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This paper develops tools to characterize how species are affected by
environmental variability, based on a functional single index model relating
a response such as growth rate to environmental conditions. In ecology the
curvature of such responses are used, via Jensen’s inequality, to determine
whether environmental variability is harmful or beneficial, and differing non-
linear responses to environmental variability can contribute to the coexistence
of competing species.

Here, we address estimation and inference for these models with obser-
vational data on individual responses to environmental conditions. Because
nonparametric estimation of the curvature (second derivative) in a nonpara-
metric functional single index model requires unrealistic sample sizes, we
instead focus on directly estimating the effect of the nonlinearity by compar-
ing the average response to a variable environment with the response at the
expected environment, which we call the Jensen Effect. We develop a test
statistic to assess whether this effect is significantly different from zero. In
doing so we reinterpret the SiZer method of Chaudhuri and Marron (J. Amer.
Statist. Assoc. 94 (1999) 807–823) by maximizing a test statistic over smooth-
ing parameters. We show that our proposed method works well both in sim-
ulations and on real ecological data from the long-term data set described in
Drake (Proc. R. Soc. Lond., B Biol. Sci. 272 (2005) 1823–1827).

1. Introduction. In natural ecosystems, environmental conditions are highly variable
over time and space (e.g., Vasseur and McCann (2007)), and many classical questions in ecol-
ogy and evolution are, therefore, concerned with the potential consequences of this variation.
Two important topics have been how species’ traits and life histories evolve so that species
can persist in environments that may be favorable at some times and unfavorable at others (see
Cohen (1966) and Koons, Metcalf and Tuljapurkar (2008)). Differing nonlinear responses to
environmental variability can contribute to maintaining the biodiversity of competing species,
allowing them to coexist stably (see, e.g., Chesson (1994), Chesson (2000a, 2000b), Chesson
and Warner (1981), Ellner (1987), Hutchinson (1961)). Nonlinear responses to environmental
conditions are also important for forecasting responses to climate change, as environmental
variability can either increase population growth rate (Drake (2005), Koons et al. (2009)) or
decrease it (Lewontin and Cohen (1969)), depending on the shape of the norm of reaction
between environmental variables and the components of population growth rate (survival,
growth and reproduction).

The goal of this paper is to develop methods for determining the effect of environmen-
tal variability on some component of population growth. Within mathematical biology this
is a result of the curvature of the model; from Jensen’s inequality convex functions result in
higher growth under a variable environment, than when the environment is held constant at its
mean and vice versa for concave functions. However, common statistical models for species
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growth make parametric assumptions that predetermine these effects. For example, expo-
nential models will always return convex results, while Michaelis–Menten saturation effects
produce concave relationships. Recent statistical research in semiparametric or nonparamet-
ric methods inspires us to understand the effect of environmental variation via nonparametric
models that do not impose these assumptions. Specifically, we consider spline-based methods
(see Wood (2000), Ramsay (2006), Ramsay, Hooker and Graves (2009) and Ruppert, Wand
and Carroll (2003)) to predict nonlinear responses under environmental fluctuation.

The nonparametric model considered here is

G = g(E) + ε,(1)

where G and E are the growth (or future size) and environment of an organism. The function
g is the link function to be estimated, and ε is random error. We assume that the environmental
E is described by a climate history, such as temperature or precipitation observed at a fine
time-scale, such as daily resolution. Following Teller et al. (2016), these are thought of as
functional covariates, leading to representation of E as a functional linear term

E =
∫

X(t)β(t)dt,(2)

where β(t) is the coefficient function to be estimated and X(t) is the observed climate history.
Combining (1) and (2), a functional model for observed species growth is

Y = g

(∫
X(t)β(t)dt

)
+ ε.(3)

This is the functional single index model introduced in Chen, Hall and Müller (2011) and
Ma (2016). The functional single index model is an extension of the single index model to
a functional covariate via

∫
X(t)β(t)dt . This model allows a nonlinear relationship between

response Y and covariate function X(t). In addition, it improves stability in estimating the
link function g through imposing smoothness on β(t).

With estimates of g and E, we wish to assess the impact of environmental variability.
Within mathematical biology this is done by an analysis of g′′; an always positive second
derivative corresponds to g being convex and increased growth under environmental variabil-
ity due to Jensen’s inequality: Eg(E) > g(EE). Ye and Hooker (2018) investigate estimating
g′′ in a functional single index model using a local quadratic estimate for g and demonstrates
convergence rates but finds that the resulting estimators are impractical for finite sample size.
A brief demonstration of this same effect using our estimators is given in Section A of the
Supplementary Material (Ye, Hooker and Ellner (2020)).

