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Abstract

In this study, we present a data-driven generative
design approach that can augment human creativity in
product shape design with the objective of improving
system performance. The approach consists of two
modules: 1) a 3D mesh generative design module that
can generate part-aware 3D objects using variational
auto-encoder (VAE), and 2) a low-fidelity evaluation
module that can rapidly assess the engineering
performance of 3D objects based on locally linear
embedding (LLE). This approach has two unique
features. First, it generates 3D meshes that can better
capture surface details (e.g., smoothness and
curvature) given individual parts’ interconnection and
constraints (i.e., part-aware), as opposed to
generating holistic 3D shapes. Second, the LLE-based
solver can assess the engineering performance of the
generated 3D shapes to realize real-time evaluation.
Our approach is applied to car design to reduce air
drag for optimal aerodynamic performance.

1. Introduction and Motivation

With advances in Artificial intelligence (AI), Al
has shown its capabilities in many “human” jobs, like
speech translation, customer service, and even
decision-making. Dellermann et al. [1] argue that, in
the following decades, Al will not replace but rather
collaborate with humans in most domains. They treat
this human-Al collaboration as hybrid intelligence,
which leverages the complementary strengths of
human intelligence and Al. In the design field, Al has
also greatly facilitated human designers’ decision-
making in different design processes. For example,
researchers have successfully embedded intelligent
agents into traditional computer-aided design (CAD)
software (e.g., [2]) and some custom research
platforms (e.g., [3,4]) in support of conceptual design
and design optimization. This could save a large
amount of human labor, thus significantly shorten the
cycle and iteration of product design and development.

Among various Al techniques, generative design
(GD) models using deep neural networks can be used
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as intelligent design agents, particularly in product
shape design. GD is a term for a class of tools that can
generate novel yet realistic designs by leveraging
computational and manufacturing capabilities [5].
Deep GD models can produce a large amount of new
2D or 3D data [6-9] given a set of training data, which
has shown promises in computer graphics and
computer vision. In the design field, deep GD models,
like wvariational auto-encoder (VAE) [10] and
generative adversarial network (GAN) [11], have been
used to assist human designers in generating novel and
realistic designs [12—14] for design conceptualization.
Building upon existing models, we develop a data-
driven GD approach in this study for product shape
generation based on deep neural networks. Our
assumption is that existing product designs (e.g., cars,
chairs, tables, etc.) on the market must have gone
through a complete design cycle, so both their
appearances or functionalities are optimized. Using a
deep GD approach with existing designs as training
data, it is expected that the generated design
candidates would be promising ones. Also, learning-
based GD methods have the potentials to reduce the
high dependencies on design expertise because
machines learn design knowledge in advance, which
will assist the designer in realizing design automation.

However, realizing this idea in engineering design
is challenging. In engineering design, a product is a
system that consists of interconnected components.
Traditionally, the design of such systems starts from
the system requirements analysis and is driven by a
top-down hierarchical decomposition, followed by the
design of subsystems and components. Each
component in a system is first designed separately and
finally integrated into a complete system and validated
against system-level requirements. Most existing GD
[15-20] are focused on generating holistic 3D shapes
without considering the structural dependencies or
relations between components (e.g., a car is treated as
a whole piece instead of dividing it into the car body,
mirrors, etc.). Even if efforts have been taken to
generate part-aware 3D shapes [6, 21, 22], they ignore
the evaluation of the engineering performance of the
generated 3D shapes. However, assessing the
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engineering performance of a product is essential in
engineering design.

Nowadays, most industries use computer-aided
engineering (CAE) tools, such as finite element
analysis (FEA) and computational fluid dynamics
(CFD) software, to evaluate the engineering
performance of a preliminary design before the
physical prototyping and testing. Nonetheless, the
engineering evaluation is costly. For instance, the
assessment of the aerodynamic performance of a 3D
car model using CFD software could take hours.
Therefore, it is impractical to evaluate every single
design candidate, let alone the vast number of design
alternatives obtained from GD models. A fast
engineering evaluation method is needed in realizing
GD in engineering design.

