ≤ 1, the
result follows.

D Derandomization

To deterministically uniquely decode in fixed polynomial time (i.e., poly(n/ε)), we need
to prune the list of coupled words L covering the list L∗(ỹ) = {(z, y = dsum(z)) | z ∈
C, ∆(ỹ, y) ≤ 1/2 −

√
n} of codewords we want to retrieve. To do so, given (z∗, y∗ =

dsum(z∗)) ∈ L∗(ỹ), we need to have (z, y = dsum(z)) ∈ L such that

1. |⟨y∗, dsum(z)⟩| is not too small, and

2. ⟨ỹ, dsum(z)⟩ is not too small (in order to apply Lemma 6.11).

59



The slice (S, σ) of the SOS solution from which y∗ is recoverable satisfies in expectation

Ez∼{Z⊗|(S,σ)}

[︂
⟨y∗, dsum(z)⟩2

]︂
≥ 3η2,

and
Ez∼{Z⊗|(S,σ)} [⟨ỹ, dsum(z)⟩] ≥ 3

√
η/2.

Moreover, since z ↦→ ⟨y∗, dsum(z)⟩2 and z ↦→ ⟨ỹ, dsum(z)⟩ are O(1/n)-Lipschitz 11 with
respect to the ℓ1-norm, Hoeffding’s inequality gives

P
z∼{Z⊗|(S,σ)}

[︂
⟨y∗, dsum(z)⟩2 < η2

]︂
≤ exp (−Θ(n)) ,

and
P

z∼{Z⊗|(S,σ)}
[⟨ỹ, dsum(z)⟩ < √

η] ≤ exp (−Θ(n)) .

At least randomly, such a z can be easily found. In [AJQ+20], alternatively to satisfy-
ing Item 1 it was shown that by choosing z′ ∈ {±1}n by majority vote, i.e.

z′i = argmax
b∈{±1}

P[Zi = b]

for i ∈ [n], one has that |⟨z∗, z′⟩| is large which is enough to address the first item. More
precisely, implicit in [AJQ+20], for any constant β ∈ (0, 1) as long as parity sampling is
sufficiently strong we have

Ez∼{Z⊗|(S,σ)}

[︂⟨︁
z′, z

⟩︁2
]︂
≥ 1 − β.

Similarly z ↦→ ⟨z′, z⟩2 is O(1/n)-Lipschitz with respect to the ℓ1-norm, so Hoeffding’s in-
equality yields

P
z∼{Z⊗|(S,σ)}

[︂⟨︁
z′, z

⟩︁2
< 1 − β/2

]︂
≤ exp (−Θ(n)) .

However, we want to efficiently and deterministically find a z satisfying ⟨z′, z⟩2 ≥ 1 − β/2
as well as satisfying Item 2. Note that at this stage in the decoding process y∗ is not known
(without issuing a recursive unique decoding call), so running expectation maximization
to satisfy item Item 1 would not be possible. Fortunately, the majority z′ can be cheaply
computed without a recursive call to a unique decoder. On the other hand z satisfying
only Item 2 can be found by expectation maximization. We need to satisfy both conditions
at the same time. For this reason, we design a simultaneous expectation maximization
derandomization procedure tailored to our setting.

D.1 Abstract Derandomization: Simultaneous Expectation Maximization

Suppose that Ω is a probability space where two random variables A and B are defined
satisfying the following first moment conditions

E [A] ≥ a and E [B] ≥ 1 − β.

11In this fixed polynomial time regime, the parameters s, d1, d2, ε0, η are constant independent of the final
bias ε.
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We provide sufficient conditions so that ω ∈ Ω satisfying

A(ω) ≥ a′ and B(ω) ≥ 1 − β′

can be efficiently deterministically found with the aid of an oracle, where a ≈ a′ and
β ≈ β′. More precisely, we have the following lemma.

Lemma D.1. Let Ω = ({−1, 1}n, ν1 × · · · × νn) be a probability space with a product distribu-
tion. Suppose A ∈ [−1, 1] is a random variable on Ω satisfying, for a > 0 and for some function
eA : N → R+,

P [A < a] ≤ eA(n).

Suppose B ∈ [−1, 1] is a random variable on Ω satisfying, for some function eB : N×R+ → R+,

P [B < 1 − β] ≤ eB(n, β).

Suppose that there is an oracle to evaluate E
[︁
AB2k]︁ under any product distribution µ′

1 × · · · × µ′
n

for k ∈ N. Given δ, β ∈ (0, 1), if

eA(n) + eB(n, β/(4(⌈− ln(a(1 − β))/δ⌉+ 1))) ≤ a
β

2
, (10)

then it is possible to find ω ∈ {±1}n using 2n invocations to the oracle and satisfying

A(ω) ≥ a(1 − β) and |B(ω)| ≥ 1 − δ.

Proof. Set k = ⌈− ln(a(1 − β))/δ⌉+ 1. Set β′ = β/(4k). Note that

E
[︂
AB2k

]︂
≥ a

(︃
1 − β

4k

)︃2k

− eA(n)− eB(n, β′) ≥ a (1 − β) ,

where we use Eq. (10) in the last inequality. Do expectation maximization to deterministi-
cally find ω ∈ {±1}n, with 2 · n invocations to the oracle of E

[︁
AB2k]︁, such that

A(ω)B(ω)2k ≥ a (1 − β) .

Since B(ω)2k ≤ 1, we have A(ω) ≥ a (1 − β). Towards a contradiction suppose |B(ω)| ≤
1 − δ. Using that A(ω) ≤ 1, we have

e−2k·δ ≥ (1 − δ)2k ≥ A(ω)B(ω)2k ≥ a(1 − β). (11)

By our choice of k, we get
e−2k·δ < a(1 − β),

contradicting Eq. (11).

D.2 Implementing the Oracle

Now, we provide an efficient deterministic oracle for our setting. We take

A := ⟨ỹ, dsum(z)⟩ and B :=
⟨︁
z′, z

⟩︁2 ,

where z′i = argmaxb∈{±1} P[Zi = b]. Note that

AB2k = ∑
T⊂[n] : |T|=O(1)

αT ∏
i∈T

zi.

To compute E
[︁
AB2k]︁ under any product distribution µ′

1 × · · · × µ′
n, use linearity of ex-

pectation and sum at most nO(1) terms αTE [∏i∈T zi] where each can be computed in O(1)
since restricted to T we have a product distribution taking values in {±1}T.
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