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The latest developments of machine learning (ML) and deep learning (DL) algorithms have paved the way to
effectively analyze the atomic structure of chemically-complex materials. In this work, we present a DL model
built upon a fully convolutional neural network (FCN) to resolve the random elements distribution of complex
PtNiPdCoFe high-entropy alloys (HEAs) represented in the scanning transmission electron microscopy (STEM)
images at atomic resolution. The objective of the proposed neural network is to learn through semantic seg-
mentation the non-linear correlations between the pixels’ intensities of STEM images and the number of atoms of
different constituent elements in the atomic columns (i.e., column heights) in the HEA’s structure. We demon-
strate that our DL model is capable of correctly estimating the column heights or with an error up to 1 atom for
the majority of the columns in the HEA structures represented in the simulated STEM images used to train and
test the network. This establishes a sufficiently high level of confidence in the estimation of the element dis-
tribution in experimental images. The predicted distributions in different STEM images of nanoparticles reveal
inhomogeneous fluctuations with local aggregations in the elemental atomic fractions within the columns. The
most pronounced aggregation is displayed by Pt, which is the largest and most electronegative element in the
synthesized HEA material. The proposed DL method is beneficial for an in-depth characterization of the struc-

tural properties of HEAs and multielement 3D materials in general.

1. Introduction

Chemically-complex alloy nanoparticles (NPs) are of great interest in
a wide range of applications including catalysis [1-4], energy storage
[5] and bio/plasmonic imaging [6]. Among them, high entropy alloys
(HEAs) are an important class of NPs. A pioneering investigation of
HEAs was presented by Cantor et al. [7], who considered equiatomic
compounds with a number of principal elements up to twenty, including
the five-component FeCrMnNiCo alloy (known as the “Cantor alloy” in
the literature). One of the most important discoveries of their study was
that the equimolar five-element FeCrMnNiCo alloy stabilizes in a single-
phase FCC solid solution. The concept of “high entropy” was introduced
by Yeh and co-workers [8], who postulated for the first time that
multicomponent alloys with five or more elements in nearly equimolar
ratio are characterized by a sufficiently high configurational entropy to
stabilize randomly mixed solid solution alloys with no intermetallic
compounds. However, the formation of non-equiatomic and randomly

* Corresponding author.
E-mail address: vyurkiv@uic.edu (V. Yurkiv).

https://doi.org/10.1016/j.commatsci.2021.110905

mixed multicomponent alloys has been demonstrated in more recent
studies [9,10]. In general, equiatomic and non-equiatomic HEAs are
widely explored compounds because of their exceptional properties
compared to conventional alloys [11].

Yeh et al. [12] introduced four major effects characterizing the na-
ture and the versatile properties of HEAs: the high entropy effect, the
lattice distortion, the sluggish diffusion and the cocktail effect. Such core
features assumed to be related to the randomness of the HEAs compo-
sitions, have been extensively described in the literature [13]. The
exceptional mechanical [14], thermal [15], electrical [16] and magnetic
[17] properties of HEAs have sparked the interest in applications of
these materials in many areas of engineering. The understanding of the
relationship between the properties and the structural composition of
HEAs is crucial for their appropriate design in engineering applications.

The study of the composition of HEAs is tedious mainly because of
the combination of different number of elements and different concen-
trations, resulting in a vast configurational space of potential HEAs.
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High-throughput computational and experimental methods like Calcu-
lation Phase Diagram (CALPHAD) analysis [18], experimental combi-
natorial techniques [19], and mechanistic-based approach [20] have
been proposed to screen HEAs by the identification of co-existing phases
together with their compositions and volume fraction. In a more recent
publication, Ding and co-workers [21] presented a method based on
energy-dispersive X-ray spectroscopy (EDS) to obtain high resolution
mapping of the fraction of each chemical element in the atomic columns
of HEAs represented in high-angle annular dark field (HAADF) images
from transmission electron microscopy (TEM). Despite EDS mapping
being a pioneered technique to acquire the atomic-scale mapping of the
chemical elements distribution in the atomic columns of synthesized
HEAs [22] and solid solutions in general, it does not allow the user to
estimate the actual number of atoms distributed in the columns. A more
in-depth characterization of the chemical composition of HEAs requires
the development of innovative techniques which could allow a precise
prediction of the atomic scale distribution.

In a STEM image, the relationship between the pixel intensities and
the number of atoms in the atomic columns of a single element NP is
assumed to follow a linear relationship, thus the CHs could be extracted
via linear interpolation [23]. Van Aert et al. [24] and Backer et al. [25]
demonstrated that statistical methods based on parameter estimation
theory and least square estimator, respectively, are capable of precisely
quantifying the number of atoms arranged in the atomic columns of
nanoparticles in HAADF STEM images of different chemical elements.
However, the applicability of these methods has been demonstrated only
for a single chemical element nanocluster. In general, these methods
assume that the intensity of the peaks of the atomic columns in the STEM
images is linearly correlated with the corresponding CHs and an
increasing intensity is associated with an increasing number of atoms in
the atomic columns.

