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Abstract—In this paper, we draw attention to the problem
of cross-service attacks, that is, attacks that exploit information
collected about users from one service to launch an attack on the
same users on another service. With the increased deployment
and use of what fundamentally are integrated-services networks,
such as 4G/LTE networks and now 5G, we expect that cross-
service attacks will become easier to stage and therefore more
prevalent. As running example to illustrate the effectiveness and
the potential impact of cross-service attacks we will use the
problem of account association in 4G/LTE networks. Account
association attacks aim at determining whether a target mobile
phone number is associated with a particular online account.
The the case of 4G/LTE, the adversary launches the account
association attacks by sending SMS messages to the target phone
number and analyzing patterns in traffic related to the online
account. We evaluate the proposed attacks in both a local 4G/LTE
testbed and a major commercial 4G/LTE network. Our extensive
experiments show that the proposed attacks can successfully
identify account association with close-to-zero false negative and
false positive rates. Our experiments also illustrate that the
proposed attacks can be launched in a way that the victim
receives no indication of being under attack.

Index Terms—SMS, traffic analysis, 4G/LTE

I. INTRODUCTION

In this paper, we study the problem of cross-service attacks,
that is, attacks that exploit information collected about users
from one service to launch an attack on the same users
on another service. With the increased deployment and use
of what fundamentally are integrated-services networks, such
as 4G/LTE networks and now 5G, we expect that cross-
service attacks will become easier to stage and therefore
more prevalent. As multiple services share the underlying
infrastructure, for example SMS and IP services on 4G/LTE,
information gathered from one service on the network can
disclose information about users of other services.

As running example to illustrate the effectiveness and the
potential impact of cross-service attacks we will use the
problem of account association in 4G/LTE networks. The goal
of account association is to determine whether a target mobile
phone number is associated with a particular online account
for an IP-based service such as Skype or Netflix. The demand
for associating phone numbers with online accounts may
emerge in a variety of settings. For example, many smartphone

applications and services require users to provide their phone
numbers during account registration. If adversaries are able to
associate service accounts with the their registered telephone
numbers, they may be able to compromise the privacy of
the application and that of their users. For example, an
adversary may suspect a particular individual of anonymously
broadcasting live videos through a smartphone applications
such as Periscope. The adversary can infer the identity of the
Periscope account owner by associating the account with the
owner’s phone number.

4G/LTE networks are particularly susceptible to the type
of cross-service attacks addressed in this paper because all
the services provided by 4G/LTE rely on the same IP-based
communication channels. This includes services that one does
not traditionally think of as IP based, such as voice calls and
SMS messages, and services that are generally built on IP,
such as high-definition mobile video, mobile augmented or
virtual reality, and mobile cloud computing. We will see that
the requirement for 4G/LTE to provide low-delay and high-
bandwidth services renders cross-service attacks particularly
effective. The opportunities for this type of attack will grow
as well. Given the popularity of 4G/LTE and 5G, such attacks
will likely become quite prevalent and impactful.

We will study a class of account association attacks specifi-
cally designed for the 4G/LTE networks: An adversary initiates
the attacks by sending SMS messages to the target phone
number and by analyzing the traffic related to the account. If
the analysis can find traffic patterns corresponding to the SMS
messages, the attack assumes that the target phone number is
associated with the account.

We staged a number of attacks within a local 4G/LTE
testbed. The results indicate that the proposed attacks can
accurately identify account associations. Our local experiments
also show that the attacks can be “silent” to the victim,
meaning that the victim receives no indication that it is the
target of an account association attack. These “silent” attacks
are possible because existing smartphones have no abilities
to process messages in some specific formats, such as CPIM
[1]. We will show that although the victim does not know
that a “silent” attack is under way, the proposed attacks can
actually achieve better identification performance when CPIM



or similar message formats are being used compared to attacks
with user-visible SMS messages.