The methods in this paper bypass estimating curvature and, instead, we estimate the con-
sequences of environmental variation directly. That is, we define the quantity

δ = g
[
E(E)

] − E
[
g(E)

]
directly and conduct inference about its sign. We have titled this the “Jensen Effect,” as being
the result of Jensen’s inequality. However, we note that g need not be strictly convex for δ to
be positive (or, conversely, for it to be negative) and observe that the ecological interest lies
in δ rather than g′′. Indeed, in our real-world examples in Section 5 we observe that g is often
not estimated to have the same curvature over the whole range; nonetheless the interaction of
curvature and the distribution of covariates does produce a consistent Jensen Effect.

We argue that this target is also better suited for inference: it avoids estimating derivatives
and, by averaging, we expect to gain stability relative to pointwise estimates of g. By con-
trast, direct inference about curvature requires a test of mins g′′(s) > 0 or maxs g′′(s) < 0
which is substantially less stable. While bounding curvature does allow statements about
consequences of variability to be independent of the distribution of E, we observe that using
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a nonparametric estimate of g already constrains the range of the argument s at which we
can make statements about g′′(s) and our tests can be employed using any given alternative
distribution for E that is of interest.

In order to conduct inference, we take inspiration from the SiZer method of Chaudhuri and
Marron (1999). Our estimates ĝλ(·) and β̂λ(·) both employ smoothing parameters. Rather
than choosing these parameters, we instead examine the resulting tλ = δ̂λ/ sd(δ̂λ) as a func-
tion of λ and use maxλ |tλ| as a test statistic. We can assess the significance of this statistic
by treating tλ as a Gaussian process over λ and simulating from a null distribution in which
Etλ = 0. This avoids the need to account for the selection of λ as well as allowing us to detect
relationships that may not be significant at smoothing parameters chosen by GCV or other
criteria.

In the presentation of our methods, we have used max |tλ| as a statistic in order to include
both positive and negative Jensen effects in the space of alternative hypotheses and allowing
the sign to be deduced later. These approaches do have the potential to find significant devi-
ations occur in both directions at different values of λ; however, where we have encountered
this in practice, it has be relatively easy to distinguish which represents a more plausible
model for the data. One-sided tests can be performed using either max tλ or min tλ employing
the same methods. Doing so removes the potential ambiguity above; we have chosen to retain
and illustrate it here.

1.1. Related literature: Single index models. There is a large literature on single index
models covering both applied methodology and theoretical properties. The link function g

and the coefficient vector β have been estimated by three different methods: (1) The most
widely used is the Projection Pursuit Regression (PPR) approach introduced in Härdle, Hall
and Ichimura (1993). This method is a nested estimation procedure, with the link function
g estimated by local polynomial approximation and the coefficient function by minimiz-
ing the MSE. Theoretical properties were studied in Härdle, Hall and Ichimura (1993) and
Ichimura (1993). (2) The average derivative approach was introduced in Hristache, Juditsky
and Spokoiny (2001). (3) Li (1991) introduced the sliced inverse regression method which
considered the estimation of the coefficient vector as a dimension-reduction problem.

In contrast, there are few studies of the functional single index model. A counterpart to
the projection pursuit regression was introduced in Chen, Hall and Müller (2011), where
the coefficient function β was approximated by a spline basis and the coefficient vector was
estimated. In addition, a convergence rate was found for this method. Ma (2016) used two
spline bases to approximate the coefficient function and the link function, respectively, and
derived some asymptotic properties of the resulting estimate. Methods that use single-index
models as an additive term for function-on-scalar regression have been developed and studied
in Li, Huang and Zhu (2017).

1.2. Related literature: SiZer. The SiZer (Significant Zero crossings of derivative)
method that we adopt to assess significance was introduced by Chaudhuri and Marron (1999)
to assess the significance of peaks and other features in nonparametric smooths while by-
passing the selection of smoothing parameters. Chaudhuri and Marron (1999) observe that
smoothing parameters can have a substantial impact on the features observed, and, rather
than base inference on a selected smoothing parameter, they examine a range of reasonable
smooths.

Specifically, SiZer is particularly concerned with the assessment of sign changes of deriva-
tives. Local modes, in particular, can be represented by sign changes in a first derivative.
To assess the significance of these, Chaudhuri and Marron (1999) obtain a nonparametric
smooth f̂ (x;λ) of a relationship over x indexed by smoothing parameters λ. The method
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then constructs the t-statistic t (x;λ) = f̂ (k)(x;λ)/ sd(f̂ (k)(x;λ)). f̂ (k)(x;λ) is then plotted
over both x and λ with regions in which |t (x;λ)| > C are indicated. In particular, changes
from a positive value of f̂ (1)(x;λ) to a negative value as x is changed indicate a local maxi-
mum. Chaudhuri and Marron (1999) present their methods in the context of local polynomial
smoothing and kernel density estimation, but exactly the same tools can be employed for any
nonparametric method, including the smoothing splines we employ here. See Sonderegger
et al. (2009) for an example of the use of SiZer in ecological models when searching for
points of rapid ecological change in response to environmental forcing.