On the other hand, for multicomponent alloys such as HEAs, the
pixel intensities of the STEM images are influenced not only by the ab-
solute CHs, but also by the electronic configuration and the distribution
of atoms of different chemical elements within the columns. In the STEM
process, the pixel intensities depend on the interaction between the
incident electron wave and the electronic configuration of the atoms in
the structure. Since HEAs are characterized by atoms with varying
electronic configurations, each chemical element contributes differently
to the pixel intensities in the STEM images. For example, since Pt has the
most energetic electronic configuration of 4f1*5d°6s!, columns with a
high content of Pt are more likely to display a higher intensity compared
to columns rich in Co, which has a lower energetic electronic configu-
ration of 3d”4s%. In addition, the pixel intensities are also correlated with
the position of the atoms in the columns. For instance, atomic columns
with the same elemental fractions have different intensities according to
the location of the atoms with different electronic configuration in the
direction of the incident electron beam. Thus, the random distribution of
Pt, Ni, Pd, Co and Fe in the HEAs structure has a strong impact on the
intensity values of the atomic columns. In addition, the STEM images
acquisition process of multicomponent alloys is characterized by a
crosstalk effect [26] for which the pixel intensity of an atomic column
depends not only on the composition the column, but also of the
neighboring columns around it. Such phenomenon further complicates
the estimation of the chemical composition of HEAs using state-of-the-
art techniques.

In recent years, ML and DL algorithms have paved the way to a more
profound atomic scale understanding of various materials [27-29] and
HEAs in particular [30-39]. Kaufmann et al. [30] presented a random
forest (RF) model to predict the solid solution forming ability of HEA
from thermodynamic and chemical features. Huang and co-workers [31]
and Risal et al. [32] have classified HEAs according to the formation of
solid solutions (SS), intermetallic (IM) and SS + IM phases using K-
nearest neighbors (KNN), support vector machine (SVM) and artificial
neural network (ANN). Dai and co-workers [36] predicted the phase
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formation of HEAs using ML integrated with feature engineering in small
datasets. Wen et al. [33] and Kim et al. [34] implanted ML models to
predict respectively the hardness and elasticity in different HEAs
systems.

DL models built upon convolutional neural networks (CNNs) have
been also adopted to successfully predict the thickness of SrTiO3 sam-
ples from STEM images [40]. In particular, fully convolutional neural
networks (FCNs) have been adopted for a precise estimation of the
number of atoms in the atomic columns (i.e., column heights) of Au NPs
from high-resolution transmission electron microscopy (HRTEM) im-
ages [41,42]. Madsen et al. [41] presented an FCN applied to simulated
HRTEM images to classify the atomic columns according to their number
of atoms under varying imaging conditions of the microscope parame-
ters. In our prior work, the method was extended to estimate the column
heights (CHs) in Au NPs represented in simulated and also experimental
HRTEM images, through a regression-based FCN [42] version of the
original model developed by Madsen et al. [41]. The DL-based charac-
terization of the 3D shape of metallic NPs proved to be a valid alterna-
tive to the state-of-the-art techniques based on electron tomography
[43].

In this work, we present a DL approach to predict the number of
atoms of different chemical elements in the atomic columns of HEAs
represented in simulated and experimental atomic-resolution HAADF
STEM images. The method we present here is built upon our prior
regression-based FCN work applied to HRTEM images of Au NPs [42],
which is extended to the case of multi-element alloys. As a benchmark
case, we consider nearly equiatomic PtPdNiCoFe HEA in an FCC single
phase solid solution, where inhomogeneous fluctuations with local ag-
gregation of the chemical elements’ concentrations in the atomic col-
umns are taken into account. Through semantic segmentation, the
proposed FCN is capable of learning the complex and non-linear rela-
tionship between the intensities of the atomic column pixels in the
HAADF STEM images and the CHs of each different chemical element in
the HEA’s structure. The neural network is trained and tested on a
dataset of simulated HAADF STEM images of HEA NPs and consequently
it is applied to predict atomic CHs and element’s distribution in exper-
imentally acquired HAADF STEM images of the same type of HEA. The
proposed modeling approach allows for a precise estimation of the
constituent element’s distribution in complex HEAs, being beneficial for
the analysis of the structure-properties relationships in these materials.
Besides the primary objective of the prediction of the CHs in HEAs
structures, this work establishes a basis for an appropriate design of
HEAs in engineering applications.

2. Methodology

The modeling framework presented in this work combines density
functional theory (DFT) and evolutionary approach (EA) calculations,
HEAs, STEM image simulations and DL modeling. First, the DFT and EA
calculations are required to develop realistic HEAs atomic models,
which are employed to generate the dataset of simulated HAADF STEM
images and the necessary ground truth of the atomic CHs for training
and testing the neural network. The combined DFT and EA calculations
have been performed using the Vienna Ab Initio Simulation Package
(VASP) [44] and Atomistic Tool Kit (ATK) [45] as it is described in more
detail in Supplementary Information. The simulated HAADF STEM im-
ages have been computed for each HEA atomic model, using the mul-
tislice algorithm [46], implemented in the PyQSTEM [47] Python
library. Within the simulations, the appropriate STEM microscope pa-
rameters and resolution have been defined in agreement with the im-
aging experimental conditions. Finally, the dataset of modeling HAADF
STEM images has been used to train and test the DL model. The DL
model is an FCN type of neural network and it has been built using the
Tensorflow 2.2 [48] library for DL algorithms development. The
network has been trained and validated using a cluster of 2 V100 Nvidia
GPUs in docker environment built in Kubernetes. The distributed
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training with model parallelization technique has been implemented
using the Horovod library [49]. The mixed precision and accelerated
linear algebra (XLA) [50] technique have been implemented to speed up
the computation. A total of approximately 2 months were required to
train the model until the desired values of the target metrics have been
achieved. Finally, the trained model has been applied to experimental
HAADF STEM images to predict the CHs in realistic HEAs. The workflow
of the presented modeling framework is illustrated in Fig. 1.