To address these challenges, this study develops a
new GD approach for engineering systems design that
integrates fast engineering evaluation and deep
generative models that allows the generation of part-
aware 3D meshes. We validate and demonstrate the
effectiveness of our approach through an aerodynamic
car design problem. The remainder of this paper is
organized as below. Section 2 gives a literature review
of the relevant research. The details of the proposed
approach are introduced in Section 3. Section 4
presents the results and discussion, and the paper is
concluded in Section 5, in which we also summarize
the closing insights and future work.

2. Literature Review

The review presented in this section is relevant to
the literature in the fields of intelligent design agents,
deep generative models, 3D shape synthesis, and data-
driven CFD evaluation methods.

2.1. Intelligent design agents

Rules-driven parametric design tools have
introduced the generative design module to enable
automatic design exploration. Users usually set the
constraints and requirements for their designs, and
those tools can then run hundreds of simulations to
generate various designs for users to select. There are
also learning-based/data-driven design platforms. For
example, Hu and Taylor [3] developed a CAD
platform with an intelligent tutoring system. The
system can first learn all possible ways to design a 3D
model and then instruct users to draw 3D models.

In rules-driven parametric design tools, setting
proper constraints and requirements for the design
requires a high degree of domain expertise, which is
not friendly to novice designers or fast design
evaluation. In contrast, data-driven approaches learn
from existing knowledge or data in advance and then
can allow users with less experience to create designs.

Our approach applies a deep generative model as an
intelligent agent, which learns existing designs on the
market to generate a large number of designs for users.

2.2. Deep generative models

Deep generative models aim at synthesizing new
samples using the distribution learned from the
existing data. The strategy of deep generative models
is trying to approximate a distribution as similar to the
true data distribution as possible by using a multi-layer
of neural networks. GAN [11] and VAE [10] are the
two most widely used deep generative models.

GAN consists of two parts: a generator and a
discriminator. The discriminator tries to distinguish
the data generated by the generator from the training
data. In contrast, the generator aims to fool the
discriminator with data that are highly similar to the
training data. They compete with each other in the
training process, driving the generator to produce data
as identical to the training data as possible. GANs have
achieved success in 2D and 3D visualizations and
reconstructions  [7,8]. However, since the
discriminator judges the generated data based on
distance metrics, the generator can synthesize
unrealistic data (e.g., a face with a displaced mouth).

The basic idea of VAE is to find a hidden
representation of the training data using low-
dimensional latent variables. Those latent variables
contain information like specific structural and
semantic properties of the training data. Compared to
GANsS, the training of VAEs is faster and easier via
backpropagation, thus gaining increasing popularity
[23]. VAEs have also been successfully applied in
both 2D images [9] and 3D models [6].

2.3. 3D shape synthesis

The increasing availability of large 3D shape
datasets, like ShapeNet [24], provides a large amount
of training. the deep generative methods have been
applied in object detection [25,26], classification
[27,28], and semantic segmentation [29,30]. They can
also generate diverse 3D objects in various
representations, such as point cloud [15,16], voxels
[17-19], and meshes [20,31]. Compared to point cloud
and voxels, meshes can better capture the geometric
details (e.g., smoothness, curvature) of 3D objects
without consuming large storage space. So, the mesh
representation is more suitable for engineering design
applications (e.g., the representation of automobiles).

However, 3D meshes from open-source datasets
are usually non-manifold triangles that may contain
holes, inverted faces, and self-intersection. Those data
are not suitable for the input of deep generative models,
and thus, it is necessary to construct a consistent
representation of such unstructured data. Umetani [12]
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proposes a novel parameterization method leveraging
depth map and shrink wrapping [32]. He deforms a
cube surface to approximate the surface of each 3D car
shape resulting in quad meshes with consistent
connectivity. However, that method is hard to deal
with highly concave shapes, so the author needs to
manually delete parts, e.g., mirrors and spoilers, and
only keep the car body. Umetani and Bickel [13]
further extend [12] by deforming a PolyCube that is
similar to a shape in a coarse resolution, which enables
the method to parameterize a wider variety of shapes.
However, the method is incapable of dealing with
shapes containing several parts. Gao et al. [6] propose
a part-aware mesh generation approach. With a set of
3D shapes with part-level labels, the authors apply the
non-rigid registration [33] to deform a box mesh to
approximate each part. The method can finally
generate part-aware 3D meshes with finer-scale
geometry. Since creating 3D shapes in a part-aware
manner addresses component-level dependencies and
the generated 3D meshes contain geometric details for
the ease of engineering evaluation, we adopt the two-
level VAE structure used in [6] to build our 3D mesh
generative design approach.