When deployed in commercial 4G/LTE networks, these
attacks in their basic forms are less effective, mainly because
the SMS service center and the uplink bandwidth are shared
among many service subscribers. The scheduling algorithm
used in this sharing tend to spread the SMS messages in order
to prevent the batching of SMS messages to any particular
subscriber. This makes it hard for the attacker to find the cor-
respondence between the traffic patterns and SMS messages.
We describe how an attacker can overcome this challenge by
employing a class of attacks that is particularly well suited
against commercial 4G/LTE networks. These attacks leverage
the knowledge about how spreading and throttling is realized
by network operators, and take advantage of the spreading
and throttling caused by the scheduling for identification. We
evaluate this new class of attacks using an extensive suite of
experiments over a major commercial 4G/LTE network. The
results illustrate the effectiveness of these attacks and show
that one can identify account associations with high accuracy
on large commercial 4G/LTE networks.

The success of the proposed account association attacks
should encourage us to re-think the architecture of 4G/LTE
networks and integrated-services architectures in general. As
mobile-network providers transitioned from 3G to 4G/LTE
networks, they also transitioned to a fully IP-based underlying
platform. As a result, a highly diverse set of services, including
voice calls and SMS messages, are now provided over a
shared, IP-based network. Integrating these services brings
many advantages, such as better scalability and richness of
features. It does, however, expose the services to attacks,
primarily side-channel attacks, that span individual services.
As we will show, such attacks are particularly effective against
services that provide Quality-of-Service (QoS) guarantees,
such as voice, video, and various forms of augmented or virtual
reality services. As a result, attention must be paid as we
transition to next-generation architectures for mobile network
to the importance of preventing cross-service covert channel
attacks, much as the attacks proposed in this paper.

II. BACKGROUND

1) Network Architecture for 4G/LTE: 4G/LTE networks
provide all their services over a flat, all-IP architecture. This
is in contrast to the hierarchical structures used in previous
architectures. The flat, all-IP architecture of 4G/LTE enables
constantly higher bandwidths with significantly lower data-
transfer delays compared to those of 2G and 3G networks.
In a 4G/LTE network, a User Equipment (UE), such as a
smartphone, connects to a 4G/LTE network through one of the
base stations, also called Evolved Node B devices (eNodeB’s).
The eNodeB devices are elements of the Evolved Universal
Terrestrial Radio Access Network (E-UTRAN), which is re-
sponsible for keeping the UEs wirelessly connected, and which
is designed to help improve overall wireless connectivity. The
eNodeBs are connected to the Evolved Packet Core (EPC),
which provides 4G/LTE services to a subscribed UE.
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Fig. 1: A Typical Scenario of VoLTE

The EPC consists of the following components: (1) The
Mobile Management Entity (MME) is responsible for tracking
the UE and for providing the initial connection and authentica-
tion for the UE device. Particularly important for the proposed
attacks is the MME’s role in activation and deactivation of
bearers, which uniquely identify traffic flows with specific
Quality of Service (QoS) requirements. Figure 1 shows how
two bearers are used in a 4G/LTE network, one for IP traffic
and the other for voice. (2) the Home Subscriber System
(HSS) is a database that maintains user profiles and location
information. It acts as a source for name and address resolution
and for authentication. (3) The Serving Gateway (SGW) is
responsible for managing all IP packets that flow through the
network. (4) The Packet Data Network Gateway (PGW) is
responsible for allocating IP addresses to the UEs. It provides
an interface towards the Internet and to the IP Multimedia
Subsystem (IMS), which in turn provides multimedia services,
including voice-over-LTE. Particularly related to the proposed
attacks is PGW’s role in setting up the appropriate bearers
to establish the corresponding connections to IMS services.
The EPC is – differently than in 2G/3G mobile networks – an
IP-only core network that supports packet-switching.

2) Voice over LTE: IMS is the current designated solution
for offering multimedia services in 4G/LTE mobile networks.
It shifts the voice communications of mobile devices from the
legacy circuit-switching technology to the packet-switching
design used in 4G/LTE. In comparison to 3G networks and
even Voice over IP (VoIP), voice-over-LTE (VoLTE) packets
have smaller packet headers and therefore save bandwidth [2].