2.1. DFT and EA calculations of HEAs and HAADF STEM images
simulations

HEAs are defined as solid solutions with a random distribution of the
chemical species, thus the atomic models have been computed by
generating NPs with a random size (i.e., diameter) within the range
6.5-7.5 nm of the samples represented in the experimental images, and
with a random position of the Pt, Ni, Pd, Co and Fe atoms in the struc-
tures. The random HEAs atomic models have been generated on the
basis of realistic “atomic motives” identified with DFT and EA methods,
as it is described in Supplementary Information. Although in this paper
we focus on HEA models with the same size of NPs represented in
experimental measurements, our framework is amenable to a variety of
sizes according to the application of interest. Fig. 2 illustrates modeled
HEAs of different sizes (i.e., diameter) of 2 nm, 4 nm, 6 nm and 8 nm and
the corresponding simulated HAADF STEM images. It should be noted
that, for bigger sizes only, a portion of the NP can be considered to
capture the atomic scale resolution necessary for an appropriate training
of the DL model.

We have simulated ideal HEAs with a nearly equiatomic composi-
tion, resulting in an element proportion around 20%. In particular, in
our modeled HEAs characterized by chemical elements belonging to
different rows of transition metals in the Periodic Table (i.e., Ni, Co and
Fe belong to the first row, while Pd and Pt belong to the second and third
rows, respectively), the internal atomic fraction within the columns
exhibits inhomogeneous fluctuations with local aggregations. For
example, a chemical element can reach an atomic fraction up to 50%
within a column, with a reduction to 2% in a nearby column. In a few
columns, a chemical element could even be absent. This type of
composition is in agreement with the results obtained by Ding et al. [21]
which showed inhomogeneous fluctuations with local aggregations in
CrFeCoNiPd HEAs, in contrast to the CrMnFeCoNi Cantor alloys where
the atomic fraction of a chemical element in an atomic column randomly
fluctuates around 20% with a small variation of approximately 10%.
Our HEAs models have been created considering an FCC atomic struc-
ture, and the [11 0] axis plane as surface orientation in agreement with
the experimental HAADF STEM images.

With the aim of training the model with a sufficiently variant dataset
of images, we have simulated the HAADF STEM images in local regions
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Fig. 1. Illustration of the modeling framework to predict element distribution
in HEA materials. Atomic models of PtNiPdCoFe HEAs are computed with DFT
and EA to generate the dataset of simulated images for training and testing the
DL model. The model is then capable of mapping the element distribution in the
HEA structure by predicting the atomic CHs for each chemical element through
semantic segmentation.
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8 nm

Fig. 2. Atomic models of HEAs with different sizes of the NPs and the corre-
sponding simulated HAADF STEM images. In this work, we have considered a
random size within the range 6.5-7.5 nm, but our framework is amenable to
any size of interest.

within the structures randomly selected in different locations of the NPs.
Such locations could be near the background, in the center of the
structures, as well as regions in between. A total of 10,000 random HEA
NPs have been generated using the model, resulting in a dataset of
10,000 simulated HAADF STEM images. An example of HEAs atomic
model and the corresponding simulated HAADF STEM image and CHs
ground truth for each chemical element is illustrated in Fig. 3.

The simulated HAADF STEM images have been computed using the
multislice algorithm [46], where a slice thickness of 0.2 nm and a probe
size of 8 x 8 nm are considered to simulate images of 6.5-7.5 nm sized
HEAs. The STEM microscope parameters, randomly varied in a range
centered with respect to the experimental values with a 10% variation,
are listed in Table 1. A critical parameter in the STEM images simulation
is the appropriate value of the resolution, measured in nm/pixel. The
experimental images are characterized by 512 x 512 pixels with 0.01
nm/pixel resolution. In the construction of our training and test datasets,
we have considered 256 x 256 images, with an imposed resolution of
0.02 nm/pixel. In this way, the same physical spatial domain of 51.2 x
51.2 nm is preserved. The reason behind the choice of a reduced image
size is that 256 x 256 images result in a faster computation as compared
to 512 x 512 images. In addition, we have verified that 256 x 256 is the
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Fig. 3. Example of atomic model of HEA characterized by a nearly equiatomic
composition of Pt, Ni, Pd, Co and Fe. The developed HEA atomic model is used
to generate the corresponding atomic resolution simulated HAADF STEM image
with locally normalized pixel intensity (I px) and the ground truth of the atomic
CHs for each chemical element in a random portion of the NP in the [110]
axis plane.
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Table 1

