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Abstract

We construct an explicit and structured family of 3XOR instances which is hard for
O(/logn) levels of the Sum-of-Squares hierarchy. In contrast to earlier constructions,
which involve a random component, our systems are highly structured and can be
constructed explicitly in deterministic polynomial time.

Our construction is based on the high-dimensional expanders devised by Lubotzky,
Samuels and Vishne, known as LSV complexes or Ramanujan complexes, and our anal-
ysis is based on two notions of expansion for these complexes: cosystolic expansion,
and a local isoperimetric inequality due to Gromov.

Our construction offers an interesting contrast to the recent work of Alev, Jeron-
imo and the last author (FOCS 2019). They showed that 3XOR instances in which the
variables correspond to vertices in a high-dimensional expander are easy to solve. In
contrast, in our instances the variables correspond to the edges of the complex.

1 Introduction

We describe a new family of instances of 3XOR, based on high-dimensional expanders,
that are hard for the Sum-of-Squares (50S) hierarchy of semidefinite programming relax-
ations, which is the most powerful algorithmic framework known for optimizing over
constraint satisfaction problems. Unlike previous constructions of 3XOR hard instances
for SoS, our construction is explicit, as it is based on the explicit construction of high-
dimensional expanders due to Lubotzky, Samuels and Vishne [LSV05a, ILSV05b], which
we refer to henceforth as LSV complexes.
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Theorem 1.1. There exists a constant y € (0,1) and an infinite family of 3XOR instances on n
variables, constructible in deterministic polynomial time, satisfying the following:

- No assignment satisfies more than 1 — u fraction of the constraints.

- Relaxations obtained by O(+/log n) levels of the SoS hierarchy fail to refute the instances.

We remark that the result in the above theorem differs from the previous results for
random instances of 3XOR, proved by Grigoriev [Gri01] and Schoenebeck [Sch08], in two

ways:

- While random instances are known to be hard for ()(n) levels of the SoS hierarchy,
the above theorem only gives a gap for Q)(/logn) levels.

- Our instances on the LSV complexes exhibit an integrality gap of 1 — p vs. 1, while
random instances exhibit a gap of 1/2 + e vs. 1. However, our construction can also
be combined with reductions in the SoS hierarchy [Iul09] hierarchy, reductions can
be used to obtain explicit 3XOR instances with a gap of 1/2+¢evs.1 —eforany e > 0.
Indeed, this yields explicit hard instances with optimal gaps for all approximation
resistant predicates based on pairwise independent subgroups [Chal6].

Structured instances from High-dimensional expanders. High-dimensional expanders
(HDXSs) are a high-dimensional analog of expander graphs. In recent years they have
found a variety of applications in theoretical computer science, such as efficient CSP opti-
mization [A]JT19], improved sampling algorithms [ALGV19, AL20, ALG20, CLV20], quan-
tum LDPC codes [EKZ20| KT20], novel lattice constructions [KM18], direct sum testing
[GK19], and others. Explicit constructions of HDXs have also led to improved list-decoding
algorithms [DHKNT19, [AJQST20] and to sparser agreement tests [DK17, [DD19]. In this
work, we show how these explicit constructions can be used to construct explicit hard
instances for SoS.

High-dimensional expanders are bounded-degree (hyper)graphs (or rather, simplicial
complexes) with certain expansion properties. A simplicial complex is a non-empty collec-
tion of down-closed sets. Given a simplicial complex X, we will refer by X (i) the family of
all i-dimensional sets in X (i.e., sets of size i + 1). The dimension of the simplicial complex
X is the maximal dimension of any set in it. It will be convenient to refer to the sets of
dimension 0, 1, 2, 3 as vertices, edges, triangles, tetrahedra, respectively. Thus, a graph
G = (V,E) is a 1-dimensional complex, while in this work we will be using complexes of
dimension at least 2. Given a 2-dimensional complex X = (X(0), X(1), X(2)), there are
two natural ways to construct a 3XOR instance based on X — a vertex-variable construc-
tion and an edge-variable construction. Let f: X(2) — [F, be any F,-valued function on
the set X(2) of triangles.



Vertex-variable construction: The 3XOR instance corresponding to (X, 8) consists of the
following constraints: x; + Xy + Xuw = By} for each {u,v,w} € X(2).

Edge-variable construction: The 3XOR instance corresponding to (X, f) consists of the
following constraints: X, o1 + X{v,w) + X{wu} = B{uw} for each {u,v,w} € X(2).

