
Near-linear Time Decoding of Ta-Shma’s Codes via
Splittable Regularity

Fernando Granha Jeronimo* Shashank Srivastava† Madhur Tulsiani‡

Abstract

The Gilbert–Varshamov bound non-constructively establishes the existence of bi-
nary codes of distance 1/2− ε/2 and rate Ω(ε2). In a breakthrough result, Ta-Shma
[STOC 2017] constructed the first explicit family of nearly optimal binary codes with
distance 1/2− ε/2 and rate Ω(ε2+α), where α → 0 as ε → 0. Moreover, the codes in
Ta-Shma’s construction are ε-balanced, where the distance between distinct codewords
is not only bounded from below by 1/2− ε/2, but also from above by 1/2 + ε/2.

Polynomial time decoding algorithms for (a slight modification of) Ta-Shma’s codes
appeared in [FOCS 2020], and were based on the Sum-of-Squares (SoS) semidefinite
programming hierarchy. The running times for these algorithms were of the form
NOα(1) for unique decoding, and NOε,α(1) for the setting of “gentle list decoding", with
large exponents of N even when α is a fixed constant. We derive new algorithms for
both these tasks, running in time Õε(N). Our algorithms also apply to the general
setting of decoding direct-sum codes.

Our algorithms follow from new structural and algorithmic results for collections
of k-tuples (ordered hypergraphs) possesing a “structured expansion" property, which
we call splittability. This property was previously identified and used in the analysis of
SoS-based decoding and constraint satisfaction algorithms, and is also known to be sat-
isfied by Ta-Shma’s code construction. We obtain a new weak regularity decompom-
position for (possibly sparse) splittable collections W ⊆ [n]k, similar to the regularity
decomposition for dense structures by Frieze and Kannan [FOCS 1996]. These decom-
positions are also computable in near-linear time Õ(|W|), and form a key component
of our algorithmic results.

*University of Chicago. granha@uchicago.edu. Supported in part by NSF grant CCF-1816372.
†TTIC. shashanks@ttic.edu. Supported in part by NSF grant CCF-1816372.
‡TTIC. madhurt@ttic.edu. Supported by NSF grant CCF-1816372.

1

Contents

1 Introduction 1

2 A Technical Overview 5

3 Preliminaries 8

3.1 Codes . 8

3.2 Direct Sum Lifts . 9

3.3 Splittable Tuples . 9

3.4 Factors . 10

3.5 Functions and Measures . 11

4 Weak Regularity for Splittable Tuples 12

4.1 Abstract Weak Regularity Lemma . 12

4.2 Splittable Mixing Lemma . 15

4.3 Existential Weak Regularity Decomposition 16

4.4 Efficient Weak Regularity Decomposition . 17

4.5 Near-linear Time Matrix Correlation Oracles 25

5 Regularity Based Decoding 30

5.1 List Decoding of Direct-Sum Codes . 30

6 Near-linear Time Decoding of Ta-Shma’s Codes 33

6.1 Choosing the Base Code . 36

A Properties of Ta-Shma’s Construction 42

A.1 The s-wide Replacement Product . 42

A.2 The Construction . 45

A.3 Tweaking the Construction . 45

A.3.1 Parity Sampling . 46

A.4 Splittability . 47

A.5 Parameter Choices . 48

i

1 Introduction

A binary code C ⊆ FN
2 is said to be ε-balanced if any two distinct codewords x, y ∈

C satisfy ∆(x, y) ∈ [(1−ε)/2, (1+ε)/2], where ∆(x, y) denotes the relative distance between
the two codewords. Finding explicit and optimal constructions of such codes, and in-
deed of codes where the distances are at least (1−ε)/2 is a central problem in coding the-
ory [Gur10, Gur09], with many applications to the theory of pseudorandomness [Vad12].
Recently, Ta-Shma [TS17] gave a breakthrough construction of (a family of) explicit ε-
balanced codes, with near-optimal rates, for arbitrarily small ε > 0. For the case of
codes with distance at least (1−ε)/2, the existential rate-distance tradeoffs established by
Gilbert [Gil52] and Varshamov [Var57], prove the existence of codes with rate Ω(ε2), while
McEliece et al. [MRRW77] prove an upper bound of O(ε2 log(1/ε)) on the rate. On the
other hand, Ta-Shma’s result yields an explicit family of codes with rate Ω(ε2+o(1)).

Decoding algorithms. The near-optimal ε-balanced codes of Ta-Shma [TS17] (which we
will refer as Ta-Shma codes) were not known to be efficiently decodable at the time of
their discovery. In later work, polynomial-time unique decoding algorithms for (a slight
modification of) these codes were developed in [JQST20] (building on [AJQ+20]) using
the Sum-of-Squares (SoS) hierarchy of semidefinite programming (SDP) relaxations. For
unique decoding of codes with rates Ω(ε2+α) (when α > 0 is an arbitrarily small constant)
these results yield algorithms running in time NOα(1). These algorithms also extend to
the case when α is a vanishing function of ε, and to the problem of list decoding within
an error radius of 1/2 − ε′ (for ε′ larger than a suitable function of ε) with running time
NOε,ε′ ,α(1). However, the Oα(1) exponent of N obtained in the unique decoding case is quite
large even for a fixed constant α (say α = 0.1), and the exponent in the list decoding case
grows with the parameter ε.

In this work, we use a different approach based on new weak regularity lemmas (for
structures identified by the SoS algorithms), resulting in near-linear time algorithms for
both the above tasks. The algorithms below work in time Õε(N) for ε-balanced Ta-Shma
codes with rates Ω(ε2+α), even when α is a (suitable) vanishing function of ε.

Theorem 1.1 (Near-linear Time Unique Decoding). For every ε > 0 sufficiently small, there
are explicit binary linear Ta-Shma codes CN,ε,α ⊆ FN

2 for infinitely many values N ∈N with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+α) where α = O(1/(log2(1/ε))1/6), and

(iii) an r(ε) · Õ(N) time unique decoding algorithm that that decodes within radius 1/4− ε/4
and works with high probability,

where r(ε) = exp(exp(polylog(1/ε))).

We can also obtain list decoding results as in [JQST20], but now in near-linear time.

Theorem 1.2 (Near-linear Time Gentle List Decoding). For every ε > 0 sufficiently small,
there are explicit binary linear Ta-Shma codes CN,ε,α ⊆ FN

2 for infinitely many values N ∈N with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

1

(ii) rate Ω(ε2+α) where α = O(1/(log2(1/ε))1/6), and

(iii) an r(ε) · Õ(N) time list decoding algorithm that decodes within radius 1/2− 2−Θ((log2(1/ε))1/6)

and works with high probability,

where r(ε) = exp(exp(poly(1/ε))).

While Theorem 1.2 yields a list decoding radius close to 1/2, we remark that the above
tradeoff between the list decoding radius and rate, is far from the state-of-the-art of 1/2− ε
radius with rate Ω(ε3) of Guruswami and Rudra [GR06]. Considering a three way trade-
off involving distance, rate, and list-decoding radius, Theorem 1.2 can be seen as close
to optimal with respect to the first two parameters, and quite far off with respect to the
third one. Finding an algorithm for codes with optimal tradeoffs in all three parameters,
is a very interesting open problem. Another interesting problem is understanding the
optimal dependence of the “constant” factors r(ε) in the running times. We have not tried
to optimize these factors in our work.

Direct-Sum Codes and “Structured Pseudorandomness”. Ta-Shma’s code construction
can be viewed as a special case of “distance amplification via direct-sum", an operation
with several applications in coding and complexity theory [ABN+92, IW97, GI01, IKW09,
DS14, DDG+15, Cha16, DK17, Aro02]. Given a (say) linear code C0 ⊆ Fn

2 and a collection
of tuples W ⊆ [n]k, we define it’s “direct-sum lifting" as C = dsumW(C0) ⊆ F

|W|
2 where

dsumW(C0) :=
{︂
(zi1 + · · ·+ zik)(i1,...,ik)∈W | z ∈ C0

}︂
.

It is easy to see that if C0 is ε0-balanced for a constant ε0, then taking W = [n]k results
in dsumW(C0) being ε-balanced with ε = εk

0 (though with vanishing rate). A standard
sampling argument shows that a random W ⊆ [n]k with |W| = O(n/ε2) also suffices, while
yielding rate Ω(ε2). Rozenman and Wigderson [Bog12] suggested a derandomization of
this argument using a “pseudorandom" W constructed from the collection of all length-
(k − 1) walks on a suitable expander graph. While this result can be shown to achieve
a rate of Ω(ε4+o(1)), Ta-Shma achieves a rate of Ω(ε2+o(1)) using a carefully constructed
sub-collection of walks on an expander with a special form.

The above results show that pseudorandomness can be used to amplify distance, since
the collections W above behave like a random W. However, finding decoding algorithms
for such codes requires understanding properties of these collections which are unlike a
random W, since random collections yield codes with (essentially) random generator ma-
trices, where we do not expect efficient algorithms.

Our results can be viewed as showing that when the collection W satisfies a form of
“structured multi-scale pseudorandomness" property 1 called splittability (identified in pre-
vious work), it can be exploited for algorithm design. One can think of splittability as
capturing properties of the complete set [n]k, which are not present in a (sparse) random
W ⊆ [n]k. For the case of k = 4, when W = [n]4, if we consider a graph between pairs
(i1, i2) and (i3, i4), which are connected when (i1, . . . , i4) ∈W, then this defines an expand-
ing (complete) graph when W = [n]4. On the other hand, for a random W of size O(n),

1As discussed later, there are several notions of “structured pseudorandom” for (ordered and unordered)
hypergraphs. We describe splittability here, since this is the one directly relevant for our algorithmic applica-
tions.

2

such a graph is a matching with high probability. Splittability requires various such graphs
defined in terms of W to be expanders.

Definition 1.3 (Splittability, informal). Given W ⊆ [n]k and a, b ∈ [k], let W[a, b] ⊆ [n]b−a+1

denote the tuples obtained by considering (ia, . . . , ib) for every (i1, . . . , ik) ∈ W. We say W can be
τ-split at position t, if the bipartite graph with vertex sets W[1, t] and W[t + 1, k], edge-set W, and
(normalized) biadjacency matrix St ∈ RW[1,t]×W[t+1,k], is an expander satisfying σ2(St) ≤ τ. We
say that W is τ-splittable if for all 1 ≤ a ≤ t < b ≤ k, W[a, b] can be τ-split at position t.

Note that when k = 2, this coincides with the definition of (bipartite) graph expansion.
It is also easy to show that collections of length-(k − 1) walks on a graph with second
singular value λ, satisfy the above property with τ = λ. The sub-collections used by Ta-
Shma can also be shown to splittable (after a a slight modification) and we recall this proof
from [JQST20] in Appendix A.

The key algorithmic component in our decoding results, is a general list decoding result
for codes constructed via direct-sum operations, which reduces the task of list decoding
for dsumW(C0) to that of unique decoding for the code C0, when W is τ-splittable for an ap-
propriate τ. The splittability property was identified and used in previous work [AJQ+20,
JQST20], for the analysis of SoS based algorithms, which obtained the above reduction
in NOε(1) time. Regularity based methods also allow for near-linear time algorithms in
this general setting of direct-sum codes, with a simpler and more transparent proof (and
improved dependence of the list decoding radius on τ and k).

Theorem 1.4 (List Decoding Direct Sum (informal version of Theorem 5.1)). Let C0 ⊆ Fn
2 be

an ε0-balanced linear code, which is unique-decodable to distance (1−ε0)/4 in time T0. Let W ⊆ [n]k

be a τ-splittable collection of tuples. Let C = dsumW(C0) be ε-balanced, and let β be such that

β ≫ max

{︄
√

ε,
(︁
τ · k3)︁1/2

,
(︃

1
2
+ 2ε0

)︃k/2
}︄

.

Then, there exists a randomized algorithm, which given ỹ ∈ FW
2 , recovers the list

Lβ(ỹ) := {y ∈ C | ∆(ỹ, y) ≤ 1/2− β} ,

with probability at least 1− o(1), in time Õ(Cβ,k,ε0 · (|W|+ T0)), where Ck,β,ε0 only depends on k,
β and ε0.

Splittable Regularity. The technical component of our results is a novel understanding
of splittable structures, via weak regularity lemmas. This provides a different way of ex-
ploiting “structured pseudorandomness" properties in hypergraphs, which may be of in-
terest beyond applications considered here.

For the case of graphs (i.e., k = 2), several weak regularity lemmas are known which
can be applied to (say) dense subgraphs of an expanding graph [RTTV08, TTV09, COCF09,
BV20]. As in the Frieze-Kannan [FK96] weak regularity lemma for dense graphs, these
lemmas decompose the adjacency matrix AW ′ of a subgraph W ′ ⊆ W, as a weighted sum
of a small number of cut matrices (1Sℓ

1TTℓ
for Sℓ, Tℓ ⊆ [n]), such that one can use this de-

composition to count the number of edges between any subsets S, T ⊆ [n] i.e.,⃓⃓⃓⃓
⃓1TS

(︄
AW ′ −∑

ℓ

cℓ · 1Sℓ
1TTℓ

)︄
1T

⃓⃓⃓⃓
⃓ ≤ ε · |W| .

3

This can be thought of as computing an “approximation” of AW ′ using a small number of
cut matrices 1Sj 1

T
Tj

, which is “indistinguishable” by any cut matrix 1S1TT .

More generally, one can think of the above results as approximating any function
g : W → [−1, 1] (with g = 1W ′ in the example above) with respect to a family of "split"
functions F ⊆ { f : [n]→ [−1, 1]}⊗2, where the approximation itself is a sum of a small
number of of functions from F i.e., for all f1, f2 ∈ F⃓⃓⃓⃓

⃓
⟨︄

g−∑
ℓ

cℓ · fℓ,1 ⊗ fℓ,2 , f1 ⊗ f2

⟩︄⃓⃓⃓⃓
⃓ ≤ ε · |W| .

Our regularity lemma for splittable W ⊆ [n]k, extends the above notion of approximation,
using k-wise split functions of the form f1 ⊗ · · · ⊗ fk. We obtain near-linear time weak
regularity decompositions for classes of k-wise cut functions of the form

CUT⊗k := {±1S1 ⊗ · · · ⊗ 1Sk | S1, . . . , Sk ⊆ [n]},

and also for signed version of these k-wise cut functions

CUT⊗k
± := {±χS1 ⊗ · · · ⊗ χSk | S1, . . . , Sk ⊆ [n]},

where χS = (−1)1S . For our decoding results, we will use CUT⊗k
± . Our near-linear time

weak regularity decomposition result is given next.

Theorem 1.5 (Efficient Weak Regularity (informal version of Theorem 4.11)). Let W ⊆ [n]k

and let F be either CUT⊗k or CUT⊗k
± . Suppose g ∈ R[n]k is supported on W and has bounded

norm. For every δ > 0, if W is τ-splittable with τ = O(δ2/k3), then we can find h = ∑
p
ℓ=1 cℓ · fℓ

in ˜︁Ok,δ(|W|) time, where p = O(k2/δ2), fℓ ∈ F and cℓ ∈ R, such that h is a good approximator
to g in the following sense

max
f∈F

⟨g− h, f ⟩ ≤ δ · |W| ,

where the inner product is over the counting measure on [n]k.

We note that an existential version of the above theorem follows known abstract ver-
sions of the Frieze-Kannan regularity lemma [TTV09, BV20], via a relatively simple use of
splittability. However, making a black-box application of known regularity lemmas algo-
rithmic, requires computing a form of "tensor cut-norm", which is believed to be hard to
even approximate in general2 (unlike the matrix case). The nontrivial component of the re-
sult above, is obtaining a regularity lemma which allows for a near-linear time computation,
while still achieving parameters close to the existential version.

Related Work. As discussed above, the decoding results in this paper, were derived ear-
lier using algorithms based on the SoS hierarchy [AJQ+20, JQST20], though with signifi-
cantly larger running times (and somewhat worse dependence on parameters). A common
thread in the SoS algorithms is to relate the task of decoding, to that of solving instances

2Strictly speaking, we only need to approximate this for “splittable" tensors. It is possible that one could
use existing regularity lemmas black box, and use splittability to design a fast algorithm for tensor cut-norm.
In our proof, we instead choose to use the matrix cut-norm algorithms as black-box, and use splittability to
modify the proof of the regularity lemma.

4

of constraint satisfaction problems with k variables in each constraint (k-CSPs). The orig-
inal weak regularity lemma of Frieze and Kannan [FK96] was indeed motivated by the
question of approximately solving k-CSPs on dense structures (see also [KV09]). Sev-
eral extensions of the Frieze-Kannan lemma are known, particularly for various families
of sparse pseudorandom graphs [KR02, RTTV08, TTV09, OGT15, BV20]. Oveis-Gharan
and Trevisan [OGT15] also proved a new weak regularity lemma for “low threshold-rank"
graphs, which was used to obtain approximation algorithms for some 2-CSPs, where the
previously known algorithms used the SoS hierarchy [BRS11, GS11]. Our work can be
viewed as an extension of these ideas to the case of k-CSPs.

Ideas based on regularity lemmas, were also employed in the context of list decoding
of Reed-Muller codes, by Bhowmick and Lovett [BL18]. They use analogues of the abstract
weak regularity lemma [TTV09] and the Szemerédi regularity lemma over finite fields, but
these are only used to prove bounds on the list size, rather than in the algorithm itself. On
the other hand, our decoding algorithm crucially uses the decomposition obtained via our
weak regularity lemma for (real-valued functions on) splittable structures.

In general, expansion phenomena have a rich history of interaction with coding the-
ory (e.g., [GI01, Gur04, GI05, RWZ20]) including to the study of linear (or near-linear)
time decoding backing to the seminal work of Sipser and Spielman [SS96]. The codes
in [SS96] were good codes, though not near optimal in terms of distance-rate trade-off.
Several other notions of “structured pseudorandomness” for hypergraphs (referred to as
high-dimensional expansion) have also been considered in literature, which also have con-
nections to the decoding of good codes. In particular, the notion of “double sampler” was
used to obtain algorithms for the list decoding for direct-product codes [DHK+19]. The
notions of local spectral expansion [DK17], cosystolic expansion [EK16], and multilayer
agreement samplers [DDHRZ20], are also used to connect structured pseudorandomness
to the design of locally testable codes. The notion of splittability was also studied for un-
ordered hypergraphs in terms of “complement walks” by Dinur and Dikstein [DD19], and
in terms of “swap walks” in [AJT19], for high-dimensional expanders defined via local
spectral expansion.

2 A Technical Overview

We now give a more detailed overview of some of the technical components of our proof.

Splittability. The key structural property used for our algorithmic and structural results,
is the “structured pseudorandomness" of ordered hypergraphs W ⊆ [n]k, which we call
splittability. The canonical example one can think of for this case, is a collection of all
length-(k − 1) walks on a (say) d-regular expander graph G on n vertices. Note that this
satisfies |W[a, b]| = db−a · n, where W[a, b] represents the collection of sub-tuples with
coordinates between indices a and b i.e., portions of the walks between the ath and bth step.
We will restrict our discussion in this paper only to d-regular collections W ⊆ [n]k satisfying
|W[a, b]| = db−a · n.

We briefly sketch why the collection of length-3 walks (i.e., the case k = 4) is splittable.
Recall that splittability requires various graphs with sub-tuples to be expanding, and in
particular consider the graph between W[1, 2] and W[3, 4], with edge-set W[1, 4]. If E(G)

5

is the set of edges in G included with both orientations, then note that W[1, 2] = W[3, 4] =
E(G), and (i1, i2), (i3, i4) are connected iff (i2, i3) ∈ E(G). If M ∈ RW[1,2]×W[3,4] denotes the
biadjacency matrix of the bipartite graph H on W[1, 2]×W[3, 4], then up to permutations
of rows and columns, we can write M as AG ⊗ Jd/d, where Jd denotes the d × d all-1s
matrix and AG is the normalized adjacency matrix of G, since each tuple (i2, i3) ∈ E(G)
contributes d2 edges in H (for choices of i1 and i4). Thus σ2(M) = σ2(AG), which is small
if G is an expander. A similar argument also works for splits in other positions, and for
longer walks.

The above argument can also be extended to show that the sub-collections of walks
considered by Ta-Shma (after a slight modification) are splittable, though the structure
and the corresponding matrices are more involved there (see Appendix A).

Regularity for graphs and functions. We first consider an analytic form of the Frieze-
Kannan regularity lemma (based on [TTV09]). Let g : X → [−1, 1] be any function on a
finite space X with an associated probability measure µ, and let F ⊆ { f : X → [−1, 1]}
be any class of functions closed under negation. Say we want to construct a “simple ap-
proximation/decomposition” h, which is indistinguishable from g, for all functions in f
i.e.,

⟨g− h, f ⟩µ = E
x∼µ

[(g(x)− h(x)) · f (x)] ≤ δ ∀ f ∈ F .