STEM microscope parameters used in the HAADF image simulations.
Microscope Parameter Range
Acceleration voltage / kV [180, 220]
Convergence angle / mrad [15, 20]
First order aberration (Cs) / mm [-5, 5]
Defocus / A [-10, 10]
Astigmation magnitude / A [18, 22]
Astigmation angle / ° [12, 16]

optimal image size for the DL model, whereas smaller images do not
allow the neural network to properly capture the atomic scale resolu-
tion. In fact, lower resolution images (i.e., 128 x 128) result in a small,
but noticeable, pixilation in the CHs ground truth maps which has a
negative impact on the network’s performance. On the other hand,
higher resolution images (i.e., 512 x 512) require an increased
computational time with no significant boost in the model’s accuracy.

Computational Materials Science 201 (2022) 110905

The implemented simulations reproduce the acquisition of HAADF
STEM images of the electron microscope, which provide a 2D repre-
sentation of the sample with the pixel intensities correlated to the 3D
structural configuration. The microscope parameters have been set ac-
cording to the experimental conditions. These parameters determine the
kinematics conditions in the acquisition of the image, and they have a
profound effect in resulting pixel intensities of the atomic columns.

In experimental images, a certain degree of noise is typically present.
Thus, we have added a random noise to our ideal modeling images, in
order to reflect realistic experimental conditions. A combination of
subtractive and divisive Gaussian normalization is applied to enhance
the intensity of the peaks of the atomic columns with respect to the
background between the columns [41]. First, each pixel is subtracted by
the minimum intensity value within the original image, and then
divided by the difference between the maximum and minimum in-
tensity. Then, a Gaussian filter of the resulting image is subtracted.
Finally, each pixel is divided by the squared root of a Gaussian filter of
the resulting squared intensity. The inverse of the resolution has been

Fig. 4. Examples of simulated HAADF STEM images in random regions of the HEAs structures and random orientations (a—f). The randomness of the locations of the

regions and the orientations results in CHs with different values.
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chosen as the standard deviation of the Gaussian filter, while the mean
has been set to 0. The subtractive and divisive normalization is described
in Egs. (1)-(3):

Iy — min(Iyy)

Iy = 1
NN max (Iyey) — min(Iysy) M

Iy = 11.V><N - G(INXN) ()]
r
Iyun = % 3
Gly.n)

Iy«n are the pixel intensities in the N x N original image (in our case
N = 256), Iy, Iy.yand Iy , are the pixel intensities after the first,
second and third steps of the normalization, and the function G is the
applied Gaussian filter. The subtractive and divisive normalization re-
sults in a range of pixel intensities varying with a Gaussian distribution
between a minimum value of 0 for the background and a maximum
value at the peak of the atomic columns. Fig. 4 shows six examples of
simulated HAADF STEM images depicted in random regions and with
random orientations of the modeling HEAs structures in the dataset.

The ground truth of the atomic CHs for each chemical element is
likewise constructed with a Gaussian distribution, assigning a value of
0 in correspondence of the background and the actual value of atoms
within a column at the pixels corresponding to the peaks. The creation of
ground truth maps with pixel values varying continuously from the
background to the center of the columns is critical for the imple-
mentation of the regression-based semantic segmentation performed by
the neural network. The construction of a column height map following
a Gaussian distribution motivates the Gaussian filtering applied to the
STEM images to enhance the peaks. This approach ensures that the pixel
values in the input images have the same type of variation as the pixel
values of the ground truth maps. Such a symmetrical correlation is
beneficial for the learning process of the neural network.

2.2. Deep learning model

The objective of the supervised DL model is to learn in a supervised
fashion the pixel-wise relationship between the intensity of the signal in
the HAADF STEM images and the intensity in the segmented features
maps, labeled with the values of the CHs for each element in the HEAs
structure. The input of the FCN is a HAADF STEM image, while the
output is a series of features maps representing the corresponding CHs
for each chemical element, with the same spatial dimensionality of the
input. The network’s architecture is the same as that adopted in our
prior publication [42], except for the last inference layer, comprising of
a number of output channels corresponding to the number of chemical
elements (i.e., five in this case). The model is an encoder-decoder type of
neural network, characterized by a series of three blocks of convolu-
tional layers in the encoder side (i.e., convolution) and a symmetrical
series of three blocks of convolutional layers in the decoder side (i.e.,
deconvolution). Between the encoder and the decoder, a “bridge” of
convolutional layers is present. Each convolutional layer is character-
ized by 3 x 3 filters to extract the feature values of the input image (i.e.,
pixel values) and a rectified linear unit (ReLU) activation function. Batch
normalization is also used to increase the stability of the network. In
order to avoid the problem of the vanishing gradient during the learning
process, the convolutional blocks are built with two convolutional layers
and a residual block of three convolutional layers in between, and
skipped connections are used to connect a block in the encoder with its
symmetrical counterpart in the decoder. The encoder is responsible for
the down-sampling of the input image using max-pooling layers after
each convolutional block, while the decoder sequentially restores the
original size of the input incorporating up-sampling layers at the end of
each convolutional block. In our case, we have considered 256 x 256
images but the network is amenable to arbitrary sizes. The first, second
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and third convolutional blocks of the encoder and their symmetrical
counterpart in the decoder have 32, 64 and 128 channels respectively.
The convolutional layers in the bridge block have 256 channels. The last
layer of the network is a convolutional layer with a 1 x 1 filter and five
output channels, which predict the segmented features maps repre-
senting the atomic CHs of the five chemical elements. The network is
trained using the Adam optimizer, the mean squared error (MSE) as loss
function and a batch size of 32 images.

