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A B S T R A C T   

The latest developments of machine learning (ML) and deep learning (DL) algorithms have paved the way to 
effectively analyze the atomic structure of chemically-complex materials. In this work, we present a DL model 
built upon a fully convolutional neural network (FCN) to resolve the random elements distribution of complex 
PtNiPdCoFe high-entropy alloys (HEAs) represented in the scanning transmission electron microscopy (STEM) 
images at atomic resolution. The objective of the proposed neural network is to learn through semantic seg
mentation the non-linear correlations between the pixels’ intensities of STEM images and the number of atoms of 
different constituent elements in the atomic columns (i.e., column heights) in the HEA’s structure. We demon
strate that our DL model is capable of correctly estimating the column heights or with an error up to 1 atom for 
the majority of the columns in the HEA structures represented in the simulated STEM images used to train and 
test the network. This establishes a sufficiently high level of confidence in the estimation of the element dis
tribution in experimental images. The predicted distributions in different STEM images of nanoparticles reveal 
inhomogeneous fluctuations with local aggregations in the elemental atomic fractions within the columns. The 
most pronounced aggregation is displayed by Pt, which is the largest and most electronegative element in the 
synthesized HEA material. The proposed DL method is beneficial for an in-depth characterization of the struc
tural properties of HEAs and multielement 3D materials in general.   

1. Introduction 

Chemically-complex alloy nanoparticles (NPs) are of great interest in 
a wide range of applications including catalysis [1–4], energy storage 
[5] and bio/plasmonic imaging [6]. Among them, high entropy alloys 
(HEAs) are an important class of NPs. A pioneering investigation of 
HEAs was presented by Cantor et al. [7], who considered equiatomic 
compounds with a number of principal elements up to twenty, including 
the five-component FeCrMnNiCo alloy (known as the “Cantor alloy” in 
the literature). One of the most important discoveries of their study was 
that the equimolar five-element FeCrMnNiCo alloy stabilizes in a single- 
phase FCC solid solution. The concept of “high entropy” was introduced 
by Yeh and co-workers [8], who postulated for the first time that 
multicomponent alloys with five or more elements in nearly equimolar 
ratio are characterized by a sufficiently high configurational entropy to 
stabilize randomly mixed solid solution alloys with no intermetallic 
compounds. However, the formation of non-equiatomic and randomly 

mixed multicomponent alloys has been demonstrated in more recent 
studies [9,10]. In general, equiatomic and non-equiatomic HEAs are 
widely explored compounds because of their exceptional properties 
compared to conventional alloys [11]. 

Yeh et al. [12] introduced four major effects characterizing the na
ture and the versatile properties of HEAs: the high entropy effect, the 
lattice distortion, the sluggish diffusion and the cocktail effect. Such core 
features assumed to be related to the randomness of the HEAs compo
sitions, have been extensively described in the literature [13]. The 
exceptional mechanical [14], thermal [15], electrical [16] and magnetic 
[17] properties of HEAs have sparked the interest in applications of 
these materials in many areas of engineering. The understanding of the 
relationship between the properties and the structural composition of 
HEAs is crucial for their appropriate design in engineering applications. 

The study of the composition of HEAs is tedious mainly because of 
the combination of different number of elements and different concen
trations, resulting in a vast configurational space of potential HEAs. 
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High-throughput computational and experimental methods like Calcu
lation Phase Diagram (CALPHAD) analysis [18], experimental combi
natorial techniques [19], and mechanistic-based approach [20] have 
been proposed to screen HEAs by the identification of co-existing phases 
together with their compositions and volume fraction. In a more recent 
publication, Ding and co-workers [21] presented a method based on 
energy-dispersive X-ray spectroscopy (EDS) to obtain high resolution 
mapping of the fraction of each chemical element in the atomic columns 
of HEAs represented in high-angle annular dark field (HAADF) images 
from transmission electron microscopy (TEM). Despite EDS mapping 
being a pioneered technique to acquire the atomic-scale mapping of the 
chemical elements distribution in the atomic columns of synthesized 
HEAs [22] and solid solutions in general, it does not allow the user to 
estimate the actual number of atoms distributed in the columns. A more 
in-depth characterization of the chemical composition of HEAs requires 
the development of innovative techniques which could allow a precise 
prediction of the atomic scale distribution. 

In a STEM image, the relationship between the pixel intensities and 
the number of atoms in the atomic columns of a single element NP is 
assumed to follow a linear relationship, thus the CHs could be extracted 
via linear interpolation [23]. Van Aert et al. [24] and Backer et al. [25] 
demonstrated that statistical methods based on parameter estimation 
theory and least square estimator, respectively, are capable of precisely 
quantifying the number of atoms arranged in the atomic columns of 
nanoparticles in HAADF STEM images of different chemical elements. 
However, the applicability of these methods has been demonstrated only 
for a single chemical element nanocluster. In general, these methods 
assume that the intensity of the peaks of the atomic columns in the STEM 
images is linearly correlated with the corresponding CHs and an 
increasing intensity is associated with an increasing number of atoms in 
the atomic columns. 

