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While frequency-resolved optical gating (FROG) is widely used in characterizing 
the ultrafast pulse in optics, analytic signals are often considered in time-frequency 
analysis and signal processing, especially when extracting instantaneous features 
of events. In this paper we examine the phase retrieval (PR) problem of analytic 
signals in CN by their FROG measurements. After establishing the ambiguity of 
the FROG-PR of analytic signals, we found that the FROG-PR of analytic signals 
of even lengths is different from that of analytic signals of odd lengths, and it is 
also different from the case of B-bandlimited signals with B ≤ N/2. The existing 
approach to bandlimited signals can be applied to analytic signals of odd lengths, 
but it does not apply to the even length case. With the help of two relaxed FROG-
PR problems and a translation technique, we develop an approach to FROG-PR for 
the analytic signals of even lengths, and prove that in this case the generic analytic 
signals can be uniquely (up to the ambiguity) determined by their (3N/2 +1) FROG 
measurements. Phase derivative (or instantaneous frequency) is a significant feature 
for signal analysis. As an application of our main result, an approach is established 
to determine the phase derivatives of decaying signals by exploiting the ambiguity.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The classical phase retrieval (PR) is a nonlinear problem that seeks to reconstruct a signal z =
(z0, . . . , zN−1) ∈ CN (up to the ambiguities) from the intensities of its Fourier measurements (cf. [8,21–24,
42])

bk :=
∣∣ N−1∑

n=0
zne−2πikn/N

∣∣, k ∈ Γ.
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Here the ambiguity (cf. [6]) means that, there exist other signals in CN such that they have the same 
intensity measurements as z.

PR has been widely applied to engineering problems such as the coherent diffraction imaging ([42]) and 
quantum tomography ([28]). To be adapted to more applications, it has been investigated by non Fourier 
measurements such as frame intensity measurements (e.g. [2–5,10,9,11,12,29,32,33,47,48]) and phaseless 
sampling (e.g. [14,15,34]). In this paper we examine the PR problem related to the FROG (frequency-
resolved optical gating) measurements (cf. [7,44,45]) for a special type of signals.

Given a pair [N, L] ∈ N2 such that L ≤ N , denote r := �N/L�. For z = (z0, . . . , zN−1) ∈ CN , k =
0, 1, · · · , N − 1 and m = 0, 1, . . . , r − 1, define yk,m := zkzk+mL. Then the [N, L]-FROG measurement of z
at (k, m) is defined as

|ŷk,m|2 =
∣∣ N−1∑

n=0
yn,me−i2πkn/N

∣∣2

=
∣∣ N−1∑

n=0
znzn+mLe−i2πkn/N

∣∣2
.

(1.1)

It follows from [7, (3.1)] that

ŷk,m = 1
N

N−1∑
l=0

ẑlẑk−lw
lm, (1.2)

where w = ei2π/r. Now the FROG-PR asks to determine z by its FROG measurements {|ŷk,m|2}, up to the 
ambiguity which might be different depending on the type of signals we are working with. This problem 
was recently investigated by T. Bendory, D. Edidin and Y.C. Eldar [7] for B-bandlimited signals in CN . 
When B ≤ N/2, the ambiguity arises from arbitrary rotation, arbitrary translation and reflection.

Theorem 1.1. [7] Assume that N/L ≥ 4 and B ≤ N/2. Then generic B-bandlimited signals in CN are 
uniquely (up to their ambiguity) determined from 3B FROG measurements.

One of the key steps in the proof in [7, section 3.2] for the FROG-PR is to assign 0 or π to both the 
two phases arg(ẑ0) and arg(ẑ1). Such an assignment holds due to the above ambiguity. In this paper we are 
interested in investigating analytic signals whose ambiguity varies depending on the lengths of the signals.