The vertex-variable construction whose underlying structure is a high-dimensional ex-
pander has been studied by Alev, Jeronimo and the last author [AJT19]. They gave an
efficient algorithm for approximating vertex-variable constraint satisfaction problems (not
necessarily 3XOR) on an underlying high-dimensional expander. Their result is a gener-
alization to higher dimensions of the corresponding result for graphs that “CSPs are easy
on expanders” [BRS11, IGS11]. They prove this by showing that certain types of random
walks on vertices converge very fast on high-dimensional expanders. However, the same
analysis fails to show a similar result for the edge-variable construction, as the correspond-
ing random walk on edges of a high-dimensional expander does not mix. Our work shows
that this difference isn’t just a technical limitation of their analysis; it is inherent. The edge-
variable variant is truly hard, at least for SoS. This demonstrates an interesting subtlety in
the structure of high-dimensional expanders, and how it relates to optimization.

To understand our edge-variable construction better, it will be convenient to set up
some notation. Let C! denote the set of all Fp-valued functions on X (i). Foreach 0 < i < d,

consider the operator 6;: C' — C*1 defined as follows:

5if(s) =) fls —{u}).
ues

This is usually referred to as the coboundary operator. Let B! be the image of J;_1, and let
Z! be the kernel of ;. Clearly, Bi, 7! C C!. Furthermore, it is not hard to see that B! C Z'.
It easily follows from the definitions that the edge-variable construction corresponding to
(X, B) is a satisfiable instance iff 8 € B>.

Typically, soundness of SoS-hard instances is proved by choosing  at random from C>.
In contrast, we construct our explicit instances by choosing the function f more carefully,
and relying on a certain type of expansion property of the complex. Recall that B> C Z2,
and the instance is satisfiable iff 8 € B2. Complexes for which B?> = Z? are said to have triv-
ial second cohomology. We will be working with complexes with non-trivial second coho-
mology, i.e., B> # Z2. This lets us choose a € Z?\ B? to prove soundness. It is known that
the explicit constructions of HDXs due to Lubotzky, Samuels and Vishne [LSV05a,ILSV05b]
have non-trivial second Cohomologyﬂ In fact, these complexes have the stronger property
(due to a theorem of Evra and Kaufman [EK16]) that all B € Z2\ B? are not only not in
B?, but in fact far from any function in B2. This latter property follows from the cosystolic

expansion of the complex, and forms the basis for the soundness of our instances.

More accurately, their construction depends on the group defining the quotient. They show that a certain
choice of groups yields non-trivial second cohomology.



How do we prove the completeness of our instance, namely, that SoS fails to detect that
it is a negative instance? The LSV construction is a quotient of the so-called affine building
which is, from a topological point of view, a simple “Euclidean-like” object with trivial
cohomologies. The hardness of our instance comes from the inherent difference between
the LSV complex and the building, which cannot be seen through local balls whose radius
is at most the injectivity radius of the complex, in our case ®(logn). Locally, the LSV
quotient is isomorphic to the building. However, unlike the building, the LSV complex
is a quotient with non-trivial cohomologies. The hardness comes from the fact that local
views cannot capture the cohomology, which is a global property. Given this observation,
the proof of completeness can be carried out following the argument of Ben-Sasson and
Wigderson [BWO1] that any short resolution proof is narrow, and Grigoriev [Gri01] and
Schoenebeck [Sch08]’s transformation from resolution lower bounds to SoS lower bounds.

Technically, we rely on two very different types of expansion or isoperimetry. In our
proof of completeness, we rely on an isoperimetric inequality called Gromov’s filling in-
equality, that says that balls are essentially the objects with smallest boundary in any
CAT(0) space (a class of spaces that includes both Euclidean spaces and the affine build-
ing). In our proof of soundness, we rely on the cosystolic expansion of the LSV complex,
as proven by Evra and Kaufman [EK16|], which implies that any non-trivial element in
the cohomology has constant weight. Both of these statements are related to expansion,
yet they are distinct from other notions of expansion used in previous SoS lower bounds.
Interestingly, both notions are natural generalizations of edge-expansion to higher dimen-
sions. Isoperimetric expansion is a classical notion asking for the smallest possible bound-
ary of a body with certain volume. In graphs, it is common to interpret this notion as the
edge-expansion, bounding the smallest possible number of edges leaving a set, relative
to its size. Moving to higher dimensions, there are several nonequivalent [GW16] ways
to generalize edge-expansion, most notably a spectral variant and a topological variant.
The topological variant is the one we require for our soundness analysis. This type of
expansion is an extension of the notion of coboundary expansion first defined by Linial-
Meshulam [LM06] and then independently by Gromov [Grol0]. This is a subtle notion
that is related to the local-testability of the cocycle space, see [KL14].

Relation to previous SoS gap constructions. All previous constructions of hard instances
for SoS can be viewed in the vertex/edge-variable framework (typically vertex-variable).
To the best of our knowledge, all known hard instances, proving inapproximability in
the SoS hierarchy, are random instances; either both the complex X and the function p are
random, or just the function f is random. The proof of SoS hardness of these random in-
stances relies on very strong expansion of the underlying complex [Sch08] or on certain
pseudorandom properties [KMOW17]|, both of which are not yet known to be explicitly
constructible. Moreover, the randomness in the choice of the B specifying the right-hand



sides of the equations in these constructions, is used for a union bound over all (expo-
nentially many) assignments to the variables, and such arguments are often difficult to
derandomize.