On the other hand, for multicomponent alloys such as HEAs, the 
pixel intensities of the STEM images are influenced not only by the ab
solute CHs, but also by the electronic configuration and the distribution 
of atoms of different chemical elements within the columns. In the STEM 
process, the pixel intensities depend on the interaction between the 
incident electron wave and the electronic configuration of the atoms in 
the structure. Since HEAs are characterized by atoms with varying 
electronic configurations, each chemical element contributes differently 
to the pixel intensities in the STEM images. For example, since Pt has the 
most energetic electronic configuration of 4f145d96s1, columns with a 
high content of Pt are more likely to display a higher intensity compared 
to columns rich in Co, which has a lower energetic electronic configu
ration of 3d74s2. In addition, the pixel intensities are also correlated with 
the position of the atoms in the columns. For instance, atomic columns 
with the same elemental fractions have different intensities according to 
the location of the atoms with different electronic configuration in the 
direction of the incident electron beam. Thus, the random distribution of 
Pt, Ni, Pd, Co and Fe in the HEAs structure has a strong impact on the 
intensity values of the atomic columns. In addition, the STEM images 
acquisition process of multicomponent alloys is characterized by a 
crosstalk effect [26] for which the pixel intensity of an atomic column 
depends not only on the composition the column, but also of the 
neighboring columns around it. Such phenomenon further complicates 
the estimation of the chemical composition of HEAs using state-of-the- 
art techniques. 

In recent years, ML and DL algorithms have paved the way to a more 
profound atomic scale understanding of various materials [27–29] and 
HEAs in particular [30–39]. Kaufmann et al. [30] presented a random 
forest (RF) model to predict the solid solution forming ability of HEA 
from thermodynamic and chemical features. Huang and co-workers [31] 
and Risal et al. [32] have classified HEAs according to the formation of 
solid solutions (SS), intermetallic (IM) and SS + IM phases using K- 
nearest neighbors (KNN), support vector machine (SVM) and artificial 
neural network (ANN). Dai and co-workers [36] predicted the phase 

formation of HEAs using ML integrated with feature engineering in small 
datasets. Wen et al. [33] and Kim et al. [34] implanted ML models to 
predict respectively the hardness and elasticity in different HEAs 
systems. 

DL models built upon convolutional neural networks (CNNs) have 
been also adopted to successfully predict the thickness of SrTiO3 sam
ples from STEM images [40]. In particular, fully convolutional neural 
networks (FCNs) have been adopted for a precise estimation of the 
number of atoms in the atomic columns (i.e., column heights) of Au NPs 
from high-resolution transmission electron microscopy (HRTEM) im
ages [41,42]. Madsen et al. [41] presented an FCN applied to simulated 
HRTEM images to classify the atomic columns according to their number 
of atoms under varying imaging conditions of the microscope parame
ters. In our prior work, the method was extended to estimate the column 
heights (CHs) in Au NPs represented in simulated and also experimental 
HRTEM images, through a regression-based FCN [42] version of the 
original model developed by Madsen et al. [41]. The DL-based charac
terization of the 3D shape of metallic NPs proved to be a valid alterna
tive to the state-of-the-art techniques based on electron tomography 
[43]. 

In this work, we present a DL approach to predict the number of 
atoms of different chemical elements in the atomic columns of HEAs 
represented in simulated and experimental atomic-resolution HAADF 
STEM images. The method we present here is built upon our prior 
regression-based FCN work applied to HRTEM images of Au NPs [42], 
which is extended to the case of multi-element alloys. As a benchmark 
case, we consider nearly equiatomic PtPdNiCoFe HEA in an FCC single 
phase solid solution, where inhomogeneous fluctuations with local ag
gregation of the chemical elements’ concentrations in the atomic col
umns are taken into account. Through semantic segmentation, the 
proposed FCN is capable of learning the complex and non-linear rela
tionship between the intensities of the atomic column pixels in the 
HAADF STEM images and the CHs of each different chemical element in 
the HEA’s structure. The neural network is trained and tested on a 
dataset of simulated HAADF STEM images of HEA NPs and consequently 
it is applied to predict atomic CHs and element’s distribution in exper
imentally acquired HAADF STEM images of the same type of HEA. The 
proposed modeling approach allows for a precise estimation of the 
constituent element’s distribution in complex HEAs, being beneficial for 
the analysis of the structure-properties relationships in these materials. 
Besides the primary objective of the prediction of the CHs in HEAs 
structures, this work establishes a basis for an appropriate design of 
HEAs in engineering applications. 

2. Methodology 

The modeling framework presented in this work combines density 
functional theory (DFT) and evolutionary approach (EA) calculations, 
HEAs, STEM image simulations and DL modeling. First, the DFT and EA 
calculations are required to develop realistic HEAs atomic models, 
which are employed to generate the dataset of simulated HAADF STEM 
images and the necessary ground truth of the atomic CHs for training 
and testing the neural network. The combined DFT and EA calculations 
have been performed using the Vienna Ab Initio Simulation Package 
(VASP) [44] and Atomistic Tool Kit (ATK) [45] as it is described in more 
detail in Supplementary Information. The simulated HAADF STEM im
ages have been computed for each HEA atomic model, using the mul
tislice algorithm [46], implemented in the PyQSTEM [47] Python 
library. Within the simulations, the appropriate STEM microscope pa
rameters and resolution have been defined in agreement with the im
aging experimental conditions. Finally, the dataset of modeling HAADF 
STEM images has been used to train and test the DL model. The DL 
model is an FCN type of neural network and it has been built using the 
Tensorflow 2.2 [48] library for DL algorithms development. The 
network has been trained and validated using a cluster of 2 V100 Nvidia 
GPUs in docker environment built in Kubernetes. The distributed 
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training with model parallelization technique has been implemented 
using the Horovod library [49]. The mixed precision and accelerated 
linear algebra (XLA) [50] technique have been implemented to speed up 
the computation. A total of approximately 2 months were required to 
train the model until the desired values of the target metrics have been 
achieved. Finally, the trained model has been applied to experimental 
HAADF STEM images to predict the CHs in realistic HEAs. The workflow 
of the presented modeling framework is illustrated in Fig. 1. 