Let x ∈ RN be a real-valued signal with discrete Fourier transform (DFT) x̂ = (x̂0, . . . , ̂xN−1). By L. 
Marple [36], the analytic signal A(x) =

(
(A(x))0, . . . , (A(x))N−1

)
corresponding to x is defined through its 

DFT ̂A(x) =
(
(̂A(x))0, . . . , (̂A(x))N−1

)
, where for even length N ,

(̂A(x))k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̂0, k = 0,

2x̂k, 1 ≤ k ≤ N/2 − 1,

x̂N/2, k = N/2,

0, N/2 + 1 ≤ k ≤ N − 1,

(1.3)

and for odd length N ,

(̂A(x))k =

⎧⎪⎨⎪⎩
x̂0, k = 0,

2x̂k, 1 ≤ k ≤ (N − 1)/2,

0, (N + 1)/2 ≤ k ≤ N − 1.

(1.4)
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By [36], the real part �(A(x)) = x and the imaginary part �(A(x)) is the discrete Hilbert transform of x. 
Moreover, the inner product 〈�(A(x)), �(A(x))〉 = 0.

Analytic signals form an important class of signals that have been widely used in time-frequency analysis 
and signal processing, especially in extracting instantaneous features (e.g. [20,35,41,46]). In order to examine 
the phase retrieval (up to ambiguity) problem for analytic signals from their FROG measurements, we need 
first to identify their ambiguity of FROG-PR measurements, which will be described in Proposition 2.3 and 
Proposition 2.4. A key point is that the FROG-PR ambiguity of analytic signals of even lengths is different 
from that of analytic signals of odd lengths, and consequently they are different from that of B-bandlimited 
signals in CN [7] with B ≤ N/2. In the next section we will explain while the approach from [7] can be 
applied to the signals of odd lengths, even length analytic signals are quite different from the odd length 
ones and it requires a different approach for such signals. So we only need to focus on analytic signals of 
even lengths. The following is the main result (the proof follows from Theorem 3.8) of this paper.

Theorem 1.2. Assume that N is even, L is odd and r = �N/L� ≥ 5. Then generic analytic signals in 
CN can be determined uniquely up to the ambiguity in Proposition 2.3 by their (3N/2 + 1) [N, L]-FROG 
measurements.

Here by up to ambiguity of an analytic signal z ∈ CN we mean that the signal is uniquely determined up to 
its π-rotation −z, integer-translation zl

tr with l ∈ Z, and reflection zref . Note that for generic analytic signals 
in CN of even lengths, the bandlimit is B = N/2 +1. The above theorem tells us that such an analytic signal 
can be uniquely (up to the ambiguity) determined by 3B − 2 number of FROG measurements. Moreover, 
the procedures for such a determination will be provided by Approach 3.3. In what follows, we introduce 
an application of the main result.

Phase derivative (or instantaneous frequency) of a signal is a significant feature for signal analysis (e.g. 
[16–19,25]). It is also widely applied in optics such as wave-front reconstruction (e.g. [39]), holography (e.g. 
[26]), phase unwrapping (e.g. [40]) and the approximation to the effect of a changing pulse frequency (e.g. 
[27]). Like phase, it is very difficult to measure phase derivative ([38]), and therefore its recovery is of great 
importance. There are some recovery methods in the literature such as that in [30] from the fringe pattern 
and that in [31] from holographic interference field. Recovery of phase derivative from FROG measurement is 
highly desirable, albeit a hitherto unexplored topic, to the best of our knowledge. Since FROG is commonly 
used for measuring the ultrashort laser pulse (ULP), such a recovery is helpful for approximating the effect 
of the changing frequency of ULP ([27]). By examining the effect of the above mentioned ambiguity on the 
phase distribution, we also establish the determination of phase derivatives of decaying signals.

Outline of the paper. In Section 2 we first present a characterization of analytic signals, and then establish 
the ambiguity of FROG-PR based on the parity of the lengths of the analytic signals. A rationale is provided 
at the end of this section to explain why we need a different approach for the even length case. Section 3
is devoted to presenting the step-by-step approach that eventually led to the main theorem. The technical 
proofs for most of the theoretical preparations that led to the main result (Theorem 3.8) are presented in 
Section 5. At the end of the paper, we point out that our approach fails for the case when L is even, and 
further investigation is needed to address this case. As an application of the main result, in Section 4 a 
determination approach (Approach 4.1) is established for the phase derivatives of decaying signals.