The interpretation of the significance of these changes depends on the selection of the
critical value C. Chaudhuri and Marron (1999) suggest a variety of choices, including using
pointwise significance levels (in which a number of false positives may be expected when
searching over both x and λ), using a critical value that approximately controls the family-
wise error rate in x for each λ and obtaining a uniform bound by finding a critical value of
maxx,λ |t (x;λ)| via a bootstrap. Marron and Zhang (2005) develop approximations for Gaus-
sian processes that reduce the computational burden while improving coverage probabilities.

We borrow from these ideas and, particularly, repurpose the search over “scale-space” to
examine the Jensen Effect over a range of smoothing parameters. In contrast to SiZer, which
examines features over a range of x, the Jensen Effect averages over covariates. Similar to
Marron and Zhang (2005), we select a significance threshold designed to control the family-
wise error rate over smoothing parameters; however, we select this from an explicit Gaussian
approximation which can be efficiently simulated.

In the remainder of this paper we provide details of our estimation procedure for a func-
tional single index model in Section 2, and our assessment and test of the Jensen Effect in
Section 3. Simulation studies to assess the efficacy of our test are conducted in Section 4.
Section 5 provides a motivating example in which we examine the response of eight copepod
species to water temperature variability in data obtained from the North Temperate Lakes
Long Term Experimental Research station where we find evidence for positive adaptation to
environmental variability in five species. Section 6 concludes.

2. Estimation procedure. Here, we provide details of our representation of β and g and
our estimation procedure given particular smoothing parameters. Section A of the Supple-
mentary Material (Ye, Hooker and Ellner (2020)) provides a demonstration of using these
approaches to estimate curvature rather than the Jensen Effect we examine here.

We represent both β and g using smoothed basis expansions. Assume that n independent
and identically distributed data pairs (X1(t), Y1), . . . , (Xn(t), Yn) are observed where Xj(t)

is a real-valued function on [0,1]. The functional single index model is

Y = g

(∫
X(t)β(t)dt

)
+ ε,

where the coefficient function β(t) is, like X(t), defined on the interval [0,1]. We assume ε

to be Gaussian random error. This integral may need to be evaluated numerically, depending
on the representations used for Xi and β , and we assume that this is done up to ignorable
error throughout the calculations below. To ensure identifiability of the model, we require
that ‖β‖ = ∫

β(t)2 dt = 1.
We use a K1-dimensional B-spline basis for the link function g. For any s in the range of

possible
∫

Xβ values, the link function g can be written as

g(s) = φ�(s)d,

where d is a K1-dimensional column coefficient vector.
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We use a K2-dimensional basis for the coefficient function β , such that

β(t) = ψ�(t)c,

where c is a K2-dimensional column coefficient vector, and t ∈ [0,1].
The coefficient vectors c and d are estimated by minimizing a penalized sum of squares

2PLS .=
n∑

i=1

(Yi − gi)
2 + λg

∫ (
g(2)(s)

)2 ds + λβ

∫ (
β(2)(t)

)2 dt

=
n∑

i=1

{
Yi − φ�

[(∫
Xiψ

�
)
c

]
d

}2
+ λgd

�
Pgd + λβc�

Pβc,

(4)

where gi
.= g(

∫
Xiβ) and the penalty matrices [Pβ]ij = ∫

ψ
(2)
i (t)ψ

(2)
j (t) dt and [Pg]ij =∫

φ
(2)
i (t)φ

(2)
j (t) dt are available, analytically, for most common choices of basis expansion.

Equation (4) specifies a nonlinear optimization problem, which we solve numerically using
built-in optimizers in R (see below). Denoting the estimated coefficients as ĉ and d̂ , the
estimates are

β̂(t) = ψ�(t)ĉ

and

ĝi
.= ĝ

(∫
Xiβ̂

)
= φ�

[(∫
Xi(t)ψ

�(t)dt

)
ĉ

]
d̂,

where i = 1, . . . , n.

2.1. Notes on implementation and model selection. Our objective criterion (4) requires
nonlinear numerical optimization. In our experiments below we have used the R function
optim with some additional modifications. The simulations reported in Section 4 used the
BFGS gradient-based optimizer. However, at large values of λ we find that very tight conver-
gence criteria are needed to reduce the numerical error to below that of the estimated noise.
This was mitigated with three strategies:

1. We initialize our optimization with d chosen so that ĝ is exactly linear and c is obtained
from functional linear regression.

2. We reinitialize BFGS once it converges and run it a second time. BFGS uses a
sequentially-calculated approximate Hessian and can stop early due to poor estimation of
this Hessian. Reinitialization resets the approximate Hessian to the identity so that optimiza-
tion is restarted with a steepest descent step.

3. In our motivating data example we additionally attempted reinitializing from the solu-
tions found at surrounding eight combinations of λg and λβ and chose the best optima among
these. This was repeated until the maximum relative improvement in optima was less than
0.01. This strategy was employed in order to ensure a smooth relationship between smooth-
ing parameters and estimated effects but can substantially increase computational costs.