2.1. DFT and EA calculations of HEAs and HAADF STEM images 
simulations 

HEAs are defined as solid solutions with a random distribution of the 
chemical species, thus the atomic models have been computed by 
generating NPs with a random size (i.e., diameter) within the range 
6.5–7.5 nm of the samples represented in the experimental images, and 
with a random position of the Pt, Ni, Pd, Co and Fe atoms in the struc
tures. The random HEAs atomic models have been generated on the 
basis of realistic “atomic motives” identified with DFT and EA methods, 
as it is described in Supplementary Information. Although in this paper 
we focus on HEA models with the same size of NPs represented in 
experimental measurements, our framework is amenable to a variety of 
sizes according to the application of interest. Fig. 2 illustrates modeled 
HEAs of different sizes (i.e., diameter) of 2 nm, 4 nm, 6 nm and 8 nm and 
the corresponding simulated HAADF STEM images. It should be noted 
that, for bigger sizes only, a portion of the NP can be considered to 
capture the atomic scale resolution necessary for an appropriate training 
of the DL model. 

We have simulated ideal HEAs with a nearly equiatomic composi
tion, resulting in an element proportion around 20%. In particular, in 
our modeled HEAs characterized by chemical elements belonging to 
different rows of transition metals in the Periodic Table (i.e., Ni, Co and 
Fe belong to the first row, while Pd and Pt belong to the second and third 
rows, respectively), the internal atomic fraction within the columns 
exhibits inhomogeneous fluctuations with local aggregations. For 
example, a chemical element can reach an atomic fraction up to 50% 
within a column, with a reduction to 2% in a nearby column. In a few 
columns, a chemical element could even be absent. This type of 
composition is in agreement with the results obtained by Ding et al. [21] 
which showed inhomogeneous fluctuations with local aggregations in 
CrFeCoNiPd HEAs, in contrast to the CrMnFeCoNi Cantor alloys where 
the atomic fraction of a chemical element in an atomic column randomly 
fluctuates around 20% with a small variation of approximately 10%. 
Our HEAs models have been created considering an FCC atomic struc
ture, and the [110] axis plane as surface orientation in agreement with 
the experimental HAADF STEM images. 

With the aim of training the model with a sufficiently variant dataset 
of images, we have simulated the HAADF STEM images in local regions 

within the structures randomly selected in different locations of the NPs. 
Such locations could be near the background, in the center of the 
structures, as well as regions in between. A total of 10,000 random HEA 
NPs have been generated using the model, resulting in a dataset of 
10,000 simulated HAADF STEM images. An example of HEAs atomic 
model and the corresponding simulated HAADF STEM image and CHs 
ground truth for each chemical element is illustrated in Fig. 3. 

The simulated HAADF STEM images have been computed using the 
multislice algorithm [46], where a slice thickness of 0.2 nm and a probe 
size of 8 × 8 nm are considered to simulate images of 6.5–7.5 nm sized 
HEAs. The STEM microscope parameters, randomly varied in a range 
centered with respect to the experimental values with a 10% variation, 
are listed in Table 1. A critical parameter in the STEM images simulation 
is the appropriate value of the resolution, measured in nm/pixel. The 
experimental images are characterized by 512 × 512 pixels with 0.01 
nm/pixel resolution. In the construction of our training and test datasets, 
we have considered 256 × 256 images, with an imposed resolution of 
0.02 nm/pixel. In this way, the same physical spatial domain of 51.2 ×
51.2 nm is preserved. The reason behind the choice of a reduced image 
size is that 256 × 256 images result in a faster computation as compared 
to 512 × 512 images. In addition, we have verified that 256 × 256 is the 

Fig. 1. Illustration of the modeling framework to predict element distribution 
in HEA materials. Atomic models of PtNiPdCoFe HEAs are computed with DFT 
and EA to generate the dataset of simulated images for training and testing the 
DL model. The model is then capable of mapping the element distribution in the 
HEA structure by predicting the atomic CHs for each chemical element through 
semantic segmentation. 

Fig. 2. Atomic models of HEAs with different sizes of the NPs and the corre
sponding simulated HAADF STEM images. In this work, we have considered a 
random size within the range 6.5–7.5 nm, but our framework is amenable to 
any size of interest. 