We can view the regularity lemma as saying that such an h can always be constructed as a
sum of 1/δ2 functions from F . Indeed, we can start with h(0) = 0, and while there exists
fℓ violating the above condition, we update h(ℓ+1) = h(ℓ) + δ · fℓ. The process must stop in
1/δ2 steps, since ∥g− h(ℓ)∥2 can be shown to decrease by δ2 in every step.⃦⃦⃦

g− h(ℓ)
⃦⃦⃦2

µ
−
⃦⃦⃦

g− h(ℓ+1)
⃦⃦⃦2

µ
= 2δ ·

⟨︂
g− h(ℓ), fℓ

⟩︂
µ
− δ · ∥ fℓ∥2

µ ≥ δ2 .

In fact, the above can be seen as gradient descent for minimizing the convex function
F(h) = sup f∈F ⟨g− h, f ⟩µ. Taking X = [n]2 with µ as uniform on [n]2, g = 1E(G) for a
(dense) graph G, and F as all functions (cut matrices) of the form ±1S1TT yields the weak
regularity lemma for graphs, since we get h = ∑ℓ cℓ · fℓ = ∑ℓ cℓ · 1Sℓ

1TTℓ
such that

⟨g− h, f ⟩µ ≤ δ ∀ f ∈ F ⇔ 1
n2 ·

⃓⃓⃓⃓
⃓EG(S, T)−∑

ℓ

cℓ |Sℓ ∩ S| |Tℓ ∩ T|
⃓⃓⃓⃓
⃓ ≤ δ ∀S, T ⊆ [n] .

Note that the inner product in the above analytic argument can be chosen to be according
to any measure on X , and not just the uniform measure. In particular, taking W ⊆ [n]2 to
be the edge-set of a (sparse) d-regular expander with second singular value (say) λ, and
µ = µ2 to be uniform over W, we obtain the regularity lemma for subgraphs of expanders.
In this case, after obtaining the approximation with respect to µ, one shows using the
expander mixing lemma that if ⟨g− h, f ⟩µ2

≤ δ, then ⟨g− (d/n) · h, f ⟩µ1⊗µ1
≤ (d/n) · δ′,

where µ1 denotes the uniform measure on [n] and δ′ = δ+λ. This gives a sparse regularity
lemma, since for G ⊆W and g = 1G,⟨︃

g−
(︃

d
n

)︃
h, f
⟩︃

µ⊗2
1

≤ d
n
· δ′ ∀ f ∈ F ⇔

⃓⃓⃓⃓
⃓EG(S, T)−∑

ℓ

cℓ ·
d
n
|Sℓ ∩ S| |Tℓ ∩ T|

⃓⃓⃓⃓
⃓ ≤ δ′ ·nd ∀S, T .

The algorithmic step in the above proofs, is finding an fℓ such that ⟨g− h, fℓ⟩ > δ. For the
function class F corresponding to cut matrices, this corresponds to solving a problem of

6

the form maxS,T
⃓⃓
1TS M1T

⃓⃓
for an appropriate matrix M at each step. This equals the cut-

norm and can be (approximately) computed using the SDP approximation algorithm of
Alon and Naor [AN04]. Moreover, this can be implemented in near-linear time in the spar-
sity of M, using known fast, approximate SDP solvers of Lee and Padmanabhan [LP20] or
of Arora and Kale [AK07] (see Section 4.5 for details).

Splittable regularity. For our regularity lemma, the class F comprises of “k-split func-
tions” of the form f1 ⊗ · · · ⊗ fk, where for each ft can be thought of as 1St (or (−1)1St) for
some St ⊆ [n]. An argument similar to the one above, with the measure µk uniform on
W ⊆ [n]k, can yield an existential version of the splittable regularity lemma, similar to the
one for expander graphs (we now transition from µk to µ⊗k

1 using a simple generalization
of the expander mixing lemma to splittable collections). However, the algorithmic step in
the above procedure, requires computing

max
f1,..., fk∈F

⟨g− h, f1 ⊗ · · · ⊗ fk⟩

Unfortunately, such an algorithmic problem is hard to even approximate in general, as
opposed to the 2-split case for graphs. Another approach is to first compute an approxi-
mation of a given g : W → [−1, 1], in terms of 2-split functions of the form f1 ⊗ f2, where
f1 : W[1, t] → [−1, 1] and f2 : W[t + 1, k] → [−1, 1], and then inductively approximate f1
and f2 in terms of 2-split functions, and so on. Such an induction does yield an algorith-
mic regularity lemma, though naively approximating the component functions f1 and f2 at
each step, leads to a significantly lossy dependence between the final error, the splittability
parameter τ, and k.

We follow a hybrid of the two approaches above. We give an inductive argument,
which at step t, approximates g via ht which is a sum of t-split functions. However, in-
stead of simply applying another 2-split to each term in the decomposition ht to com-
pute ht+1, we build an approximation for all of ht using the regularity argument above
from scratch. We rely on the special structure of ht to solve the algorithmic problem
max f1,..., ft+1 ⟨ht − ht+1, f1 ⊗ · · · ⊗ ft+1⟩, reducing it to a matrix cut-norm computation3. This
yields near-optimal dependence of the error on τ and k, needed for our coding applica-
tions.

Decoding direct-sum codes using regularity. We now consider the problem of decoding,
from a received, possibly corrupted, ỹ ∈ FW

2 , to obtain the closest y ∈ dsumW(C0) (or
a list) i.e., finding argminz0∈C0

∆(ỹ, dsumW(z0)). Let g : [n]k → {−1, 1} be defined as

g(i1, . . . , ik) = (−1)ỹ(i1,...,ik) if (i1, . . . , ik) ∈ W and 0 otherwise. Also, for any z ∈ Fn
2 , define

the function χz as χz(i) = (−1)zi . As before, let µ1 denote the uniform measure on [n].

3Strictly speaking, we also need to be careful about the bit-complexity of our matrix entries, to allow
for near-linear time computation. However, all the entries in matrices we consider will have bit-complexity
Ok,δ(log n).

7

Using that g is 0 outside W, and that |W| = dk−1 · n, we get

1− 2 · ∆(ỹ, dsumW(z)) = E
(i1,...,ik)∈W

[g(i1, . . . , ik) · χz(i1) · · · χz(ik)]

=
(︂n

d

)︂k−1
· E
(i1,...,ik)∈[n]k

[g(i1, . . . , ik) · χz(i1) · · · χz(ik)]

=
(︂n

d

)︂k−1
·
⟨︂

g, χ⊗k
z

⟩︂
µ⊗k

1

.

At this point, we modify the problem in three ways. First, instead of restricting the op-
timization to z0 ∈ C0, we widen the search to all z ∈ Fn

2 . We will be able to show that
because of the pseudorandom (distance amplification) properties of W, a good (random)
solution z found by our algorithm, will be within the unique decoding radius of C0 (with
high probability). Secondly, using the fact that for splittable W, the function g has an ap-
proximation h = ∑

p
ℓ=1 cℓ · fℓ,1 ⊗ · · · ⊗ fℓ,k given by the regularity lemma, we can restrict

our search to z which (approximately) maximize the objective⟨︂
h, χ⊗k

z

⟩︂
µ⊗k

1

=
p

∑
ℓ=1

cℓ · ∏
t∈[k]
⟨ fℓ,t , χz⟩µ1

Finally, instead of searching for χz : [n] → {−1, 1}, we further widen the search to
f : [n] → [−1, 1]. A random “rounding” choosing each χz(i) independently so that
E[χz] = f should preserve the objective value with high probability. We now claim that

the resulting search for functions f maximizing
⟨︂

h, f
⊗k
⟩︂

µ⊗k
1

, can be solved via a simple

brute-force search. Note that the objective only depends on the inner products with a fi-
nite number of functions { fℓ,t}ℓ∈[p],t∈[k] with range {−1, 1}. Partitioning the space [n] in
2pk “atoms” based on the values of these functions, we can check that it suffices to search
over f , which are constant on each atom. Moreover, it suffices to search the values in each
atom, up to an appropriate discretization η, which can be done in time O

(︂
(1/η)2pk

)︂
.

For the problem of list decoding ỹ up to radius 1/2− β, we show that each z0 ∈ C0,

such that dsumW(z0) is in the list, there must be an f achieving a large value of
⟨︂

h, f
⊗k
⟩︂

µ⊗k
1

which then yields a z within the unique decoding radius of z0. Since we enumerate over
all f , this recovers the entire list. Details of the decoding algorithm are given in Section 5.

3 Preliminaries

We now introduce some notation. The asymptotic notation ˜︁O(r(n)) hides polylogarithmic
factors in r(n).

3.1 Codes

We briefly recall some standard code terminology. Given z, z′ ∈ Fn
2 , recall that the relative

Hamming distance between z and z′ is ∆(z, z′) := |{i | zi ̸= z′i}| /n. A binary code is any
subset C ⊆ Fn

2 . The distance of C is defined as ∆(C) := minz ̸=z′ ∆(z, z′) where z, z′ ∈ C. We
say that C is a linear code if C is a linear subspace of Fn

2 . The rate of C is log2(|C|)/n, or
equivalently dim(C)/n if C is linear.

8

Definition 3.1 (Bias). The bias of a word z ∈ Fn
2 is defined as bias(z) :=

⃓⃓⃓
Ei∈[n](−1)zi

⃓⃓⃓
. The

bias of a code C is the maximum bias of any non-zero codeword in C.

Definition 3.2 (ε-balanced Code). A binary code C is ε-balanced if bias(z + z′) ≤ ε for every
pair of distinct z, z′ ∈ C.

Remark 3.3. For linear binary code C, the condition bias(C) ≤ ε is equivalent to C being an
ε-balanced code.

3.2 Direct Sum Lifts

Starting from a code C ⊆ Fn
2 , we amplify its distance by considering the direct sum lifting

operation based on a collection W(k) ⊆ [n]k. The direct sum lifting maps each codeword
of C to a new word in F

|W(k)|
2 by taking the k-XOR of its entries on each element of W(k).

Definition 3.4 (Direct Sum Lifting). Let W(k) ⊆ [n]k. For z ∈ Fn
2 , we define the direct sum

lifting as dsumW(k)(z) = y such that y(i1,...,ik) = ∑k
j=1 zij for all (i1, . . . , ik) ∈ W(k). The direct

sum lifting of a code C ⊆ Fn
2 is

dsumW(k)(C) = {dsumW(k)(z) | z ∈ C}.

We will omit W(k) from this notation when it is clear from context.

Remark 3.5. We will be concerned with collections W(k) ⊆ [n]k arising from length-(k − 1)
walks on expanding structures (mostly arising from Ta-Shma’s direct sum construction [TS17]).

We will be interested in cases where the direct sum lifting reduces the bias of the base
code; in [TS17], structures with such a property are called parity samplers, as they emulate
the reduction in bias that occurs by taking the parity of random samples.

Definition 3.6 (Parity Sampler). A collection W(k) ⊆ [n]k is called an (ε0, ε)-parity sampler
if for all z ∈ Fn

2 with bias(z) ≤ ε0, we have bias(dsumW(k)(z)) ≤ ε.

3.3 Splittable Tuples

We now formally define the splittability property for a collection of tuples W(k) ⊆ [n]k. For
1 ≤ a ≤ b ≤ k, we define W[a, b] ⊆ [n](b−a+1) as

W[a, b] := {(ia, ia+1, . . . , ib) | (i1, i2, . . . , ik) ∈W(k)}.

We will work with d-regular tuples in the following sense.

Definition 3.7 (Regular tuple collection). We say that W(k) ⊆ [n]k is d-regular if for every
1 ≤ a ≤ b ≤ k, we have

- |W[a, b]| = db−a · n,

- W[a] = [n].

A collection W(k) being d-regular is analogous to a graph being d-regular.

9

Example 3.8. The collection W(k) of all length-(k − 1) walks on a d-regular connected graph
G = ([n], E) is a d-regular collection of tuples.

The space of functions RW[a,b] is endowed with an inner product associated to the
uniform measure µ[a,b] on W[a, b]. We use the shorthand µb for µ[1,b].

Definition 3.9 (Splitable tuple collection). Let τ > 0. We say that a collection W(k) ⊆ [n]k is
τ-splittable if it is d-regular and either k = 1 or for every 1 ≤ a ≤ t < b ≤ k we have

- the split operator SW[a,s],W[t+1,b] ∈ RW[a,t]×W[t+1,b] defined as(︂
SW[a,t],W[t+1,b]

)︂
(ia,...,it),(it+1,...,ik)

:=
1 [(ia, . . . , it, it+1, . . . ik) ∈W[a, b]]

dk−t

satisfy σ2(SW[a,t],W[t+1,b]) ≤ τ, where σ2 denotes the second largest singular value.

Example 3.10. The collection W(k) of all length-(k− 1) walks on a d-regular a graph G = ([n], E)
whose normalized adjacency matrix has second largest singular value at most τ is a collection of
τ-splittable tuples as shown in [AJQ+20].

Example 3.11. The collection W(k) of tuples arising (from a slight modification) of the direct sum
construction of Ta-Shma [TS17] is a τ-splittable as shown in [JQST20]. Precise parameters are
recalled later as Theorem A.1 of Appendix A.

3.4 Factors

It will be convenient to use the language of factors, to search the decompositions identified
by regularity lemmas, for relevant codewords. This concept (from ergodic theory) takes
a rather simple form in our finite settings: it is just a partition of base set X , with an
associated operation of averaging functions defined on X , separately over each piece.

Definition 3.12 (Factors and measurable functions). Let X be a finite set. A factor B is a
partition of the set X , and the subsets of the partition are referred to as atoms of the factor. A
function f : X → R is said to measurable with respect to B (B-measurable) if f is constant on
each atom of B.

Definition 3.13 (Conditional averages). If f : X → R is a function, µ is a measure on the space
X , and B is a factor, then we define the conditional average function E[f |B] as

E [f |B] (x) := E
y∼µ|B(x)

[f (y)] ,

where B(x) denotes the atom containing x. Note that the function E[f |B] is measurable with
respect to B.

We will need the following simple observation regarding conditional averages.

Proposition 3.14. Let h : X → R be a B-measurable function, and let f : X → R be any
function. Then, for any measure µ over X , we have

⟨h, f ⟩µ = ⟨h, E [f |B]⟩µ .

10

Proof. By definition of the B-measurability, h is constant on each atom, and thus we can
write h(x) as h(B(x)).

⟨h, f ⟩µ = E
x∼µ

[h(x) · f (x)] = E
x∼µ

E
y∼µ|B(x)

[h(y) · f (y)]

= E
x∼µ

[︃
h(B(x)) · E

y∼µ|B(x)
[f (y)]

]︃
= E

x∼µ
[h(x) ·E [f |B] (x)] = ⟨h, E [f |B]⟩µ .

The factors we will consider will be defined by a finite collection of functions appearing
in a regularity decomposition.

Definition 3.15 (Function factors). LetX andR be finite sets, and letF0 = { f1, . . . , fr : X → R}
be a finite collection of functions. We consider the factor BF0 defined by the functions in F0, as the
factor with atoms {x | f1(x) = c1, . . . , fr(x) = cr} for all (c1, . . . , cr) ∈ Rr.

Remark 3.16. Note that when the above function are indicators for sets i.e., each f j = 1Sj for
some Sj ⊆ X , then the function factor BF0 is the same as the σ-algebra generated by these sets.
Also, given the functions f1, . . . , fr as above, the function factor BF0 can be computed in time
O(|X | · |R|r).

3.5 Functions and Measures

We describe below some classes of functions, and spaces with associated measures, arising
in our proof. The measures we consider are either uniform on the relevant space, or are
products of measures on its component spaces.

Function classes. Let S ⊆ [n]. We define χS : [n] → {±1} as χS(i) := (−1)1i∈S (we
observe that as defined χS is not a character4). We need the following two collection of
functions for which algorithmic results will be obtained.

Definition 3.17 (CUT functions). We define the set of 0/1 CUT cut functions as

CUT⊗k := {±1S1 ⊗ · · · ⊗ 1Sk | S1, . . . , Sk ⊆ [n]},

and defined the set of ±1 CUT functions as

CUT⊗k
± := {±χS1 ⊗ · · · ⊗ χSk | S1, . . . , Sk ⊆ [n]}.

We will use a higher-order version of cut norm.

Definition 3.18. Let g ∈ R[n]k , the k-tensor cut norm is

∥g∥□⊗k := max
f∈CUT⊗k

⟨g, f ⟩ ,

where the inner product is over the counting measure on [n]k.

4Strictly speaking χS is not a character but by identifying the elements of [n] with those of a canonical basis
of Fn

2 it becomes a character for Fn
2 .

11

Some of our results hold for more general class of functions.

Definition 3.19 (t-split functions). Suppose W(k) is a regular collection of k-tuples. For t ∈
{0, . . . , k− 1}, we define a generic class of tensor product functions Ft as

Ft ⊆
{︂
± f1 ⊗ · · · ⊗ ft ⊗ ft+1 | f j ⊆ RW[1] for i ≤ t, ft+1 ⊆ RW[t+1,k],

⃦⃦
f j
⃦⃦

∞ ≤ 1
}︂

.

To avoid technical issues, we assume that each Ft is finite.

Fixing some F ⊆ RX , we define the set of functions that are linear combinations of
function from F with coefficients of bounded support size and bounded ℓ1-norm as fol-
lows

H(R0, R1,F) :=

{︄
p

∑
ℓ=1

cℓ · fℓ | p ≤ R0, ∑ |cℓ| ≤ R1, fℓ ∈ F
}︄

.

Measures and inner products. Recall that µ1 := µ[1,1] is the uniform measure on W[1]
(equivalently uniform measure on W[i] since W(k) is regular) and µ[t+1,k] is the uniform
measure on W[t + 1, k]. We define following measure νt as

νt := (µ1)
⊗t ⊗

(︂
µ[t+1,k]

)︂
.

Note that ν0 is the equal to µk and νk−1 is equal to µ⊗k
1 . We will need to consider inner

products of functions according to various measures defined above, which we will denote
as ⟨·, ·⟩µ for the measure µ. When a measure is not indicated, we take the inner product
⟨ f , g⟩ to be according to the counting measure on the domains of the functions f and g.

4 Weak Regularity for Splittable Tuples

We will show how functions supported on a (possibly) sparse splittable collection of tuples
W(k) ⊆ [n]k admit weak regular decompositions in the style of Frieze and Kannan [FK96].
In Section 4.1, we start by showing an abstract regularity lemma for functions that holds in
some generality and does not require splittability. Next, in Section 4.2, we show that split-
table collections of tuples satisfy suitable (simple) generalizations of the expander mixing
lemma for graphs which we call splittable mixing lemma. By combining this abstract weak
regularity decomposition with splittable mixing lemmas, we obtain existential decomposi-
tion results for splittable tuples in Section 4.3. Then, we proceed to make these existential
results not only algorithmic but near-linear time computable in Section 4.4. These algo-
rithmic results will rely on fast cut norm like approximation algorithms tailored to our
settings and this is done in Section 4.5. As mentioned previously, this last step borrows
heavily from known results [AN04, AK07, LP20].

4.1 Abstract Weak Regularity Lemma

We now show a weak regularity decomposition lemma for functions that works in some
generality and does not require splittability. We now fix some notation for this section.
Let X be a finite set endowed with a probability measure µ. Let RX be a Hilbert space

12

endowed with inner product ⟨ f , g⟩µ = Eµ [f · g] and associated norm ∥·∥µ =
√︂
⟨·, ·⟩µ. Let

F ⊆ { f : X → R | ∥ f ∥µ ≤ 1} be a finite collection of functions such that F = −F .

In a nutshell, given any g ∈ RX , the abstract weak regularity lemma will allow us to
find an approximator h, with respect to the semi-norm g− h ↦→ max f∈F ⟨g− h, f ⟩, which
is a linear combinations of a certain small number of functions from F (where this number
depends only on the approximation accuracy and the norm ∥g∥µ). This means that g and h
have approximately the same correlations with functions from F . We will produce h in an
iterative procedure, where at each step an oracle of the following kind (cf., Definition 4.1)
is invoked.

Definition 4.1 (Correlation Oracle). Let 1 ≥ δ ≥ δ′ > 0 be accuracy parameters and B > 0.
We say that Oµ,B is a (δ, δ′)-correlation oracle for F if given h ∈ RX with ∥h∥2

µ = O(B) if there
exists f ∈ F with ⟨h, f ⟩ ≥ δ, then Oµ,B returns some f ′ ∈ F with ⟨h, f ′⟩ ≥ δ′.

More precisely, our abstract weak regularity decomposition is as follows.

Lemma 4.2 (Abstract Weak Regularity). Let Oµ,B be a (δ, δ′)-correlation oracle for F with
δ ≥ δ′ > 0. Let g : X → R satisfy ∥g∥2

µ ≤ B. Then, we can find h = ∑
p
ℓ=1 cℓ · fℓ ∈

H(B/(δ′)2, B/δ′,F) with fℓ ∈ F , cℓ ∈ [δ′/(1 + δ′/
√

B)p, δ′] and ∥h∥2
µ ≤ B such that

max
f∈F

⟨g− h, f ⟩µ ≤ δ.