On the other hand, explicit hard instances for SoS are known in proof complexity (e.g.,
Tseitin tautologies on expanders). However, these instances are only minimally unsat-
isfiable, and transforming them to an integrality gap instance requires a highly non-local
reduction (such as the PCP theorem). While SoS gap instances can easily be combined with
local reductions, this is not true for non-local ones.

In contrast to the above, our integrality gap instances are “anti-random”. They are
very structured and easily distinguishable from random instances. For example, all balls
around a vertex up to some radius are identical and have very specific structure. Natu-
rally, the typical analysis that works for random instances cannot work here. For example,
soundness for random instances is based on choosing a random p and using a union-
bound argument to show that with high probability, every solution violates nearly half
of the constraints. In contrast, for us, a random f is not a good choice because the local

structure will quickly detect local contradictions, ruining the completeness altogether.

Open directions. Our construction of explicit hard SoS instances based on HDXs begs
several questions, some of which we discuss below.

Improved soundness Our construction yields 3XOR hard instances which are at most
(1 — u)-satisfiable, owing to the cosystolic expansion of the underlying HDX (more
precisely, CoSys?(X) > u, see for the definition of CoSys?). Coupled with
reductions in the SoS hierarchy [Tul09], this yields 3XOR hard instances which are at
most (1/2 + ¢)-satisfiable for every ¢ € (0,1). Can we obtain such a result directly
from the HDX construction (bypassing reductions), say by constructing HDXs which
satisfy CoSys?(X) > 1/2 — &2 In addition to maintaining the HDX structure, bypass-
ing reductions would also allow for perfect completeness, which is lost while using
NP-hardness reductions.

Fooling more levels of the SoS hierarchy Our hard instances fool only O(/logn) levels
of the SoS hierarchy, as our argument is based on the injectivity radius of the com-
plexes, which is O(logn), and we suffer a further square-root loss due to the use of
Gromov’s isoperimetry inequality. It is possible that a much stronger lower bound
holds for these instances. Can one construct explicit hard instances that fool linearly

many levels of the SoS hierarchy?

HDX dimension and CSP definition We find the contrast between the vertex-variable and
edge-variable constructions baffling: while the vertex-variable construction is easy;,
our result demonstrates the hardness of the edge-variable construction. As we go to



higher dimensions of HDX, there are more ways to define CSPs. Which of these are
easy and which are hard?

2 Preliminaries

2.1 The Sum-of-Squares hierarchy

The sum-of-squares hierarch provides a hierarchy of semidefinite programming (SDP)
relaxations, for various combinatorial optimization problems. describes the re-
laxation given by t levels of the hierarchy for an instance Z of 3XOR in n variables, with
m constraints of the form x; + x;, + x;; = Bj,i,i;, over Fo. We also use Z to denote the set
of all tuples {i1,1y,i3} present as constraints. A solution to the relaxation is specified by
a collection of unit vectors {ug} scn],|s|<t- Satisfying the constraints in the program. The
objective equals the fraction of constraints “satisfied” by the SDP solution.

. 1 1 L
maximize 5+ > ) (—1)Pniais . <u{i1,,‘2,i3},u@>
{i1i2jis}€T
subject to <u51,u52> = <u53,u54> YV §1AS; = S3AS4,|51|,...,‘S4| <t
lus]| = 1 VS, |S| <t

Figure 1: Relaxation for 3XOR given by t levels of the SoS hierarchy

To prove a lower bound on the value of the SDP relaxation, we will use the following
result, which shows the existence of vectors ug yielding an objective value of 1, when the
given system of XOR constraints does not have any “low-width” refutations. Formally, we
consider a system called XOR-resolution, where the only rule allows us to combine two
equations ¢; = by and ¢, = by to derive the equation {1 + ¢, = by + by. A refutation is a
derivation of 0 = 1. The width of a refutation is the maximum number of variables in any
equation used in the refutation. We include a proof of the following lemma in[Appendix Al

Lemma 2.1 ([Sch08| Lemma 13], [Tul09, Theorem 4.2]). Let A be a system of equations in n
variables over IF,, which does not admit any refutations of width at most 2t. Then there exist vectors

{us}tsc s satisfying the constraints in such that for all equations Y ;e x; = br in
A with |T| < t, we have (ur,up) = (—1)r.
2.2 Simplicial complexes

A simplicial complex X is a non-empty collection of sets (known as faces) which is closed
downwards. The i-dimensional faces X(i) are all sets of size i + 1. The dimension of

2For more on Sum-of-Squares, see the recent monograph by Fleming, Kothari and Pitassi [FKP19].



the complex is the maximal dimension of a face. Faces of that dimension are known as
facets. Faces of dimensions 0,1,2,3 are called vertices, edges, triangles, and tetrahedra,
respectively.