A typical scenario of VoLTE communications is shown
in Figure 1. A VoLTE-capable phone is connected to the
4G/LTE network with two bearers. The default bearer is
established when a UE connects to a 4G/LTE network. It
remains established to provide the UE with always-on IP
connectivity. The default bearer is typically setup without
any QoS requirements. It is primarily used for general IP
traffic. A dedicated bearer is used for VoLTE communications.
The dedicated bearers established for (delay-sensitive) voice
communications have specific QoS requirements.

In most current 4G/LTE networks, the SMS service is based
on IMS. Due to their demand for timeliness, SMS packets are
usually sent in a dedicated bearer with QoS requirements that
are higher than those of general IP packets. The IMS service
utilizes the Session Initiation Protocol (SIP) [3] to handle SMS
delivery. A SIP session is maintained between the phone’s
SMS application and the IMS server. In turn, the IMS server
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is responsible for bridging the SIP session and the SMS center.

III. THREAT MODEL

We assume that the adversary’s goal is to associate a target
mobile phone number with a particular user account of a given
IP-based service. Figure 2 illustrates the threat model. We
assume that both the adversary’s and victim’s smartphones are
connected to (likely different) commercial 4G/LTE networks.
The attacker has the following capabilities:
1) The attacker can send SMS messages to the suspected phone
number. We note that if the adversary can choose a message
format incompatible with smartphones, for example CPIM [1],
[4], the messages sent by the adversary will not be shown on
the victim’s phone. As a result, the victim is likely not aware
of the adversary’s messages.
2) The attacker can collect traffic generated by the application
associated with the online account. We assume that the traffic
is padded to a fixed packet size and then encrypted. The
adversary has therefore no access to either content of the
victim’s communication or payload size.
3) The attacker is not free to pick the point where she observes
the traffic. Obviously, the closer to the victim’s phone the
traffic is collected, the less interference the collected traffic
data suffers from other traffic in the network. To illustrate the
attack’s effectiveness, we create a worst-case scenario, and we
assume that the traffic is collected at the furthest point from
the victim’s smartphone, i.e., on the last hop of the traffic path.
4) We assume that the traffic collected by the adversary may
be aggregated. There are many reasons (e.g., use of VPN) for
why the adversary may not be able to filter the collected traffic
to gain access to the traffic flow of interest. In other words,
the collected traffic includes not only the traffic generated by
the application of interest, but other traffic as well.

In the rest of this paper, we will be using Skype as an
example for the IP-based service: The adversary suspects that
a given Skype name is being used on a smartphone with a
known phone number, and they will use a cross service attack
to associate the Skype name with the number of the phone.
Skype is a particularly attractive IP-based service for cross-
service attacks: On one hand it is susceptible to timing-based
side-channel attacks because of its need to provide quality-
of-service. On the other hand, Skype prides itself to having a
unique set of features to protect privacy of Skype calls, such
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Fig. 3: A Local 4G/LTE Testbed

as strong encryption and proprietary protocols [5], dynamic
path selection [6], and constant packet rates [7].

IV. ACCOUNT ASSOCIATION IN A LOCAL TESTBED

In this section, we present our investigation of account
association in a local testbed with 4G/LTE connectivity. We
will use the term “identification” to denote the process of
identifying if there is an association between a target phone
number and a given user account. The approach to identify
whether an association exists is therefore called an identifica-
tion approach. At the end of this section we will present the
performance of the described identification approach.

1) Local Testbed: Figure 3 illustrates the setup of the
local testbed. The testbed is built around the Keysight LTE
test solution, including an Agilent PXT E6621A LTE wire-
less communications test set, the E6966B IMS-SIP Network
Emulator Software, and the N6061A LTE Protocol Logging
and Analysis application. The victim’s phone is connected to
the PXT E6621A through 4G/LTE connections. The VoLTE
service, including the SMS message service, is provided by
the IMS server running the Keysight E6966B-1FP IMS-SIP
Server Emulator Software. The adversary sends SMS text
messages through the IMS client running Keysight. The Skype
call comes in through a campus network, and the adversary
observes Skype traffic from the victim’s phone by collecting
traffic on the farthest hop of the path of the Skype connection.