Furthermore, if Oµ,B runs in time TOµ,B , then h can be computed in

˜︁O (︂poly(B, 1/δ′) · (TOµ,B + |Supp(µ)|)
)︂

time, where Supp(µ) is the support of µ. The function h is constructed in Algorithm 4.3 as the
final function in a sequence of approximating functions h(ℓ) ∈ H(B/(δ′)2, B/δ′,F).

The proof is based on the following algorithm.

Algorithm 4.3 (Regularity Decomposition Algorithm).
Input g : X → R

Output h = ∑
p
ℓ=1 cℓ · fℓ

- Let Π be the projector onto the convex ball {g′ ∈ RX | ∥g′∥2
µ ≤ B}.

- Let ℓ = 0 and h(ℓ) = 0

- While max f∈F
⟨︂

g− h(ℓ), f
⟩︂

µ
≥ δ:

– ℓ = ℓ+ 1

– Let fℓ ∈ F be such that
⟨︂

g− h(ℓ−1), fℓ
⟩︂

µ
≥ δ′ (Correlation Oracle Oµ,B Step)

– Let cℓ = δ′

– h(ℓ) = Π(h(ℓ−1) + cℓ · fℓ)

- Let p = ℓ

- return h = ∑
p
ℓ=1 cℓ · fℓ

13

We will need the following general fact about projections onto a convex body.

Fact 4.4 (Implicit in Lemma 3.1 of [Bub15]). Let Y be a compact convex body in a finite dimen-
sional Hilbert space V equipped with inner product ⟨·, ·⟩ν and associated norm ∥·∥ν. Let ΠY be
projector onto Y . Then, for y ∈ Y and x ∈ V , we have

∥y− x∥2
ν ≥ ∥y−ΠY (x)∥2

ν + ∥ΠY (x)− x∥2
ν .

Proof of Lemma 4.2. We will show that the norm of
⃦⃦⃦

g− h(ℓ)
⃦⃦⃦

µ
strictly decreases as the al-

gorithm progresses. Computing we obtain⃦⃦⃦
g− h(ℓ)

⃦⃦⃦2

µ
=
⃦⃦⃦

g−Π(h(ℓ−1) + cℓ · fℓ)
⃦⃦⃦2

µ

≤
⃦⃦⃦

g− (h(ℓ−1) + cℓ · fℓ)
⃦⃦⃦2

µ
−
⃦⃦⃦
(h(ℓ−1) + cℓ · fℓ)−Π(h(ℓ−1) + cℓ · fℓ)

⃦⃦⃦2

µ
(By Fact 4.4)

≤
⃦⃦⃦

g− (h(ℓ−1) + cℓ · fℓ)
⃦⃦⃦2

µ

=
⃦⃦⃦

g− h(ℓ−1)
⃦⃦⃦2

µ
+ c2

ℓ · ∥ fℓ∥2
µ − 2cℓ ·

⟨︂
g− h(ℓ−1), fℓ

⟩︂
µ

≤
⃦⃦⃦

g− h(ℓ−1)
⃦⃦⃦2

µ
− (δ′)2

where the inequality follows from cℓ = δ′, the bound ∥ fℓ∥µ ≤ 1 and⟨︂
g− h(ℓ−1), fℓ

⟩︂
µ
≥ δ′.

Since ∥g∥2
µ ≤ B and

⃦⃦⃦
g− h(ℓ)

⃦⃦⃦2

µ
decreases by at least (δ′)2 in each iteration, we conclude

that the algorithm halts in at most p ≤ B/(δ′)2 steps.

By construction each cℓ is initialized to δ′ and can not increase (it can only decrease
due to projections). Thus, we obtain ∑

p
ℓ=1 |cℓ| ≤ p · δ′ ≤ B/δ′. Also by construction at

termination ∥h∥2
µ ≤ B. It remains to show that cℓ ≥ δ′/(1+ δ′/

√
B)p. Note that the projec-

tion Π(h(ℓ−1) + cℓ · fℓ) at each iteration either does nothing to the coefficients cℓ’s or scales
them by a factor of at most (1 + δ′/

√
B) since

⃦⃦⃦
h(ℓ−1)

⃦⃦⃦
µ
+ ∥cℓ · fℓ∥µ ≤

√
B(1 + δ′/

√
B).

This readily implies the claimed lower bound on the coefficients cℓ’s at termination. More-
over, we have h(ℓ) ∈ H(B/(δ′)2, B/δ′,F) also by construction.

Running Time: The decomposition algorithm calls the correlation oracle at most p + 1
times. Since the coefficients cℓ always lie in [δ′/(1 + δ′/

√
B)p, δ′] ⊆ [δ′/ exp(pδ′/

√
B), δ′],

the bit complexity is C = O(pδ′/
√

B) and computing the projection (which amounts to

computing h(ℓ)/
⃦⃦⃦

h(ℓ)
⃦⃦⃦

µ
if
⃦⃦⃦

h(ℓ)
⃦⃦⃦2

µ
> B) takes at most ˜︁O(p2 · poly(C) · |Supp(µ)|). Then

the total running time is at most˜︁O(p(TOµ,B + p2 · poly(C) · |Supp(µ)|)) = ˜︁O (︂poly(B, 1/δ′) · (TOµ,B + |Supp(µ)|)
)︂

,

concluding the proof.

Remark 4.5. If we are only interested in an existential version of Lemma 4.2, we can always use
a trivial existential (δ, δ)-correlation oracle. However, to obtain weak regularity decompositions
efficiently in our settings, we will later use efficient (δ, δ′)-correlation oracle with δ′ = Ω(δ).

14

4.2 Splittable Mixing Lemma

A splittable collection of tuples gives rise to several expanding split operators (see Defi-
nition 3.9). This allows us to show that a splittable collection satisfies some higher-order
analogues of the well known expander mixing lemmas for graphs (cf.,[HLW06][Section
2.4]) as we make precise next.

Lemma 4.6 (Splittable Mixing Lemma). Suppose W(k) ⊆ [n]k is a τ-splittable collection of
tuples. For every t ∈ {0, . . . , k− 2} and every f , f ′ ∈ Ft+1, we have⃓⃓⃓⟨︁

f ′, f
⟩︁

νt+1
−
⟨︁

f ′, f
⟩︁

νt

⃓⃓⃓
≤ τ.

Proof. Let f = f1 ⊗ · · · ⊗ ft ⊗ ft+1 ⊗ ft+2 and f ′ = f ′1 ⊗ · · · ⊗ f ′t ⊗ f ′t+1 ⊗ f ′t+2. We have

⃓⃓⃓⟨︁
f ′, f

⟩︁
νt+1
−
⟨︁

f ′, f
⟩︁

νt

⃓⃓⃓
=

⃓⃓⃓⃓
⃓ t

∏
i=1

E
µ1

fi f ′i

⃓⃓⃓⃓
⃓ ·
⃓⃓⃓⃓

E
µ1⊗µ[t+2,k]

ft+1 f ′t+1 ⊗ ft+2 f ′t+2 − E
µ[t+1,k]

ft+1 f ′t+1 ⊗ ft+2 f ′t+2

⃓⃓⃓⃓
≤
⃓⃓⃓⃓

E
µ1⊗µ[t+2,k]

ft+1 f ′t+1 ⊗ ft+2 f ′t+2 − E
µ[t+1,k]

ft+1 f ′t+1 ⊗ ft+2 f ′t+2

⃓⃓⃓⃓
.

Let f ′′t+1 = ft+1 f ′t+1 and f ′′t+2 = ft+2 f ′t+2. Note that

E
µ1⊗µ[t+2,k]

f ′′t+1 ⊗ f ′′t+2 − E
µ[t+1,k]

f ′′t+1 ⊗ f ′′t+2 =

⟨︃
f ′′t+1,

(︃
Jrec

|W[t + 2, k]| − SW[t+1],W[t+2,k]

)︃
f ′′t+2

⟩︃
µ1

,

where Jrec is the (rectangular) |W[t + 1]|× |W[t + 2, k]| all ones matrix. Using the τ-splittability
assumption, we have the following bound on the largest singular value

σ

(︃
Jrec

|W[t + 2, k]| − SW[t+1],W[t+2,k]

)︃
≤ σ2

(︂
SW[t+1],W[t+2,k]

)︂
≤ τ.

Then ⃓⃓⃓⃓
E

µ1⊗µ[t+2,k]
ft+1 f ′t+1 ⊗ ft+2 f ′t+2 − E

µ[t+1,k]
ft+1 f ′t+1 ⊗ ft+2 f ′t+2

⃓⃓⃓⃓
≤ τ,

concluding the proof.

We can iterate the preceding lemma to obtain the following.

Lemma 4.7 (Splittable Mixing Lemma Iterated). Suppose W(k) ⊆ [n]k is a τ-splittable collec-
tion of tuples. For every f = f1 ⊗ · · · ⊗ fk ∈ Fk−1, we have⃓⃓⃓⃓

E
ν0

f − E
νk−1

f
⃓⃓⃓⃓
≤ (k− 1) · τ.

Proof. Let 1 ∈ Fk−1 be the constant 1 function. Note that for any t ∈ {0, . . . , k − 1} the
restriction of any f ′ ∈ Fk−1 to the support of νt which we denote by f ′|t belongs to Ft. It

15

is immediate that ⟨ f , 1⟩νt
= ⟨ f |t, 1⟩νt

. Computing we obtain⃓⃓⃓⃓
E
ν0

f − E
νk−1

f
⃓⃓⃓⃓

=
⃓⃓⃓
⟨ f , 1⟩ν0

− ⟨ f , 1⟩νk−1

⃓⃓⃓
≤

k−2

∑
i=0

⃓⃓⃓
⟨ f , 1⟩νi

− ⟨ f , 1⟩νi+1

⃓⃓⃓
=

k−2

∑
i=0

⃓⃓⃓
⟨ f |t, 1|t⟩νi

− ⟨ f |t+1, 1|t+1⟩νi+1

⃓⃓⃓
≤

k−2

∑
i=0

τ, (By Lemma 4.6)

finishing the proof.

In Section 4.4, we will need two corollaries of the splittable mixing lemma which we
prove now.

Claim 4.8. Let W(k) ⊆ [n]k be a τ-splittable collection of tuples. Let t ∈ {0, . . . , k − 2} and
ht+1 ∈ H(R0, R1,Ft+1). For every f ∈ Ft+1, we have⃓⃓⃓

⟨ht+1, f ⟩νt+1
− ⟨ht+1, f ⟩νt

⃓⃓⃓
≤ τ · R1.

Proof. Since ht+1 ∈ H(R0, R1,Ft+1), we can write ht+1 = ∑ℓ cℓ · fℓ, where fℓ ∈ Ft+1 and
∑ℓ |cℓ| ≤ R1. By the splittable mixing lemma, cf., Lemma 4.6, we have⃓⃓⃓

⟨ht+1, f ⟩νt+1
− ⟨ht+1, f ⟩νt

⃓⃓⃓
≤ ∑

ℓ

|cℓ| ·
⃓⃓⃓
⟨ fℓ, f ⟩νt+1

− ⟨ fℓ, f ⟩νt

⃓⃓⃓
≤ τ · R1.

Claim 4.9. Let W(k) ⊆ [n]k be a τ-splittable collection of tuples. Let t ∈ {0, . . . , k − 2} and
ht+1 ∈ H(R0, R1,Ft+1). Then⃓⃓⃓

∥ht+1∥2
νt+1
− ∥ht+1∥2

νt

⃓⃓⃓
≤ τ · R2

1.

Proof. Since ht+1 ∈ H(R0, R1,Ft+1), we can write ht+1 = ∑ℓ cℓ · fℓ, where fℓ ∈ Ft+1 and
∑ℓ |cℓ| ≤ R1. By the splittable mixing lemma, cf., Lemma 4.6, we have⃓⃓⃓
⟨ht+1, ht+1⟩νt+1

− ⟨ht+1, ht+1⟩νt

⃓⃓⃓
≤ ∑

ℓ,ℓ′
|cℓ| · |cℓ′ | ·

⃓⃓⃓
⟨ fℓ, fℓ′⟩νt+1

− ⟨ fℓ, fℓ′⟩νt

⃓⃓⃓
≤ τ ·R2

1.

4.3 Existential Weak Regularity Decomposition

Using the abstract weak regularity lemma, Lemma 4.2, together splittable mixing lemmas
of Section 4.2, we can obtain (non-constructive) existential weak regularity decompositions
for splittable structures.

Lemma 4.10 (Existential Weak Regularity for Splittable Tuples). Let W(k) ⊆ [n]k be a τ-
splittable structure. Let g ∈ RW[1]k be supported on W(k) with ∥g∥µk

≤ 1. Let F = Fk−1

(cf., Definition 3.19) be arbitrary. For every δ > 0, if τ ≤ O(δ2/(k − 1)), then there exists
h ∈ RW[1]k supported on O(1/δ2) functions in F such that

max
f∈F

⟨g− h, f ⟩ ≤ δ · |W(k)| ,

where the inner product is over the counting measure on W[1]k.

16

Proof. Apply the weak regularity Lemma 4.2, with parameters δ and δ′ equal to δ, col-
lection F , input function g, measure µ = µk (i.e., uniform measure on W(k)) and a non-
explicit correlation oracle based on the existential guarantee. This yields h = ∑

p
ℓ=1 cℓ · fℓ ∈

H(1/δ2, 1/δ,F) where
max
f∈F

⟨g− h, f ⟩µk
≤ δ.

Let f ∈ F . We claim that h′ = h · |W(k)| / |W[1]|k satisfies the conclusion of the current
lemma. For this, we bound⃓⃓⃓
|W(k)| ⟨g− h, f ⟩µk

−
⟨︁

g− h′, f
⟩︁⃓⃓⃓
≤
⃓⃓⃓
|W(k)| ⟨g, f ⟩µk

− ⟨g, f ⟩
⃓⃓⃓
+

p

∑
ℓ=1
|cℓ| ·

⃓⃓⃓⃓
⃓|W(k)| ⟨ fℓ, f ⟩µk

− |W(k)|
|W[1]|k

⟨ fℓ, f ⟩
⃓⃓⃓⃓
⃓ .

The first term in the RHS above is zero since

|W(k)| ⟨g, f ⟩µk
= ∑

s∈W(k)
g(s) · f (s) = ⟨g, f ⟩ ,

where in the second equality we used that g is supported on W(k). Suppose that f =
f1⊗ · · · ⊗ fk and fℓ = fℓ,1⊗ · · · ⊗ fℓ,k. Set f ′ℓ = (f1 · fℓ,1)⊗ · · · ⊗ (fk · fk,1) where (f j · f j,1) is
the pointwise product of f j and f j,1. Note that

⟨ fℓ, f ⟩µk
= E

ν0

[︁
f ′ℓ
]︁

and
⟨ fℓ, f ⟩
|W[1]|k

= E
νk−1

[︁
f ′ℓ
]︁

,

where we recall that µk is equal to ν0 and µ⊗k
1 is equal to νk−1. Moreover, f ′ℓ is the tensor

product of k functions in RX[1] of ℓ∞-norm at most 1. By the splittable mixing lemma
(cf., Lemma 4.7), we have ⃓⃓⃓⃓

E
ν0

[︁
f ′ℓ
]︁
− E

νk−1

[︁
f ′ℓ
]︁⃓⃓⃓⃓
≤ (k− 1) · τ.

Hence, we obtain⃓⃓⃓
|W(k)| ⟨g− h, f ⟩µk

−
⟨︁

g− h′, f
⟩︁⃓⃓⃓
≤

p

∑
ℓ=1
|cℓ| · |W(k)| ·

⃓⃓⃓⃓
E
ν0

[︁
f ′ℓ
]︁
− E

νk−1

[︁
f ′ℓ
]︁⃓⃓⃓⃓

≤
p

∑
ℓ=1
|cℓ| · (k− 1) · τ · |W(k)| ≤ δ · |W(k)| ,

from which the lemma readily follows.

4.4 Efficient Weak Regularity Decomposition

The goal of this section is to prove an efficient version of weak regularity that can be com-
puted in near-linear time. We obtain parameters somewhat comparable to those parame-
ters of the existential weak regularity in Lemma 4.10 above with a mild polynomial factor
loss of Θ(1/k2) on the splittability requirement.

17

Theorem 4.11. [Efficient Weak Regularity] Let W(k) ⊆ [n]k be a τ-splittable collection of tuples.
Let g ∈ RW[1]k be supported on W(k) with ∥g∥µk

≤ 1. Suppose F is either CUT⊗k or CUT⊗k
± .

For every δ > 0, if τ ≤ δ2/(k3 · 220), then we can find h = ∑
p
ℓ=1 cℓ · fℓ with p = O(k2/δ2),

c1, . . . , cp ∈ R and functions f1, . . . , fp ∈ F , such that ∥h∥µ⊗k
1
≤ 2 and h is a good approximator

to g in the following sense

max
f∈F

⟨︄
g−

(︃
d
n

)︃k−1

h, f

⟩︄
≤ δ · |W(k)| ,

where the inner product is over the counting measure on W[1]k. Furthermore, h can be found in˜︁O(22 ˜︁O(k2/δ2) · |W(k)|) time.

Warm-up: We first sketch a simpler naive algorithmic weak regularity decompoistion for
CUT⊗k whose parameters are much worse than the existential parameters of Lemma 4.10,
but it can be computed in near-linear time. The fast accumulation of errors will explain
our motivation in designing the efficient algorithm underlying Theorem 4.11. The reader
only interested in the latter is welcome to skip ahead.

Lemma 4.12 (Naive Efficient Weak Regularity). Let W ′ ⊆ W(k) where W(k) is τ-splittable.
Let F be either CUT⊗k or CUT⊗k

± . For every δ > 0, if τ ≤ (O(δ))2k
, then we can find h supported

on (O(1/δ))2k
functions of F such that

max
f∈F

⟨1W ′ − h, f ⟩ ≤ (k− 1) · δ · |W(k)| ,

where the inner product is over the counting measure on W[1]k. Furthermore, this can be done in
time Õδ(|W(k)|).

Proof Sketch: In this sketch, our goal is to show the fast accumulation of errors when
applying the weak regularity decomposition for matrices. For simplicity, we assume that
this can be done in near-linear time on the number of non-zero entries of the matrix. Precise
details and much better parameters are given in the proof of Theorem 4.11.

Applying the matrix regularity decomposition to 1W ′ , viewed a matrix in RW[1,k−1]×W[k]

supported on W[1, k], with accuracy parameter δ1 > 0, we get in Õδ1(|W[1, k]|) time⃦⃦⃦⃦
⃦1W ′ −

d
n

p1

∑
ℓ1=1

cℓ1 · 1Sℓ1
⊗ 1Tℓ1

⃦⃦⃦⃦
⃦
□

≤ δ1 · |W[1, k]| ,

where p1 = O(1/δ2
1) and ∑ℓ1

|cℓ1 | ≤ O(1/δ1).

In turn, for each 1Sℓ1
viewed a matrix in RW[1,k−2]×W[k−1] supported on W[1, k − 1],

we apply the matrix regularity decomposition with accuracy parameter δ2 > 0 getting in
Õδ2(|W[1, k− 1]|) time⃦⃦⃦⃦

⃦1Sℓ1
− d

n

p2

∑
ℓ2=1

cℓ2,ℓ1 · 1Sℓ2,ℓ1
⊗ 1Tℓ2,ℓ1

⃦⃦⃦⃦
⃦
□

≤ δ2 · |W[1, k− 1]| ,

18

where p2 = O(1/δ2
2) and ∑ℓ2

|cℓ2,ℓ1 | ≤ O(1/δ2). Continuing this process inductively with
accuracy parameters δ3, . . . , δk−1, we obtain

h :=
(︃

d
n

)︃k−1 p1

∑
ℓ1

· · ·
pk−1

∑
ℓk−1=1

cℓ1 . . . cℓ1,...,ℓk−1 · 1Tℓ1,...,ℓk−1
⊗ · · · ⊗ 1Tℓ1

,

in time ˜︁Oδ1,...,δk−1(|W(k)|). We show that h is close in k-tensor cut norm (cf., Definition 3.18)
to 1W ′ . Computing we have

∥1W ′ − h∥□⊗k ≤
k−2

∑
j=0

p1

∑
ℓ1=1
· · ·

pj

∑
ℓj=1

⃓⃓⃓
cℓ1 . . . cℓ1,...,ℓj

⃓⃓⃓
·⃦⃦⃦⃦

⃦⃦1Sℓ1,...,ℓj
−
(︃

d
n

)︃k−j−1 pj+1

∑
ℓj+1=1

cℓ1,...,ℓj+1 · 1Sℓ1,...,ℓj+1
⊗ 1Tℓ1,...,ℓj+1

⃦⃦⃦⃦
⃦⃦
□⊗k−j

·

(︃
d
n

)︃j

·
⃦⃦⃦

1Tℓ1,...,ℓj
⊗ · · · ⊗ 1Tℓ1

⃦⃦⃦
□⊗j

≤
k−2

∑
j=0

p1

∑
ℓ1=1
· · ·

pj

∑
ℓj=1

dj ·
⃓⃓⃓
cℓ1 . . . cℓ1,...,ℓj

⃓⃓⃓
·⃦⃦⃦⃦

⃦⃦1Sℓ1,...,ℓj
−
(︃

d
n

)︃k−j−1 p

∑
ℓj+1=1

cℓ1,...,ℓj+1 · 1Sℓ1,...,ℓj+1
⊗ 1Tℓ1,...,ℓj+1

⃦⃦⃦⃦
⃦⃦
□

≤
k−2

∑
j=0

p1

∑
ℓ1=1
· · ·

pj

∑
ℓj=1

dj ·
⃓⃓⃓
cℓ1 . . . cℓ1,...,ℓj

⃓⃓⃓
· δj+1 · |W[1, k− j]|

≤ |W(k)|
k−2

∑
j=0

δj+1

j

∏
ℓ=1

O(1/δℓ).