2. The ambiguity of FROG-PR of analytic signals

We first fix a few standard notations. We use lower-case letters, e.g., z, to denote scalars, and use boldface 
letters, e.g., z to denote a vector. For the vector z ∈ CN , it is represented as z = (z0, . . . , zN−1). A complex 
number 0 �= z = �(z) +i�(z) ∈ C can be denoted by |z|ei arg(z), where i, |z| and arg(z) are the imaginary unit, 
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modulus and phase, respectively. The conjugation of a complex vector z = (z0, . . . , zN−1) ∈ CN is denoted 
by z̄ := (z̄0, . . . , ̄zN−1), where z̄k is the complex conjugation of zk. Throughout this paper, the signal z is N -
periodic, namely, z� = z�+N for all � ∈ Z. From now on, its DFT is defined by ẑ := (ẑ0, . . . , ̂zN−1) with ẑk =∑N−1

n=0 zne−2πikn/N . And through the inverse discrete Fourier transform (IDFT), z can be reconstructed by 
zk = 1

N

∑N−1
n=0 ẑne2πikn/N . For any z ∈ CN , its θ-rotation zθ

ro := eiθz, reflection zref := (z0, z−1, . . . , z−(N−1))
and for any γ ∈ R, its γ-translation zγ

tr is defined through ẑγ
tr = (ẑ0, ̂z1ei2πγ/N , . . . , ̂zN−1ei2π(N−1)γ/N ). 

Denote by #Λ the cardinality of a set Λ, and by �x� the smallest integer that is not smaller than x ∈ R.

Definition 2.1. We say that z is B-bandlimited if ẑ contains N − B consecutive zeros (cf. [7]).

The following characterizes analytic signals, and its proof will be presented in section 5.1.

Proposition 2.1. Suppose that z ∈ CN . Denote the Cartesian product of sets by ×. Then z is analytic if and 
only if one of the following two items holds:

(i) for even length N , ẑ ∈ R × CN/2−1 × R ×
(N/2−1)copies︷ ︸︸ ︷

{0} × . . . × {0};

(ii) for odd length N , ẑ ∈ R × C(N−1)/2 ×
[(N−1)/2]copies︷ ︸︸ ︷

{0} × . . . × {0}.

As a consequence of Proposition 2.1, we get

Proposition 2.2. Suppose that z ∈ CN is analytic. Then the following two items hold.

(i) If N is even and ẑ = (ẑ0, . . . , ̂zN/2, 0, . . . , 0) satisfies ẑN/2 �= 0, then the γ-translation zγ
tr is still analytic 

if and only if γ ∈ Z.
(ii) If ẑ0 �= 0, then its θ-rotation eiθz is still analytic if and only if θ = kπ for k ∈ Z.

Proposition 2.2 (i) implies that in the even length case, the non-integer translation does not inherit the 
analytic property. Moreover, the following example shows that if γ /∈ Z, then the γ-translation zγ

tr does not 
necessarily have the same FROG measurements as z.

Example 2.1. Let x = (0.3252, −0.7549, 1.3703, −1.7115) ∈ R4. Then its analytic signal is given by 
z = A(x) = (0.3252 − 0.4783i, −0.7549 − 0.5226i, 1.3703 + 0.4783i, −1.7115 + 0.5226i). By DFT, we have 

ẑ = (−0.7710, −2.0902 − 1.9132i, 4.1619, 0). Choose γ = 2
π . Then we have ẑγ

tr = (−0.7710, 0.4805 −
2.7925i, −1.7320 + 3.7844i, 0) and zγ

tr = (−0.5056 + 0.2480i, 0.9384 − 0.8260i, −0.7459 + 1.6442i, −0.4579 −
1.0662i). Take L = 1 for example. By direct calculation, the FROG measurement of z at (0, 0) is 
|ŷ0,0|2 = 20.0614 while that of zγ

tr is |ŷγ
0,0|2 = 17.9335. Thus the z and zγ

tr do not have the same FROG 
measurements.

The following two propositions establish the ambiguity of FROG-PR of analytic signals.