To maintain identifiability of our model, we normalize our estimate of β(t) within each eval-
uation of the objective function and multiply by sign(β(0)).

In order to represent ĝ with a basis expansion, we need to control the range of its ar-
guments. Throughout our estimates below, we have used the identifiability requirement that
‖β‖ = 1 to use a range of [−S,S] where S is the largest score for the maximum eigenvalue
from a principal components decomposition of the Xi . If | ∫ Xi(t)β(t)dt | > S for some i,
we replace the argument with the corresponding endpoint of the range and add a penalty of
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| ∫ Xi(t)β(t)dt − S| to the objective (4). In practice, while we find that this exceedance can
occur during optimization, it never appears in the final result.

We find that these procedures are sufficient to provide reliable inference for the Jensen Ef-
fect. However, estimates of g′′(·) can be highly sensitive to initial conditions and optimization
strategies. Section A of the Supplementary Material (Ye, Hooker and Ellner (2020)) provides
a brief example of the sensitivity of curvature to both noise and initial conditions. We spec-
ulate that this sensitivity is a result of a complex optimization landscape in which there are
many good estimates of g, but these can vary substantially for g′′.

While our assessment of statistical significance avoids selecting λ, it will be useful to have
a value for visualization and for an estimate of residual variance. To choose λ, we define a
smoother matrix Sλ associated with λ, and the GCV value for selecting λ is calculated from

GCV(λ)
.=

1
n
‖(I− S(λ))Y‖2

[ 1
n

tr(I− S(λ))]2
,

where I is the (n × n)-dimensional identity matrix. We derive Sλ from a Taylor expansion in
(18) below.

3. Jensen effect. The ecological interest in g′′ is in the comparison of g[E(E)] and
E[g(E)]. Because reliable estimation of g′′ requires unrealistic sample sizes, we instead com-
pare these quantities directly to estimate what we call the “Jensen Effect.”

We define a difference statistic by

δ = 1

n

n∑
i=1

g

(∫
Xiβ

)
− g

(∫
X̄β

)
,

where X̄ = 1
n

∑n
i=1 Xi . In mathematical analyses, if the link function g is convex, then δ > 0

which indicates better growth with a varying environment; otherwise, the difference δ < 0
and a constant environment is better for growth. However, this estimate still depends on the
smoothing parameters λg and λβ . Inspired by the SiZer method of Chaudhuri and Marron
(1999), we examine the difference δ over a range of λ values for g and β and generate
hypothesis tests using the maximum or minimum value of δ as a function of λ.

3.1. Hypothesis test 1: Nonparametric smoothing. We begin by briefly developing our
SiZer-inspired test for a standard smoothing spline (treating the environment E as known)
before developing the test for a functional single index model. Here, defining � to be matrix
of evaluations, �ij = φj (Ei) and P to be the second derivative penalty matrix, the standard
smoothing spline estimate is

ĝλ(e) = φ(e)�
(
��� + λP

)−1
��Y.(5)

Define the (n+1)-dimensional column vector a
.= ( 1

n
, . . . , 1

n
,−1)� and the augmented set

of evaluation points e= (E1, . . . ,En, Ē)�, where Ei = ∫
Xiβ̂ (at each observed environment

value) and Ē = 1
n

∑n
i=1

∫
Xiβ̂ (averaged across all environment values) with corresponding

evaluation matrix �+. We can write

δλ = 1

n

∑
ĝλ(Ei) − ĝλ(Ē) = a��+(

��� + λP
)−1

��Y= uλY ,(6)

which we can standardize to obtain the t-statistic

tλ = uλY

σ̂
√

uλu
�
λ

(7)
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in which σ̂ , the estimate of the standard deviation of the random error ε, is obtained from the
value of λ selected by GCV (see details below).

Since the response variable Y is Gaussian, the test statistic tλ is also a Gaussian process
with the covariance function


(λ1, λ2) = uλ1uλ2

‖uλ1‖‖uλ2‖
(8)

which involves no unknown parameters. We can thus use maxλ |tλ| as a test statistic, obtaining
critical values by simulating from the Gaussian process GP(0,
). Under the null hypothesis
δ = 0, tλ is a Gaussian process with mean 0.

An important consideration here is that we expect δλ to inherit smoothing bias, but this
should result in underestimation of the Jensen Effect because it will shrink the estimated
second derivative. In analogy to SiZer, by examining tλ over the whole range of λ we can
assess this effect at various levels of smoothing; our use of max |tλ| as a test statistic allows
to maintain a conservative test. We do still need to choose λ by GCV in our estimate σ̂ 2,
because we use the same σ̂ 2 when calculating the covariance matrix 
. We expect σ̂ 2 to be
relatively insensitive to the specific λ chosen, so long as we do not oversmooth (see arguments
in Ruppert, Wand and Carroll (2003)); maintaining a constant σ̂ 2 in the t-statistic removes
the need to account for changes in σ̂ 2 across λ.