By setting δj = Θ(δ2j
), the LHS becomes at most (k− 1) · δ · |W(k)|. □

We now proceed to prove our main result in this section, namely Theorem 4.11. Fist,
we establish some extra notation now. Let W(k) be a d-regular collection of tuples. Most of
our derivations which are existential hold for a generic Ft (cf., Definition 3.19). However,
we only derive near-linear time algorithmic results when Ft is either the CUT functions

F 0/1
t :=

{︁
±1S1 ⊗ · · · ⊗ 1St ⊗ 1T | Sj ⊆W[1], T ⊆W[t + 1, k]

}︁
,

or “signed” CUT functions

F±1
t :=

{︁
±χS1 ⊗ · · · ⊗ χSt ⊗ χT | Sj ⊆W[1], T ⊆W[t + 1, k]

}︁
,

where above we recall that for S ⊆ [n], we have χS(i) = (−1)1i∈S for i ∈ [n]. Observe that
the condition Sj ⊆W[1] is equivalent to Sj ⊆W[i] since W(k) is d-regular.

For quick reference, we collect the notation needed in our algorithmic weak regularity
decomposition in the following table.

19

Ft :=
{︂
± f1 ⊗ · · · ⊗ ft ⊗ ft+1 | f j ⊆ RW[1] for i ≤ t, ft+1 ⊆ RW[t+1,k],

⃦⃦
f j
⃦⃦

∞ ≤ 1
}︂

F 0/1
t :=

{︁
±1S1 ⊗ · · · ⊗ 1St ⊗ 1T | Sj ⊆W[1], T ⊆W[t + 1, k]

}︁
⊆ Ft

F±1
t :=

{︁
±χS1 ⊗ · · · ⊗ χSt ⊗ χT | Sj ⊆W[1], T ⊆W[t + 1, k]

}︁
⊆ Ft

H(R0, R1,F) :=
{︁

∑
p
ℓ=1 cℓ · fℓ | p ≤ R0, ∑ |cℓ| ≤ R1, fℓ ∈ F

}︁
µ1 is the uniform distribution on W[1] and µ[t+1,k] is the uniform distribution on W[t + 1, k]

νt := (µ1)
⊗t ⊗

(︂
µ[t+1,k]

)︂
Our main result of this section, namely, the near-linear time weak regularity decompo-

sition Theorem 4.11, can be readily deduced from Lemma 4.13 below.

Lemma 4.13 (Efficient Weak Regularity Induction). Let W(k) ⊆ [n]k be a τ-splittable d-
regular collection of tuples. Let g ∈ F0 and t ∈ {0, . . . , k − 1} with ∥g∥µk

≤ 1. For ev-
ery δ > 0, if τ ≤ δ2/(k · 218), then there exists ht ∈ H(O(1/δ2), 28(1 + 1/k)t/δ,Ft) with
∥ht∥2

νt
≤ (1 + 1/k)t such that

max
f∈Ft

⟨︄
g−

(︃
d
n

)︃t

ht, f

⟩︄
νt

≤ 2 ·
(︃

d
n

)︃t

· t · δ.

Furthermore, the function ht can be found in ˜︁O((2t)2O(1/δ2) · |W(k)|) time.

We restate Theorem 4.11 below and then prove it assuming Lemma 4.13.

Theorem 4.11. [Efficient Weak Regularity] Let W(k) ⊆ [n]k be a τ-splittable collection of tuples.
Let g ∈ RW[1]k be supported on W(k) with ∥g∥µk

≤ 1. Suppose F is either CUT⊗k or CUT⊗k
± .

For every δ > 0, if τ ≤ δ2/(k3 · 220), then we can find h = ∑
p
ℓ=1 cℓ · fℓ with p = O(k2/δ2),

c1, . . . , cp ∈ R and functions f1, . . . , fp ∈ F , such that ∥h∥µ⊗k
1
≤ 2 and h is a good approximator

to g in the following sense

max
f∈F

⟨︄
g−

(︃
d
n

)︃k−1

h, f

⟩︄
≤ δ · |W(k)| ,

where the inner product is over the counting measure on W[1]k. Furthermore, h can be found in˜︁O(22 ˜︁O(k2/δ2) · |W(k)|) time.

Proof. Set Ft = F 0/1
t if F = CUT⊗k or set Ft = F±1

t if F = CUT⊗k
± . We apply Lemma 4.13

with t = k − 1, accuracy δ as δ/(2k) and input function g. This gives ht = ∑
p
ℓ=1 c′ℓ · fℓ ∈

H(O(k2/δ2), O(k/δ),Ft) such that

max
f∈Ft

⟨︄
g−

(︃
d
n

)︃t

ht, f

⟩︄
νt

≤ 2 ·
(︃

d
n

)︃t

· t · δ. (1)

20

Note that νt = νk−1 = µ⊗k
1 is the uniform measure on W[1]k. Since W(k) is d-regular,

|W(k)| = |W[1]|k · (d/n)k−1. Set h = ·ht. Then the guarantee in Eq. (1) becomes

max
f∈F

⟨︄
g−

(︃
d
n

)︃k−1

h, f

⟩︄
≤ δ · |W(k)| ,

where the inner product is under the counting measure. By Lemma 4.13, we have ∥ht∥2
νt
≤

(1+ 1/k)t ≤ e, so ∥ht∥νt
≤ 2. Then ∥h∥µ⊗k

1
≤ 2. The running time follows from Lemma 4.13

completing the proof.

We now prove Lemma 4.13 above assuming the following algorithmic result which we
prove later.

Lemma 4.14. [Algorithmic Weak Regularity Step] Let δ > 0 and t ∈ {0, . . . , k − 2}. Let ht ∈
H(O(B/δ2), O(B/δ),Ft) with ∥ht∥2

νt
≤ B. Then there exists ht+1 ∈ H(O(B/δ2), 28B/δ,Ft+1)

with ∥ht+1∥2
νt
≤ B such that

max
f∈Ft+1

⟨ht − ht+1, f ⟩νt
≤ δ.

Furthermore, each ht+1 can be found in time ˜︁O((2t)2O(1/δ2) · |W(k)|).

Proof of Lemma 4.13. We will prove the lemma with the following simple equivalent con-
clusion⟨︄

g−
(︃

d
n

)︃t

ht, f

⟩︄
νt

≤ 2 ·
(︃

d
n

)︃t

· t · δ ⇔
⟨︃(︂n

d

)︂t
g− ht, f

⟩︃
νt

≤ 2 · t · δ,

which we will prove holds for every f ∈ Ft. The base case t = 0 follows immediately
by setting h0 = g. Let t ∈ {0, . . . , k − 2}. Since ht ∈ H(O(1/δ2), 28(1 + 1/k)t/δ,Ft),
invoking Lemma 4.14 with accuracy parameter δ and input function ht, we obtain ht+1 ∈
H(O(1/δ2), 28(1 + 1/k)t+1/δ,Ft+1) satisfying

max
f∈Ft+1

⟨ht − ht+1, f ⟩νt
≤ δ. (2)

Let f ∈ Ft+1. We will show that ht+1 satisfies the conclusion of the lemma. Expanding we
have⟨︃(︂n

d

)︂t+1
g− ht+1, f

⟩︃
νt+1

=

⟨︃(︂n
d

)︂t
g− ht, f

⟩︃
νt⏞ ⏟⏟ ⏞

(i)

+
(︂n

d

)︂t
·
(︂n

d
⟨g, f ⟩νt+1

− ⟨g, f ⟩νt

)︂
⏞ ⏟⏟ ⏞

(ii)

+ ⟨ht − ht+1, f ⟩νt⏞ ⏟⏟ ⏞
(iii)

+ ⟨ht+1, f ⟩νt
− ⟨ht+1, f ⟩νt+1⏞ ⏟⏟ ⏞
(iv)

.

We will bound each of the terms in RHS above.

Term (i): Suppose f = f1 ⊗ · · · ⊗ ft+1 ⊗ ft+2 ∈ Ft+1. Let f ′ = f1 ⊗ · · · ⊗ ft ⊗ f ′t+1, where
f ′t+1 = (ft+1 ⊗ ft+2)|W[t+2,k], so that f ′ ∈ Ft. Using the induction hypothesis, we have⟨︃(︂n

d

)︂t
g− ht, f

⟩︃
νt

=

⟨︃(︂n
d

)︂t
g− ht, f ′

⟩︃
νt

≤ 2 · t · δ.

21

Term (ii): Since g ∈ F0, it is supported on W(k) and so we have

⟨g, f ⟩νt
=

1

|W[1]|t |W[t + 1, k]| ∑
s∈W(k)

g(s) · f (s)

=
n
d
· 1

|W[1]|t+1 |W[t + 2, k]| ∑
s∈W(k)

g(s) · f (s) =
n
d
· ⟨g, f ⟩νt+1

.

where the second equality follows from |W[t + 1, k]| = d · |W[t + 2, k]| by the d-regular
assumption.

Term (iii): By Eq. (2), we have ⟨ht − ht+1, f ⟩νt
≤ δ.

Term (iv): For notional convenience, set R1 = 28(1+ 1/k)t+1/δ. Since ht+1 ∈ H(∞, R1,Ft+1)
and the splittability parameter τ satisfies τ ≤ δ2/(k · 218), from Claim 4.8 we obtain

⟨ht+1, f ⟩νt
− ⟨ht+1, f ⟩νt+1

≤ τ · R1 ≤ δ.

Putting everything together yields⟨︃(︂n
d

)︂t+1
g− ht, f

⟩︃
νt+1

≤ 2 · t · δ⏞ ⏟⏟ ⏞
(i)

+
(︂n

d

)︂t
· 0⏞⏟⏟⏞

(ii)

+ δ⏞⏟⏟⏞
(iii)

+ δ⏞⏟⏟⏞
(iv)

≤ 2 · (t + 1) · δ,

concluding the claimed inequality.

Now we use the bound ∥ht+1∥2
νt
≤ ∥ht∥2

νt
from Lemma 4.14 together with the splitta-

bility assumption τ ≤ δ2/(k · 218) to bound the norm ∥ht+1∥2
νt+1

under the new measure
νt+1. Under these assumptions and using Claim 4.9 we get⃓⃓⃓

∥ht+1∥2
νt+1
− ∥ht+1∥2

νt

⃓⃓⃓
≤ τ · R2

1 ≤
δ2

k · 218 ·
216(1 + 1/k)2(t+1)

δ2

≤ (1 + 1/k)t

k
.

where we used the bounds on τ, R1 and (1 + 1/k)(t+2) ≤ 4 for 0 ≤ t ≤ k − 2. From
the previous inequality and the induction hypothesis ∥ht∥2

νt
≤ (1 + 1/k)t, we finally get

∥ht+1∥2
νt+1
≤ (1 + 1/k)t+1 as desired.

We now show a near-linear time weak regularity decomposition for special functions
of the form ht ∈ H(O(1/δ2), O(1/δ),Ft) that admit a tensor product structure. The goal
is to design a correlation oracle that exploits the special tensor product structure of the
function (ht− h(ℓ)t+1), where h(ℓ)t+1 is the ℓth approximator of ht in the abstract weak regularity
algorithm (cf., Algorithm 4.3).

Lemma 4.14. [Algorithmic Weak Regularity Step] Let δ > 0 and t ∈ {0, . . . , k − 2}. Let ht ∈
H(O(B/δ2), O(B/δ),Ft) with ∥ht∥2

νt
≤ B. Then there exists ht+1 ∈ H(O(B/δ2), 28B/δ,Ft+1)

with ∥ht+1∥2
νt
≤ B such that

max
f∈Ft+1

⟨ht − ht+1, f ⟩νt
≤ δ.

Furthermore, each ht+1 can be found in time ˜︁O((2t)2O(1/δ2) · |W(k)|).

22

Our correlation oracle for higher-order tensors will make calls to a correlation oracle
for matrices Theorem 4.15 (i.e., 2-tensors) stated below. This matrix oracle is presented
in Section 4.5 and it follows from a simple combination of a matrix cut norm approximation
algorithm by Alon and Naor [AN04] with known fast SDP solvers for sparse matrices such
as those by Lee and Padmanabhan [LP20] and Arora and Kale [AK07].

Theorem 4.15. [Alon–Naor Correlation Oracle] Let F be either CUT⊗2 or CUT⊗2
± and µ be

the uniform measure supported on at most m elements of [n′]× [n′]. There exists an algorithmic
(δ, αAN · δ)-correlation oracle Oµ,B running in time TOµ,B = Õ (poly(B/δ) · (m + n′)), where
αAN ≥ 1/24 is an approximation ratio constant.

Proof. We will apply the abstract weak regularity lemma, cf.,Lemma 4.2, with F = Ft+1, δ,
δ′ = δ/28 and µ = νt. This will result in a function fromH(O(B/δ2), 28B/δ,Ft+1).

Correlation oracle task: To make this application take near-linear time, we need to spec-
ify a correlation oracle Oνt = Oνt,O(1) and now we take advantage of the special tensor
structure in our setting. We want an oracle that given

ht =
p

∑
ℓ=1

cℓ · gℓ, gℓ ∈ Ft, gℓ = gℓ,1 ⊗ · · · ⊗ gℓ,t ⊗ gℓ,t+1⏞ ⏟⏟ ⏞
∈RW[t+1,k]

and

ht+1 =
p

∑
ℓ=1

c′ℓ · g′ℓ, g′ℓ ∈ Ft+1, g′ℓ = g′ℓ,1 ⊗ · · · ⊗ g′ℓ,t ⊗ g′ℓ,t+1⏞ ⏟⏟ ⏞
∈RW[1]

⊗ g′ℓ,t+2⏞ ⏟⏟ ⏞
∈RW[t+2,k]

,

if there exists
f = f1 ⊗ · · · ⊗ ft ⊗ ft+1⏞⏟⏟⏞

∈RW[1]

⊗ ft+2⏞⏟⏟⏞
∈RW[t+2,k]

∈ Ft+1

satisfying
⟨ht − ht+1, f ⟩νt

≥ δ,

for some f ∈ Ft+1, finds f ′ ∈ Ft+1 in near-linear time such that⟨︁
ht − ht+1, f ′

⟩︁
νt
≥ δ′ =

δ

28 .

Here, ht+1 is the current approximator of ht in the abstract weak regularity algorithm and,
by Lemma 4.2, ht+1 ∈ H(O(1/δ2), 28(1 + 1/k)t+1/δ,Ft+1). Expanding ⟨ht − ht+1, f ⟩νt

we
get

⟨ht − ht+1, f ⟩νt
=

p

∑
ℓ=1

cℓ
t

∏
j=1

⟨︁
gℓ,j, f j

⟩︁
µ1⏞ ⏟⏟ ⏞

γℓ

· ⟨gℓ,t+1, ft+1 ⊗ ft+2⟩µ[t+1,k]
−

p

∑
ℓ=1

c′ℓ
t

∏
j=1

⟨︂
g′ℓ,j, f j

⟩︂
µ1⏞ ⏟⏟ ⏞

γ′ℓ

·
⟨︁

g′ℓ,t+1 ⊗ g′ℓ,t+2, ft+1 ⊗ ft+2
⟩︁

µ[t+1,k]
,

where we define γℓ := ∏t
j=1
⟨︁

gℓ,j, f j
⟩︁

µ1
and γ′ℓ := ∏t

j=1

⟨︂
g′ℓ,j, f j

⟩︂
µ1

for ℓ ∈ [p], j ∈ [t].

Suppose gℓ,j = fSℓ,j and g′ℓ,j = fS′ℓ,j
for ℓ ∈ [p], j ∈ [t], where fSℓ,j , fS′ℓ,j

are either 1Sℓ,j , 1S′ℓ,j
or

χSℓ,j , χS′ℓ,j
depending on Ft being F 0/1

t or F±1
t , respectively.

23

Sigma-algebra brute force: Now for each j ∈ [t], we form the σ-algebra Σj generated
by {Sℓ,j, S′ℓ,j}ℓ∈[p] which can be done in 2p · ˜︁O(|W[1]|) time by Remark 3.16 and yields at

most 2p atoms. Hence, the generation of all these σ-algebras takes at most t · 2p · ˜︁O(|W[1]|)
time. Suppose f j = fSj for some Sj ⊆ W[1]. Let η > 0 be an approximation parameter
to be specified shortly. For each atom σj′ ∈ Σj, we enumerate over all possible values for
the ratio

⃓⃓
σj′ ∩ Sj

⃓⃓
/
⃓⃓
σj′
⃓⃓

up to accuracy η. More precisely, if
⃓⃓
σj′
⃓⃓
≥ 1/η, we consider the

values
0, 1 · η, 2 · η, . . . , ⌊1/η⌋ · η,

and we consider 0, 1/
⃓⃓
σj′
⃓⃓

, 2/
⃓⃓
σj′
⃓⃓

, . . . ,
⃓⃓
σj′
⃓⃓

/
⃓⃓
σj′
⃓⃓

otherwise. Let
⃓⃓
Σj
⃓⃓

denote the number

of atoms in Σj. This enumeration results in ∏t
j=1(1/η)|Σj| configurations which allows us

to approximate any realizable values for
⟨︁

gℓ,j, f j
⟩︁

µ1
within additive error at most 4 · η since

either

⟨︁
gℓ,j, f j

⟩︁
µ1

= Eµ1

[︂
1Sℓ,j · 1Sj

]︂
=

⃓⃓
Sℓ,j ∩ Sj

⃓⃓
|W[1]| =

1
|W[1]| ∑

σj′⊆Sℓ,j

⃓⃓
σj′ ∩ Sj

⃓⃓
or

⟨︁
gℓ,j, f j

⟩︁
µ1

= Eµ1

[︂
χSℓ,j · χSj

]︂
=
|W[1]| − 2(

⃓⃓
Sℓ,j
⃓⃓
+
⃓⃓
Sj
⃓⃓
− 2

⃓⃓
Sℓ,j ∩ Sj

⃓⃓
)

|W[1]|

=
|W[1]| − 2(

⃓⃓
Sℓ,j
⃓⃓
+ ∑σj′

⃓⃓
σj′ ∩ Sj

⃓⃓
− 2 ∑σj′⊆Sℓ,j

⃓⃓
σj′ ∩ Sj

⃓⃓
)

|W[1]| ,

according to Ft+1. We can approximate
⟨︂

g′ℓ,j, f j

⟩︂
µ1

similarly. In turn, we can approximate

each of the realizable values in {γℓ, γ′ℓ}ℓ∈[p] within additive error 4 · t · η by some configu-
ration of fractional value assignment to the atoms of each σ-algebra.

Invoking the matrix correlation oracle: Let A := ∑ℓ

(︂
cℓ · γℓ · gℓ,t+1 + c′ℓ · γ′ℓ · g′ℓ,t+1 ⊗ g′ℓ,t+2

)︂
.

We conveniently view A as a sparse matrix of dimension |W[t + 1]| × |W[t + 2, k]| with at
most |W[t + 1, k]| non-zeros entries. Define φA(ft+1, ft+2) := ⟨A, ft+1 ⊗ ft+2⟩µ[t+1,k]

. Define

OPT(A) := max
ft+1, ft+2

φA(ft+1, ft+2), (3)

where ft+1, ft+2 range over valid fSt+1 , fSt+2 (again according to kind of Ft+1 we have). In
the computation of OPT(A), we have incurred so far an additive error of at most

4 · t · η ·∑
ℓ

(|cℓ|+
⃓⃓
c′ℓ
⃓⃓
).

Let ˜︁A be obtained from A by zeroing out all entries of absolute value smaller than δ/8. Note
that OPT(˜︁A) ≥ OPT(A)− δ/8 and the absolute value of the entries of ˜︁A lie [δ/8, O(1/δ)].
For each entry of A, we compute a rational approximation ±P/Q where Q = Θ(1/δ) and
P ∈ [1, O(1/δ)] obtaining ˜︁A′ such that

OPT(˜︁A′) ≥ OPT(˜︁A)− δ/8 ≥ OPT(˜︁A) ≥ OPT(A)− δ/4.