Graphs are 1-dimensional simplicial complexes. The skeleton of a simplicial complex
is the graph obtained by retaining only faces of dimension at most 1.

Links Let X be a d-dimensional simplicial complex. The link X; of a face s € X(i) is a
simplicial complex of dimension d — (i 4+ 1) given by X;(j) := {t:sUt € X(j+i+1)}. In
other words, X, contains all faces in X which contain s, with s itself removed.

Balls Let X be a simplicial complex. A ball of radius r around a vertex v is the subcom-
plex induced by all vertices at distance at most r from v, as measured on the skeleton of X.

That is, the subcomplex contains a face of X if it contains all the vertices of the face.

Covering map A covering map from a simplicial complex Y to a simplicial complex X is a
surjective map ¢ : Y(0) — X(0) from the vertices of Y to X such that for every k < dimY
the image of every k-face {vp,...,vx} € Y(k) is a k-face {¢(vp),..., ¢(vr)} € X(k). We
then say that X is covered by Y.

Chains Fix a d-dimensional simplicial complex X. Let C' := C/(X,TF,) be the set of all
functions from X (i) to IF,. Elements of C' are also known as i-chains.

For an i-chain f, we define |f| to be the number of non-zero elements in f. For two
i-chains f and g, we define the distance between f and g to be dist(f, g) := |f + |-

Inner product For f, ' € C', let us denote by (f, f'); the following sum modulo 2:

(ff)i= Zf

seX(i

This is not an inner product in the usual sense as we are working over a field of non-

zero characteristic, but it is convenient notation. We will usually drop the subscript i.

Dual space Given any subspace V C C', the dual of V (under (-, -),) is defined as:
ti={feC| forallg e V,(f,g); = 0}.

Boundaries, Cycles, Homology The boundary operator d;: C' — C~! is given by

%uf(s)== )}, f(b)

teX(i): tDs



It gives rise to boundaries B; and cycles Z;:
B; :=imd; 1, Z; := kero;.

In the case of graphs, Z; consists of all sums of cycles (in the usual sense).
The coboundary operator é; : C! — Ci*! which is the adjoint of the boundary operator,
is given by
Sif(t) =}, fls) =)} f(t—{u}).

seX(i): sCt uct

It gives rise to coboundaries and cocycles:
B :=imé; 1, Z!:= ker é..

We will usually drop the subscript i when invoking 9, é.

It is easy to see that B; C Z; (every boundary is a cycle) and BicZ (every coboundary
is a cocycle). For example, in a 2-dimensional complex, the boundary of every triangle is
a cycle. We call such cycles trivial cycles. Modding out by trivial cycles and cocycles, we

obtain the homology and cohomology spaces
H;:=Z;/B, H :=Z/B.

The dimensions of these spaces (which are identical) measure the number of “holes” in a
particular dimension. Nice complexes (such as the buildings considered below) have no
holes.

The following claim shows that that the coboundary operator is the adjoint of the

boundary operator.

Claim 2.2. Let f € C', g € C'"L. Then (f,5g). = (3f, ). 4

ook (f 5 g = X F(H-6ag(t) = Y () ((2 g(s))
seX sCt

teX(i) teX(i) i—1):

= ). ( )3 f(t)>‘8(5):<aif18>i—1- O
teX tDs

seX(i—1) (i):

The following two claims show that the dimensions of homology and cohomology

spaces are identical.
Claim 23. Z; = (B))*,  Zi = (B;)".
Proof. Z; = kerd; = ker$; | = (imé;_1)* = (B')*. O

Claim 2.4. dim H; = dim H'



Proof. dim H; = dim Z; — dim B;
= dim C' — dim B’ — dim B; [By [Claim 2.3]

= dim Z' — dim B’ [By [Claim 2.3]
=dimH'. O

Cosystoles We define, following Evra and Kaufman [EK16, Definition 2.14], the i-cosystole
of a complex X to be the minimal (fractional) size of f € Z'\ B/,

CoSys'(X) := mi X(i)|.
oSys'(X) ferr;{lBilfl/l (1)]

2.3 The building B+

The infinite k-regular tree is the unique connected k-regular graph without cycles. Affine
buildings are higher-dimensional analogs of the infinite k-regular tree. For d = 1, the
one-dimensional affine building B(!) is the k-regular tree. For higher dimensions they are
regular in the sense that all vertex links are bounded and identical in structure, they are
connected and contractibleE] and so have vanishing cohomologies, that is, the cohomology
spaces H 1 ..., H% 1 are trivial, where d is the dimension.