3.2. Hypothesis test 2: Functional single index model. The functional single index model
complicates the process described above by including two smoothing parameters and nonlin-
ear effects of β̂ , necessitating a Taylor expansion to approximate the recipe above. For each
pair of smoothing parameters (λg, λβ), we obtain an estimate of β , g, and δ, denoted as
δ̂(λg, λβ).

Defining

i =
(∫

X1β̂, . . . ,

∫
Xnβ̂,

∫
X̄β̂

)�
,(9)

i−1 =
(∫

X1β̂, . . . ,

∫
Xnβ̂

)�
,(10)

v =
(
ĝ

(∫
X1β̂

)
, . . . , ĝ

(∫
Xnβ̂

)
, ĝ

(∫
X̄β̂

))�
,(11)

the estimated difference function given (λg, λβ) is

δ̂(λg, λβ) = a�v = a�φ(i)d̂

= a�φ(i)
(
φ(i−1)

�φ(i−1) + λgPg

)−1
φ(i−1)

�Y .
(12)

To construct a t-statistic to test the significance of δ, an estimate of the variance of the
difference function δ̂ is needed. The estimated difference function δ̂(λg, λβ) is defined on an
estimate of ĉ and d̂ which are the coefficients of β and g, respectively. Therefore, we need to
calculate the covariance of the estimated ĉ and d̂ .

Recall (4), the penalized least squares criterion to be minimized, and define the matrices
of linear basis effects �ij = ∫

Xi(t)ψj (t)dt and evaluations of the link function bases and

derivatives �
(k)
ij = φ

(k)
j (�i·c) with c taken at its expected estimate. We derive gradients of

PLS as(�d

�c

)
=

(
��{Y − �d} + λgPgd

�� diag
{
�(1)d

}{
Y − ��d

} + λβPβc

)
=

(
Zg

Zβ

)
(Y − �d) +

(
λgPgd
λβPβc

)
(13)
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and expected Hessian

H=
(
Z

�
g Zg + λgPg Z

�
g Zβ

Z
�
β Zg Z

�
β Zβ + λβPβ

)
.(14)

We can now obtain the sandwich covariance

cov
(
d
c

)
= σ̂ 2

H
−1

(
Zg

Zβ

)� (
Zg

Zβ

)
H

−1,(15)

where we estimate σ 2 from

σ̂ 2 = 1

dfres

n∑
i=1

[
Yi − ĝ

(∫
Xiβ̂

)]2
,(16)

where, following Ruppert, Wand and Carroll (2003), the residual degree of freedom is defined
as

dfres = n − 2 tr(S) + tr
(
SS

�)
,(17)

where

(18) S
.= S(λg, λβ) =

(
Zg

Zβ

)
H

(
Z

�
g ,Z�

β

)
is an approximate smoother matrix in which we use the values of (λg, λβ) selected by GCV.

We now define a t-statistic for δ as a function of λ,

t
.= t (λg, λβ)

.= δ̂(λg, λβ)

sd[δ̂(λg, λβ)] ,(19)

where sd[δ̂(λg, λβ)] is given by

sd
[
δ̂(λg, λβ)

] = {[
a�φ(i)

]
cov(d̂)

[
a�φ(i)

]�} 1
2 .(20)

Defining the n-dimensional row vector uλ as

uλ = a�φ(i)
(
φ(i−1)

�φ(i−1) + λP
)−1

φ(i−1)
�,(21)

the estimated covariance matrix of δ̂λ is σ̂ 2uλu
�
λ . δλ is, therefore, approximately a Gaussian

process indexed by λ, and we can get the estimated variance of tλ from uλu�
λ

‖uλ‖2 .
We want to test if δ ≡ 0. Denote the number of the smoothing parameters λg as m, we

test H0: (δ̂λ1, . . . , δ̂λm)� = 0m. Under H0, (tλ1, . . . , tλm)� ∼ N(0m,Amm), where 0m is a m-
dimensional column vector and the covariance matrix A is (m × m)-dimensional, with the

(i, j) term equals to
uλi

u�
λj

‖uλi
‖‖uλi

‖ . The test statistic that we examine is T = max{|tλ1 |, . . . , |tλm |}.
In order to obtain a critical value for this statistic, we repeatedly simulate tλ from

N(0m,Amm) and obtain a distribution for maxλ |tλ|.
Throughout our experiments, we have used maxλ |tλ| as a test statistic in order to be agnos-

tic about the direction of the alternative hypothesis. This combines both positive and negative
rejection regions, allowing us to identify the sign of the resulting Jensen Effect post hoc. We
note that, when a specific direction is of interest, either min tλ or max tλ could be employed
as a test statistic following the same procedures.