Proposition 2.3. Suppose that z ∈ CN is analytic such that N is even. Then its π-rotation −z, integer-
translation zl

tr with l ∈ Z, and reflection zref are all analytic. Moreover, they have the same FROG 
measurements as z.

Proof. By Proposition 2.2, both −z and zl
tr are analytic. By Proposition 2.1 (i), zref is also analytic. 

Moreover, by [7, Proposition 2.2] they have the same FROG measurements as z. �
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Proposition 2.4. Suppose that z ∈ CN is analytic such that N is odd. Then its π-rotation −z, any translation 
zγ

tr with γ ∈ R, and reflection zref are all analytic. Moreover, they have the same FROG measurements 
as z.

By Propositions 2.3 and 2.4, the FROG-PR ambiguity of analytic signals of odd lengths is essentially 
different from that of analytic signals of even lengths, and the ambiguity of analytic signals for the even 
length case is also different from ambiguity of signals investigated in [7, Proposition 2.2]. Therefore it is 
expected that different approaches might be needed for analytic signals of different lengths. Next we explain 
that while the FROG-PR of analytic signals of odd lengths can be achieved through the similar procedures 
as those in [7, section 3.2], such procedures do not hold for analytic signals of even lengths.

Case I: N is odd. Suppose that z ∈ CN is analytic and N is odd. Through the direct calculation, the 
equation system (1.2) enjoys the following “pyramid” structure w.r.t. variables ẑ0, . . . , ̂z(N−1)/2:

ẑ2
0, 0, 0, · · · , 0, 0, · · · , 0

ẑ0ẑ1, ẑ1ẑ0, 0, · · · , 0, 0, · · · , 0

ẑ0ẑ2, ẑ2
1, ẑ2ẑ0, · · · , 0, 0, · · · , 0

...

ẑ0ẑ(N−1)/2, ẑ1ẑ(N−1)/2−1, ẑ2ẑ(N−1)/2−2, · · · , ẑ(N−1)/2ẑ0, 0, · · · , 0 (2.1)

0, ẑ1ẑ(N−1)/2, ẑ2ẑ(N−1)/2−1, · · · , ẑ(N−1)/2ẑ1, 0, · · · , 0
...

0, 0, 0, · · · , ẑ(N−1)/2−1ẑ(N−1)/2, ẑ(N−1)/2ẑ(N−1)/2−1, 0, · · · , 0

0, 0, 0, · · · , 0, ẑ2
(N−1)/2, 0, · · · , 0.

It takes the identical form as that in [7, (3.4)] for B-bandlimited signals where B ≤ N/2. Therefore, by 
letting arg(ẑ0) ∈ {0, π} and using the similar procedures in [7, section 3.2], we can determine z up to the 
ambiguity in Proposition 2.4 by (3(N +1)/2 −6) FROG measurements. Thus this paper will be only focused 
the case when N is even.

Case II: N is even. Suppose that z ∈ CN such that N is even. Then the corresponding system (1.2) has the 
following structure w.r.t. variables ẑ0, . . . , ̂zN/2:

ẑ2
0, 0, 0, · · · , ẑ2

N/2, 0, · · · , 0

ẑ0ẑ1, ẑ1ẑ0, 0, · · · , 0, 0, · · · , 0

ẑ0ẑ2, ẑ2
1, ẑ2ẑ0, · · · , 0, 0, · · · , 0

...

ẑ0ẑN/2−1, ẑ1ẑN/2−2, ẑ2ẑN/2−3, · · · , 0, 0, · · · , 0 (2.2)

ẑ0ẑN/2, ẑ1ẑN/2−1, ẑ2ẑN/2−2, · · · , ẑN/2ẑ0, 0, · · · , 0

0, ẑ1ẑN/2, ẑ2ẑN/2−1, · · · , ẑN/2ẑ1, 0, · · · , 0
...