We won't describe B(@+1) any further; the interested reader can check [Ji12, [AB0O8]. A

(4+1) which we will need in the sequel is its being a CAT(0) spaceﬁ

crucial property of B
which is a geometric definition capturing non-positive curvature; see [BH99] for more
information. The property of being CAT(0) has the following implication, due to Gro-

mov [[Gro83] (Gut06], Wen08|:

Theorem 2.5 (Gromov’s filling inequality for CAT(0) spaces). For every cycle f € Z; there is
a filling ¢ € Cy such that f = dg and |g| = O(|f|?).

Gromov’s filling inequality is an isoperimetric inequality. It generalizes the classic
isoperimetric inequality in the plane, which states that any simple closed curve of length
L encloses a region whose area is at most L2 /47t

The isoperimetric inequality in the plane can be stated in an equivalent way: the
boundary of any bounded region of area A is a curve whose length is at least /471 A. This
inequality fails for unbounded regions, which could have infinite area but finite boundary
(for example, consider the complement of a circle). In the same way, Gromov’s inequality
doesn’t imply that each g € C, satisfies [dg| = Q(+/[g]). Rather, we have to replace |g|
with minyez, [g + h|.

SA complex is contractible, roughly speaking, if it can be continuously deformed to a point (techni-
cally, it is homotopy-equivalent to a point). Since (co)homologies are preserved by such deformations, all
(co)homologies of a contractible complex vanish.

4 A space is CAT(0) if for every triangle x, y, z, the distance between x and the midpoint of y, z is at most the
corresponding distance in a congruent triangle in Euclidean space.



Gromov'’s filling inequality also applies to i-chains, with an exponent of i 4- 1, but we
will only need the casei = 1.

In the sequel, we will apply Gromov’s filling inequality not to the building itself, but
rather to balls in the building. The CAT(0) property almost immediately implies that a ball
in a CAT(0) space is itself CAT(0) [BH99, Exercise I1.1.6]. Furthermore, it is well-known
that CAT(0) spaces are contractible, and so have vanishing homologies.

Lemma 2.6. Balls in BY+Y) have vanishing homologies and satisfy Gromouv’s filling inequality.

24 The LSV quotient

Whereas the affine building is an infinite simplicial complex, Lubotzky, Samuels and Vishne
constructed a growing family of finite complexes that are obtained from quotients of the
affine building. These quotients have a growing number of vertices, and locally, in a ball
around each vertex, the complex is isomorphic to the affine building. Moreover, they gave
a very explicit algorithm for constructing these complexes by first constructing a Cayley
graph with an explicit set of generators, and then the higher dimensional faces are simply

the cliques in the Cayley graph.

Theorem 2.7 (Lubotzky, Samuels, Vishne [LSV05a, Theorem 1.1]). Let q be a prime power,
d > 2. For every e > 1 the group G = PGLy(IF ) has an (explicit) set of [‘f]q + [g]q +...+ [dfl]q
generators, such that the Cayley complex of G with respect to these generators is a Ramanujan
complex X covered by B\ (F) for F = F,((y)).

The precise definition of “Ramanujan complex” is not important for this context. For
us, there are three important aspects of this theorem: efficient construction, local structure,

and global structure.
Efficient construction Firstly, the fact that the complex is constructible in polynomial time.

Local structure Next, we highlight the fact that locally the complex looks like the building.
The fact that X is covered by B(?) means that the neighborhood of a vertex in X and
in B) 1ook exactly the same. It turns out that for the LSV complexes this continues to
be true also for balls of larger radius around any vertex. This is a higher-dimensional
analog of the graph property of containing no short cycles (locally looking like a
tree). Define the injectivity radius of X to be the largest r such that the covering map
B g X is injective from balls of radius < rin B (@) and the ball of radius < 7 in X.
We do not mention the centers of the balls as they are all isomorphic.

Theorem 2.8 (Lubotzky and Meshulam [LMO7], see also [EGL15| Corollary 5.2]). Let

10



X be the LSV complex above. Then the injectivity mdiusﬂ r(X) of X satisfies

log, [X| 1
X @D 2

where | X| is the number of vertices in X.

Global structure Finally, we look at the second cohomology group of the LSV complexes.
Kaufman, Kazhdan and Lubotzky [KKL16] showed that the groups defining the LSV
quotient complexes can be chosen so that the second homology is non-empty.

Proposition 2.9 (Kaufman, Kazhdan, Lubotzky [KKL16| Proposition 3.6]). There is an

infinite and explicit sequence of LSV complexes with a non-vanishing second cohomology.

We remark that Kaufman, Kazhdan and Lubotzky [KKL16] proved that these com-
plexes exist. To show that they are also efficiently constructible, we look into their
proof to recall the construction: start with any LSV complex X viewed as a Cay-
ley graph of a group G. Find some element of order 2 in G (such an element al-
ways exists), and then quotient X by this element, thus obtaining a complex Y that
is itself is a Ramanujan complex because it is a quotient of one. Y is clearly effi-
ciently constructible from X, and has half as many vertices. This construction shows
(see [KKL16, Proposition 3.5]) that H'(Y) # 0. Furthermore, the proof of [KKL16,
Proposition 3.6] shows that because G has “property T” one can deduce also that
H2(Y) #0.