2.4. Data-driven CFD evaluation

Engineering performance evaluation is critical to
engineering design and optimization, but it is usually
computationally expensive. For example, the CFD
evaluation of the aerodynamic performance of a 3D
automobile model could take hours. To accelerate the
CFD evaluation process, OmniAD [34] proposed a
spherical harmonics based method using data from
pictures that capture the falling motion of objects to
predict the movement of an object moving within the
air. Similarly, Baque et al. [35] applied graph
convolution neural networks to predict the pressure
distribution on free-form 3D models. These methods
focus on the prediction of the motion of objects or the
airflow around a moving object, which might be
difficult for a designer to understand without specific
expertise and knowledge.

On the other hand, Umetani and Bickel [13]
present a method using Gaussian Process to predict
airflow around a 3D object, which can predict the drag
coefficient in real-time. In [36], Gunpinar et al. apply
PCA and regression methods to build a mathematical
model to obtain the prediction of drag coefficients of
silhouettes of cars. Such predictions are
straightforward to show the aerodynamic performance
of a moving object and are easily understood by the
designer. While Badias et al. [37] use the LLE
algorithm [38] to estimate the airflow around a car, we
propose to use LLE to predict the drag coefficients of
newly generated car models from the 3D mesh

Fast CFD evaluation method

[34]Martin et al. 2015
[35]Baque et al. 2018
(37]Badia et al. 2019

15]Li et al. 2018

igll—‘an et ;L 2017 [6]Gao et al. 2019

[21]Mo et al. 2019
[22)Li et al. 2017

g et al. 2018

Generation of 3D shapes in
a holistic manner

Generation of 3D shapes in
a part-aware manner

Figure 1. Synthesis of the research gap

generative design module. The reasons for adopting
LLE in this study are 1) LLE has the potentials to
estimate the drag coefficient of a car model with good
accuracy; 2) the estimation of the drag coefficient of a
car model using LLE is fast.

2.5. The research gap

As shown in Figure 1, there is a lack of research
in the integration of the generation of part-aware 3D
shapes and fast CFD evaluation method for GD. This
study provides solutions to enhancing human-Al
collaboration in the engineering design field beyond
the conceptual design phase. The knowledge that the
deep generative model learns from the existing designs
can augment designers’ creativity and engineering
decision-making by exploring more design
alternatives with the awareness of their engineering
performance. To the best of our knowledge, this is the
first study of integrating a deep generative design
model that can produce part-aware 3D shapes with a
fast CFD evaluation method. The validity of our
approach is demonstrated in the aerodynamic
automobile design.

3. The Research Approach

In this section, we present our overall approach.
As shown in Figure 2, the proposed design approach is

3D Models

(from open-source database
with semantic segmentation)

l

Data Preprocessing
(output meshes with same connectivity)

|

3D Mesh Generative Design Module
(one VAE for learning part geometry;
one VAE for learning part structure;
generate novel yet realistic part-aware 3D shapes)

|

Evaluation Module
(evaluate the drag coefficient of 3D shapes using LLE)

Figure 2. The part-aware product design
approach
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mainly composed of two modules: a generative design
module and an evaluation module, in addition to a data
collection and preprocessing process.

For the generative design module, we adopt a
deep generative method based on VAE to learn the
design concepts and geometries from existing
products to generate a variety of novel designs. The
data-driven generative method can take advantage of
existing successful designs instead of designing from
scratch. Inspired by SDM-NET [6], we apply two
VAEs, namely PartVAE and SPVAE. PartVAE is for
learning individual part geometries, and SPVAE is for
learning the part geometries and the part structure of
the 3D models. For the 3D shape representation, we
chose the mesh for capturing surface details of
automobile parts (e.g., body and mirrors) with less
storage space. For the evaluation module, we apply
LLE [38] to predict the drag coefficient of a 3D car
model in real-time.