2) Identifying Account Association - Rationale: The iden-
tification of the account association is feasible because of the
differences in the bearers (and their QoS levels in particular)
used to transport Skype packets vs. SMS text messages. As
described in Section II, SMS text messages are usually sent in
a bearer with higher Quality of Service (QoS) requirements,
typically same or similar to the QoS of bearers for VoLTE
calls. This is because of SMS’s close relationship to voice.
General IP packets, including the Skype packets, are sent in the
default bearer, which usually has lower QoS requirements [8].
This provides an opportunity to the adversary, who identifies
the account association by sending SMS text messages to
the victim’s phone. Since the SMS messages are sent with
higher QoS, the traffic of other IP services with lower QoS
(Skype in our case) will be disturbed. The IP traffic will
therefore display an inter-packet-time pattern that reflects the
interference caused by the SMS messages. The adversary can
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Fig. 4: Effect of SMS Messages on Skype Traffic

therefore identify the account association by correlating the
timing of the SMS messages with the timing pattern of IP
traffic (Skype in our case) generated by the victim’s phone.

Figure 4 shows an example of the effect on Skype traffic
caused by the interfering SMS messages. The graph shows
the throughput of Skype traffic over time. In this example,
three bursts of SMS messages are generated. We observe that
each burst affects the rate of the Skype traffic. The results in
this figure are obtained from the testbed shown in Figure 3.
The length of the sampling window for the computation of
the throughput curve is 2.5 seconds. These results illustrate
the two primary challenges with identification: (1) The Skype
traffic throughput fluctuates over time, and some decreases in
the throughput curve may not be caused by the interfering
bursts of SMS messages. (2) The size of bursts may be
limited, and therefore may not be generating easily-detectable
interference patterns. For illustrative purposes, the results in
Figure 4 use a large number of SMS messages (425 messages)
in each burst. Obviously, in real 4G/LTE networks it is not
possible to send such large a number of SMS text messages
in a burst because the network operators have limits in place
on SMS message sending rates.

3) Identification Algorithm: To start the identification, the
adversary sends a sequence of bursts with n SMS messages
each. The adversary identifies the account association by
detecting the pattern using Algorithm 1. The algorithm can
be divided into three steps: data extraction, cross correlation,
and decision. In the data extraction step, we first store the
number of messages sent within each burst in the array blen.
We then store the number of packets collected during the
corresponding time slots at the data collection point in array
traf . We also randomly pick time slots that do not overlap
with the burst periods. The number of messages sent during
the randomly picked time slots is zero and kept in array blen
as well. Similarly, the number of packets collected during the
corresponding time slots is kept in array traf . (We assume
that we collect enough traffic at the collection point so that
the arrays traf and blen are of the same size.)

We use the sample Pearson’s correlation coefficent r to
cross-correlate the values in arrays blen and traf . SMS bursts
can cause reductions in the rate of traffic sent from the victim’s
smartphone. If so, the two arrays will be negatively-correlated.

Based on the cross-correlation results obtained in the pre-
vious step, and collected in vector corrval, the function

input : n - number of SMS message bursts; lentraf -
length of traffic collected at the data collection
point; arrays bbegin, bend, and blen - with
bbegin[i], bend[i], and blen[i] indicating the
start and end time of and the number of
message in the ith burst, blenavg - average
burst length, bound - bound on the delay
between the sending of a burst and the arrival
of the corresponding pattern observed at the
data collection point, δ - step increase;

output: dec - Detection decision ;
∆← 0; t← bend[1]; j ← 1;
while ∆ + bend[n] < lentraf do

for i← 1 to n do
traf [i]← the number of packet arrivals at the
data collection point during
[bbegin[i] + ∆, bend[i] + ∆];

randomly pick one duration
[trandom, trandom + blenavg] not overlapping
with burst durations;
blen[n+ i]← the number of SMS messages
during [trandom, trandom + blenavg] ;
traf [n+ i]← the number of packets during
[trandom + ∆, trandom + blenavg + ∆] ;

end
corrval[j]← r(blen[1..2n], traf [1..2n]);
j ← j + 1;
∆← ∆ + δ;

end
dec← Decision(corrval);