Evra and Kaufman proved [EK16, Theorem 1] that quotients of B(%) (and even a more
general class of complexes) are so-called “cosystolic expanders” which in particular
implies the following.

Theorem 2.10 (Evra and Kaufman [EK16| Part of Theorem 1]). Let {X,,} be a family
of LSV complexes. There exists some constant y > 0 that depends only on q and d but not
on the size n of the complex, such that every f € Z%(X) \ B?(X) must have weight at least

po1X(2)]:

3 Main result

3.1 Local geometry of LSV complexes

The infinite sequence of complexes we will be working with are the LSV complexes de-
scribed in above. The properties we care about are (1) that they are efficiently

5This theorem was proven by Lubotzky and Meshulam [LMO07]. They stated their theorem using a slightly
different definition for injectivity radius but one can prove that the two definitions coincide in this case. This
was reproven by Evra, Golubev and Lubotzky [EGL15] who use the definition of injectivity radius that is
convenient for us.

11



constructible, (2) that small balls in these complexes are isomorphic to the affine building,
which satisfies certain isoperimetric inequalities because it is a CAT(0) space, and (3) that
each complex has a two-dimensional cocycle with linear distance from the set of cobound-
aries. The second and third properties provide the tension between the local and the global

structure of these complexes that we now harness for our hardness.

To construct an SDP solution, we will need to show that our instance based on the LSV
complex “locally looks satisfiable”. To this end, we will first develop some local properties
of the LSV complex.

Note that each 1 € C? corresponds to a set of triangles. For the following statements,
we consider two triangles to be connected if they share an edge. This can be used to define
connected components. Note that if 1 can be split into connected components h;y, ..., hs,
then the components correspond to disjoint sets of triangles. Moreover, no triangle in h;
shares an edge with a triangle in /1; when i # j, which also implies that the boundaries oh;
and oh; correspond to disjoint sets of edges.

We prove the following claims by mapping small connected sets in X(2) to correspond-
ing sets in the infinite building B. The first proposition shows that there can be no small

non-trivial cancellations (i.e., not coming from tetrahedra).

Proposition 3.1. Let hy € C? be a connected set of triangles such that |hg| < r and dhy = 0.
Then hg € B,.

Proof. Since |hyg| < r, there is a ball N of radius r that contains the support of hy. By
assumption, the covering map ¢: B — X has injectivity radius of at least . This means
that there is a radius-r ball N = ¢~'(N) in B that is isomorphically mapped by ¢ to N.
Look at fig = ¢p~1(hg) € C?(N), the chain isomorphic to K in the building. Clearly 9/ =
¢p~1(dhy) = 0, and since balls in the building have zero homologies by we
deduce that g itself must be a boundary, i.e. there must be some §, € C3(N) such that
83, = hp. Moving back to X, we see that g9 := ¢(&,) € C?(X) necessarily satisfies dgy =
ho, and so hy € Bs. O

This proposition states that locally (i.e., within the injective radius r), Z, looks like B,.
We thus have a complex whose cohomology group is non-trivial, yet locally, the homology
group “looks” trivial. Note that this is a twist on what we had claimed in the introduc-
tion, a complex whose cohomology group is non-trivial, yet locally, the cohomology group
“looks” trivial. However, these are identical statements owing to

The next proposition shows that Gromov’s filling inequality in the infinite building B
can be used to yield a similar consequence for small sets in the finite complex X.

Proposition 3.2. Let hy € C be a connected set of triangles such that |hg| < rand |ho| < |ho + h
forall h € By. Then, |dhg| > c - |ho|"/?, where ¢ > 0 is an absolute constant.
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Proof. As before, the support of hy is contained in a ball N of X which is isomorphic under
ptoaball Nin B. Let ig = v~ (hy) € C*(B), and let f, = dly. We now apply the filling
theorem of Gromov, which holds in N due to to deduce that there is some /1
that fills f,, namely 9/, = f,, and whose size is at most | /11| = O(|f,|?).

Now 9(fg — hy) = f, — f, = 0. Since the ball N has zero homologies by

ho — By itself must be a boundary: there must be some ¢ € C3(N) such that 0¢ = ho — hy.
Pushing § and /11 back to X, we get ¢ = (&) and h; = (), which satisfy dg = ho — hj.
At this point we have a small h; that is close via a boundary to hg. Finally, observe that
fo = hy satisfies fo = p(f,)- So

fol = [fol = c-[m|V? = c-|m|V? > c-|hy|?,

where the last inequality used that |hg| < |hg + (h1 — hy)|, since hy — hy = dg € Bs. O

3.2 Fooling O)(,/logn) levels of SoS hierarchy

Let X be a d-dimensional LSV complex, with | X(1)| = n and non-trivial second cohomol-

ogy group, as per [Proposition 2.9 Below, we construct an instance of 3XOR in # variables

using this complex, and prove a lower bound on the integrality gap of the relaxation ob-
tained by Q)(4/log n) levels of the SoS hierarchy.