We note the potential for δ̂λ to change signs over the range of λ. For example, if the un-
derlying g is strongly convex in a very narrow region but its general shape is moderately
concave, we might find a positive effect at small values of λ and a negative effect at large



1334 Z. YE, G. HOOKER AND S. P. ELLNER

values as the convex portion of g is smoothed over. We would regard this as good reason to
examine the resulting estimates of g with an eye to plausibility at both values of λ. In our
motivating data in Section 5, we found a couple of examples in which δλ was declared signif-
icant at two values of λ where δλ had opposite signs. One of these could be dismissed easily
as occurring only at one set of extreme values. The case of Diacyclops Thomasi required fur-
ther investigation which we defer to Section 5. Prespecifying the direction of interest would
avoid these issues, but in many ecological applications (such as our empirical case study)
both possible directions are equally plausible and equally of interest. Therefore, we believe
that the maxλ |tλ| test statistic will generally be most useful in practice.

4. Simulation study. In this section we use simulated data to explore the power of our
test for both single index and functional single index models. Computation time for these
models depends on numerous properties of the model: the number of smoothing parameter
values to try, the nonlinearities of the underlying g(·), the size of the error variance and
the data set size. Because differing settings could result in substantially different computing
times for exactly the same problem, we have not given exact timings here but note that our
single index models run within a few minutes per simulation, while functional versions can
require 10 to 30 minutes. Our real-world examples, with larger data sets and a finer mesh of
smoothing parameters, required more than half an hour on a recently purchased laptop.

4.1. Single index model. We test for a Jensen Effect by calculating the difference func-
tion δ over a range of smoothing parameters. If the link function g is convex, the δ function
will be positive for most of λ values, although it may have high variance at low λ and high
bias at high λ. For each simulation we conduct the hypothesis test introduced in previous
section.

Our simulation study starts with the single index model with p = 5 covariates, generated
independently and uniformly on [−0.5,0.5], and the coefficient β = 1√

p
1p so that ‖β‖ = 1.

To illustrate the Jensen Effect, we choose three different link functions: (1) g(s) = es ,
(2) g(s) = −s2, (3) g(s) = s. We represented g by a 25-dimensional quintic B-spline basis.
For each link function we simulated 1000 data sets of size 100, with error standard deviation
0.1. We obtained critical values for our test by simulating 5000 normal samples from the
null distribution. Figure 1 presents a sample of δλ and tλ functions functions vs. log(λ) for
g(s) = es ; plots for the other link functions are in Section B of the Supplementary Material
(Ye, Hooker and Ellner (2020)). The rejection rates for these functions are: 99.2%, 99.3%
and 5.7%, respectively.

FIG. 1. Left: a sample of δλ as a function of λ in a single index model with link function g(s) = es . Right: the
corresponding tλ functions.
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FIG. 2. Left: a sample of δλ as a function of λ in a functional single index model with link function g(s) = es .
Right: the corresponding tλ functions.

4.2. Functional single index model. To define a distribution for the functional covariates,
we use a 25-dimensional Fourier basis ψ(t), where t ∈ [0,1]. The covariate functions X(t)

are generated as

X(t) =
25∑
i=1

ξiψi(t),(22)

where ξi ∼ N(0, e−(i−1)/12). The coefficient function is

β(t) = c�ψ(t),(23)

where c = (0,1,1,0.5,0, . . . ,0)�.
Again, we used the three link functions g(s) = e2, g(s) = −s2, g(s) = s. We represented

g by a 25-dimensional quintic B-spline basis. For each link function we generated 1000
simulated data sets of size 100 with error standard deviation 0.1, and for each such data set
we generated 5000 normal samples from the null distribution to obtain critical values.

A plot of the δλ and tλ functions for g(s) = es is presented in Figure 2. We have placed
equivalent plots for g(s) = −s2 and g(s) = s in Section C of the Supplementary Material (Ye,
Hooker and Ellner (2020)). The rejection rates for the three link functions were 100%, 100%
and 7.3%, showing very good power with a reasonable sample size and close to nominal rate
when the null hypothesis is true (no Jensen Effect).

4.3. Power analysis. To investigate the power of our test in more detail we consider a
series of increasingly nonlinear link functions

g(s) = s + ηe−s,(24)

with 0 ≤ η ≤ 1.2 for the single index model and 0 ≤ η ≤ 0.8 for the functional single index
model. As η increases, g becomes strongly convex. For each η we generate 1000 simulated
data sets and again used 5000 normal samples under the null distribution to obtain critical
values. Due to the computational overhead associated with searching over another smoothing
parameter, we used only 200 simulations for the functional single index model. We replicated
each simulation changing n to 200 and changing σ to 0.2 to test for the expected loss of power
with increasing noise and gain of power with sample size.