3.1. Data preprocessing

3D models from open databases, like Shapenet
[24], are often unstructured. Also, some models may
contain interior structures (e.g., seats, steering wheel
in a car) that are not desired since we focus on the
external geometry. Such data cannot be directly used
in generative models without preprocessing. Meshes
are usually voxelized, transferred to point-cloud, or re-
meshed according to the structures of different
generative models. Additionally, we need to segment
a holistic 3D model into several parts so that each part
can be learned in the generative module.

After segmentation, we first calculate the
bounding box of each part. A unit cube mesh with
19.2k triangles (9602 vertices) is then used to
represent each part and deformed to fit the bounding
box of this part, as suggested in [6]. This step forms a
coarse representation of a 3D model composing of
several deformable boxes. We then apply the non-rigid

A model with "!“‘ B
part-level labels ) 9

vt ;\\

by a deformable box

A structured i
set of boxes \C
2
l Non-rigid registration

A model with
part-level labels
with fine
surface details

Figure 3. An example of the data
preprocessing of 3D car models

1 Each part is represented

registration [33] to transform each deformable box to
approximate its corresponding part producing a mesh
with fine geometric details. Non-rigid registration is
widely used in computer graphics to map one point set
to another. Figure 3 shows an example of the
preprocessing of a car model that is segmented into
one car body, two mirrors, and four wheels.

3.2. 3D mesh generative design module

The generative design module is used to learn part
geometry and structure information (i.e., how all parts
are connected) so that it can generate new part-aware
designs. We adopt a two-level VAE structure, namely
PartVAE and SPVAE, from SDM-NET [6]. In what
follows, we introduce how the adopted VAE structure
can generate part-aware 3D shapes.

3.2.1. Encoding of a part. A vector v is used to
encode the part geometry and the structures of all
parts. The vector is composed of seven sections v4-v5.
e v, € {0,1} shows if this part exists or not;
e v, €{0,1}" is a n-dimension vector to show
which parts this part supports;
e vy €{0,1}" is a n-dimension vector to show
that this part is supported by which part;
e v, € R3is the x,y and z coordinates of the
geometric center of the bounding box;
e vy €{0,1} shows if the symmetric part of
this part exists or not;
e v, € R* shows the coefficients a, b, c and
d of the mathematical representation of the
symmetric plane ax + by + cz +d = 0;
e v, € R% is the latent vector for encoding
the geometry of this part,
where n indicates the number of parts that a model
consists of. For example, n = 7 because a car model
is segmented into one body, two mirrors, and four
wheels. The structure of parts is encoded by recording
the information of each part using v,, v3 for support
relations, and vg, v for symmetry relation. It should
be noted that the method doesn’t require the models to
be symmetric, but symmetry is beneficial to machine
learning of geometric structures.

3.2.2. PartVAE. PartVAE uses a convolutional VAE
architecture. It consists of an encoder and a decoder,
and it takes a matrix with a dimension of 9602 X 9
as input. As mentioned in Section 3.1, 9602 is the
number of the vertices of the bounding box mesh. Each
row of the matrix is a vector with a dimension of 9 that
records the information (i.e., rotation axis, rotation
angle, and scaling factor) of the 1-ring neighborhood
of each vertex. The encoder consists of two
convolutional layers and a fully connected layer. The
output of the second convolution layer is reshaped by
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Figure 4. The structure of PartVAE

the fully connected layer to a 64-dimensional latent
vector. The decoder has a mirrored structure of the
encoder. Figure 4 shows the structure details. PartVAE
is trained through minimizing the following loss:

Lpartvag = Lrecon + ALk + 4, LReg: (1)
where L,..o,n denotes the mean square error
reconstruction loss for better reconstruction, Lg; is the
KL divergence to promote Gaussian distribution in the
latent space, and Lg.g is the squared [, norm of the
network parameters to avoid overfitting. 4, and 4, are
weights for corresponding loss terms.