Construction. We construct a system of equations on X by putting a variable x(, ) for
each edge {a,b} € X(1) of the complex, and an equation

X{a,b} + X{b,c} + X{ca} = ﬁ{a,b,c}

for each triangle {a,b,c} € X(2), where B is an arbitrary element of Z2 \ B2.
Recall that X can be constructed efficiently. Given X, we can find a vector 8 € Z2\ B2
using elementary linear algebra. Therefore the entire system can be constructed efficiently.

Soundness. Soundness of this system follows easily from the fact that the cosystole is

large.

Claim 3.3 (Soundness). Every assignment to the system defined above falsifies at least y fraction
of the equations.

Proof. An assignment to the variables is equivalent to an f € C!. Every equation satisfied
by f is a triangle in which éf({a,b,c}) = B4}, and so the number of unsatisfied equa-
tions is dist(6f, B) = |6f + B|. Since 6f € B> and B € Z%\ B? also §f + B € Z?\ B?, and
so |0f + B|/|X(2)| > CoSys?*(X) > . In other words, the assignment falsifies at least a u

fraction of the equations. O

13



The main work is to prove completeness, namely to show that the system looks locally
satisfiable.

Completeness. Our main result is that this system appears satisfiable to the Sum-of-
Squares hierarchy with O(y/logn) levels. Grigoriev [Gri0I] and Schoenebeck [Sch08]
showed that to prove such a statement it suffices to analyze the refutation width of the
system of equations (see Lemma 2.1). If the refutation width is at least w, then w/2 levels
of the Sum-of-Squares hierarchy cannot refute the system.

A system of linear equations over [F, can be refuted using a proof system known as
XOR-resolution, in which the only inference rule is: given ¢; = b; and ¢, = by, deduce
{14+ ¥, = by + by mod 2; here 1,0, are XORs of variables, and by, b, are constants. A
refutation has the structure of a directed acyclic graph (DAG) where each non-leaf node
has two incoming edges. A refutation is a derivation which starts with the given linear
equations, placed at the leaves of a DAG, and reaches the equation 0 = 1 at the root of
the DAG. The width of a linear equation ¢ = b is the number of variables appearing in /.
The width of a refutation is the maximum width of an equation in any of the nodes of the
DAG. [ph: Inconsistent notation: + vs @][MT: Changed.]

In the remainder of this section, we prove the following theorem, which together with

implies

Theorem 3.4. The construction above requires width at least Q(+/r) to refute in XOR-resolution,
where r = ©(log n) is the injectivity radius of the complex.

The proof follows classical arguments of Ben-Sasson and Wigderson [BW01|] regard-
ing lower bounds on resolution width, which were also used in the proof of Schoene-
beck [Sch08]. Whereas Ben-Sasson and Wigderson relied on boundary expansion, we rely
on Gromov'’s filling inequality (and so lose a square root).

Suppose we are given a refutation for this system, and consider the corresponding
DAG. Each leaf v in the DAG is labeled by a triangle T, € X(2). Define

hy:=11, € C?, b, := B, € F.
For each inner node v in the DAG, let v1, 1> be its two incoming nodes. Define inductively,

hy == hy, +hy, €C?, by :=b, +by, €F.

Proposition 3.5. For every node v, b, = (B, hy).

Proof. This is immediate by following inductively the structure of the DAG. O
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As in [BWO1]], we next define a complexity measure for each node of the DAG. While
in [BWO1] the complexity measure is based on the number of “leaf equations” used to
derive the one at a given node, we will need to discount sets of triangles corresponding
to tetrahedra, as these cannot lead to contradictions. Recall that B, = im 93 is the set of
triangle chains that “come from” tetrahedra chains, which we consider as the “trivial”

cycles. We define a complexity measure at each node,
k(v) := dist(hy, By) = min |h, + h|
heB,
that measures the distance of /1, from these trivial cycles. The complexity measure x satis-
ties the following sub-additivity property.

Proposition 3.6. If v is an inner node in the DAG with vy, vy its two incoming nodes, then
k(v) < x(v1) + x(v2).

Proof. Let hy,hy € By be such that «(v1) = |hy, + h1| and x(v2) = |hy, + ha|. Recall that
hy, = hy, + hy,. Then, we have

K(V1)+K(U2) = |hyl+h1‘+‘hvz+h2’ > |hyl—l—h,/2+h1+h2‘
= |hy+h +ha| > x(v). O

We also need the fact that the complexity of a node with a contradiction must be non-

zero.
Proposition 3.7. If x(v) = 0 then b, = 0.

Proof. If x(v) = 0 then h, € By. Hence b, = (B, h,) = 0 since B € Z? = (By)~ (Claim 2.3).
0

Next, we consider the width of each node in the DAG. For a node v, let
fy = ah]/ E Cl.