Algorithm 1: Identification Algorithm for a Local Testbed

Decision tells us whether the pattern is detected. Our ex-
periments show that the cross-correlation values are close to
Gaussian. We also observed that the cross-correlation val-
ues are very far away from the mean when the pattern is
synchronized with the bursts. The decision logic is therefore
simple: If within the bound of the delay between SMS message
sending time and the arrival time of the corresponding pattern
at the data collection point, the cross-correlation between
the bursts and the traffic is less than the decision threshold
(three standard deviations off the mean on the left side of the
normal distribution,) the account association is confirmed. In
our experiments, the bound is roughly 1 second, as the SMS
message delay is around 0.3987 seconds, and the packet delay
between victim’s phone and the data collection point is about
0.75 seconds. The bound is much smaller than the length of
bursts, which are about 1.5 seconds long.

4) Identification Performance: To evaluate the performance
of the identification algorithm, we conducted experiments in
the local testbed shown in Figure 3. In these experiments,
SMS messages were sent in two different message formats:
3GPP2 [9] and CPIM [1], [4]. We choose the 3GPP2 message
format because of its popularity. The CPIM message format
was chosen because CPIM messages are received but can
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Fig. 5: Identification Performance in A Local 4G/LTE Testbed

not be displayed on smartphones such as the iPhone 6S Plus
with iOS version 11.4 (15F79). We used the N6061A LTE
protocol logging and analysis software in the testbed to verify
that CPIM messages are indeed delivered to the iPhone by
observing that the iPhone sends a confirmation of receipt. At
the same time we observed that the iPhone shows no indication
to the user that it received an SMS message. In other words,
the victim receives no indication of the SMS message burst in
the CPIM format because the messages will not be shown on
the victim’s phone at all.

Figure 5 compares the identification performance for SMS
messages sent in the CPIM format and 3GPP2 format, re-
spectively, for varying lengths of traffic observation. In both
experiments, each burst contains 20 SMS messages, and the
inter-burst time is on average two seconds. We observe that
for messages sent in the CPIM format, both false-positive and
false-negative rates are close to zero when the length of traffic
is above or equal to 10 minutes. The false-positive rates for
3GPP2 are close to zero, and the false-negative rate drops to
below 10% as the length of traffic observation grows to 30
minutes. From Figure 5, we also observe the differences in
identification performance for the two message formats. We
conjecture that the differences are caused by the handling of
SMS messages sent in the CPIM format in iOS. It seems to
us that the handling of SMS messages in the CPIM format is
more resource-consuming, as the phone can not interpret the
messages properly. This increases both the level of stealth and
of effectiveness of the attack.

V. IDENTIFYING ACCOUNT ASSOCIATION IN A MAJOR
MOBILE NETWORK

The experiments in the local testbed show that the iden-
tification of account associations is possible in principle. In
this section, we address the question of whether attacks of
this type can be staged in a real-world commercial network
as well. The following experiments were conducted on one of
the four major U.S. mobile networks.

1) Experiment Setup: Figure 2 shows the experiment setup
to replicate the previous local experiments over a major mobile
network in the United States. In this setup, the adversary
stages the attack by sending SMS bursts over a commercial
4G/LTE network, in this case using an LG V20 smartphone.
The victim’s phone is a Motorola Moto Z Play Droid running
Skype version 8.36.0.52, and it is connected to a commercial
4G/LTE network as well.