3. Results and discussion

In this section, we first describe a statistical study of the correlations
between the pixel intensities in the simulated STEM images and the CHs
of the represented HEA sample. Then, we illustrate the CHs prediction in
the simulated images and the corresponding performance analysis.
Finally, we present the estimation of the CHs in HEAs in STEM images
acquired in experimental measurements as a demonstration of the
applicability of our modeling framework to realistic cases.

3.1. Statistical analysis of the pixel intensities-column heights correlation
in HAADF STEM images of HEAs

Herein, the correlation between the pixel intensities in the simulated
HAADF STEM images and the CHs for each chemical element is
described. In particular, we consider the signal in the center of the
columns, referred to as “peaks.” Both the STEM images and the CHs label
maps are created using a Gaussian filtering technique. For this reason,
the columns’ peaks in the STEM images correspond to the brightest pixel
values, and likewise, they correspond to the actual number of atoms in
the columns in the CHs label maps. The scope of this study is to inves-
tigate how the composition of elements in CHs influence the intensity of
the pixels in the STEM image.

The correlation between the STEM pixel values and the CHs is
considered for each chemical element separately. In particular, we
demonstrate that such relationship is highly nonlinear and each chem-
ical element has a different correlation with respect to the others. The
correlation is analyzed considering the scatter plot of the columns’ peaks
intensity as a function of the CHs for each chemical element. In addition,
a linear fit is performed to investigate how the correlations deviate from
a typical linear STEM behavior. The slope of the linear fitting explains
the tendency of an enhanced intensity by increasing the number of
atoms in the columns, while the R-Square reveals the closeness to a
linear trend. Fig. 5 illustrates the results for an HEA randomly selected
from the dataset.

Fig. 5 illustrates that each element has a different correlation of the
peak’s intensities with respect to the CHs. In particular, the linear fit
reveals that Pt is the element characterized by the highest slope and
highest R-Square of 0.366 and 0.308, followed by Pd with a slope of
0.134 and R-Square of 0.035. Such behavior could be due to the most
energetic electronic configurations of 4f'45d°6s! and 4d'°of Pt and Pd
respectively. On the other hand, Ni, Co and Fe have the lowest slope of
0.029, 0.057, and 0.072 and R-Square of 0.002, 0.007 and 0.011, since
the electronic configurations of 3d®4s2, 3d”4s? and 3d®4s? respectively
are less energetic. It could be noted that in this particular HEA, Ni has
slightly lower slope and R-square compared to Co and Fe, despite it has
one and two additional atoms in the outer shell. Such result could be due
to the random distribution of the atoms in the columns, which together
with the electronic configuration has an impact on the pixel intensities
in the STEM images. The peaks pixel values range from —1 up to 10 as a
result of the applied Gaussian filtering.

Furthermore, Fig. 5 shows that for a single chemical element, col-
umns with the same heights have different intensity and indeed, some
columns with a lower number of atoms are characterized by a stronger
signal compared to higher columns and vice-versa. This behavior is due
to the random distribution of the chemical elements in the columns. For
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Fig. 5. Scatter plots and corresponding linear fitting representing the relationship between the pixel intensities of a simulated STEM in the peaks of the atomic
columns and the corresponding CHs for Pt (a), Ni (b), Pd (c), Co (d), and Fe (e) for an HEA randomly selected from the dataset.

example, atoms impact the intensity differently depending on their
location, which could be in the top or in the bottom of the column. In
particular, a high CH of a certain element could have a lower intensity
compared to a shorter CH, if the column is rich of other atoms with a low
energetic electronic configuration placed on top of the column. The non-
linear correlation between pixel intensities and CHs is also contributed
by the crosstalk effect [26] present in the STEM images, though the
systematic study of such effect is beyond the scope of this work.

In summary, the relationship between the peak’s intensity and the
CHs for each chemical element in STEM images of HEAs is highly non-
linear due to the combination of the electronic configuration, element
distribution and crosstalk effect. For this reason, more advanced

techniques compared to the state-of-the-art methods are required to
predict the atomic scale distribution of HEAs from STEM images. In this
work, we demonstrate that DL modeling based on FCN’s semantic seg-
mentation of HAADF STEM images has the potential to capture such
non-linear correlations and closely estimate the CHs in HEAs.