Figure 3 presents the rejection rate plotted against η. We observe a sharp increase as η

increases, as expected: as the link function g becomes more and more convex, the rejection
rate will converge to 1. The expected patterns of decreasing power with increasing σ and
increasing power with n are observed, although a smaller simulation size makes this less
clear in the functional single index model.
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FIG. 3. The power function of the Jensen Effect test plotted against η in the link function g(s) = s + ηe−s at
sample sizes n ∈ {100,200} and residuals standard errors σ ∈ {0.1,0.2}. A single index model using the simula-
tion settings from Section 4.1 produced the left plot, while the right-hand plot is obtained using a functional single
index model with settings described in Section 4.2.

We also used this experiment as an opportunity to verify that our estimates of residual
standard error, σ , performed well. See Section D of the Supplementary Material (Ye, Hooker
and Ellner (2020)) for further details.

5. Application to real ecological data. To demonstrate application of our tests, we an-
alyze the North Temperate Lakes LTER: Zooplankton–Trout Lake Area data set.1 An earlier
version of these data were analyzed by Drake (2005) to examine the temperature dependence
of copepod populations. In our data set the density of the populations of eight species of
copepods and rotifers, along with water temperature, were recorded from 1981 to 2015 in
eight different lakes. Our choice of species was determined based on the number and length
of observations available and differs from those studied in Drake (2005). Note that the growth
response in these data is not the growth (in size) of an individual but the growth (in numbers)
of a population; nevertheless, our functional single index model is still appropriate for this
setting.

The values recorded in the original data set are:

1. d: Species’ density at a specific time and lake.
2. t: Record of water temperature collected as the same time as d.

Both measurements were recorded on irregular time points among different years and lakes,
so in order to obtain functional covariates, we preprocessed the temperature data by fitting
a smoothing spline; see details in Section E of the Supplementary Material (Ye, Hooker and
Ellner (2020)).

Our response is change in density between successive observed time points normalized by
the time change

Yi = (δsi+1 − δsi )/(si+1 − si)

recorded so long as si+1 − si < 100, where si is the time (in days) of the ith sample.
At the time of each observed response, we used temperature values over the 60 preceding

days as the climate history covariate X(t). For each species we fit a penalized spline func-
tional single index model for the growth in population density as a function of temperature

1Zooplankton records from https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-ntl&identifier=
37&revision=29 water temperature from https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-ntl&
identifier=129.

https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-ntl&identifier=37&revision=29
https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-ntl&identifier=37&revision=29
https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-ntl&identifier=129
https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-ntl&identifier=129
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history in each lake; details of these procedures are given in Section E of the Supplemen-
tary Material (Ye, Hooker and Ellner (2020)). We represented β with 12 order-6 B-splines
covering the 60 day history and reinterpolated the smoothed X(t) processes onto this basis.
We used a 25-dimensional cubic B-spline basis to represent g because we wanted a linear
function to fall in the span of our basis and set its range to be ±max

∫
φj (t)Xi(t) dt to ensure

that the single index values fell within it. We searched over values of log10(λ) in the range
[−6,2] for g and [−2,6] for β . These were chosen to cover the range of values selected by
GCV for most data sets while avoiding spurious significance due to optimization errors.

The Jensen Effect δ was estimated to be positive at all smoothing parameters in six out of
the eight species; in Keratella Earlinae only one extreme combination of smoothing param-
eters produced a negative δ. However, statistically significant values of δ were only found
for five out of these seven species (Kellicottia Longispina, Keratella Cochlearis, Keratella
Earlinae, Polyarthra Remata, and Polyarthra Vulgaris). Nonetheless, we conclude from this
that a majority of the copepod species in this data set are evolved to take advantage of envi-
ronmental variability. Examining estimates of β(t), we find some of these are undersmoothed
at GCV values, but they tend to represent gradients corresponding to either warming or cool-
ing water temperatures, likely associated with seasonal abundance trends. The use of water
temperature as a sole covariate means that its effects are conflated with other environmental
variables that change seasonally, such as the availability of nutrient sources. Thus, we can-
not conclude a causal relationship but note that the same analysis can be undertaken while
accounting for other covariates if and when they are available.

Figure 4 provides a canonical set of plots for the species Polyarthra vulgaris; equivalent
plots for the remaining species are presented in Section E of the Supplementary Material (Ye,
Hooker and Ellner (2020)). The top four panels provide g(s), g′′(s) and β(t) estimated at
the smoothing parameters selected by GCV as well as a contour plot of δ over the smoothing
parameters with a shaded area that indicates values at which the effect was found not to be
significant. In this case δ is positive and significant at all smoothing parameters. In order
to explore the shape of the response further, we also plot g(s) and β(t) at the smoothing
parameters that result in the maximum value of δ. Note that maximizing δ here results in
particularly large edge effects which should be treated with caution.