Using Theorem 4.15 with accuracy parameter δ/4 and input matrix ˜︁A′, we obtain in TA :=˜︁O(poly(1/δ) · |W[t + 1, k]|) time, with an extra additive error of δ/4 and a multiplicative

24

guarantee of αAN, a 2-tensor f̃ t+1 ⊗ f̃ t+2 satisfying

φ˜︁A(f̃ t+1, f̃ t+2) ≥ αAN ·
(︄
OPT(A) − 2 · δ

4
− 4 · t · η ·∑

ℓ

(|cℓ|+
⃓⃓
c′ℓ
⃓⃓
)

)︄
.

Since ht ∈ H(O(1/δ2), 28 · (1+ 1/k)t/δ,Ft) and ht+1 ∈ H(O(1/δ2), 28 · (1+ 1/k)t+1/δ,Ft+1),
we have ∑ℓ(|cℓ|+

⃓⃓
c′ℓ
⃓⃓
) ≤ 210/δ and p = O(1/δ2). By choosing η ≤ O(δ2/t) appropriately,

we can bound

4 · t · η ·∑
ℓ

(|cℓ|+
⃓⃓
c′ℓ
⃓⃓
) ≤ 4 · t · 210

δ
· η ≤ δ

4
.

Hence, φ˜︁A(f̃ t+1, f̃ t+2) ≥ αAN · δ/4 since we are under the assumption that OPT(A) ≥ δ.

Running Time: First, observe that with our choices of parameters the total number of
configurations mconfig is at most

mconfig ≤
t

∏
j=1

(1/η)|Σj| ≤
(︃

t
δ2

)︃2p

≤ (2t)2O(1/δ2)
,

so that the correlation oracle Oνt takes time at most

mconfig · TA ≤ (2t)2O(1/δ2) · ˜︁O(poly(1/δ) · |W[t + 1, k]|) = ˜︁O((2t)2O(1/δ2) · |W[t + 1, k]|).

Using the running time of the oracle Oνt , the total running time of the weak regularity
decomposition follows from Lemma 4.2 which concludes the proof.

4.5 Near-linear Time Matrix Correlation Oracles

The main result of this section, Theorem 4.15 below, is a near-linear time correlation or-
acle for CUT⊗2 and CUT⊗2

± . We combine the constant factor approximation algorithms
of Alon–Naor [AN04] for ∥A∥∞→1 and ∥A∥□ based on semi-definite programming (SDP)
with the faster SDP solvers for sparse matrices such as those by Lee and Padmanabhan
[LP20] and by Arora and Kale [AK07]. We point out that these SDP solvers provide addi-
tive approximation guarantees which are sufficient for approximating several CSPs, e.g.,
MaxCut, but they do not seem to provide non-trivial multiplicative approximation guar-
antees for ∥A∥∞→1 or ∥A∥□ in general. Since in our applications of computing regularity
decomposition we are only interested in additive approximations, those solvers provide
non-trivial sufficient approximation guarantees for ∥A∥∞→1 or ∥A∥□ in our settings.

Theorem 4.15. [Alon–Naor Correlation Oracle] Let F be either CUT⊗2 or CUT⊗2
± and µ be

the uniform measure supported on at most m elements of [n′]× [n′]. There exists an algorithmic
(δ, αAN · δ)-correlation oracle Oµ,B running in time TOµ,B = Õ (poly(B/δ) · (m + n′)), where
αAN ≥ 1/24 is an approximation ratio constant.

Theorem 4.15 is a simple consequence of the following theorem.

Theorem 4.16. Let A ∈ Rn×n be a matrix of integers with at most m non-zero entries. Let
δ ∈ (0, 2−5] be an accuracy parameter. Suppose that

OPT := max
xi ,yi∈{±1}

n

∑
i,j=1

Ai,jxiyj ≥ δ ·m.

25

Then, with high probability,i.e., on(1), we we can find in Õ (poly(∥A∥∞ /δ) · (m + n)) time vec-
tors x̃, ỹ ∈ {±1}n such that

n

∑
i,j=1

Ai,j x̃iỹj ≥
1
4
·OPT,

and find sets S̃, T̃ ⊆ [n] such that ⃓⃓⃓⃓
⃓⃓ ∑
i∈S̃,j∈T̃

Ai,j

⃓⃓⃓⃓
⃓⃓ ≥ 1

24 · ∥A∥□ ,

where ∥A∥□ is the cut norm of A.

The proof of the preceding theorem will rely on the following result which encapsu-
lates the known sparse SDP solvers [AK07, LP20]. For concreteness, we will rely on [LP20]
although the guarantee from [AK07] also suffice for us.

Lemma 4.17. [Sparse SDP Solver Wrapper based on [LP20] and partially on [AK07]] Let C ∈
Rn×n be a matrix with at most m non-zero entries. For every accuracy γ > 0, with high probability
we can find in time ˜︁O((m + n)/poly(γ)) vectors u1, . . . , un ∈ Rn in the unit ball (i.e., ∥ui∥ ≤ 1)
such that that the matrix ˜︁Xi,j :=

⟨︁
ui, uj

⟩︁
satisfies

Tr
(︂
C · ˜︁X)︂ ≥ max

X⪰0,Xi,i≤1
Tr (C · X)− γ ∑

i,j

⃓⃓
Ci,j
⃓⃓

.

Proof of Theorem 4.16. We now implement the strategy mentioned above of combing the
approximation algorithms of Alon–Naor [AN04] with the near-linear time sparse SDP
solvers. We still need to argue that this indeed leads to the claimed approximation guar-
antees while being computable in near-linear time overall. We point out that Alon–Naor
actually give a constant factor SDP based approximation algorithm for ∥A∥∞→1 from which
a constant factor approximation algorithm for ∥A∥□ can be readily deduced from in near-
linear time incurring an extra 1/4 factor approximation loss5. Using the matrix A, we set

C :=
1
2

(︃
0 A
A† 0

)︃
.

The SDP relaxation of Alon–Naor for ∥A∥∞→1 becomes

max Tr(C · X) =: SDP∗

s.t. Xi,i ≤ 1 ∀i ∈ [2n]
X ⪰ 0,

except for the constraints Xi,i ≤ 1 which they instead take to be Xi,i = 1. This technical
difference will play a (small) role in the rounding of this SDP since Alon–Naor analysis
relies on Gram vectors of X being on the unit sphere. Moreover, we will be solving this

5In Section 5.4 of Alon–Naor [AN04], there is a transformation avoiding any loss in the approximation
ratio. Since constant factors are not asymptotically important for us, we rely on the simpler transformation
which loses a factor of 1/4. It simply consists in choosing ˜︁S ∈ {{i | ˜︁xi = 1}, {i | ˜︁xi = −1}} and ˜︁T ∈ {{j | ˜︁yj =

1}, {j | ˜︁yj = −1}}maximizing 1t˜︁SA1˜︁T , which can be done in near-linear time given as input ˜︁x, ˜︁y.

26

SDP within only a weak additive approximation guarantee6. Although these technical
differences need to be handled, this will be simple to do.

Applying the solver of Lemma 4.17 with accuracy parameter γ = δ2/ ∥A∥∞ to the
above SDP, we obtain in ˜︁O(poly(∥A∥∞ /δ) · (m + n)) time vectors u1, . . . , u2n ∈ R2n in the
unit ball so that the matrix ˜︁Xi,j :=

⟨︁
ui, uj

⟩︁
satisfy

Tr
(︂
C · ˜︁X)︂ ≥ max

X⪰0,Xi,i≤1
Tr (C · X) − δ2 ·m.

By assumption, we have SDP∗ := maxX⪰0,Xi,i≤1 Tr (C · X) ≥ OPT ≥ δ ·m, in which case the
above guarantee becomes

Tr
(︂
C · ˜︁X)︂ ≥ (1− δ) · SDP∗.

To obtain diagonal entries equal to 1 in our SDP solution we simply consider the new
SDP solution ˜︁X′ = ˜︁X + Λ, where Λ is the diagonal matrix defined as Λi,i := 1 − ˜︁Xi,i.
Gram vectors u′1, . . . , u′2n of ˜︁X′ can be obtained in near-linear time from u1, . . . , u2n and Λ
by setting

u′i := ui ⊕
√︁

Λi,i · ei ∈ R2m ⊕R2m,

where ei ∈ R2m has a one at the ith position and zero everywhere else. Observe that for
our particular C, we have

Tr
(︂
C · ˜︁X′)︂ = Tr

(︂
C · ˜︁X)︂ .

We now proceed to round ˜︁X′ according to the rounding scheme of Alon–Naor [AN04]
(cf.,Section 5.1) which was chosen because it is simple enough to easily afford a near-linear
time computation while providing a ≈ 0.27 ≥ 1/4 approximation guarantee 7 This round-
ing consists in sampling a Gaussian vector g ∼ N(0, Id) and setting ˜︁xi := sgn ⟨u′i, g⟩ and˜︁yi+n := sgn

⟨︁
u′i+n, g

⟩︁
for i ∈ [n]. To analyze the approximation guarantee, the following

identity is used.

Fact 4.18 (Alon–Naor [AN04], cf.,Eq. 5). Let u, w ∈ Rd be unit vectors in ℓ2-norm. Then

π

2
·E [sgn ⟨u, g⟩ sgn ⟨w, g⟩] = ⟨u, w⟩+ E

[︃(︃
⟨u, g⟩ −

√︃
π

2
sgn ⟨u, g⟩

)︃(︃
⟨w, g⟩ −

√︃
π

2
sgn ⟨w, g⟩

)︃]︃
,

where the expectations are taken with respect to a random Gaussian vector g ∼ N(0, Id).

Using Fact 4.18, the expected value of the rounding, i.e.,

E

[︄
∑
i,j

Ai,j sgn
⟨︁
u′i, g

⟩︁
sgn

⟨︂
u′j+n, g

⟩︂]︄
,

becomes

2
π
·∑

i,j
Ai,j

⟨︂
u′i , u′j+n

⟩︂
+

2
π
·∑

i,j
Ai,jE

[︃(︃⟨︁
u′i , g

⟩︁
−
√︃

π

2
sgn

⟨︁
u′i , g

⟩︁)︃(︃⟨︂
u′j+n, g

⟩︂
−
√︃

π

2
sgn

⟨︂
u′j+n, g

⟩︂)︃]︃
,

6This may not be sufficient to obtain Xi,i ≈ 1 by an extremality argument
7Alon–Naor [AN04] have a more sophisticated rounding scheme that achieves 0.56 ≥ 1/2 approximation.

In our applications, it is important to have a constant factor approximation, but the distinction between 1/2
and the weaker 1/4 factor approximation guarantee is not asymptotically relevant.

27

As in Alon–Naor [AN04], we will use the fact that ⟨u′i, g⟩ −
√︁

π
2 sgn ⟨u′i, g⟩ and

⟨︂
u′j+n, g

⟩︂
−√︁

π
2 sgn

⟨︂
u′j+n, g

⟩︂
are themselves vectors on a Hilbert space with norm squared π/2− 1.

Then, in our setting we obtain

E

[︄
∑
i,j

Ai,j sgn
⟨︁
u′i, g

⟩︁
sgn

⟨︂
u′j+n, g

⟩︂]︄
≥ 2

π
(1− δ) · SDP∗ −

(︃
1− 2

π

)︃
· SDP∗

≥ 2
π

(︂
2− π

2
− δ
)︂
· SDP∗

≥
(︃

1
4
+ Ω(1)

)︃
· SDP∗ (Since δ ≤ 2−5)

≥
(︃

1
4
+ Ω(1)

)︃
·OPT,

as claimed. By standard techniques, this guarantee on the expected value of the rounded
solution can be used to give with high probability a guarantee of 1/4 · OPT (namely, by
repeating this rounding scheme O(poly(1/γ) · log(n)) times).

We now proceed to establish the sparse SDP solver wrapper claimed in Lemma 4.17.
For concreteness, we will use the following sparse SDP solver result of Lee–Padmanabhan
[LP20]. The analogous result of Arora–Kale [AK07] with slightly worse parameters also
suffices for our purposes, but the main result of [LP20] is stated in more convenient form.

Theorem 4.19 (Adapted from Theorem 1.1 of [LP20]). Given a matrix C ∈ Rn×n with m non-
zero entries, parameter γ ∈ (0, 1/2], with high probability, in time ˜︁O((m + n)/γ3.5), it is possible
to find a symmetric matrix Y ∈ Rn×n with O(m) non-zero entries and diagonal matrix S ∈ Rn×n

so that ˜︁X = S · expY · S satisfies

- ˜︁X ⪰ 0,

- ˜︁Xi,i ≤ 1 for every 1 ≤ i ≤ n, and

- Tr(C · ˜︁X) ≥ maxX⪰0,Xi,i≤1 Tr (C · X)− γ ∑i,j
⃓⃓
Ci,j
⃓⃓
.

Furthermore, we have ∥Y∥op ≤ O(log(n)/γ) (cf.,Lemma C.2.3 of [LP20]).

Remark 4.20. We observe that Theorem 4.19 differs from Theorem 1.1 of [LP20] only by an ad-
ditional bound on ∥Y∥op. This bound is important in analyzing the error when approximating
(matrix) exponential of Y.

We now show how we can approximate the Gram vectors of the SDP solution of The-
orem 4.19. We rely on part of the analysis in Arora–Kale [AK07].

Claim 4.21. Let C ∈ Rn×n be a matrix with at most m non-zero entries and γ ∈ (0, 1/2]. Suppose˜︁X = S · expY · S satisfy the conclusions of Theorem 4.19 given C ∈ Rn×n and accuracy γ. Then
with high probability we can find in ˜︁O(poly(1/γ) · (m + n)) time approximate Gram vectors
u1, . . . , un ∈ Rn such that ˜︁X′i,j :=

⟨︁
ui, uj

⟩︁
satisfy

- ˜︁X′i,i ≤ 1 for every 1 ≤ i ≤ n, and

28

- Tr(C · ˜︁X′) ≥ Tr
(︂
C · ˜︁X)︂− γ ∑i,j

⃓⃓
Ci,j
⃓⃓
.

Proof. Since ˜︁X = (S · exp(Y/2))(S · exp(Y/2))t, the rows of S · exp(Y/2) can be taken as
Gram vectors u1, . . . , un ∈ Rn of ˜︁X. If we knew the rows of exp(Y/2), we could read-
ily recover these Gram vectors since S is diagonal. As observed in Arora–Kale [AK07],
computing exp(Y/2) may be computationally expensive, so instead one can approximate
the matrix-vector product exp(Y/2)u using d = O(log(n)/γ2) random Gaussian vectors
u ∼ N(0, In). By the Johnson–Lindenstrauss Lemma and scaling by

√
n/d, with high

probability we obtain vectors ˜︁u1, . . . , ˜︁un satisfying for every i, j ∈ [n] say⃓⃓⟨︁
ui, uj

⟩︁
−
⟨︁˜︁ui, ˜︁uj

⟩︁⃓⃓
≤ γ

6
.

In particular, whp ∥˜︁ui∥2
2 ≤ 1 + γ/6. Thus, by normalizing the vectors ˜︁ui with ∥˜︁ui∥2 > 1 to

have ℓ2-norm one the preceding approximation deteriorates to⃓⃓⟨︁
ui, uj

⟩︁
−
⟨︁˜︁ui, ˜︁uj

⟩︁⃓⃓
≤ γ/2.

To compute each the matrix-vector product exp(Y/2)u in ˜︁O(poly(1/γ) · (m + n)), we rely
on the following lemma.

Lemma 4.22 (Arora–Kale [AK07], cf.,Lemma 6). Let TY be the time needed to compute the
matrix-vector product Yu. Then the vector v := ∑k

i=0 Y
iu/(i!) can be computed in O(k · TY) time

and if k ≥ max{e2 · ∥Y∥op , ln(1/δ)}, then ∥exp(Y)u− v∥2 ≤ δ.

By noting that ∥Y∥op ≤ O(log(n)/γ) and the time TY (cf., Lemma 4.22) Yu is ˜︁O((m +

n)/γ), applying Lemma 4.22 with say δ ≤ poly(γ/n) we can approximate each exp(Y/2)u
in time ˜︁O((m + n)/γ). Therefore, the total running is ˜︁O(poly(1/γ) · (m + n)) as claimed.
Then the actual Gram vectors still satisfy⃓⃓⟨︁

ui, uj
⟩︁
−
⟨︁˜︁ui, ˜︁uj

⟩︁⃓⃓
≤ γ.

Hence, we get
Tr(C · ˜︁X′) ≥ Tr

(︂
C · ˜︁X)︂− γ ∑

i,j

⃓⃓
Ci,j
⃓⃓

,

concluding the proof.

We are ready to prove Lemma 4.17 which is restated below for convenience.

Lemma 4.17. [Sparse SDP Solver Wrapper based on [LP20] and partially on [AK07]] Let C ∈
Rn×n be a matrix with at most m non-zero entries. For every accuracy γ > 0, with high probability
we can find in time ˜︁O((m + n)/poly(γ)) vectors u1, . . . , un ∈ Rn in the unit ball (i.e., ∥ui∥ ≤ 1)
such that that the matrix ˜︁Xi,j :=

⟨︁
ui, uj

⟩︁
satisfies

Tr
(︂
C · ˜︁X)︂ ≥ max

X⪰0,Xi,i≤1
Tr (C · X)− γ ∑

i,j

⃓⃓
Ci,j
⃓⃓

.

29

Proof of Lemma 4.17. Follows by combining the SDP solution ˜︁X of Theorem 4.19 with the
fast approximate Gram vector computation of Claim 4.21, the latter yielding another ap-
proximated SDP solution ˜︁X′. In both of these computations, we use accuracy parameter
γ/2 so that

Tr(C · ˜︁X′) ≥ Tr
(︂
C · ˜︁X)︂− γ

2 ∑
i,j

⃓⃓
Ci,j
⃓⃓

≥ max
X⪰0,Xi,i≤1

Tr (C · X)− γ

2 ∑
i,j

⃓⃓
Ci,j
⃓⃓
− γ

2 ∑
i,j

⃓⃓
Ci,j
⃓⃓

.

Moreover, each step takes ˜︁O(poly(1/γ) · (m + n)) which concludes the proof.

5 Regularity Based Decoding

5.1 List Decoding of Direct-Sum Codes

We now develop list-decoding algorithms for direct-sum codes, using the regularity lem-
mas obtained in the previous section. We will prove the following theorem.

Theorem 5.1. Let C0 ⊂ Fn
2 be a code with bias(C0) ≤ ε0, which is unique-decodable to distance

(1−ε0)/4 in time T0. Let W ⊆ [n]k be a d-regular, τ-splittable collection of tuples, and let C =
dsumW(C0) be the corresponding direct-sum lifting of C0 with bias(C) ≤ ε. Let β be such that

β ≥ max

{︄
√

ε,
(︁
220 · τ · k3)︁1/2

, 2 ·
(︃

1
2
+ 2ε0

)︃k/2
}︄

.

Then, there exists a randomized algorithm, which given ỹ ∈ FW
2 , recovers the list Lβ(ỹ) :=

{y ∈ C | ∆(ỹ, y) ≤ 1/2− β} with probability 1 − o(1), in time Õ(Cβ,k,ε0 · (|W| + T0)), where

Ck,β,ε0 = (6/ε0)2O(k3/β2)
.

To obtain the decoding algorithm, we first define a function g : [n]k → {−1, 1} sup-
ported on W as

g(i1, . . . , ik) :=

{︄
(−1)ỹ(i1,...,ik) if (i1, . . . , ik) ∈W
0 otherwise

For each z ∈ Fn
2 , we also consider the similar function χz : [n] → {−1, 1} defined as

χz(i) = (−1)zi . We first re-state the decoding problem in terms of the functions g and χz.

Claim 5.2. Let z ∈ Fn
2 , and let the functions g and χz be as above. Then,

∆(ỹ, dsumW(z)) ≤ 1
2
− β ⇔

⟨︂
g, χ⊗k

z

⟩︂
µk

=
(︂n

d

)︂k−1
·
⟨︂

g, χ⊗k
z

⟩︂
µ⊗k

1

≥ 2β .

Proof. We have

∆(ỹ, dsumW(z)) = E
(i1,...,ik)∼W

[︂
1{ỹ(i1,...,ik)

̸= zi1+···+zik
mod 2}

]︂
= E

(i1,...,ik)∼µk

[︄
1− g(i1, . . . , ik) ·∏t∈[k] χz(it)

2

]︄
=

1
2
− 1

2
·
⟨︂

g, χ⊗k
z

⟩︂
µk

.

30

Finally, using the fact that g is only supported on W, and |W| = dk−1 · n by d-regularity, we
have ⟨g, f ⟩µk

= (n/d)k−1 · ⟨g, f ⟩µ⊗k
1

for any function f : [n]k → R.