3.2.3. SPVAE. SPVAE is for joint learning of the part
structure and part geometry, which makes sure the
geometry of the generated shape is compatible with
the structure. SPVAE takes as input the concatenated
feature vector of all parts of a model, containing
information of the part geometry and the structures of
parts. In the encoder, the vector goes through three
fully connected layers of dimension 1024, 512, and
256, respectively, and is translated into a latent vector
with a dimension of 128. The decoder consists of four
fully connected layers with dimensions of 128, 256,

-
L

lﬁ i XX
-Feature g 1
B Leaky ReLU ’ oo o
Tanh
- Fully —

Connected

B sigmoid

Batch *
e
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PartVAE
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Figure 5. The structure of SPVAE

512, and 1024, respectively. The output of the decoder
is a concatenated feature vector and can be translated
into several parts. Those parts can then be merged
together to form a holistic shape. Figure 5 shows the
details of the structure of SPVAE. SPVAE minimizes
the following loss function:

Lspvap = @1 Drecon + @Dk + Dpeg- (2)
where D,..,, denotes the mean square error
reconstruction loss, Dy, is the KL divergence, and
Dgeg is the squared [, norm. @, and a, are weight
parameters for corresponding loss terms. After the
PartVAE and the SPVAE are trained, a 128-dimension
latent space is learned in the SPVAE, which enables
the network to perform generation tasks, like shape
interpolation and random shape generation.

3.3. Evaluation module

Aerodynamic performance analysis of cars can be
very time-consuming using traditional CFD tools. To
tackle the challenge and accelerate the design
evaluation process, we propose to apply the Locally
Linear Embedding (LLE) algorithm [38] to
approximate the drag coefficients of cars. In car
design, the drag coefficient is one of the most
important performance metrics, which primarily
affects a car model’s fuel efficiency. Generally, with
the balance of other considerations, a smaller drag
coefficient is more favorable. In the following
sections, we discuss how we apply LLE and how we
prepare the data of car models for fast evaluation.

3.3.1. Application of LLE. LLE holds the assumption
that the data (e.g., car shapes) are located in a manifold
space and the fact that the manifold is homeomorphic
to flat data space. This can be understood using an
analogy that a Swiss Roll shape can be extended to a
flat piece that is homeomorphic to the Swiss Roll.
Then LLE assumes that every data point can be
approximated by linear interpolation of its nearest
neighboring data in a reasonably accurate manner. The
number of the nearest neighbors Mis a modifiable
parameter that can be defined by users. This linear
interpolation is expressed by Equation (3).

Vi = WiniVi &)
Vi€ESm
where v,,, denotes a vector representing a data point,
W, denotes the unknown weights, v; denotes vectors
representing all the neighbors of v,,,, and S,,, is the set
of the M-nearest neighbors of v,,.

M M 2
P = D v = > Wowl| @
m=1 i=1 2
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The unknown weights W,,; will be obtained by
minimizing equation (4). W,,,; is zero if v; & S,,, i.e.,
car i is not one of the M nearest neighbors of car m.
LLE also tries to project the set of high dimensional
vectors to low dimensional space while conserving the
manifold structure. If a car shape can be represented
by a vector v,,, € R? and the LLE algorithm can then
be applied to project v, to a lower-dimensional space
R% with d « D. Then a new vector x € R% can be
found for each car v € RP. LLE states that x can be

calculated by
M
Xm — Wmixi
2

where W,,; representing the neighboring relation
between data points remains unchanged. When an
original database (manifold) is built, a new vector can
be easily embedded onto the manifold to find its
neighbors, and the corresponding weighs W;. The key
idea of employing LLE to approximate the drag
coefficients of a car is that we assume that the drag
coefficient of a car model can be obtained through a
linear combination of the drag coefficients of its
neighboring cars in the manifold of 3D car shapes. The
drag coefficient of a new car can be approximated
using Equation (6).

M
CB = Y Wich ©)
i=1

M

(x4, -, Xpy) = argmin Z

m=1

)

2
2

where C) represents the drag coefficient of the ith
neighbor of the new car model and W; is the
corresponding weight.

With Equation (6), an approximation of the drag
coefficient of a car can be obtained, which gives the
designer a quick reference to the aerodynamic
performance of the car. Results in Section 4 shows that
the evaluation time is significantly reduced with a little
loss in the accuracy of the value of the drag coefficient.