One species, Diacyclops Thomasi, was an exception to the general pattern in our analyses,
producing areas in the (λg, λβ) plant where the estimated δ has large positive values and other
areas where it has large negative values. Figure 5 provides plots of g(s) at three smoothing
parameter values as well as δ(λg, λβ) along with indicators of where it is significant in order
to visualize the effects of smoothing parameters. We note that δ is not significant at the values
of the smoothing parameters selected by GCV (black square), but it is declared to be signif-
icant in both the negative (middle of the plot given by the black circle) and positive (bottom
indicated by the triangle) directions. Figure 5 provides plots of g at each of these two points
for comparison. The positive estimate is associated with an inflection of g, at the low end of
the range of

∫
Xi(t)β̂(t) dt values, and is likely the result of undersmoothing. Therefore, we

conclude, tentatively, that Diacyclops Thomasi apparently differs from the other species in
being harmed by temperature variability, but we feel that further experiments are warranted
in this case. We note that this is the only species in which our signal is ambiguous (as opposed
to inconclusive). In Keratella Earlinae (Figure 15) a single significant negative value is found
at the bottom corner of the contour plot, which we feel can be dismissed; see an equivalent
but positive corner effect in Kellicottia Longispina in Figure 13.

6. Conclusion. Environmental variability is ubiquitous and projected to change signif-
icantly over the next century as one aspect of global climate change. Therefore, projecting
how biological populations will respond to climate change requires methods to estimate how
they will respond to changes in the variance of conditions, not just the mean.
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FIG. 4. Diagnostic plots for Polyarthra Vulgaris, n = 1577. The estimated g(s) (top left) along with β(t) (top
right), and g′′(s) (middle left) along with pointwise confidence intervals. Histograms give the distribution of
estimated

∫
Xi(t)β̂(t) dt . All plots are given at the values which minimize GCV. Middle right: δ as a function of

both λg and λβ . Regions where tλg,λβ
exceed the critical value are indicated by a white background (the whole

plot in this case), and a black square gives the minimizing value of GCV; black circle indicates values at which δ

is maximized. Bottom row: g and β at the smoothing parameter values that maximize δ.

With the goal of estimating the net effect of environmental variability on components of
population growth rate, we first attempted to estimate the curvature of the link function g in a
functional single index model. In our penalized spline based method, we found that unrealistic
sample sizes were needed to obtain accurate estimates. Instead, we directly investigated the
effect of environmental variability by comparing the expected response (averaged across the
environmental variation) to the response at the expected environment. We termed this the
“Jensen Effect” since it describes the effect of Jensen’s inequality, but we note that it operates
far more broadly than on just convex or concave functions. Inspired by the SiZer method,
our test for a nonzero Jensen Effect is based on maximizing a test statistic across a wide
range of smoothing parameters encompassing all plausible values, thus avoiding the need for
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FIG. 5. Comparison of estimated reaction norm g at different smoothing parameters for Diacyclops thomasi.
Top left: contour of δ as a function of smoothing parameters with values minimizing GCV (solid square), maxi-
mizing δ (triangle) and minimizing δ (circle). The corresponding plots of g are given in the top right (minimizing
GCV), bottom left (minimizing δ) and bottom right (maximizing δ). We judge the positive values of δ to be due to
large edge effects.

smoothing parameter selection. We have shown that our proposed procedures work well, on
both simulated and real data.

There are multiple potential extensions of this methodology. We have used observed data,
as representative of the covariates of interest, to define the average and distribution of en-
vironmental variability. However, the test can be conducted for any assumed distribution of
covariates, and it may be of interest to describe regions of single index values in which the
estimated response function produces a Jensen Effect. A way to achieve this is to plot the a

and b for which E(g(S)) − g(ES) is significantly different from 0, when our procedure is
applied under the assumption that S ∼ U [a, b].

It may also be of interest to ask about Jensen Effects on different scales of measurement.
For example, using size (rather than change in size) as a response in our empirical application
to copepod growth rate results in heteroskedasticity in the response which can be ameliorated
by a log transform. We would then employ the model E log(Y ) = g(

∫
X(t)β(t) dt) and the

Jensen Effect of interest is E exp(g(
∫

X(t)β(t) dt)) − exp(g(E
∫

X(t)β(t) dt)). Smoothing
ĝλ biases the Jensen Effect toward being positive, and our method would need modifications
to take account of this.

The same challenge arises in extending our approach to other response structures, such as
survival or count data, which also use nonlinear link functions for fitting within a generalized
linear models framework. Any of the standard GLM links could be modified by placing a
nonparametric g(s) within the GLM link. But the Jensen Effect then applies to the composi-
tion of the GLM link with g(s), so, again, there would need to be a way of accounting for the
bias introduced by smoothing.
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SUPPLEMENTARY MATERIAL

Supplementary Material to “The Jensen effect and functional single index models:
Estimating the ecological implications of nonlinear reaction norms” (DOI: 10.1214/20-
AOAS1349SUPPA; .pdf). A supplementary appendix providing further experimental details,
some derivations and extended results on the copepod data.

Code for Jensen effect (DOI: 10.1214/20-AOAS1349SUPPB; .zip). Code and data to
reproduce simulations and real world analyses contained in this paper.
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