Fig. 3. Example of atomic model of HEA characterized by a nearly equiatomic 
composition of Pt, Ni, Pd, Co and Fe. The developed HEA atomic model is used 
to generate the corresponding atomic resolution simulated HAADF STEM image 
with locally normalized pixel intensity (I px) and the ground truth of the atomic 
CHs for each chemical element in a random portion of the NP in the [110] 
axis plane. 
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optimal image size for the DL model, whereas smaller images do not 
allow the neural network to properly capture the atomic scale resolu
tion. In fact, lower resolution images (i.e., 128 × 128) result in a small, 
but noticeable, pixilation in the CHs ground truth maps which has a 
negative impact on the network’s performance. On the other hand, 
higher resolution images (i.e., 512 × 512) require an increased 
computational time with no significant boost in the model’s accuracy. 

The implemented simulations reproduce the acquisition of HAADF 
STEM images of the electron microscope, which provide a 2D repre
sentation of the sample with the pixel intensities correlated to the 3D 
structural configuration. The microscope parameters have been set ac
cording to the experimental conditions. These parameters determine the 
kinematics conditions in the acquisition of the image, and they have a 
profound effect in resulting pixel intensities of the atomic columns. 

In experimental images, a certain degree of noise is typically present. 
Thus, we have added a random noise to our ideal modeling images, in 
order to reflect realistic experimental conditions. A combination of 
subtractive and divisive Gaussian normalization is applied to enhance 
the intensity of the peaks of the atomic columns with respect to the 
background between the columns [41]. First, each pixel is subtracted by 
the minimum intensity value within the original image, and then 
divided by the difference between the maximum and minimum in
tensity. Then, a Gaussian filter of the resulting image is subtracted. 
Finally, each pixel is divided by the squared root of a Gaussian filter of 
the resulting squared intensity. The inverse of the resolution has been 

Table 1 
STEM microscope parameters used in the HAADF image simulations.  

Microscope Parameter Range 

Acceleration voltage / kV [180, 220] 
Convergence angle / mrad [15, 20] 
First order aberration (Cs) / mm [−5, 5] 
Defocus / Å [−10, 10]  
Astigmation magnitude / Å [18, 22] 
Astigmation angle / ◦ [12, 16]  

Fig. 4. Examples of simulated HAADF STEM images in random regions of the HEAs structures and random orientations (a–f). The randomness of the locations of the 
regions and the orientations results in CHs with different values. 
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chosen as the standard deviation of the Gaussian filter, while the mean 
has been set to 0. The subtractive and divisive normalization is described 
in Eqs. (1)–(3): 

I’
N×N =

IN×N − min(IN×N)

max(IN×N) − min(IN×N)
(1)  

I’’
N×N = I’

N×N − G(I’
N×N) (2)  

I’’’
N×N =

I’’
N×N̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

G(I’’
N×N

2
)

√ (3) 

IN×N are the pixel intensities in the N × N original image (in our case 
N = 256), I’

N×N, I’’
N×Nand I’’’

N×N are the pixel intensities after the first, 
second and third steps of the normalization, and the function G is the 
applied Gaussian filter. The subtractive and divisive normalization re
sults in a range of pixel intensities varying with a Gaussian distribution 
between a minimum value of 0 for the background and a maximum 
value at the peak of the atomic columns. Fig. 4 shows six examples of 
simulated HAADF STEM images depicted in random regions and with 
random orientations of the modeling HEAs structures in the dataset. 

The ground truth of the atomic CHs for each chemical element is 
likewise constructed with a Gaussian distribution, assigning a value of 
0 in correspondence of the background and the actual value of atoms 
within a column at the pixels corresponding to the peaks. The creation of 
ground truth maps with pixel values varying continuously from the 
background to the center of the columns is critical for the imple
mentation of the regression-based semantic segmentation performed by 
the neural network. The construction of a column height map following 
a Gaussian distribution motivates the Gaussian filtering applied to the 
STEM images to enhance the peaks. This approach ensures that the pixel 
values in the input images have the same type of variation as the pixel 
values of the ground truth maps. Such a symmetrical correlation is 
beneficial for the learning process of the neural network. 

2.2. Deep learning model 

The objective of the supervised DL model is to learn in a supervised 
fashion the pixel-wise relationship between the intensity of the signal in 
the HAADF STEM images and the intensity in the segmented features 
maps, labeled with the values of the CHs for each element in the HEAs 
structure. The input of the FCN is a HAADF STEM image, while the 
output is a series of features maps representing the corresponding CHs 
for each chemical element, with the same spatial dimensionality of the 
input. The network’s architecture is the same as that adopted in our 
prior publication [42], except for the last inference layer, comprising of 
a number of output channels corresponding to the number of chemical 
elements (i.e., five in this case). The model is an encoder-decoder type of 
neural network, characterized by a series of three blocks of convolu
tional layers in the encoder side (i.e., convolution) and a symmetrical 
series of three blocks of convolutional layers in the decoder side (i.e., 
deconvolution). Between the encoder and the decoder, a “bridge” of 
convolutional layers is present. Each convolutional layer is character
ized by 3 × 3 filters to extract the feature values of the input image (i.e., 
pixel values) and a rectified linear unit (ReLU) activation function. Batch 
normalization is also used to increase the stability of the network. In 
order to avoid the problem of the vanishing gradient during the learning 
process, the convolutional blocks are built with two convolutional layers 
and a residual block of three convolutional layers in between, and 
skipped connections are used to connect a block in the encoder with its 
symmetrical counterpart in the decoder. The encoder is responsible for 
the down-sampling of the input image using max-pooling layers after 
each convolutional block, while the decoder sequentially restores the 
original size of the input incorporating up-sampling layers at the end of 
each convolutional block. In our case, we have considered 256 × 256 
images but the network is amenable to arbitrary sizes. The first, second 

and third convolutional blocks of the encoder and their symmetrical 
counterpart in the decoder have 32, 64 and 128 channels respectively. 
The convolutional layers in the bridge block have 256 channels. The last 
layer of the network is a convolutional layer with a 1 × 1 filter and five 
output channels, which predict the segmented features maps repre
senting the atomic CHs of the five chemical elements. The network is 
trained using the Adam optimizer, the mean squared error (MSE) as loss 
function and a batch size of 32 images. 