Note that each element of the list Lβ(ỹ) must be equal to dsumW(z) for some z ∈ C0.
Thus, to search for all such z, we will consider the decomposition h of the function g, given
by Theorem 4.11 with respect to the class of functions F = CUT⊗k

± . Since the functions χ⊗k
z

belong to F , it will suffice to only consider the inner product
⟨︁

h, χ⊗k
z
⟩︁

µ⊗k
1

.

Also, since the approximating function h is determined by a small number of functions,
say { f1, . . . , fr : [n]→ {−1, 1}}, it will suffice to (essentially) consider only the functions
measurable in the factor B determined by f1, . . . , fr. Recall that the factor B is simply a par-
tition of [n] in 2r pieces according to the values of f1, . . . , fr. Also, since any B-measurable
function is constant on each piece, it is completely specified by |B| real values. We will only
consider functions taking values in [−1, 1], and discretize this space to an appropriate accu-
racy η, to identify all relevant B-measurable functions with the set {0,±η,±2η, . . . ,±1}|B|.
The decoding procedure is described in the following algorithm.

Algorithm 5.3 (List Decoding).
Input ỹ ∈ FW

2
Output List L ⊆ C

- Obtain the approximator h given by Theorem 4.11 for F = CUT⊗k
± , δ = β, and the

function g : [n]k → {−1, 1} defined as

g(i1, . . . , ik) :=

{︄
(−1)ỹ(i1,...,ik) if (i1, . . . , ik) ∈W
0 otherwise

- Let h be of the form h = ∑
p
j=1 cj · f j1 ⊗ · · · ⊗ f jk , with each f jt : [n] → {−1, 1}. Let B be

the factor determined by the functions
{︁

f jt
}︁

j∈[p],t∈[k].

- Let L = ∅ and let η = 1/⌈(2/ε0)⌉. For each B-measurable function f given by a value
in Dη := {0,±η,±2η, . . . ,±1} for every atom of B:

– Sample a random function χ : [n] → {−1, 1} by independently sampling χ(i) ∈
{−1, 1} for each i, such that E[χ(i)] = f (i). Take z̃ ∈ Fn

2 to be such that χ = χz̃.

– If there exists z ∈ C0 such that

∆(z̃, z) ≤ (1− ε0)

4
and ∆(ỹ, dsumW(z)) ≤ 1

2
− β ,

then L ← L∪ {dsumW(z)}.

- Return L.

Note that by our choice of the β in Theorem 5.1, we have that τ ≤ β2/(220k3). Thus, we
can indeed apply Theorem 4.11 to obtain the function h as required by the algorithm. To
show that the algorithm can recover the list, we will need to show that for each z such that
dsumW(z) ∈ Lβ, the sampling procedure finds a z̃ close to z with significant probability.
To analyze this probability, we first prove the following claim.

31

Claim 5.4. Let z ∈ Fn
2 and let f : [n] → Dη be a minimizer of ∥E[χz|B] − f ∥∞ among all

B-measurable functions in D|B|η . Then, over the random choice of χ such that E[χ] = f , we have

E
χ

[︂
⟨χ, χz⟩µ1

]︂
=
⟨︂

f , χz

⟩︂
µ1
≥ ∥E [χz|B]∥2

µ1
− η .

Proof. By linearity of the inner product, we have

E
χ

[︂
⟨χ, χz⟩µ1

]︂
= ⟨E [χ] , χz⟩µ1

=
⟨︂

f , χz

⟩︂
µ1

=
⟨︂

f , E [χz|B]
⟩︂

µ1
,

where the last equality used Proposition 3.14 and the fact that f is B-measurable. Since
E[χz|B] takes values in [−1, 1] and f is the minimizer over all functions in D|B|η , we must
have ∥E[χz|B]− f ∥∞ ≤ η. Using this pointwise bound, we get⟨︂

f , E [χz|B]
⟩︂

µ1
= E

i∼µ1

[︂
f (i) ·E [χz|B] (i)

]︂
≥ E

i∼µ1

[︂
(E [χz|B] (i))2 − η · |E [χz|B] (i)|

]︂
≥ ∥E [χz|B]∥2

µ1
− η .

We next show that when z ∈ Fn
2 is such that

⟨︁
g, χ⊗k

z
⟩︁

is large, then the norm of the
conditional expectation E[χz|B] is also large, and hence the sampling procedure finds a z̃
close to z. When we have a z ∈ C0 with such a property, we can use z̃ to recover z using
the unique decoding algorithm for C0.

Lemma 5.5. Let z ∈ Fn
2 be such that⟨︂

g, χ⊗k
z

⟩︂
µk

=
(︂n

d

)︂k−1
·
⟨︂

g, χ⊗k
z

⟩︂
µ⊗k

1

≥ 2β .

Then, we have ∥E[χz|B]∥2
µ1
≥ (β/2)2/k.

Proof. Let h be the approximating function obtained by applying Theorem 4.11 to g with
approximation error δ = β. Note that we have ∥h∥µ⊗k

1
≤ 2, and for any f ∈ CUT⊗k

± ,

(︂n
d

)︂k−1
·
⟨︄

g−
(︃

d
n

)︃k−1

· h , f

⟩︄
µ⊗k

1

≤ δ .

Using f = χ⊗k
z and δ = β, we get⟨︂

h, χ⊗k
z

⟩︂
µ⊗k

1

≥ 2β− δ ≥ β .

Using Proposition 3.14, and the fact that B is defined so that all functions in the decompo-
sition of h are (by definition) B-measurable, we have⟨︂

h, χ⊗k
z

⟩︂
µ⊗k

1

=
p

∑
j=1

cj

k

∏
t=1

⟨︁
f jt , χz

⟩︁
µ1

=
p

∑
j=1

cj

k

∏
t=1

⟨︁
f jt , E [χz|B]

⟩︁
µ1

=
⟨︂

h, (E [χz|B])⊗k
⟩︂

µ⊗k
1

.

Combining the above with Cauchy-Schwarz, we get

β ≤
⟨︂

h, χ⊗k
z

⟩︂
µ⊗k

1

≤ ∥h∥µ⊗k
1
·
⃦⃦⃦
(E [χz|B])⊗k

⃦⃦⃦
µ⊗k

1

= ∥h∥µ⊗k
1
· ∥E [χz|B]∥k

µ1
.

Using ∥h∥µ⊗k
1
≤ 2 then gives ∥E[χz|B]∥2

µ1
≥ (β/2)2/k.

32

Using the above results, we can now complete the analysis of the algorithm.

Proof of Theorem 5.1. We first argue that for any codeword z ∈ C0 such that dsumW(z) ∈
Lβ, sampling a random function χ (with E[χ] = f for an appropriate f) finds a z̃ close to z
with significant probability. Let f ∈ DBη be the minimizer of ∥χz − f ∥∞, for such a z ∈ C0.
We have by Claim 5.4 that Eχ[⟨χ, χz⟩µ1

] ≥ ∥E[χz|B]∥2
µ1
− η. Since ∆(ỹ, dsumW(z)) ≤

1/2− β, we have by Claim 5.2 that
⟨︁

g, χ⊗k
z
⟩︁

µk
≥ 2β. Thus, by Lemma 5.5, we have that

∥E[χz|B]∥2
µ1
≥ (β/2)2/k. Combining these, and using the lower bound on β, we get that

E
χ

[︂
⟨χ, χz⟩µ1

]︂
≥

(︃
β

2

)︃2/k

− η ≥ 1
2
+ 2ε0 − η ≥ 1

2
+

3ε0

2
.

Since ⟨χ, χz⟩µ1
is the average of n independent (not necessarily identical) random variables

{χ(i) · χz(i)}i∈[n] in the range [−1, 1], we get by Hoeffding’s inequality that

P
χ

[︃
⟨χ, χz⟩µ1

≤ 1
2
+ ε0

]︃
≤ P

χ

[︃⃓⃓⃓⃓
⟨χ, χz⟩µ1

−E
χ

[︂
⟨χ, χz⟩µ1

]︂⃓⃓⃓⃓
≥ ε0

2

]︃
≤ exp

(︁
−ε2

0 · n/8
)︁

.

Thus, given a good sample χ satisfying ⟨χ, χz⟩µ1
≥ 1/2 + ε0, we can recover the above

z ∈ C0 such that dsumW(z) ∈ Lβ, via the unique decoding algorithm for C0. Also, given
the right f , we sample a good χ with probability at least 1 − exp(−ε2

0 · n/8). A union
bound then gives

P
[︁
L = Lβ

]︁
≥ 1 −

⃓⃓
Lβ

⃓⃓
· exp(−ε2

0 · n/8) .

Using β ≥
√

ε, we get that
⃓⃓
Lβ

⃓⃓
≤ (1/ε) by the Johnson bound, which yields the desired

probability bound.

Running time. Using Theorem 4.11, the decomposition h can be computed in time Õ(Cβ,k ·
|W|). Given the functions f1, . . . , fr forming the decomposition h, the factor B can be com-
puted in time O(2r · n). For a chosen f in the sampling step, a sample χ can be computed
in time O(n), and the decoding problem for the corresponding z̃ can be solved in time
T0. Also, the distance ∆(ỹ, dsumW(z)) can be computed in time O(|W|). Since the total
number of sampling steps is at most (3/η)|B| and the number of functions in the decom-
position h is O(k3/β2) from Theorem 4.11, we get that the total number of sampling steps

is (6/ε0)2O(k3/β2)
. Thus, the total running time is bounded by Õ(Ck,β,ε0 · (|W|+ T0)), where

Ck,β,ε0 = (6/ε0)2O(k3/β2)
.

6 Near-linear Time Decoding of Ta-Shma’s Codes

We now proceed to prove our main result, namely Theorem 1.1, which establishes a near-
linear time unique decoding algorithm for Ta-Shma’s codes [TS17]. It will follow from the
regularity based list decoding algorithm for direct sum codes, Theorem 5.1, applied to the
decoding of a slight modification of Ta-Shma’s construction from [JQST20] that yields a
splittable collection of tuples for the direct sum.

33

Theorem 1.1 (Near-linear Time Unique Decoding). For every ε > 0 sufficiently small, there
are explicit binary linear Ta-Shma codes CN,ε,α ⊆ FN

2 for infinitely many values N ∈N with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+α) where α = O(1/(log2(1/ε))1/6), and

(iii) an r(ε) · Õ(N) time unique decoding algorithm that that decodes within radius 1/4− ε/4
and works with high probability,

where r(ε) = exp(exp(polylog(1/ε))).

We now state the properties and guarantees needed in our work of this slightly mod-
ified version of Ta-Shma’s direct sum construction of near optimal ε-balanced codes. To
make the decoding task more transparent, we will additionally require the base code in
Ta-Shma’s construction have the following technical property.

Definition 6.1. We say that a code has symbol multiplicity m ∈ N if it can be obtained from
another code by repeating each symbol of its codeword m times.

Theorem A.1. [Ta-Shma’s Codes (implicit in [TS17])] Let c > 0 be an universal constant. For ev-
ery ε > 0 sufficiently small, there exists k = k(ε) satisfying Ω(log(1/ε)1/3) ≤ k ≤ O(log(1/ε)),
ε0 = ε0(ε) > 0, and positive integer m = m(ε) ≤ (1/ε)o(1) such that Ta-Shma’s construction
yields a collection of τ-splittable tuples W = W(k) ⊆ [n]k satisfying:

(i) For every linear ε0-balanced code C0 ⊆ Fn
2 with symbol multiplicity m, the direct sum code

dsumW(C0) is:

(i.1) ε-balanced (parity sampling).

(i.2) if C0 has rate Ω(εc
0/m), then dsumW(C0) has rate Ω(ε2+o(1)) (near optimal rate)

(ii) τ ≤ exp(−Θ(log(1/ε)1/6)) (splittability).

(iii) W is constructible in poly(|W|) time (explicit construction).

Ta-Shma’s construction is based on a generalization of the zig-zag product of Reingold,
Vadhan and Wigderson [RVW00]. To make the exposition more self-contained, we recall
the slight modification from [JQST20] in Appendix A, but it is not exhaustive exposition.
The interested reader is referred to Ta-Shma [TS17] for the original construction for aspects
not covered here.

Ta-Shma’s code construction requires an ε0-balanced base code C0 ⊆ Fn
2 whose dis-

tance will be amplified by taking the direct sum with a carefully chosen collection of tuples
W yielding an ε-balanced code C = dsumW(C0). Since we our goal is to achieve near-linear
time encoding and decoding of C, we take an “off-the-shelf” base code C0 that is linear time
encodable and decodable (near-linear time also suffices). A convenient choice is the lin-
ear binary code family of Guruswami–Indyk [GI05] that can be encoded and decoded in
linear time. The rate versus distance trade-off is at the so-called Zyablov bound. In par-
ticular, it yields codes of distance 1/2− ε0 with rate Ω(ε3

0), but for our applications rate
poly(ε0) suffices (or with some extra steps even any rate depending only on ε0 suffices,
see Remark 6.5). We will use Corollary 6.2 implicit in [GI05].

34

Corollary 6.2. [Implicit in Guruswami–Indyk [GI05]] For every ε0 > 0, there exists a family of
ε0-balanced binary linear codes C0 ⊆ Fn

2 of rate Ω(ε3
0) which can be encoded in Oε0(n) time and can

be decoded in O(exp(poly(1/ε0)) · n) time from up to a fraction 1/4− ε0 of errors. Furthermore,
every code in the family is explicitly specified given a binary linear code of blocklength poly(1/ε0)
which can be constructed in probabilistic O(poly(1/ε0)) or deterministic 2O(poly(1/ε0)) time.

We first prove the (gentle) list decoding result of Ta-Shma’s codes.

Theorem 1.2 (Near-linear Time Gentle List Decoding). For every ε > 0 sufficiently small,
there are explicit binary linear Ta-Shma codes CN,ε,α ⊆ FN

2 for infinitely many values N ∈N with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+α) where α = O(1/(log2(1/ε))1/6), and

(iii) an r(ε) · Õ(N) time list decoding algorithm that decodes within radius 1/2− 2−Θ((log2(1/ε))1/6)

and works with high probability,

where r(ε) = exp(exp(poly(1/ε))).

Proof. We start by dealing with a simple technical issue of making the base code in Ta-
Shma’s construction have the required symbol multiplicity. Let C ′0 ⊆ Fn′

2 be an ε0-balanced
code from Corollary 6.2 which we will use to obtain a base code in Ta-Shma’s construction
where ε0 > 0 is a suitable value prescribed by this construction.

Ta-Shma’s construction then takes C ′0 ⊆ Fn′
2 and forms a new code C0 ⊆ Fn

2 by re-
peating each codeword symbol m ≤ (1/ε)o(1) times. By Claim 6.6, C0 is an ε0-balanced
code that can be unique decoded within the same (fractional) radius of C ′0 in time T0(n) =
r · T ′0 (n′) + ˜︁O(r2 · n′), where T0(n)′ is the running time of an unique decoder for C ′0. Since
by Corollary 6.2 T0(n′) = O(exp(poly(1/ε0)) · n′) and ε0 ≫ ε, the decoding time of C0
becomes T0(n) = O(exp(poly(1/ε)) · n).

Let W = W(k) be a collection of tuples from Ta-Shma’s construction Theorem A.1 so
that C = dsumW(C0) is ε-balanced, τ ≤ exp(−Θ(log(1/ε)1/6)) and k = Ω(log(1/ε)1/3).
We will invoke our list decoding algorithm Theorem 5.1 whose list decoding radius 1/2−
β has to satisfy

β ≥ max

{︄
√

ε,
(︁
220 · τ · k3)︁1/2

, 2 ·
(︃

1
2
+ 2ε0

)︃k/2
}︄

.

Using our values of τ and k together with the fact that ε0 < 1 is bounded away form 1 by
a constant amount gives

β ≥ max
{︂√

ε, , exp(−Θ((log(1/ε))1/6)), exp(−Θ((log(1/ε))1/3))
}︂

.

Hence, we can take β = exp(−Θ(log(1/ε)1/6)). Now, we compute the list decoding run-
ning proving a (crude) upper bound on its dependence on ε. By Theorem 5.1, the list
decoding time

Õ(Cβ,k,ε0 · (|W|+ T0(n))),

where Ck,β,ε0 = (6/ε0)2O(k3/β2)
. For our choices of parameters, this decoding time can be

(crudely) bounded by Õ(exp(exp(poly(1/ε))) · N).

35

The gentle list decoding theorem above readily implies our main result for unique de-
coding if we are only interested in ˜︁Oε(N) decoding time without a more precise depen-
dence on ε. We prove our main result, Theorem 1.1, for unique decoding making more
precise the dependence of the running time on ε.

Proof. Proof of Theorem 1.1 We proceed as in the proof of Theorem 1.2 expect that we take
β = 1/4 in the list decoding radius 1/2− β so that by performing list decoding we can
recover all codewords in the unique decoding radius of the corrupted codeword regardless
of the bias of the code CN,ε,α.

We now recompute the running time. By Theorem 5.1, the list decoding time

Õ(Cβ,k,ε0 · (|W|+ T0(n))),

where Ck,β,ε0 = (6/ε0)2O(k3/β2)
. For our choices of parameters, this decoding time can be

(crudely) bounded by Õ(exp(exp(polylog(1/ε))) · N).

6.1 Choosing the Base Code

We now describe the (essentially) “off-the-shelf” base codes from Guruswami and In-
dyk [GI05] which we use in Ta-Shma’s construction. We will need to prove that balanced
codes can be easily obtained from [GI05]. The argument is quite simple and borrows from
standard considerations related to the Zyablov and Gilbert–Varshamov bounds.

Corollary 6.2. [Implicit in Guruswami–Indyk [GI05]] For every ε0 > 0, there exists a family of
ε0-balanced binary linear codes C0 ⊆ Fn

2 of rate Ω(ε3
0) which can be encoded in Oε0(n) time and can

be decoded in O(exp(poly(1/ε0)) · n) time from up to a fraction 1/4− ε0 of errors. Furthermore,
every code in the family is explicitly specified given a binary linear code of blocklength poly(1/ε0)
which can be constructed in probabilistic O(poly(1/ε0)) or deterministic 2O(poly(1/ε0)) time.

Theorem 6.3 (Guruswami–Indyk [GI05], cf.,Theorem 5). For every γ > 0 and for every 0 <
R < 1, there exists a family of binary linear concatenated codes of rate R, which can be encoded
in linear time and can be decoded in linear time from up to a fraction e of errors, where

e ≥ max
R<r<1

(1− r− γ) · H−1
2 (1− R/r)

2
. (4)

H−1
2 (x) is defined as the unique ρ in the range 0 ≤ ρ ≤ 1/2 satisfying H2(ρ) = x. Every code in

the family is explicitly specified given a constant sized binary linear code which can be constructed
in probabilistic O(log(1/γ)R−1/γ4) or deterministic 2O(log(1/γ)R−1/γ4) time 8.

As stated the codes in Theorem 6.3 are not necessarily balanced. We will see shortly
that this can be easily achieved by choosing balanced inner codes in the concatenated code
construction of Guruswami–Indyk [GI05]. To compute bounds on the parameters, we will
use the following property about binary entropy.

8Note that dependence log(1/γ)R−1/γ4 is slightly worse than that claimed in [GI05], but not qualitatively
relevant here nor in [GI05].

36

Fact 6.4 ([GRS19],cf.,Lemma 3.3.7 abridged). Let H−1
2 be the inverse of the restriction of H2 to

[0, 1/2] (where H2 is bijective). For every small enough ε > 0,

H−1
2 (x− ε2/C2) ≥ H−1

2 (x)− ε,

where C2 is a constant.

Proof of Corollary 6.2. To achieve a final binary code of rate R, Guruswami and Indyk [GI05]
concatenate an outer code of rate r > R and distance 1− r− γ (over a non-binary alphabet
of size Oγ(1)) with an inner binary linear code of rate R/r at the GV bound whose distance
ρ ∈ [0, 1/2] satisfy R/r = 1− H2(ρ) (since it is at the GV bound), or equivalently ρ =
H−1

2 (1− R/r). By choosing γ = Θ(ε0) and R = Θ(ε3
0) in Theorem 6.3, the decoding error

e can be lower bounded by letting r = Θ(ε0) so that Fact 6.4 implies that Eq. (4) becomes

e ≥ max
R<r<1

(1− r− γ) · H−1
2 (1− R/r)

2
≥ 1

4
− ε0.

To obtain codes that are ε0-balanced, we require that the inner codes used in this code
concatenation not only lie on the Gilbert–Varshamov bound but are also balanced. It is well
known that with high probability a random binary linear code at the GV bound designed
to have minimum distance 1/2− γ/2 also has maximum distance at most 1/2 + γ/2, i.e.,
the code is γ-balanced. Therefore, we assume that our inner codes are balanced.

For our concrete choices of parameters, ρ = 1/2− Θ(ε0) and we also require the in-
ner code to be Θ(ε0)-balanced. Note that any non-zero codeword of the concatenated is
obtained as follows: each of the ≥ (1− r− γ) non-zero symbols of the outer codeword is
replaced by an inner codeword of bias bias Θ(ε0) and the remaining ≤ r + γ zero symbols
are mapped to zero (since the inner code is linear). Hence, the bias of the concatenated
codeword is at most

(1− r− γ) ·Θ(ε0) + 1 · (r + γ),

which can be taken to be ε0 by suitable choices of hidden constants.