2) Challenges: The mechanisms used by service operators
to run messaging over commercial networks are expected to
render the direct application of the attack as described in
Section IV ineffective. Challenges arise primarily from the
need to protect network resources with the help of scheduling
and service throttling in two locations: (1) SMS service centers
in mobile networks are responsible for storing, forwarding,
and delivering SMS messages [10]. These centers are also
responsible for maintaining the service operation, such as mes-
sage delivery reports to message senders. Since SMS service
centers are shared by many service subscribers, messages from
different subscribers may get queued, and their processing may
need to be scheduled by the service center. The networks also
put limits on message sending rates [11], [12]. If subscribers
exceed these limits, their message deliveries are throttled
by the service center. (2) The uplink bandwidth is shared
among 4G/LTE service subscribers, and scheduling is used
for resource control [13]. This leads to queuing and delays.

Figure 6 shows the delay between message sending time
at the adversary’s smartphone and corresponding message
receiving time at the victim’s smartphone. The delay in the
commercial 4G/LTE network, as shown in Figure 6b, can
vary from 0.2 seconds to about 350 seconds. Similar saw-
tooth patterns of packet round-trip times have been observed
in 4G/LTE networks before [13], and the saw-tooth pattern has
been mainly attributed to the scheduling protocols. Similarly,
the saw-tooth patterns in message delays observed in our
experiments can be largely explained by the scheduling in
mobile networks. In our experiments, the periodicity is much
longer because the scheduling can also happen at the SMS
message level. The delay in the local testbed, as show in
Figure 6a, only varies from about 6.43 seconds to about 6.55
seconds. This is largely because only very few smartphones
are connected to the local 4G/LTE network.

Figure 7 demonstrates the presence of throttling: Initially,
the SMS messages are delivered in a burst of 20. As time
progresses, the burst size is reduced by the service center,
reaching a steady-state of 10 messages per burst.

As a result of the scheduling and throttling, the identification
algorithm presented in Section IV is ineffective in commercial
4G/LTE networks. The pattern caused by the SMS message
bursts is not detectable in large networks because the schedul-
ing and throttling of message delivery spread out bursts of
SMS messages and make them difficult to detect.

3) Identification in a Major Mobile Network: Effective ac-
count association is still possible. We observe from Figures 6b
and 7 that the burst-spreading effect due to scheduling and
throttling is not immediately evident at the very beginning
of SMS bursts. Instead, the spreading caused by scheduling
and by throttling only gradually take effect over the length
of one or more bursts. This effect is easily understandable,
as any scheduler and any form of rate controller or throttling
mechanisms must first detect the bursts before it can kick in
and take action on the SMS messages.

Based on these observations, we re-design our identification
algorithm to detect the increase of burst spreading, rather than
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the burst interference directly such as done in Algorithm 1. The
major differences from Algorithm 1 are as follows: (1) The
cross-correlation is between SMS bursts and delayed versions
of traffic possibly containing patterns affected by the spreading
and throttling. (2) The random sampling related to trandom is
removed because the detection focuses on the spreading and
throttling effects on SMS bursts only. (3) We fix the sample
interval, i.e., the interval used to count the number of SMS
messages (blen[i]) and packets (traf [i]), to be the minimal
length of all the bursts in time.

4) Identification Performance: Figure 8 shows the identifi-
cation performance of the new algorithm for 20 messages per
burst and two-second average time between message bursts.
We observe that the false-positive rate is close to zero, false-
negatives are about 20% when the traffic length is about 7.5
minutes long and drop to 0% when it is 10 minutes or longer.

VI. DISCUSSION AND CONCLUSION

In this paper we direct the attention to an emerging class of
attacks that is enabled by the increase deployment of platforms
that run a variety of different services in an integrated fashion.

Such platforms enable attacks to leverage information on one
service to attack, or at least infer information about, users on
another service. We call these attacks “cross-service attacks”.
The goal of this attack is to associate a target mobile phone
number with a user account of an IP-based service.

Unfortunately, the need to operate SMS at low latency to
very large numbers of subscribers renders it very difficult for
the operator to prevent many timing attacks, including the
ones described in this paper. In our future work, we plan
to investigate approaches to mitigate the attacks and in the
mean time without significant degradation on QoS of VoLTE
packets.
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