3.2. Training and test results of the DL model applied to the modeling
HAADF STEM images

The DL model requires to be appropriately trained to recognize the
CHs for each element in HEAs structures represented in the STEM im-
ages. The learning process of the neural network is implemented



M. Ragone et al.

through an iterative process of successive steps called epochs, charac-
terized by updates of the model’s parameters (i.e., weights and bias)
towards an optimal performance. At each epoch, the FCN processes
different simulated HAADF STEM images and the corresponding ground
truth and it learns the relationship between the pixel’s intensities and
the CHs in a supervised fashion. In order to enhance the variance of the
model, which is beneficial for the learning process of statistical learning
algorithms, a variety of random transformations including contrast,
illumination, blur and rotations are applied to the input images at each
epoch. It should be noted that a significant contribution to the variance
of the dataset is provided also by the randomness of the HEAs structures
and the considered random portions, as well as to the values of micro-
scope’s parameters randomly varied in a range centered with respect to
the imaging experimental conditions.

The performance of the model is monitored through the mean
squared error (MSE) loss, which is minimized towards a global minimum
at each epoch. In addition to the MSE loss, the efficacy of the neural
network is verified considering the typical regression metric RZ,
computed between the predicted and the true CHs for each chemical
element. Compared to the MSE loss which performs a standard pixel-
wise comparison between the model’s inference and the ground truth,
we have calculated the R? only for the pixels corresponding to the peaks,
thus it provides a more physical interpretation to the performance of the
FCN. The optimal value of the R? is 1, corresponding to a perfect
agreement between the predicted and the true CHs.

The training and the test process have been performed simulta-
neously at each epoch in order to implement an online control of the
underfitting (i.e., non-accurate training and test performance) and
overfitting (accurate training and non-accurate test performance) issues
which could affect statistical learning models. We have verified that a
dataset of 10,000 images is appropriate to train and test the neural
network to prevent both underfitting and overfitting in our model. For
this purpose, the training dataset has been built considering 8,000 im-
ages randomly selected from the dataset, while the remaining 2,000
images have been used to test the model.

The training and test learning curves (i.e., the profiles of values of the
metrics for each epoch) of the MSE loss, the R? for Pt, Ni, Pd, Co and Fe
as well as the average R? among the five elements are illustrated in
Fig. S3 of Supplementary Information. The learning curves of the R?
metric for each element reveals that Pt and Pd are the fastest elements in
improving their performance, and that a delay over the epochs is
observed for Ni and Fe and most significantly for Co. The physical
interpretation of the delay of the model’s performance among the five
chemical elements could be provided by examining the values of the
slope and R-Square describing the correlations between the pixel’s in-
tensities in the HAADF STEM images and the CHs for Pt, Ni, Pd, Co and
Fe reported in Fig. 5. Since Pt is characterized by the highest values of
the slope and R-Square, it is the element most likely to be close to a
typical linear behavior in STEM images representing NPs of a single
chemical element, for which the intensity linearly increases with the
CHs. On the contrary, the analysis has demonstrated that Ni, Fe and in
particular Co have a highly nonlinear behavior. Thus, it is more
straightforward for the neural network to capture the correlation be-
tween the pixel’s intensities and the CHs for Pt and Pd, while a major
effort is required to learn the highly nonlinear profile of Ni, Fe and Co.
The resulting behavior of the learning process is a remarkable obser-
vation which describes how the DL model is instructed by the physics of
the HEAs structures in our dataset. In particular, this work demonstrates
how the features of the HEAs related to the electronic configurations and
the random distributions of the elements are the driving force guiding
the optimization process implemented in our statistical learning
algorithm.

The FCN is trained for 800 epochs in order to achieve a satisfactory
R? above 0.70 for each element. Fig. 6 illustrates a prediction of the CHs
for each element in a STEM image randomly selected from the test
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Fig. 6. Prediction of the atomic CHs for each chemical element performed by
the DL model applied to a simulated HAADF STEM randomly selected from the
dataset. Pt and Pd exhibit the highest values of the R? calculated between the
predicted and the true eights.

dataset. The figure shows that a more precise prediction of the CHs is
obtained for Pt and Pd with a value of R? equal to 0.82 and 0.80
respectively, while Ni, Co and Fe exhibit slightly lower performances.
Although the R? values between the predicted and the true CHs provide
quantitative characterization of the regression task performed by the
model, a detailed analysis of the errors in the estimated number of atoms
for different CHs allows a broader qualitative assessment of the net-
work’s performance. Figs. S4-S8 in Supplementary Information show an
error distribution highlighting the differences between the true and the
predicted values for each CHs and for each element. In particular, we
demonstrate that for each element, the majority of the columns are
predicted with a difference of just 1 atom with respect to the ground
truth. For example, in the Pt prediction (R? = 0.82) illustrated in Fig. 6,
50% of the columns are predicted with the correct CHs, whereas an error
of 1, 2, and 3 atoms is reported for the 41%, 7%, and 2% of the columns.
Errors of 4 or more atoms are not reported. In particular, an error of 1
atom is equally distributed in columns with different CHs, while errors
of 2 and 3 tend to be concentrated in higher CHs such as 8, 9 and 10.
Comparing the error distribution for different elements, Pd, Ni, Co and
Fe shows higher fractions of mistaken columns, but in all cases the
maximum error is 3 atoms, which is reported for less than 5% of the
columns. Thus, a confidence band of + 1 atom is reported for 91% of the
columns in the optimal case of Pt (50% correct + 41% with an error of 1
atom) and around 77% or higher for the other elements, while a confi-
dence band of + 2 atoms is reported for more than 95% of the columns
for all the elements. Such level of accuracy is comparable to the method
reported by LeBeau et al. [23], where 86% and 99% of the columns have
confidence bands of +1 and 2 atoms respectively. However, the novelty
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introduced by our proposed method is the application to complicated
quinary HEAs compared to the single element nanoparticles reported in
the literature. The analysis is reported here for a random image, but
similar results are obtained for the other HEAs in the training and test
datasets. In general, we have verified that the majority of the columns
are predicted correctly or with an error of only 1 atom. The statistics of
the CHs errors for the prediction in Fig. 6 are provided in Table 2.