3. Results and discussion 

In this section, we first describe a statistical study of the correlations 
between the pixel intensities in the simulated STEM images and the CHs 
of the represented HEA sample. Then, we illustrate the CHs prediction in 
the simulated images and the corresponding performance analysis. 
Finally, we present the estimation of the CHs in HEAs in STEM images 
acquired in experimental measurements as a demonstration of the 
applicability of our modeling framework to realistic cases. 

3.1. Statistical analysis of the pixel intensities-column heights correlation 
in HAADF STEM images of HEAs 

Herein, the correlation between the pixel intensities in the simulated 
HAADF STEM images and the CHs for each chemical element is 
described. In particular, we consider the signal in the center of the 
columns, referred to as “peaks.” Both the STEM images and the CHs label 
maps are created using a Gaussian filtering technique. For this reason, 
the columns’ peaks in the STEM images correspond to the brightest pixel 
values, and likewise, they correspond to the actual number of atoms in 
the columns in the CHs label maps. The scope of this study is to inves
tigate how the composition of elements in CHs influence the intensity of 
the pixels in the STEM image. 

The correlation between the STEM pixel values and the CHs is 
considered for each chemical element separately. In particular, we 
demonstrate that such relationship is highly nonlinear and each chem
ical element has a different correlation with respect to the others. The 
correlation is analyzed considering the scatter plot of the columns’ peaks 
intensity as a function of the CHs for each chemical element. In addition, 
a linear fit is performed to investigate how the correlations deviate from 
a typical linear STEM behavior. The slope of the linear fitting explains 
the tendency of an enhanced intensity by increasing the number of 
atoms in the columns, while the R-Square reveals the closeness to a 
linear trend. Fig. 5 illustrates the results for an HEA randomly selected 
from the dataset. 

Fig. 5 illustrates that each element has a different correlation of the 
peak’s intensities with respect to the CHs. In particular, the linear fit 
reveals that Pt is the element characterized by the highest slope and 
highest R-Square of 0.366 and 0.308, followed by Pd with a slope of 
0.134 and R-Square of 0.035. Such behavior could be due to the most 
energetic electronic configurations of 4f145d96s1 and 4d10of Pt and Pd 
respectively. On the other hand, Ni, Co and Fe have the lowest slope of 
0.029, 0.057, and 0.072 and R-Square of 0.002, 0.007 and 0.011, since 
the electronic configurations of 3d84s2, 3d74s2 and 3d64s2 respectively 
are less energetic. It could be noted that in this particular HEA, Ni has 
slightly lower slope and R-square compared to Co and Fe, despite it has 
one and two additional atoms in the outer shell. Such result could be due 
to the random distribution of the atoms in the columns, which together 
with the electronic configuration has an impact on the pixel intensities 
in the STEM images. The peaks pixel values range from −1 up to 10 as a 
result of the applied Gaussian filtering. 

Furthermore, Fig. 5 shows that for a single chemical element, col
umns with the same heights have different intensity and indeed, some 
columns with a lower number of atoms are characterized by a stronger 
signal compared to higher columns and vice-versa. This behavior is due 
to the random distribution of the chemical elements in the columns. For 
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example, atoms impact the intensity differently depending on their 
location, which could be in the top or in the bottom of the column. In 
particular, a high CH of a certain element could have a lower intensity 
compared to a shorter CH, if the column is rich of other atoms with a low 
energetic electronic configuration placed on top of the column. The non- 
linear correlation between pixel intensities and CHs is also contributed 
by the crosstalk effect [26] present in the STEM images, though the 
systematic study of such effect is beyond the scope of this work. 

In summary, the relationship between the peak’s intensity and the 
CHs for each chemical element in STEM images of HEAs is highly non- 
linear due to the combination of the electronic configuration, element 
distribution and crosstalk effect. For this reason, more advanced 

techniques compared to the state-of-the-art methods are required to 
predict the atomic scale distribution of HEAs from STEM images. In this 
work, we demonstrate that DL modeling based on FCN’s semantic seg
mentation of HAADF STEM images has the potential to capture such 
non-linear correlations and closely estimate the CHs in HEAs. 