3.3.2. Characterization of car models. 3D car
models should be represented by vectors so that they
can be used as data points in LLE. We randomly select
60 car models from the training dataset (1161 car
models) to form the original database for the LLE
method. We manually categorize those models into
four groups: small cars (e.g., sedans, coupes.); big cars
(e.g., SUVs, miniVANS), classic cars; and sports cars
based on the similarity of their appearance. Then the
bounding box of each car model is calculated. The
biggest size of the bounding box is 0.9(L) x 0.3(H) X
0.4(W) m3. We resize each model with a factor of 53
to match the size of all 60 car models to approximately
the size of real cars.

A vector with only values of 0 and 1 is used to
represent each car model. We first embed each car

model into a grid of 50 X 20 X 20 points uniformly
distributed on a volume of 5 X 2 X 2 m3, setting the
mass center of each car model to the center of the grid.
We then apply the signed distance field [37] to get the
signed distance of each point to the surface of a car
model. The distance value is positive, zero, or negative
when a point is outside, on, or inside the surface,
respectively. We then use the following presence
function to transform each signed distance to 0 or 1.
LifxeQ

o0 =g if x €0 ™
where () represents the space inside and on the
boundary of a car model, and x represents each point
in the grid. In this way, we can characterize a car
model to a vector r € R?, where D = 50 X 20 x
20 = 20000. Finally, we get a matrix A € R%%*?, of
which every row is a vector r representing a car model.

3.3.3. CFD evaluation of car models. We apply CFD
software, ANSYS Fluent, to get the drag coefficients
of 60 car models. The size of the enclosure (simulation
for wind tunnel) is set as 3L X 2H X 2W , where
L, H, W represent the length, height, and width of the
bounding box of the biggest car model, respectively.
Figure 6 shows an example of the setting of a car
model. The side with green color on the right-hand
side is set as the inlet, and its opposite side is set as the
outlet. The car model is placed on the ground and 0.5L
away from the inlet side. As suggested in [36], the
boundary conditions set for all surfaces are as follows
for all car models: a) Inlet: constant velocity of 40m/s;
b) Outlet: 0 Pa constant pressure; and 3) Remaining
surfaces: non-slip. We choose the standard k — €
model for the turbulence model, the SIMPLE
algorithm for the pressure-velocity coupling, and
1073 for the convergence criterion for all flow
variables. We run the calculation until the result
converges and calculate the drag coefficient of each
car model. The result is available in Section 4.

inlet

.L‘ ground

Figure 6. An example of the setting of a
3D car model for CFD analysis

3.3.4. Fast evaluation of the drag coefficient of a
new car model. After we obtain the drag coefficients
of all 60 car models, we build an original database that
consists of the vector representations (Matrix A) and
the drag coefficients of 60 car models. When a new car
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model comes, it is first characterized to a vector r
using the method described in Section 3.3.2, and then
it is embedded into the manifold. The neighbors of the
vector and the corresponding weight for each neighbor
can then be calculated. Based on our assumption, the
drag coefficient of the new car can be calculated by the
linear interpolation of the drag coefficients of its
neighbors using Equation (6).

4. Results and discussion
4.1. Data preprocessing

The original dataset consists of 1824 car models
with consistent segmentation from SDM-NET [6]. In
this study, only daily commute cars (e.g., sedans,
SUVs) are considered, and we exclude certain car
models, including buses and Formula One cars. This
gives us a total of 1161 car models, which are then
preprocessed for the 3D mesh generative module. The
most time-consuming part of the preprocessing is the
non-rigid registration. It takes about 2 minutes for one
part in a computer with a Windows operation system,
an 17 8700 CPU, and 8GB RAM (Computer 1).

Original
model

Model after
non-rigid
registration

Figure 7. Registration of a car body

While the non-rigid registration method can
produce watertight mesh for each part with fine
geometry details, it still has some limitations in
handling the shapes with non-genus-zero topology.
Genus is a topological property, and non-genus-zero
topology can be simply considered as a surface with at
least one hole. In this case, the method manages to

keep the outer geometry without maintaining the holes.

Figure 7 shows an example of the registration of the
body of a 3D car model. The method preserves the
external geometry of the car body without maintaining
the topology of the spoiler marked by the cycles.