Thus f, indicates the set of variables appearing in the left-hand side of the equation on
node v. So the width of the system is the maximum, over all nodes v in the DAG, of |f,|.
We can now prove [Theorem 3.4 using the above complexity measure, and results from

Proof of| Let v* denote the root of the DAG. By virtue of being a refutation,
by~ = 1 while f,« = 0. In other words, dh,« = f,» = 0, which means that h,« € Z,. Since
b, = 1, we also have by [Proposition 3.7|that x (v*) > 0.
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Let h € B, be such that k(v*) = |h,~ + h|, and let hy, ..., hs be the disjoint connected
components of &+ + h. We will first show that x(v*) = |hy + h| > r. Assuming x(v*) < r,
we have that

|h|+ -+ |hs| = |hy+hH| < 1.

Also, since
o+ ---+0hs = d(hy« +h) = oh, = 0,

we must have that oh; = 0 for each i € [s], since connected components have disjoint

boundaries. Applying [Proposition 3.1| to each h;, we get that h; € B, for each i € [s].

However, this implies h,« + I € B, and hence «(v*) = 0, which is a contradiction.
Using sub-additivity (]Proposition 3.6[), k(v*) > r, and the fact that the leaves of the
DAG satisfy x(v) = 1, we get that there must be some internal node v for which r/2 <

k(v) < r. We can find such a node by starting at the root and always going to the child
with higher complexity, until reaching a node v such that x(v) < r. We will prove that for
such a node, we must have | f,| = Q(v/7).

As before, let i € B, now be such that x(v) = |h, + h|, and let hy, .. ., hs be the disjoint
connected components of h, + h. We have that |h;| < |h, + h| < r for each i € [s]. By the
minimality of |k, + K|, we also have that for any i’ € By and any i € [s],

||+ |hy +h—hi| = |hy+h| < |hy+h+H| < | +H|+|hy+h—h.

Thus, |k is also minimal for each 7, and we can apply [Proposition 3.2|to each connected

component ;, to obtain

fol = 10(hy + )| = 91| + -+ |9hs| > c- |hg|VZ 4 -+ |hs|!/?
- (|ha|+ -+ |h])!/?
c-|hy+h"? > (c/V2)-vr. D

v
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A  Proof of Lemma 2.1

Lemma 2.1 ([Sch08| Lemma 13], [Tul09, Theorem 4.2]). Let A be a system of equations in n
variables over IFo, which does not admit any refutations of width at most 2t. Then there exist vectors

{us}scpn)s)<¢ satisfying the constraints in such that for all equations Y ;e x; = br in
A with |T| < t, we have (ur,up) = (—1)r.

Proof. We assume that A is closed under width-2t XOR-resolution, replacing A by its clo-
sure if necessary, and also that it contains the trivial equation 0 = 0. We will now construct
the unit vectors ug.

Define a relation ~ on subsets of [1] of size at most t as follows: S ~ T iff there exists
an equation ) ;csarX; = b in A for some b € [F,. It is easy to check that the relation
is reflexive and symmetric. It is also transitive since for S; ~ S, S, ~ S3, we can add
the corresponding equations to obtain one of the form ) ;cg rg, Xx; = b for some b € F.
Since |S1|,|S3| < t, this equation has at most 2 variables and must be in A by the closure
property. Thus, we have an equivalence relation which partitions all sets of size at most ¢
into equivalence classes, say Cj, . . ., Cs. Choose an arbitrary representative R; for each class
Ci, and let R(S) denote the representative for the class containing S. For convenience, we
choose R(®) = @.

We now construct the SDP vectors. Let ey,...,es be an arbitrary orthonormal set of

vectors, and assign ug, = ¢; for all i € [s]. Note that for any S with |S| < ¢, there must be
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a unique equation of the form } ;csar(s) Xi = bs in A, since two different equations can be

used to obtain a width-2t refutation. We assign the vector for S as

us = (=1)" - up(s).

The vectors are unit-length by construction. Note that if S{AS; = S3AS4, we must have
S1 ~ Sy & S3 ~ S4. If 1 £ Sy, then we have that (ug,, us,) = (us,, ug,) = 0. Otherwise,
we have R(S1) = R(S2), R(S3) = R(S4), and equations of the form

Z xi:ij/ je {1,2,3,4}.
iESjAR(S]')

We must also have bs, + bs, = bs, + bs,, since otherwise we obtain two different equations
with variables in S1AS; = S3AS,, yielding a refutation. This suffices to satisfy the SDP

constraints, since
(s, us,) = (=17 (uggs, tpsy ) = (“1)7% = (1) = (ug, us,).

Finally, for any equation ¥ ;. x; = by in A with |T| < t, we get (ur,up) = (—1), since
we must have T ~ @ and R(T) = @. O
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