3.2. Training and test results of the DL model applied to the modeling 
HAADF STEM images 

The DL model requires to be appropriately trained to recognize the 
CHs for each element in HEAs structures represented in the STEM im
ages. The learning process of the neural network is implemented 

Fig. 5. Scatter plots and corresponding linear fitting representing the relationship between the pixel intensities of a simulated STEM in the peaks of the atomic 
columns and the corresponding CHs for Pt (a), Ni (b), Pd (c), Co (d), and Fe (e) for an HEA randomly selected from the dataset. 
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through an iterative process of successive steps called epochs, charac
terized by updates of the model’s parameters (i.e., weights and bias) 
towards an optimal performance. At each epoch, the FCN processes 
different simulated HAADF STEM images and the corresponding ground 
truth and it learns the relationship between the pixel’s intensities and 
the CHs in a supervised fashion. In order to enhance the variance of the 
model, which is beneficial for the learning process of statistical learning 
algorithms, a variety of random transformations including contrast, 
illumination, blur and rotations are applied to the input images at each 
epoch. It should be noted that a significant contribution to the variance 
of the dataset is provided also by the randomness of the HEAs structures 
and the considered random portions, as well as to the values of micro
scope’s parameters randomly varied in a range centered with respect to 
the imaging experimental conditions. 

The performance of the model is monitored through the mean 
squared error (MSE) loss, which is minimized towards a global minimum 
at each epoch. In addition to the MSE loss, the efficacy of the neural 
network is verified considering the typical regression metric R2, 
computed between the predicted and the true CHs for each chemical 
element. Compared to the MSE loss which performs a standard pixel- 
wise comparison between the model’s inference and the ground truth, 
we have calculated the R2 only for the pixels corresponding to the peaks, 
thus it provides a more physical interpretation to the performance of the 
FCN. The optimal value of the R2 is 1, corresponding to a perfect 
agreement between the predicted and the true CHs. 

The training and the test process have been performed simulta
neously at each epoch in order to implement an online control of the 
underfitting (i.e., non-accurate training and test performance) and 
overfitting (accurate training and non-accurate test performance) issues 
which could affect statistical learning models. We have verified that a 
dataset of 10,000 images is appropriate to train and test the neural 
network to prevent both underfitting and overfitting in our model. For 
this purpose, the training dataset has been built considering 8,000 im
ages randomly selected from the dataset, while the remaining 2,000 
images have been used to test the model. 

The training and test learning curves (i.e., the profiles of values of the 
metrics for each epoch) of the MSE loss, the R2 for Pt, Ni, Pd, Co and Fe 
as well as the average R2 among the five elements are illustrated in 
Fig. S3 of Supplementary Information. The learning curves of the R2 

metric for each element reveals that Pt and Pd are the fastest elements in 
improving their performance, and that a delay over the epochs is 
observed for Ni and Fe and most significantly for Co. The physical 
interpretation of the delay of the model’s performance among the five 
chemical elements could be provided by examining the values of the 
slope and R-Square describing the correlations between the pixel’s in
tensities in the HAADF STEM images and the CHs for Pt, Ni, Pd, Co and 
Fe reported in Fig. 5. Since Pt is characterized by the highest values of 
the slope and R-Square, it is the element most likely to be close to a 
typical linear behavior in STEM images representing NPs of a single 
chemical element, for which the intensity linearly increases with the 
CHs. On the contrary, the analysis has demonstrated that Ni, Fe and in 
particular Co have a highly nonlinear behavior. Thus, it is more 
straightforward for the neural network to capture the correlation be
tween the pixel’s intensities and the CHs for Pt and Pd, while a major 
effort is required to learn the highly nonlinear profile of Ni, Fe and Co. 
The resulting behavior of the learning process is a remarkable obser
vation which describes how the DL model is instructed by the physics of 
the HEAs structures in our dataset. In particular, this work demonstrates 
how the features of the HEAs related to the electronic configurations and 
the random distributions of the elements are the driving force guiding 
the optimization process implemented in our statistical learning 
algorithm. 

The FCN is trained for 800 epochs in order to achieve a satisfactory 
R2 above 0.70 for each element. Fig. 6 illustrates a prediction of the CHs 
for each element in a STEM image randomly selected from the test 

dataset. The figure shows that a more precise prediction of the CHs is 
obtained for Pt and Pd with a value of R2 equal to 0.82 and 0.80 
respectively, while Ni, Co and Fe exhibit slightly lower performances. 
Although the R2 values between the predicted and the true CHs provide 
quantitative characterization of the regression task performed by the 
model, a detailed analysis of the errors in the estimated number of atoms 
for different CHs allows a broader qualitative assessment of the net
work’s performance. Figs. S4–S8 in Supplementary Information show an 
error distribution highlighting the differences between the true and the 
predicted values for each CHs and for each element. In particular, we 
demonstrate that for each element, the majority of the columns are 
predicted with a difference of just 1 atom with respect to the ground 
truth. For example, in the Pt prediction (R2 = 0.82) illustrated in Fig. 6, 
50% of the columns are predicted with the correct CHs, whereas an error 
of 1, 2, and 3 atoms is reported for the 41%, 7%, and 2% of the columns. 
Errors of 4 or more atoms are not reported. In particular, an error of 1 
atom is equally distributed in columns with different CHs, while errors 
of 2 and 3 tend to be concentrated in higher CHs such as 8, 9 and 10. 
Comparing the error distribution for different elements, Pd, Ni, Co and 
Fe shows higher fractions of mistaken columns, but in all cases the 
maximum error is 3 atoms, which is reported for less than 5% of the 
columns. Thus, a confidence band of ± 1 atom is reported for 91% of the 
columns in the optimal case of Pt (50% correct + 41% with an error of 1 
atom) and around 77% or higher for the other elements, while a confi
dence band of ± 2 atoms is reported for more than 95% of the columns 
for all the elements. Such level of accuracy is comparable to the method 
reported by LeBeau et al. [23], where 86% and 99% of the columns have 
confidence bands of ±1 and 2 atoms respectively. However, the novelty 