4.2. 3D mesh generative design module

The training dataset of 1161 car models is
randomly split into the training data (75%) and
validation data (25%). The Chamfer distance is used
to measure the reconstruction loss on the validation
data. We set 4, =1.0, 4, =0.01,a; =1.0,a, =

f‘{“/‘“/‘/‘

7 7’ /T} ﬁ
@ © & \L’\

FIITTES

7 & E5 £ £
,, (0)

L o 4 <

FFLE &

(c)

Figure 8. (a) Parts from random
generation. (b) Car bodies and merged car
models from shape interpolation. (c) Car
bodies from shape reconstruction

0.5 for the weight parameters, as suggested in [6]. The
ADAM optimization method [39] is used for both
VAEs. We train the PartVAE 20000 iterations and
SPVAE 40000 iterations separately. The batch size is
set at 128, and the initial learning rate is 0.001, which
decays every 2000 steps with a decay rate of 0.8. The
training of both PartVAE and SPVAE using 1161 car
models takes around 100 hours in a computer with a
Linux operation system, an i7 6850K CPU, 64GB
RAM, and two GTX 1080Ti GPUs (Computer 2).

When the training is done, the networks can
perform shape reconstruction, random shape
generation, and shape interpolation for separate parts.
Random generation can be done by randomly
sampling latent vectors from the learned latent space
(Gaussian distribution) and then decoding them into
3D parts. We can get a latent vector by having a part
go through the encoder and then decode the vector to
a part similar to the original part, which shows the
process of shape reconstruction. It takes about 0.9
seconds to generate one part in Computer 2 for random
generation, for instance. After we got separate parts,
we can merge seven parts into a holistic car.

Figure 8(a) shows several parts from random
generation. The model can generate varied shapes for
different car parts that look reasonable in terms of
visual appearance. Figure 8(b) shows some car bodies
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and merged car models from shape interpolation. The
first and the last column are the shapes to be
interpolated. The in-between columns are the linear
interpolated shapes. We can observe a gradual
transition of the geometry between the first and the last
shapes. Figure 8(c) shows several car bodies from
shape reconstruction. The first row is the original
models, and the second row is their corresponding
reconstructed models. Theoretically, we can sample as
many latent vectors as possible from the latent space
for random generation. We can also perform shape
interpolation between every pair of car models from
the training dataset with any number of in-between
interpolations. Thus, we can generate thousands of
novel car models through the trained networks.

The results show that the deep generative model
can effectively generate novel yet realistic car models
in terms of appearance with part-aware information. It
can provide the designer with many good references
for the design. It can also enable the designer to design
a car shape in a down-top systematic way, which
aligns with the tradition in engineering design.

4.3. Evaluation module

We get the vector representations and drag
coefficients of 60 cars to build the original database.
These car models are categorized into four types:
Small cars, 20; Big cars, 19; Classic cars, 8; Sports
cars, 13, each of which should cluster together if the
assumption of LLE works for car shapes.

LLE can project high dimensional vectors on a
manifold to low dimensional space while preserving
the manifold structure. The number of the nearest
neighbors M is a customized parameter. Through trial-
and-error, it is found that when M =6, the lowest
reconstruction error is obtained. We then project those
vectors to a two-dimension space, which is shown in
Figure 9. Three clusters (i.e., big cars, small cars, and
sports cars) can be observed with several exceptions
that might have transitional shapes (e.g., some

L
S =
| %
5 LTS
* gy
' p Dbig cars
@ classic cars
‘ + small cars
% sports cars

Figure 9. Projection of high dimensional
vectors of car shapes to R?