In conclusion, our DL model is capable of predicting precisely the
CHs in HEAs represented in simulated HAADF STEM images. Since the
model has been trained and tested on images and HEAs models repre-
senting realistic conditions, the same performance could be expected in
the application of the model to the experimental images.

3.3. Prediction of the column heights distribution in experimental HAADF
STEM images

Here we show the application of our trained DL model to experi-
mental HAADF STEM images of HEAs represented in different regions of
the alloys. Fig. 7 illustrates a portion of an HEA close to the background,
while in Fig. 8 a central region of another alloy is considered. In addition
to the CH maps predicted by the FCN, statistical distributions of the
predicted CHs and the atomic fraction within the columns for each
chemical element are analyzed.

Fig. 7a shows that the FCN predicts an approximately even distri-
bution of Pt, Ni, Pd, Co and Fe, since the CHs vary in a similar range.
However, a slightly higher content of atoms is reported for Pt and Fe. It
can be noted that the composition is nearly equiatomic, with a 23% and
25% for Pt and Fe, and 17%, 18%, 17% for Ni, Pd and Co. These values
are physically reasonable for this type of alloy. In addition, Fig. 7b
provides the distribution of the CHs for the five elements. For each
element, the reported profiles are close to each other, as a result of the
nearly equiatomic composition, while CHs 4 and 5 are the most popu-
lated given the size of the alloy. Such distribution follows the same
profile of the CHs distribution in the simulated images illustrated in
Fig. S2 in Supplementary Information. However, it could be noted that
for CHs higher than 7, Pt and Fe count more columns compared to Ni, Pd
and Co, explaining the higher concentrations for these two elements.
Furthermore, Fig. 7c shows the variation of the atomic fractions within
the columns, which is typically evaluated through EDS mapping and pair
correlations analysis in experimental measurements [51]. We have
verified that inhomogeneous fluctuations with local aggregations are
present in the HEA under consideration. For instance, some atomic
fractions of Pt and Fe are higher than 50% in some columns. Likewise,
some atomic fractions could be below 10%. However, the local clus-
tering is present only at the column level, while ordinate clusters of
columns rich of a single element do not form. The profile in Fig. 7c is in
agreement with the results obtained by Ding et al. [21], who illustrated
that inhomogeneous fluctuations with local aggregations could exist in a
nearly equiatomic CrFeCoNiPd HEA, characterized by elements with
different electronegativity. The local clustering suggests that short-
range order may be present in HEAs, meaning that the structural
composition is not completely random as postulated in the original
definitions for a Cantor alloy characterized by constituent elements with

Table 2
Statistics of the errors in the prediction of the DL model for Pt, Ni, Pd, Co and Fe.
Pt Ni Pd Co Fe
columns/ columns/ columns/ columns/ columns/
% % % % %
Correct 50 % 33% 35% 34% 35%
Error =1 41% 44% 49% 43% 42%
atom
Error = 2 7% 19% 14% 19% 19%
atoms
Error = 3 2% 4% 2% 4% 4%
atoms

Computational Materials Science 201 (2022) 110905

(a) Experimental
STEM Image | px
6

/l

Predlc!lon CH

12 12 9 9 15

6 6 1
6 3 3 5
0 0 0 0 0

£
@
=)

=

(b)
45 =t
—a—Pd c
2 o 8
=] I—¢=Fe 3]
©
E 30 £
Q )
S g
Z 15 z
ol AS.\\/\/\ -
0 5 0 50 100 150 200

Column Helghts Position (column)

Fig. 7. Prediction of the DL model applied to an experimental HAADF STEM
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Fig. 8. Prediction of the DL model applied to an experimental HAADF STEM
image of a PtNiPdCoFe HEA in a central region of the alloy. CH maps predicted
by the model (a). Predicted CHs distribution (b). Predicted atomic fraction of
the five elements within the columns (c).

similar size and electronegativity.