Fig. 6. Prediction of the atomic CHs for each chemical element performed by 
the DL model applied to a simulated HAADF STEM randomly selected from the 
dataset. Pt and Pd exhibit the highest values of the R2 calculated between the 
predicted and the true eights. 
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introduced by our proposed method is the application to complicated 
quinary HEAs compared to the single element nanoparticles reported in 
the literature. The analysis is reported here for a random image, but 
similar results are obtained for the other HEAs in the training and test 
datasets. In general, we have verified that the majority of the columns 
are predicted correctly or with an error of only 1 atom. The statistics of 
the CHs errors for the prediction in Fig. 6 are provided in Table 2. 

In conclusion, our DL model is capable of predicting precisely the 
CHs in HEAs represented in simulated HAADF STEM images. Since the 
model has been trained and tested on images and HEAs models repre
senting realistic conditions, the same performance could be expected in 
the application of the model to the experimental images. 

3.3. Prediction of the column heights distribution in experimental HAADF 
STEM images 

Here we show the application of our trained DL model to experi
mental HAADF STEM images of HEAs represented in different regions of 
the alloys. Fig. 7 illustrates a portion of an HEA close to the background, 
while in Fig. 8 a central region of another alloy is considered. In addition 
to the CH maps predicted by the FCN, statistical distributions of the 
predicted CHs and the atomic fraction within the columns for each 
chemical element are analyzed. 

Fig. 7a shows that the FCN predicts an approximately even distri
bution of Pt, Ni, Pd, Co and Fe, since the CHs vary in a similar range. 
However, a slightly higher content of atoms is reported for Pt and Fe. It 
can be noted that the composition is nearly equiatomic, with a 23% and 
25% for Pt and Fe, and 17%, 18%, 17% for Ni, Pd and Co. These values 
are physically reasonable for this type of alloy. In addition, Fig. 7b 
provides the distribution of the CHs for the five elements. For each 
element, the reported profiles are close to each other, as a result of the 
nearly equiatomic composition, while CHs 4 and 5 are the most popu
lated given the size of the alloy. Such distribution follows the same 
profile of the CHs distribution in the simulated images illustrated in 
Fig. S2 in Supplementary Information. However, it could be noted that 
for CHs higher than 7, Pt and Fe count more columns compared to Ni, Pd 
and Co, explaining the higher concentrations for these two elements. 
Furthermore, Fig. 7c shows the variation of the atomic fractions within 
the columns, which is typically evaluated through EDS mapping and pair 
correlations analysis in experimental measurements [51]. We have 
verified that inhomogeneous fluctuations with local aggregations are 
present in the HEA under consideration. For instance, some atomic 
fractions of Pt and Fe are higher than 50% in some columns. Likewise, 
some atomic fractions could be below 10%. However, the local clus
tering is present only at the column level, while ordinate clusters of 
columns rich of a single element do not form. The profile in Fig. 7c is in 
agreement with the results obtained by Ding et al. [21], who illustrated 
that inhomogeneous fluctuations with local aggregations could exist in a 
nearly equiatomic CrFeCoNiPd HEA, characterized by elements with 
different electronegativity. The local clustering suggests that short- 
range order may be present in HEAs, meaning that the structural 
composition is not completely random as postulated in the original 
definitions for a Cantor alloy characterized by constituent elements with 

similar size and electronegativity. 
In addition, we have considered a central region of another HEA. 

Fig. 8a reveals that Pt is characterized by the highest range of variation, 
with a maximum CH of 21, while Ni, Pd, Co and Fe vary in approxi
mately the same range up to 12 and 15 atoms. Indeed, Pt has a con
centration of 27%, whereas Ni, Pd, Co and Fe have an approximately 
equal concentration around 18%. The dominance of Pt in this structure 
is physically acceptable, as an element concentration could vary up to 
35%, according to the original definition provided by Yeh et al. [8]. 
Fig. 8b shows that also in this case CHs 4 and 5 are the most populated 
for each element and that Pd exhibits a major number of columns with 
CHs between 5 and 10 compared to other elements. However, the Pt CH 
map predicted by the model does not show a presence of a cluster of high 
columns, whereas an even distribution of the element’s concentration is 
still present despite the abundancy of Pt. The lack of incipient 

Table 2 
Statistics of the errors in the prediction of the DL model for Pt, Ni, Pd, Co and Fe.   

Pt 
columns/ 
% 

Ni 
columns/ 
% 

Pd 
columns/ 
% 

Co 
columns/ 
% 

Fe 
columns/ 
% 

Correct 50 % 33% 35% 34% 35% 
Error = 1 

atom 
41% 44% 49% 43% 42% 

Error = 2 
atoms 

7% 19% 14% 19% 19% 

Error = 3 
atoms 

2% 4% 2% 4% 4%  

Fig. 7. Prediction of the DL model applied to an experimental HAADF STEM 
image of a PtNiPdCoFe HEA in a region close to the background. CH maps 
predicted by the model (a). Predicted CHs distribution (b). Predicted atomic 
fraction of the five elements within the columns (c). 