Table 1. Drag coefficients of 60 car models
No. cd Type No. (o] Type No. (o] Type

1 0.58 big 21 | 0.43 classic 41 0.34 small
2 0.68 big 22 | 0.65 classic 42 0.33 small
3 0.45 big 23 | 0.45 classic 43 0.25 small
4 0.52 big 24 | 0.44 classic 44 0.32 small
5 0.4 big 25 | 0.64 classic 45 0.36 small
6 0.37 big 26 | 0.67 classic 46 0.3 small
7 0.45 big 27 | 0.41 classic 47 0.3 small
8 0.49 big 28 | 0.35 small 48 0.33 sport
9 0.39 big 29 | 0.39 small 49 0.35 sport
10 | 0.55 big 30 | 0.29 small 50 0.72 sport
11| 0.44 big 31 | 0.33 small 51 0.48 sport
12 0.44 big 32 0.34 small 52 0.37 sport
13| 0.52 big 33 | 0.34 small 53 0.51 sport
14| 0.52 big 34 | 0.54 small 54 0.49 sport
15| 0.35 big 35 | 0.39 small 55 0.61 sport
16 | 0.41 big 36 | 0.38 small 56 0.6 sport
17| 0.34 big 37 | 0.31 small 57 0.49 sport
18 0.4 big 38 | 033 small 58 0.71 sport
19| 0.32 big 39 | 0.29 small 59 0.53 sport
20| 0.24 classic 40 | 0.28 small 60 0.34 sport

Crossover SUVs are similar to both sedans and SUV5)
between two clusters. Classic cars whose shapes do
not follow any specific pattern are mixed in other
clusters. This indicates that the proposed vectorization
method captures the key features of different car
models, and LLE can properly cluster them.

The drag coefficients of the 60 car models are
obtained using ANSYS Fluent in a high-performance
computer (Computer 3) with an Intel Xeon Silver 4114
CPU. It takes about 30 minutes to evaluate a car model
when 16 processors are used in parallel. Table 1 shows
the results, including both Cd (drag coefficients) and
car types.

To test the accuracy of the approximation method
using LLE, we randomly select 20 merged car models
from the generative design module and compare their
drag coefficients using LLE against those obtained
from Ansys Fluent by computing the relative percent
error (6). We achieve an overall average percent error
(8) of 11.5%, with a standard deviation (s) of 8.3%.
Figure 10 shows the results of § of each car model and
§ in four groups. The reason why the accuracy is not
ideal could be that the sample size of 60 cars is
relatively small, which cannot fully represent the
manifold of car shapes. Thus, the estimation of a new
car model’s drag coefficient does not refer to the
proper neighbors in the manifold. In addition, LLE
leads to relatively larger errors towards certain car
models (e.g., 29.6% for a classic car), which could bias
a designer’s decision. To address this limitation, we
plan to improve the accuracy by trying different ways,
like increasing the size of the original database in
future work. But with the sacrifice on the accuracy, the
time of evaluation is significantly saved (from hours
to seconds) so that designers are able to have a quick
reference to rule out those underperformed design
recommendations and select several promising
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designs for further development and optimization.
This could greatly accelerate the entire product design
and development process.

35.0%
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26.7%
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Big Classic Small Sport
Figure 10. Results of the relative percent
error of each car model and overall
average percent error in four groups

5. Conclusion

Although the generative design has gained a lot of
attention recently in human-Al collaboration, research
on the integration of part-aware generative methods
and fast evaluation for engineering design is still
lacking. In this paper, we introduced an approach that
integrates a part-aware deep generative model based
on VAE with a fast engineering performance
evaluation method using LLE. The approach enables
the user to explore thousands of part-aware 3D models
automatically generated by the GD-based design agent
and can quickly get their engineering performance at
the cost of losing a certain degree of accuracy. We
acknowledge the limitation of the fast evaluation
method in terms of the accuracy given the current
sample size, but this method significantly reduces the
evaluation time, thus facilitates the design process.

In the future, we plan to improve this method by
increasing the size of the original database, adjusting
the density of the point grid used for the vectorization
of car models. LLE is only applied to one performance
metric (i.e., drag coefficient) of a car in the case study,
but we believe that the method can be applied to other
product evaluations if the performance metrics are
related to the geometry of a product. The scope could
also be enlarged by evaluating more performance
metrics of a system so that research about tradeoff
between different performance metrics can be carried
out. We also plan to add a shape optimization module
to the approach to enable optimal 3D shape design in
support of the design decision-making, considering the
tradeoff between part performance and system-level
performance for the reason that the combination of
optimal parts might not lead to an optimal system. We

also consider developing a GUI to support human-Al
interactive design exploration and optimization.
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