In addition, we have considered a central region of another HEA.
Fig. 8a reveals that Pt is characterized by the highest range of variation,
with a maximum CH of 21, while Ni, Pd, Co and Fe vary in approxi-
mately the same range up to 12 and 15 atoms. Indeed, Pt has a con-
centration of 27%, whereas Ni, Pd, Co and Fe have an approximately
equal concentration around 18%. The dominance of Pt in this structure
is physically acceptable, as an element concentration could vary up to
35%, according to the original definition provided by Yeh et al. [8].
Fig. 8b shows that also in this case CHs 4 and 5 are the most populated
for each element and that Pd exhibits a major number of columns with
CHs between 5 and 10 compared to other elements. However, the Pt CH
map predicted by the model does not show a presence of a cluster of high
columns, whereas an even distribution of the element’s concentration is
still present despite the abundancy of Pt. The lack of incipient
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segregation is also demonstrated by Fig. 8c, which shows that although
Pt could achieve an atomic fraction up to 60% in a column, such con-
centration drops in nearby columns.

Comparing the predicted profile of the atomic fractions in Fig. 7c and
¢, it could be noted that in both cases Pt is the element characterized by
the most pronounced aggregation at column level, with the highest
atomic fraction approximately around 60%. Such clustering could be
induced by the larger size and higher electronegativity of Pt compared to
the other elements, as it is suggested for the first time by Ding and co-
workers [21]. In their CrFeCoNiPd HEAs, Pd was larger and most elec-
tronegative element, and the EDS analysis exhibited a larger variation
up to 58%. Our DL predictions confirm these breakthrough discoveries,
revealing that inhomogeneous distribution could be present in HEAs.
The inhomogeneous element distribution has fundamental importance,
since it results in non-uniform distribution of lattice strain, affecting the
microscopic deformation mechanisms in HEAs. Such elemental
composition has a profound influence on the mechanical properties of
HEA, in particular the stress-strain relationship and the material hard-
ening which are of high interest in practical engineering applications. In
experimental measurements, it is not possible to experimentally mea-
sure the number of atoms of different chemical elements in the atomic
columns. Nevertheless, EDS and EELS spectra could be used to acquire a
high resolution mapping of the fractional composition of different
chemical elements in complex atomic structures, including high entropy
alloys (HEAs) [21]. Future work will be focused on the acquisition of
EDS and EELS mapping of HEAs, with the aim of validating the net-
work’s prediction of the experimental images.

4. Summary and conclusions

HEAs are characterized by many unique properties comparing to
conventional binary alloys, and they are of high interest for applications
in catalysis, energy storage and bio/plasmonic imaging. The knowledge
of the atomic scale distribution of HEAs is important for a more
comprehensive characterization of these materials at the fundamental
level. In this work, we describe and demonstrate a deep learning
framework for the estimation of the element distribution in the atomic
columns of HEAs, through semantic segmentation of HAADF STEM
images.

For this purpose, the multislice algorithm and Gaussian filtering are
used to generate a dataset of simulated STEM images representing
nearly equiatomic PtNiPdCoFe HEAs, with structural characteristics in
agreement with the samples observed in the experimental measure-
ments. Performing a statistical analysis of the simulated STEM images,
we have demonstrated that the correlation between the pixel intensities
and the CHs of the constituent elements is highly nonlinear, because of
the random distribution, the different electronegativity of the constitu-
ent elements and the crosstalk effect. For this reason, DL modeling
represents an advancement towards the characterization of the 3D
configuration of HEAs, compared to the state-of-the-art techniques
based on electron tomography and statistical parameter estimation
theory.

We illustrate that in the simulated HAADF STEM images, our FCN
predicts the CHs with a maximum error of three atoms, although the
majority of the columns are predicted correctly and with an error of just
one atom. The trained network is then applied to two experimental
HAADF STEM images. The first image represents an HEA in a region
close to the background, whereas the second image illustrate a different
HEA in a central region. In the first case, the FCN predicts a slightly
higher concentration for Pt and Fe at 23% and 25%, but an overall even
distribution of the five constituent elements (i.e., no local clusters of
single element rich columns), with inhomogeneous fluctuations with
local aggregations at a column level. On the other hand, the prediction
for the second image reveals a higher Pt concentration around 27%,
while the other elements are nearly equally distributed with a concen-
tration of approximately 18%. As in the first image, the elements are
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evenly distributed, and the atomic fraction within the columns exhibits
inhomogeneous fluctuations with local aggregations. In both cases, Pt is
the element which achieves the highest atomic fraction within a column
around 60%, confirming a theory developed on the basis of previous
experimental studies using EDS mapping of HAADF images of CrFeCo-
NiPd HEAs, for which the larger and more electronegative element gives
rise to a local aggregation in a column’s distribution.

The mapping of the HEAs element distribution via DL presented in
this work allows for a more accurate characterization and engineering of
the mechanical properties of HEAs. Based on the results presented in this
report, future work could be focused on estimation of the stress-strain
relationship and elastic-plastic deformation in the HEAs predicted by
the DL model. Although our method is applied to HEAs with five
chemical elements, it is amenable to other HEAs characterized by
different number of elements and compositions. Furthermore, the
modeling framework proposed in this report represents a general
attempt for the identification of chemical species in 3D materials, which
is applicable to many atomic configurations other than HEAs. Thus, in
addition to the estimation of the number of atoms in the atomic columns
of HEAs, our work represents an advancement to the development of
computer vision techniques based on statistical learning methods for
microscopy analysis, which could be beneficial to a broad area of
nanoscience applications.
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