Remark 6.5. Guruswami–Indyk [GI05] codes have several nice properties making them a conve-
nient choice for base codes in Ta-Shma’s construction, but they are not crucial here. We observe
that for our purposes we could have started with any family of good binary linear codes admitting
near-linear time encoding and decoding. From this family, we could boost its distance using a sim-
pler version of Ta-Shma’s construction (rounds I and II of [JQST20][Section 8]) and our near-linear
time decoder Theorem 5.1 for direct sum. This would result in an alternative family of linear binary
ε0-balanced codes of rate Ω(ε2+α

0), for some arbitrarily small constant α > 0, that can be encoded
and decoded in near-linear time. We also point out that for these base codes any rate poly(ε0)
suffices our purposes.

To handle the technical requirement of a base code in Ta-Shma’s construction having a
symbol multiplicity property (cf., Definition 6.1), we use the following observation.

Claim 6.6. Let C0 ⊆ Fn
2 be an ε0-balanced linear code of dimension D0. Suppose that C0 is uniquely

decodable within (fractional) radius δ0 ∈ (0, 1] in time T0(n). Let m ∈ N and C ⊆ Fm·n
2 be the

code formed by replicating m times each codeword from C0, i.e.,

C := {z1 · · · zm ∈ Fm·n
2 | z1 = · · · = zm ∈ C0}.

Then, C is an ε0-balanced linear code of dimension D0 that can be uniquely decoded within (frac-
tional) radius δ0 in time m · T0(n) + ˜︁O(m2 · n).

37

Proof. The only non-immediate property is the unique decoding guarantees of C. Given
ỹ ∈ Fm·n

2 within δ0 (relative) distance of C. Let βi be the fraction of errors in the ith Fn
2

component ỹ. By assumption Ei∈[m]βi ≤ δ0, so there is at least one of such component
that can be correctly uniquely decoded. We issue unique decoding calls for Co on each
component i ∈ [m]. For each successful decoding say z ∈ C0, we let y = z . . . z ∈ Fm·n

2 and
check whether ∆(ỹ, y) ≤ δ0 returning y if this succeeds. Finally, observe that this procedure
indeed takes at most the claimed running time.

Acknowledgement

We thank Dylan Quintana for stimulating discussions during the initial phases of this
project.

References

[ABN+92] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construction of asymptoti-
cally good, low-rate error-correcting codes through pseudo-random graphs.
IEEE Transactions on Information Theory, 28:509–516, 1992. 2

[AGHP92] N. Alon, O. Goldreich, J. Håstad, and R. Peralta. Simple constructions of
almost k-wise independent random variables. Random Structures and Algo-
rithms, 3(3):289–304, 1992. 49

[AJQ+20] Vedat Levi Alev, Fernando Granha Jeronimo, Dylan Quintana, Shashank Sri-
vastava, and Madhur Tulsiani. List decoding of direct sum codes. In Pro-
ceedings of the 31st ACM-SIAM Symposium on Discrete Algorithms, pages 1412–
1425. SIAM, 2020. 1, 3, 4, 10

[AJT19] Vedat Levi Alev, Fernando Granha Jeronimo, and Madhur Tulsiani. Approx-
imating constraint satisfaction problems on high-dimensional expanders. In
Proceedings of the 60th IEEE Symposium on Foundations of Computer Science,
pages 180–201, 2019. 5

[AK07] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to
semidefinite programs. In Proceedings of the 39th ACM Symposium on Theory
of Computing, STOC ’07, pages 227–236, 2007. 7, 12, 23, 25, 26, 28, 29

[AN04] Noga Alon and Assaf Naor. Approximating the cut-norm via grothendieck’s
inequality. In Proceedings of the 36th ACM Symposium on Theory of Computing,
pages 72–80, 2004. 7, 12, 23, 25, 26, 27, 28

[Aro02] Sanjeev Arora. How NP got a new definition: a survey of probabilistically
checkable proofs. In Proceedings of the International Congress of Mathematicians,
pages 637–648, 2002. Volume 3. 2

[BL18] A. Bhowmick and S. Lovett. The list decoding radius for Reed–Muller codes
over small fields. IEEE Transactions on Information Theory, 64(6):4382–4391,
2018. 5

38

[Bog12] Andrej Bogdanov. A different way to improve the bias via expanders. Lecture
notes, April 2012. URL: http://www.cse.cuhk.edu.hk/~andrejb/csc5060/
notes/12L12.pdf. 2

[BRS11] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite
programming hierarchies via global correlation. In Proceedings of the 52nd
IEEE Symposium on Foundations of Computer Science, pages 472–481, 2011. 5

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Found.
Trends Mach. Learn., 8(3-4):231–357, November 2015. 14

[BV20] Greg Bodwin and Santosh Vempala. A unified view of graph regularity via
matrix decompositions, 2020. arXiv:1911.11868. 3, 4, 5

[Cha16] Siu On Chan. Approximation resistance from pairwise-independent sub-
groups. J. ACM, 63(3), August 2016. 2

[COCF09] Amin Coja-Oghlan, Colin Cooper, and Alan Frieze. An efficient sparse reg-
ularity concept. In Proceedings of the 20th ACM-SIAM Symposium on Discrete
Algorithms, SODA ’09, page 207–216, 2009. 3

[DD19] Yotam Dikstein and Irit Dinur. Agreement testing theorems on layered set
systems. In Proceedings of the 60th IEEE Symposium on Foundations of Computer
Science, 2019. 5

[DDG+15] Roee David, Irit Dinur, Elazar Goldenberg, Guy Kindler, and Igor Shinkar.
Direct sum testing. ITCS ’15, pages 327–336, New York, NY, USA, 2015. ACM.
2

[DDHRZ20] Yotam Dikstein, Irit Dinur, Prahladh Harsha, and Noga Ron-Zewi. Lo-
cally testable codes via high-dimensional expanders. arXiv preprint
arXiv:2005.01045, 2020. 5

[DHK+19] Irit Dinur, Prahladh Harsha, Tali Kaufman, Inbal Livni Navon, and Amnon
Ta-Shma. List decoding with double samplers. In Proceedings of the 30th ACM-
SIAM Symposium on Discrete Algorithms, pages 2134–2153, 2019. 5

[DK17] Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement
expanders. In Proceedings of the 58th IEEE Symposium on Foundations of Com-
puter Science, pages 974–985, 2017. 2, 5

[DS14] Irit Dinur and David Steurer. Direct product testing. In Proceedings of the 29th
IEEE Conference on Computational Complexity, CCC ’14, pages 188–196, 2014. 2

[EK16] Shai Evra and Tali Kaufman. Bounded degree cosystolic expanders of every
dimension. In Proceedings of the 48th ACM Symposium on Theory of Computing,
pages 36–48. ACM, 2016. 5

[FK96] A. Frieze and R. Kannan. The regularity lemma and approximation schemes
for dense problems. In Proceedings of the 37th IEEE Symposium on Foundations
of Computer Science, 1996. 3, 5, 12

39

http://www.cse.cuhk.edu.hk/~andrejb/csc5060/notes/12L12.pdf
http://www.cse.cuhk.edu.hk/~andrejb/csc5060/notes/12L12.pdf
http://arxiv.org/abs/1911.11868

[GI01] Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of
efficiently decodable codes. In Proceedings of the 42nd IEEE Symposium on
Foundations of Computer Science, pages 658–667, 2001. 2, 5

[GI05] V. Guruswami and P. Indyk. Linear-time encodable/decodable codes with
near-optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400,
2005. 5, 34, 35, 36, 37

[Gil52] E.N. Gilbert. A comparison of signalling alphabets. Bell System Technical
Journal, 31:504–522, 1952. 1

[GR06] Venkatesan Guruswami and Atri Rudra. Explicit capacity-achieving list-
decodable codes. In Proceedings of the 38th ACM Symposium on Theory of Com-
puting, pages 1–10, 2006. 2

[GRS19] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential cod-
ing theory. Available at https://cse.buffalo.edu/faculty/atri/courses/
coding-theory/book/index.html, 2019. 37

[GS11] Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher
eigenvalues, and approximation schemes for graph partitioning and
quadratic integer programming with psd objectives. In FOCS, pages 482–
491, 2011. 5

[Gur04] Venkatesan Guruswami. Guest column: Error-correcting codes and expander
graphs. SIGACT News, 35(3):25–41, September 2004. 5

[Gur09] Venkatesan Guruswami. List decoding of binary codes–a brief survey of
some recent results. In Coding and Cryptology, pages 97–106. Springer Berlin
Heidelberg, 2009. 1

[Gur10] Venkatesan Guruswami. Bridging Shannon and Hamming: List error-
correction with optimal rate. In ICM, 2010. 1

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and
their applications. Bull. Amer. Math. Soc., 43(04):439–562, August 2006. 15

[IKW09] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. New direct-
product testers and 2-query PCPs. In Proceedings of the 41st ACM Symposium
on Theory of Computing, STOC ’09, pages 131–140, 2009. 2

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP unless E has sub-
exponential circuits. In Proceedings of the 29th ACM Symposium on Theory of
Computing, pages 220–229, 1997. 2

[JQST20] Fernando Granha Jeronimo, Dylan Quintana, Shashank Srivastava, and Mad-
hur Tulsiani. Unique decoding of explicit ε-balanced codes near the Gilbert–
Varshamov bound. In Proceedings of the 61st IEEE Symposium on Foundations
of Computer Science, 2020. 1, 3, 4, 10, 33, 34, 37, 42

[KR02] Y. Kohayakawa and V. Rödl. Szemerédi’s regularity lemma and quasi-
randomness. In Recent advances in algorithms and combinatorics. Springer,

40

https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/index.html
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/index.html

Berlin, 2002. URL: citeseer.ist.psu.edu/kohayakawa02szemeredis.html.
5

[KV09] Ravindran Kannan and Santosh Vempala. Spectral algorithms. Now Publish-
ers Inc, 2009. 5

[LP20] Yin Tat Lee and Swati Padmanabhan. An ˜︁O(m/ε3.5)-cost algorithm for
semidefinite programs with diagonal constraints. In Conference on Learning
Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz, Austria], volume 125,
pages 3069–3119, 2020. 7, 12, 23, 25, 26, 28, 29

[MRRW77] R. McEliece, E. Rodemich, H. Rumsey, and L. Welch. New upper bounds on
the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Transactions
on Information Theory, 23(2):157–166, 1977. 1

[OGT15] Shayan Oveis Gharan and Luca Trevisan. A new regularity lemma and
faster approximation algorithms for low threshold rank graphs. Theory of
Computing, 11(9):241–256, 2015. URL: http://www.theoryofcomputing.org/
articles/v011a009, doi:10.4086/toc.2015.v011a009. 5

[RTTV08] Omer Reingold, Luca Trevisan, Madhur Tulsiani, and Salil Vadhan. Dense
subsets of pseudorandom sets. In Proceedings of the 49th IEEE Symposium on
Foundations of Computer Science, 2008. 3, 5

[RVW00] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders and extractors. In Proceedings
of the 41st IEEE Symposium on Foundations of Computer Science, 2000. 34, 43, 45

[RWZ20] N. Ron-Zewi, M. Wootters, and G. Zémor. Linear-time erasure list-decoding
of expander codes. In 2020 IEEE International Symposium on Information Theory
(ISIT), pages 379–383, 2020. 5

[SS96] M. Sipser and D. Spielman. Expander codes. IEEE Transactions on Information
Theory, 42(6):1710–1722, 1996. Preliminary version in Proc. of FOCS’94. 5

[TS17] Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Pro-
ceedings of the 49th ACM Symposium on Theory of Computing, STOC 2017, pages
238–251, New York, NY, USA, 2017. ACM. 1, 9, 10, 33, 34, 42, 46, 49

[TTV09] L. Trevisan, M. Tulsiani, and S. Vadhan. Boosting, regularity and efficiently
simulating every high-entropy distribution. In Proceedings of the 24th IEEE
Conference on Computational Complexity, 2009. 3, 4, 5, 6

[Vad12] Salil P. Vadhan. Pseudorandomness. Now Publishers Inc., 2012. 1

[Var57] R.R. Varshamov. Estimate of the number of signals in error correcting codes.
Doklady Akademii Nauk SSSR, 117:739–741, 1957. 1

41

citeseer.ist.psu.edu/kohayakawa02szemeredis.html
http://www.theoryofcomputing.org/articles/v011a009
http://www.theoryofcomputing.org/articles/v011a009
http://dx.doi.org/10.4086/toc.2015.v011a009

A Properties of Ta-Shma’s Construction

The goal of this section is to provide a reasonably self-contained compilation of the prop-
erties of the slightly modified version of Ta-Shma code construction [TS17] from [JQST20].
The properties we need are collected in Theorem A.1.

Theorem A.1. [Ta-Shma’s Codes (implicit in [TS17])] Let c > 0 be an universal constant. For ev-
ery ε > 0 sufficiently small, there exists k = k(ε) satisfying Ω(log(1/ε)1/3) ≤ k ≤ O(log(1/ε)),
ε0 = ε0(ε) > 0, and positive integer m = m(ε) ≤ (1/ε)o(1) such that Ta-Shma’s construction
yields a collection of τ-splittable tuples W = W(k) ⊆ [n]k satisfying:

(i) For every linear ε0-balanced code C0 ⊆ Fn
2 with symbol multiplicity m, the direct sum code

dsumW(C0) is:

(i.1) ε-balanced (parity sampling).

(i.2) if C0 has rate Ω(εc
0/m), then dsumW(C0) has rate Ω(ε2+o(1)) (near optimal rate)

(ii) τ ≤ exp(−Θ(log(1/ε)1/6)) (splittability).

(iii) W is constructible in poly(|W|) time (explicit construction).

We first recall the s-wide replacement product in Appendix A.1, then describe Ta-
Shma’s original construction based on it in Appendix A.2, describe our modification to
obtain splittability in Appendix A.3, derive the splittability property in Appendix A.4,
and finally choose parameters in terms of desired bias ε of the code we construct in Ap-
pendix A.5. We refer the reader to [TS17] for formal details beyond those we actually need
here.

A.1 The s-wide Replacement Product

Ta-Shma’s code construction is based on the so-called s-wide replacement product [TS17].
This is a derandomization of random walks on a graph G that will be defined via a product
operation of G with another graph H (see Definition A.3 for a formal definition). We will
refer to G as the outer graph and H as the inner graph in this construction.

Let G be a d1-regular graph on vertex set [n] and H be a d2-regular graph on vertex set
[d1]

s, where s is any positive integer. Suppose the neighbors of each vertex of G are labeled
1, 2, . . . , d1. For v ∈ V(G), let vG[j] be the j-th neighbor of v. The s-wide replacement
product is defined by replacing each vertex of G with a copy of H, called a “cloud”. While
the edges within each cloud are determined by H, the edges between clouds are based on
the edges of G, which we will define via operators G0,G1, . . . ,Gs−1. The i-th operator Gi
specifies one inter-cloud edge for each vertex (v, (a0, . . . , as−1)) ∈ V(G) × V(H), which
goes to the cloud whose G component is vG[ai], the neighbor of v in G indexed by the i-th
coordinate of the H component. (We will resolve the question of what happens to the H
component after taking such a step momentarily.)

Walks on the s-wide replacement product consist of steps with two different parts: an
intra-cloud part followed by an inter-cloud part. All of the intra-cloud substeps simply
move to a random neighbor in the current cloud, which corresponds to applying the oper-
ator I⊗ AH, where AH is the normalized adjacency matrix of H. The inter-cloud substeps

42

are all deterministic, with the first moving according to G0, the second according to G1,
and so on, returning to G0 for step number s + 1. The operator for such a walk taking k− 1
steps on the s-wide replacement product is

k−2

∏
i=0

Gi mod s(I⊗ AH).

Observe that a walk on the s-wide replacement product yields a walk on the outer
graph G by recording the G component after each step of the walk. The number of (k− 1)-
step walks on the s-wide replacement product is

|V(G)| · |V(H)| · dk−1
2 = n · ds

1 · dk−1
2 ,

since a walk is completely determined by its intra-cloud steps. If d2 is much smaller than
d1 and k is large compared to s, this is less than ndk−1

1 , the number of (k − 1)-step walks
on G itself. Thus the s-wide replacement product will be used to simulate random walks
on G while requiring a reduced amount of randomness (of course this simulation is only
possible under special conditions, namely, when we are uniformly distributed on each
cloud).

To formally define the s-wide replacement product, we must consider the labeling of
neighbors in G more carefully.

Definition A.2 (Rotation Map). Suppose G is a d1-regular graph on [n]. For each v ∈ [n]
and j ∈ [d1], let vG[j] be the j-th neighbor of v in G. Based on the indexing of the neighbors
of each vertex, we define the rotation map 9 rotG : [n] × [d1] → [n] × [d1] such that for every
(v, j) ∈ [n]× [d1],

rotG((v, j)) = (v′, j′)⇔ vG[j] = v′ and v′G[j
′] = v.

Furthermore, if there exists a bijection φ : [d1]→ [d1] such that for every (v, j) ∈ [n]× [d1],

rotG((v, j)) = (vG[j], φ(j)),

then we call rotG locally invertible.

If G has a locally invertible rotation map, the cloud label after applying the rotation
map only depends on the current cloud label, not the vertex of G. In the s-wide replace-
ment product, this corresponds to the H component of the rotation map only depending
on a vertex’s H component, not its G component. We define the s-wide replacement prod-
uct as described before, with the inter-cloud operator Gi using the i-th coordinate of the H
component, which is a value in [d1], to determine the inter-cloud step.

Definition A.3 (s-wide replacement product). Suppose we are given the following:

- A d1-regular graph G = ([n′], E) together with a locally invertible rotation map rotG : [n′]×
[d1]→ [n′]× [d1].

- A d2-regular graph H = ([d1]
s, E′).

9This kind of map is denoted rotation map in the zig-zag terminology [RVW00].

43

And we define:

- For i ∈ {0, 1, . . . , s− 1}, we define Roti : [n′]× [d1]
s → [n′]× [d1]

s as, for every v ∈ [n′]
and (a0, . . . , as−1) ∈ [d1]

s,

Roti((v, (a0, . . . , as−1))) := (v′, (a0, . . . , ai−1, a′i, ai+1, . . . , as−1)),

where (v′, a′i) = rotG(v, ai).

- Denote by Gi the operator realizing Roti and let AH be the normalized random walk operator
of H. Note that Gi is a permutation operator corresponding to a product of transpositions.

Then k− 1 steps of the s-wide replacement product are given by the operator

k−2

∏
i=0

Gi mod s(I⊗ AH).

Ta-Shma instantiates the s-wide replacement product with an outer graph G that is a
Cayley graph, for which locally invertible rotation maps exist generically.

Remark A.4. Let R be a group and A ⊆ R where the set A is closed under inversion. For every
Cayley graph Cay(R, A), the map φ : A → A defined as φ(g) = g−1 gives rise to the locally
invertible rotation map

rotCay(R,A)((r, a)) = (r · a, a−1),

for every r ∈ R, a ∈ A.

1 2

34

1

2

3

4

1

2

3

4 1

2

3

4

1

23

4

Figure 1: An example of the 1-wide replacement product with outer graph G = K5 and
inner graph H = C4. Vertices are labeled by their H components. Note that the rotation
map is locally invertible, with φ(1) = 2, φ(2) = 1, φ(3) = 4, and φ(4) = 3.

44

A.2 The Construction

Let n′ = |V(G)|, m = ds
1 = |V(H)| and n = n′ ·m = |V(G)×V(H)|. Ta-Shma’s code con-

struction works by starting with a constant bias code C ′0 in Fn′
2 , repeating each codeword

m = ds
1 times to get a new ε0-biased code C0 in Fn

2 , and boosting C0 to arbitrarily small
bias using direct sum liftings. Recall that the direct sum lifting is based on a collection
W(k) ⊆ [n]k, which Ta-Shma obtains using k− 1 steps of random walk on the s-wide re-
placement product of two regular expander graphs G and H. The graph G is on n′ vertices
and other parameters like degrees d1 and d2 of G and H respectively are chosen based on
target code parameters.

To elaborate, every k − 1 length walk on the replacement product gives a sequence
of k vertices in the replacement product graph, which can be seen as an element of [n]k.
This gives the collection W(k) with |W(k)| = n′ · ds

1 · d
k−1
2 which means the rate of lifted

code is smaller than the rate of C ′0 by a factor of ds
1dk−1

2 . However, the collection W(k) is a
parity sampler and this means that the bias decreases (or the distance increases) from that
of C0. The relationship between this decrease in bias and decrease in rate with some careful
parameter choices allows Ta-Shma to obtain nearly optimal ε-balanced codes.

A.3 Tweaking the Construction

Recall the first s steps in Ta-Shma’s construction are given by the operator

Gs−1(I⊗ AH)Gs−2 · · ·G1(I⊗ AH)G0(I⊗ AH).