Fig. 8. Prediction of the DL model applied to an experimental HAADF STEM 
image of a PtNiPdCoFe HEA in a central region of the alloy. CH maps predicted 
by the model (a). Predicted CHs distribution (b). Predicted atomic fraction of 
the five elements within the columns (c). 
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segregation is also demonstrated by Fig. 8c, which shows that although 
Pt could achieve an atomic fraction up to 60% in a column, such con
centration drops in nearby columns. 

Comparing the predicted profile of the atomic fractions in Fig. 7c and 
c, it could be noted that in both cases Pt is the element characterized by 
the most pronounced aggregation at column level, with the highest 
atomic fraction approximately around 60%. Such clustering could be 
induced by the larger size and higher electronegativity of Pt compared to 
the other elements, as it is suggested for the first time by Ding and co- 
workers [21]. In their CrFeCoNiPd HEAs, Pd was larger and most elec
tronegative element, and the EDS analysis exhibited a larger variation 
up to 58%. Our DL predictions confirm these breakthrough discoveries, 
revealing that inhomogeneous distribution could be present in HEAs. 
The inhomogeneous element distribution has fundamental importance, 
since it results in non-uniform distribution of lattice strain, affecting the 
microscopic deformation mechanisms in HEAs. Such elemental 
composition has a profound influence on the mechanical properties of 
HEA, in particular the stress-strain relationship and the material hard
ening which are of high interest in practical engineering applications. In 
experimental measurements, it is not possible to experimentally mea
sure the number of atoms of different chemical elements in the atomic 
columns. Nevertheless, EDS and EELS spectra could be used to acquire a 
high resolution mapping of the fractional composition of different 
chemical elements in complex atomic structures, including high entropy 
alloys (HEAs) [21]. Future work will be focused on the acquisition of 
EDS and EELS mapping of HEAs, with the aim of validating the net
work’s prediction of the experimental images. 

4. Summary and conclusions 

HEAs are characterized by many unique properties comparing to 
conventional binary alloys, and they are of high interest for applications 
in catalysis, energy storage and bio/plasmonic imaging. The knowledge 
of the atomic scale distribution of HEAs is important for a more 
comprehensive characterization of these materials at the fundamental 
level. In this work, we describe and demonstrate a deep learning 
framework for the estimation of the element distribution in the atomic 
columns of HEAs, through semantic segmentation of HAADF STEM 
images. 

For this purpose, the multislice algorithm and Gaussian filtering are 
used to generate a dataset of simulated STEM images representing 
nearly equiatomic PtNiPdCoFe HEAs, with structural characteristics in 
agreement with the samples observed in the experimental measure
ments. Performing a statistical analysis of the simulated STEM images, 
we have demonstrated that the correlation between the pixel intensities 
and the CHs of the constituent elements is highly nonlinear, because of 
the random distribution, the different electronegativity of the constitu
ent elements and the crosstalk effect. For this reason, DL modeling 
represents an advancement towards the characterization of the 3D 
configuration of HEAs, compared to the state-of-the-art techniques 
based on electron tomography and statistical parameter estimation 
theory. 

We illustrate that in the simulated HAADF STEM images, our FCN 
predicts the CHs with a maximum error of three atoms, although the 
majority of the columns are predicted correctly and with an error of just 
one atom. The trained network is then applied to two experimental 
HAADF STEM images. The first image represents an HEA in a region 
close to the background, whereas the second image illustrate a different 
HEA in a central region. In the first case, the FCN predicts a slightly 
higher concentration for Pt and Fe at 23% and 25%, but an overall even 
distribution of the five constituent elements (i.e., no local clusters of 
single element rich columns), with inhomogeneous fluctuations with 
local aggregations at a column level. On the other hand, the prediction 
for the second image reveals a higher Pt concentration around 27%, 
while the other elements are nearly equally distributed with a concen
tration of approximately 18%. As in the first image, the elements are 

evenly distributed, and the atomic fraction within the columns exhibits 
inhomogeneous fluctuations with local aggregations. In both cases, Pt is 
the element which achieves the highest atomic fraction within a column 
around 60%, confirming a theory developed on the basis of previous 
experimental studies using EDS mapping of HAADF images of CrFeCo
NiPd HEAs, for which the larger and more electronegative element gives 
rise to a local aggregation in a column’s distribution. 

The mapping of the HEAs element distribution via DL presented in 
this work allows for a more accurate characterization and engineering of 
the mechanical properties of HEAs. Based on the results presented in this 
report, future work could be focused on estimation of the stress-strain 
relationship and elastic-plastic deformation in the HEAs predicted by 
the DL model. Although our method is applied to HEAs with five 
chemical elements, it is amenable to other HEAs characterized by 
different number of elements and compositions. Furthermore, the 
modeling framework proposed in this report represents a general 
attempt for the identification of chemical species in 3D materials, which 
is applicable to many atomic configurations other than HEAs. Thus, in 
addition to the estimation of the number of atoms in the atomic columns 
of HEAs, our work represents an advancement to the development of 
computer vision techniques based on statistical learning methods for 
microscopy analysis, which could be beneficial to a broad area of 
nanoscience applications. 
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