Naively decomposing the above operator into the product of operators ∏s−1
i=0 Gi(I⊗ AH) is

not good enough to obtain the splittability property which would hold provided σ2(Gi(I⊗
AH)) was small for every i in {0, . . . , s− 1}. However, each Gi(I⊗AH) has |V(G)| singular
values equal to 1 since Gi is an orthogonal operator and (I⊗AH) has |V(G)| singular values
equal to 1. To avoid this issue we will tweak the construction to be the following product

s−1

∏
i=0

(I⊗ AH)Gi(I⊗ AH).

The operator (I⊗ AH)Gi(I⊗ AH) is exactly the walk operator of the zig-zag product
G z H of G and H with a rotation map given by the (rotation map) operator Gi. This
tweaked construction is slightly simpler in the sense that G z H is an undirected graph.
We know by the zig-zag analysis that (I⊗AH)Gi(I⊗AH) is expanding as long G and H are
themselves expanders. More precisely, we have a bound that follows from [RVW00].

Fact A.5. Let G be an outer graph and H be an inner graph used in the s-wide replacement product.
For any integer 0 ≤ i ≤ s− 1,

σ2((I ⊗ AH)Gi(I ⊗ AH)) ≤ σ2(G) + 2 · σ2(H) + σ2(H)2.

This bound will imply splittability as shown in Appendix A.4. We will need to argue
that this modification still preserves the correctness of the parity sampling and that it can
be achieved with similar parameter trade-offs.

The formal definition of a length-t walk on this slightly modified construction is given
below.

45

Definition A.6. Let k ∈ N, G be a d1-regular graph and H be a d2-regular graph on ds
1 ver-

tices. Given a starting vertex (v, u) ∈ V(G)× V(H), a (k− 1)-step walk on the tweaked s-wide
replacement product of G and H is a tuple ((v1, u1), . . . , (vk, uk)) ∈ (V(G)×V(H))k such that

- (v1, u1) = (v, u), and

- for every 1 ≤ i < k, we have (vi, ui) adjacent to (vi+1, ui+1) in (I⊗ AH)G(i−1) mod s(I⊗
AH).

Note that each (I⊗ AH)G(i−1) mod s(I⊗ AH) is a walk operator of a d2
2-regular graph. Therefore,

the starting vertex (v, u) together with a degree sequence (m1, . . . , mk) ∈ [d2
2]

k−1 uniquely defines
a (k− 1)-step walk.

A.3.1 Parity Sampling

We argue informally why parity sampling still holds with similar parameter trade-offs. In
particular, we formalize a key result underlying parity sampling and, in Appendix A.5, we
compute the new trade-off between bias and rate in some regimes. In Appendix A.1, the
definition of the original s-wide replacement product as a purely graph theoretic operation
was given. Now, we explain how Ta-Shma used this construction for parity sampling
obtaining codes near the GV bound.

For a word z ∈ F
V(G)
2 in the base code, let Pz be the diagonal matrix, whose rows

and columns are indexed by V(G) × V(H), with (Pz)(v,u),(v,u) = (−1)zv . Proving parity
sampling requires analyzing the operator norm of the following product

Pz

s−1

∏
i=0

(I⊗ AH)GiPz(I⊗ AH), (5)

when bias(z) ≤ ε0. Let 1 ∈ RV(G)×V(H) be the all-ones vector, scaled to be of unit length
under the ℓ2 norm, and W be the collection of all (t− 1)-step walks on the tweaked s-wide
replacement product. Ta-Shma showed (and it is not difficult to verify) that

bias (dsumW(z)) =

⃓⃓⃓⃓
⃓
⟨︄

1,Pz

k−2

∏
i=0

(I⊗ AH)Gi mod sPz(I⊗ AH)1

⟩︄⃓⃓⃓⃓
⃓ .

The measure used in this inner product is the usual counting measure over RV(G)×V(H).
From the previous equation, one readily deduces that

bias (dsumW(z)) ≤ σ1

(︄
Pz

s−1

∏
i=0

(I⊗ AH)GiPz(I⊗ AH)

)︄⌊(k−1)/s⌋

.

The key technical result obtained by Ta-Shma is the following, which is used to analyze
the bias reduction as a function of the total number walk steps k− 1. Here θ is a parameter
used in obtaining explicit Ramanujan graphs.

Fact A.7 (Theorem 24 abridged [TS17]). If H is a Cayley graph on F
s log d1
2 and ε0 + 2 · θ + 2 ·

σ2(G) ≤ σ2(H)2, then⃦⃦⃦⃦
⃦s−1

∏
i=0

PzGi(I⊗ AH)

⃦⃦⃦⃦
⃦

op

≤ σ2(H)s + s · σ2(H)s−1 + s2 · σ2(H)s−3,

46

where Pz ∈ R(V(G)×V(H))×(V(G)×V(H)) is the sign operator of a ε0 biased word z ∈ F
V(G)
2 defined

as a diagonal matrix with (Pz)(v,u),(v,u) = (−1)zv for every (v, u) ∈ V(G)×V(H).

We reduce the analysis of Ta-Shma’s tweaked construction to an analog of Fact A.7. In
doing so, we only lose one extra step as shown below.

Corollary A.8. If H2 is a Cayley graph on F
s log d1
2 and ε0 + 2 · θ + 2 · σ2(G) ≤ σ2(H)4, then⃦⃦⃦⃦

⃦s−1

∏
i=0

(I⊗ AH)PzGi(I⊗ AH)

⃦⃦⃦⃦
⃦

op

≤ σ2(H2)s−1 + (s− 1) · σ2(H2)s−2 + (s− 1)2 · σ2(H2)s−4,

where Pz is the sign operator of an ε0-biased word z ∈ F
V(G)
2 as in Fact A.7.

Proof. We have⃦⃦⃦⃦
⃦s−1

∏
i=0

(I⊗ AH)PzGi(I⊗ AH)

⃦⃦⃦⃦
⃦

op

≤ ∥(I⊗ AH)∥op

⃦⃦⃦⃦
⃦s−1

∏
i=1

PzGi(I⊗ A2
H)

⃦⃦⃦⃦
⃦

op

∥PzG0(I⊗ AH)∥op

≤
⃦⃦⃦⃦
⃦s−1

∏
i=1

PzGi(I⊗ A2
H)

⃦⃦⃦⃦
⃦

op

≤ σ2(H2)s−1 + (s− 1) · σ2(H2)s−2 + (s− 1)2 · σ2(H2)s−4,

where the last inequality follows from Fact A.7.

Remark A.9. We know that in the modified construction H2 is a Cayley graph since H is a Cayley
graph.

A.4 Splittability

In this subsection, we focus on the splittability parameters arising out of the construction
described above. The collection W(k) ⊆ [n]k is obtained from taking k− 1 step walks on
s-wide replacement as described above, which is d2

2-regular. Recall from Definition 3.9 that
we need to show σ2(SW[a,t],W[t+1,b]) ≤ τ for all 1 ≤ a < t < b ≤ k, where,

(︂
SW[a,t],W[t+1,b]

)︂
(ia,··· ,it),(it+1,··· ,ib)

:=
1[(ia, · · · , it, it+1, · · · , ib) ∈W[a, b]]

d2(b−s)
2

Lemma A.10. Let 1 ≤ a < t < b ≤ k. Suppose G is a d1-regular outer graph on vertex set
[n] with walk operator Gt used at step s of a walk on the s-wide replacement product and H is a
d2-regular inner graph on vertex set [m] with normalized random walk operator AH. Then there
are orderings of the rows and columns of the representations of SW[a,t],W[t+1,b] and AH as matrices
such that

SW[a,t],W[t+1,b] = ((I ⊗ AH)Gt(I ⊗ AH))⊗ J/d2(b−t−1)
2 ,

where J ∈ R[d2]
2(t−a)×[d2]

2(b−t−1)
is the all ones matrix.

47

Proof. Partition the set of walks W[a, t] into the sets W1,1, . . . , Wn′,m, where w ∈ Wi,j if the
last vertex of the walk it = (vt, ut) satisfies vt = i and ut = j. Similarly, partition W[t+ 1, b]
into the sets W ′1,1, . . . , W ′n′,m, where (it+1, · · · , ib) ∈ W ′i,j if the first vertex of the walk it+1 =

(vt+1, ut+1) satisfies vt+1 = i and ut+1 = j. Note that
⃓⃓
Wi,j

⃓⃓
= d2(t−a)

2 and
⃓⃓⃓
W ′i,j

⃓⃓⃓
= d2(b−t−1)

2

for all (i, j) ∈ [n′]× [m], since there are d2
2 choices for each step of the walk.

Now order the rows of the matrix SW[a,t],W[t+1,b] so that all of the rows corresponding to
walks in W1,1 appear first, followed by those for walks in W1,2, and so on in lexicographic
order of the indices (i, j) of Wi,j, with an arbitrary order within each set. Do a similar
re-ordering of the columns for the sets W ′1,1, . . . , W ′n′,m. Observe that

(︂
SW[a,t],W[t+1,b]

)︂
(ia,··· ,it),(it+1,··· ,ib) =

1(ia,··· ,it,it+1,··· ,ib)∈W[a,b]

d2(b−t)
2

=
d2

2 · (weight of transition from it to it+1 in (I ⊗ AH)Gt(I ⊗ AH))

d2(b−t)
2

,

which only depends on the adjacency of the last vertex of (ia, · · · , it) and the first vertex of
(it+1, · · · , ib). If the vertices it = (vt, ut) and it+1 = (vt+1, ut+1) are adjacent, then(︂

SW[a,t],W[t+1,b]

)︂
(ia,··· ,it),(it+1,··· ,ib)

= ((I ⊗ AH)Gt(I ⊗ AH))(vt,ut),(vt+1,ut+1)
/d2(b−t−1)

2 ,

for every (ia, · · · , it) ∈W[a, t] and (it+1, · · · , ib) ∈W[t + 1, b]; and otherwise(︂
SW[a,t],W[t+1,b]

)︂
(ia,··· ,it),(it+1,··· ,ib)

= 0. Since the walks in the rows and columns are sorted ac-

cording to their last and first vertices, respectively, the matrix SW[a,t],W[t+1,b] exactly matches

the tensor product ((I ⊗ AH)Gt(I ⊗ AH))⊗ J/d2(b−t−1)
2 .

Corollary A.11. Let 1 ≤ a < t < b ≤ k. Suppose G is a d1-regular outer graph with walk
operator Gt used at step t of a walk on the s-wide replacement product and H is a d2-regular inner
graph with normalized random walk operator AH. Then

σ2(SW[a,t],W[t+1,b]) = σ2((I ⊗ AH)Gt(I ⊗ AH)).

Proof. Using Lemma A.10 and the fact that

σ2(((I ⊗ AH)Gt(I ⊗ AH))⊗ J/d2(b−t−1)
2) = σ2((I ⊗ AH)Gt(I ⊗ AH)),

the result follows.

Remark A.12. Corollary A.11 is what causes the splittability argument to break down for Ta-
Shma’s original construction, as σ2(Gt(I⊗ AH)) = 1.

A.5 Parameter Choices

In this section, we choose parameters to finally obtain Theorem A.1, for which we must
argue about bias, rate and splittability.

A graph is said to be an (n, d, λ)-graph provided it has n vertices, is d-regular, and has
second largest singular value of its normalized adjacency matrix at most λ.

48

Notation A.13. We use the following notation for the graphs G and H used in the s-wide replace-
ment product.

- The outer graph G will be an (n′′, d1, λ1)-graph.

- The inner graph H will be a (ds
1, d2, λ2)-graph.

The parameters n′′, d1, d2, λ1, λ2 and s are yet to be chosen.

We are given the dimension D of the desired code and its bias ε ∈ (0, 1/2). We set a
parameter α ≤ 1/128 such that (for convenience) 1/α is a power of 2 and

α5

4 log2(1/α)
≥ 1

log2(1/ε)
. (6)

By replacing log2(1/α) with its upper bound 1/α, we observe that α = Θ(1/ log2(1/ε)1/6)
satisfies this bound, and so we choose s = Θ(log2(1/ε)1/6).

The inner graph H. The choice of H is same as Ta-Shma’s choice. More precisely, we set
s = 1/α and d2 = s4s. We obtain a Cayley graph H = Cay(F4s log2(d2)

2 , A) such that H is an
(n2 = d4s

2 , d2, λ2) graph where λ2 = b2/
√

d2 and b2 = 4s log2(d2). (The set of generators,
A, comes from a small bias code derived from a construction of Alon et al. [AGHP92].)

The base code C0. This is dealt with in detail in Section 5. We choose ε0 = 1/d2
2 and use

Corollary 6.2 to obtain a code C ′0 in Fn′
2 that is ε0-biased and has a blocklength Ω(D/εc

0)
for some constant c. Call this blocklength of C ′0 to be n′. Next we replicate the codewords
m = ds

1 times to get code C0 in Fn
2 with the same bias but a rate that is worse by a factor

of m. In the proofs below, we only use properties of C0 that is of multiplicity m, has rate
Ω(εc

0)/m and has bias ε0, as specified in Theorem A.1.

The outer graph G. Set d1 = d4
2 so that n2 = ds

1 as required by the s-wide replace-
ment product. We apply Ta-Shma’s explicit Ramanujan graph lemma (Lemma 2.10 in
[TS17]) with parameters n′, d1 and θ to obtain an (n′′, d1, λ1) Ramanujan graph G with
λ1 ≤ 2

√
2/
√

d1 and n′′ ∈ [(1− θ)n′, n′] or n′′ ∈ [(1− θ)2n′, 2n′]. Here, θ is an error pa-
rameter that we set as θ = λ4

2/6 (this choice of θ differs from Ta-Shma). Because we can
construct words with block length 2n′ (if needed) by duplicating each codeword, we may
assume w.l.o.g. that n′′ is close to n′ and (n′ − n′′) ≤ θn′ ≤ 2θn′′. See [TS17] for a more
formal description of this graph.

Note that λ1 ≤ λ4
2/6 since λ1 ≤ 3/

√
d1 = 3/d2

2 = 3 · λ4
2/b4

2 ≤ λ4
2/6. Hence, ε0 + 2θ +

2λ1 ≤ λ4
2, as needed to apply Corollary A.8.

The walk length. Set the walk length k− 1 to be the smallest integer such that

(λ2
2)

(1−5α)(1−α)(k−1) ≤ ε.

This will imply using Ta-Shma’s analysis that the bias of the final code is at most ε as shown
later.

49

s = 1/α, s = Θ(log(1/ε)1/6), so that α3

4 log2(1/α)
≥ 1

log2(1/ε)

H : (n2, d2, λ2), n2 = ds
1, d2 = s4s, λ2 = b2√

d2
, b2 = 4s log d2

C ′0 : bias ε0 = 1/d2
2, blocklength n′ = O(D/εc

0)

C0 : bias ε0 = 1/d2
2, multiplicity m = ds

1, blocklength n = O(mD/εc
0)

G : (n′′, d1, λ1), n′′ ≈ n′ = O(D/εc
0), d1 = d4

2, λ1 ≤ 2
√

2
d1

k : smallest integer such that (λ2
2)

(1−5α)(1−α)(k−1) ≤ ε

Proof of Theorem A.1. We will prove it in the following claims. We denote by W(k) ⊆ [n]k

the collection of walks on the s-wide replacement product obtained above, and we denote
by C the final code obtained by doing the direct sum operation on C0 using the collection
of tuples W(k). The explicitness of W(k) follows from Ta-Shma’s construction since all the
objects used in the construction have explicit constructions.

Next, the multiplicity m = ds
1 = d4s

2 = s16s2
= 216s2 log s ≤ (2s6

)o(1) = (1/ε)o(1).

Claim A.14. We have k− 1 ≥ s/α = s2, and that k− 1 ≤ 2s5, so that

Θ(log(1/ε)1/3) ≤ k ≤ Θ(log(1/ε))

Proof. Using d2 = s4s and Eq. (6), we have(︃
1

λ2
2

)︃(1−5α)(1−α)s/α

≤
(︃

1
λ2

2

)︃s/α

=

(︃
d2

b2
2

)︃s/α

≤ (d2)
s/α = s4s2/α

= 24s2 log2(s)/α = 24 log2(1/α)/α3 ≤ 2log2(1/ε) =
1
ε

.

Hence, ε ≥ (λ2
2)

(1−5α)(1−α)s/α and thus k− 1 must be at least s/α.

In the other direction, we show that (λ2
2)

(1−5α)(1−α)2s5 ≤ ε, which will imply k ≤
Θ(s5)⇒ k ≤ Θ(s6) = Θ(log(1/ε)).

(λ2
2)

(1−5α)(1−α)2s5 ≤
(︃

b2
2

d2

)︃s5

≤
(︃

1
s3s

)︃s5

= 2−Θ(s6 log s) ≤ 2−Θ(s6) = 2− log(1/ε) ≤ ε

Remark A.15. By the minimality of k, we have (λ2
2)

(1−5α)(1−α)(k−2) ≥ ε. Since 1/(k− 1) ≤ α,
we get (λ2

2)
(1−5α)(1−α)2(k−1) ≥ ε. This will be useful in rate computation.

Claim A.16. The code C is ε-balanced.

Proof. Using Corollary A.8, we have that the final bias

b :=
(︂

σ2(H2)s−1 + (s− 1) · σ2(H2)s−2 + (s− 1)2 · σ2(H2)s−4
)︂⌊(k−1)/s⌋

50

is bounded by

b ≤ (3(s− 1)2σ2(H2)s−4)((k−1)/s)−1 (Using σ2(H2) ≤ 1/3s2)

≤ ((σ2(H2)s−5)(k−1−s)/s

= σ2(H2)(1−5/s)(1−s/(k−1))(k−1)

≤ σ2(H2)(1−5α)(1−α)(k−1)

=
(︁
λ2

2
)︁(1−5α)(1−α)(k−1) ≤ ε,

where the last inequality follows from s = 1/α and k− 1 ≥ s/α, the latter from Claim A.14.

Claim A.17. C has rate Ω(ε2+28·α).

Proof. The support size is the number of walks of length k on the s-wide replacement prod-
uct of G and H (each step of the walk has d2

2 options), which is

|V(G)||V(H)|d2(k−1)
2 = n′′ · ds

1 · d
2(k−1)
2 = n′′ · d2(k−1)+4s

2 ≤ n′ · d2(k−1)+4s
2

= Θ
(︃

D
εc

0
· d2(k−1)+4s

2

)︃
= Θ

(︂
D · (d2

2)
k−1+2s+c

)︂
= O

(︂
D · (d2

2)
(1+3α)(k−1)

)︂
,

where the penultimate equality follows from the assumption that ε0 is a constant.

Note that dα
2 = d1/s

2 = s4 ≥ b2 since b2 = 4s log2(d2) = 16s2 log2(s) ≤ s4 . Thus,

d1−2α
2 =

d2

d2α
2
≤ d2

b2
2
=

1
σ2(H2)

.

We obtain

(d2
2)

(k−1) ≤
(︃

1
σ2(H2)

)︃ 2(k−1)
1−2α

≤
(︃

1
ε

)︃ 2
(1−2α)(1−5α)(1−α)2

(Using Remark A.15)

≤
(︃

1
ε

)︃2(1+10α)

,

which implies a block length of

O
(︂

D · (d2
2)

(1+3α)(k−1)
)︂
= O

(︄
D
(︃

1
ε

)︃2(1+10α)(1+3α)
)︄

= O

(︄
D
(︃

1
ε

)︃2(1+14α)
)︄

.

Claim A.18. W(k) is τ-splittable for τ ≤ 2−Θ(log(1/ε)1/6).

51

Proof. As we saw in Corollary Corollary A.11, the splittability τ can be upper bounded by
σ2((I ⊗ AH)Gt(I ⊗ AH)), which is at most σ2(G) + 2 · σ2(H) + σ2(H)2 by Fact A.5. So, the
collection W(k) is τ-splittable for

τ ≤ σ2(G) + 2 · σ2(H) + σ2(H)2 ≤ 4λ2 = 4b2/d1/2
2

= 64s2 log s/s2s

= 2−Θ(s log s)

≤ 2−Θ(s)

= 2−Θ(log(1/ε)1/6)

52

	Introduction
	A Technical Overview
	Preliminaries
	Codes
	Direct Sum Lifts
	Splittable Tuples
	Factors
	Functions and Measures

	Weak Regularity for Splittable Tuples
	Abstract Weak Regularity Lemma
	Splittable Mixing Lemma
	Existential Weak Regularity Decomposition
	Efficient Weak Regularity Decomposition
	Near-linear Time Matrix Correlation Oracles

	Regularity Based Decoding
	List Decoding of Direct-Sum Codes

	Near-linear Time Decoding of Ta-Shma's Codes
	Choosing the Base Code

	Properties of Ta-Shma's Construction
	The s-wide Replacement Product
	The Construction
	Tweaking the Construction
	Parity Sampling

	Splittability
	Parameter Choices