0, 0, · · · , 0, ẑN/2−1ẑN/2, ẑN/2ẑN/2−1, 0, · · · , 0.
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Note that if ẑN/2 �= 0, then (2.2) (actually not a pyramid structure) takes the different form from (2.1). The 
procedures for FROG-PR in [7, section 3.2] do not hold for z. Firstly, in [7, section 3.2], for a B-bandlimited 
signal y ∈ CN such that B ≤ N/2, arg(ŷ0) and arg(ŷ1) can be assigned arbitrarily. Such an assignment does 
not hold for the analytic signal z since Proposition 2.3 implies that the arbitrary translation and rotation 
do not necessarily lead to the ambiguity of FROG-PR. Secondly, unlike those in (2.1) and [7, (3.4)], the 
first row in (2.2) is involved with the two variables ẑ0, ̂zN/2 ∈ R. Then ẑ0 can not be determined by just 
letting arg(ẑ0) ∈ {0, π}. Actually, it will be clear in Theorems 3.4 and 3.5 that the determination of ẑ0 is 
absolutely not trivial when |̂z0| �= |̂zN/2|. On the other hand, from the perspective of L in (1.1), the problem 
of FROG-PR of analytic signals of even lengths is also different from that of bandlimited signals in [7] since 
it is required in this paper that L needs to be odd. More details will be included in section 6. In what 
follows, we state that the FROG-PR of even length can not be achieved through changing the length.

Although the FROG-PR for the odd length case can be achieved by the approach in [7], we do not intend 
to do the FROG-PR of A(x) ∈ CN with even N through that of A(x̃) ∈ CN+1 with x̃ = (x, 0). There 
are two main reasons for this. (1) In general, A(x) can not be recovered from A(x̃) by just exchanging the 
positions of partial elements since such an operation does not lead to the ambiguity of FROG-PR. (2) It 
follows from Proposition 2.4 that arbitrary translation can lead to the ambiguity of FROG-PR of A(x̃). 
Note that the non-integer translation probably alters the absolute values of the elements of the real part of 
A(x). Such an alteration will make the recovery of phase derivatives of some types of signals such as the 
decaying ones (to be addressed in Section 4) much more complicated.

3. The main results

The aim of this section is to establish the uniqueness results for the FROG-PR problem for analytic 
signals in CN by the [N, L]-FROG measurements, where N and L are respectively even and odd such that 
r = �N/L� ≥ 5. This will be achieved by introducing a series of approaches/algorithms for the determination 
of such analytic signals.

From now on the DFT of an analytic signal z ∈ CN is denoted by ẑ = (ẑ0, . . . , ̂zN/2, 0, . . . , 0). It follows 
from (1.2) and supp(ẑ) ⊆ {0, . . . , N/2} that, the FROG-PR of z is equivalent to finding an analytic signal 

z̃ ∈ CN such that its DFT ̂̃z = (̂̃z0, . . . , ̂̃zN/2, 

N/2−1︷ ︸︸ ︷
0, . . . , 0) satisfies the following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ŷ0,m| = 1
N

∣∣̂z̃2
0 + ̂̃z2

N/2wNm/2∣∣, (3.1A)

|ŷk,m| = 1
N

∣∣ k∑
l=0

̂̃zl
̂̃zk−lw

lm
∣∣, k = 1, · · · , N/2, (3.1B)

|ŷk,m| = 1
N

∣∣ N/2∑
l=k−N/2

̂̃zl
̂̃zk−lw

lm
∣∣, k = N/2 + 1, · · · , N − 1, (3.1C)

m = 0, 1, · · · , r − 1,

(3.1)

where {|ŷk,m|2} are the [N, L]-FROG measurements of z. Clearly, ẑ satisfies (3.1).

We outline below the four key steps that we will use to find such a z̃.

(i) It follows from Proposition 2.1 (i) that ̂z0 is real-valued. Subsection 3.2 will be used to determine ̂z̃0 ∈ R

up to a sign.
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(ii) It follows from (3.1B) that |̂z̃1| := N |ŷ1,0|
2|̂̃z0| . Setting ̂z̃0 = εẑ0 with ε ∈ {1, −1} and ̂z̃1 = N |ŷ1,0|

2|̂̃z0| , Subsection 

3.3 will be devoted to finding a signal z̃ ∈ CN such that its DFT ̂̃z = (̂̃z0, ̂̃z1, . . . , ̂̃zN/2, 

N/2−1︷ ︸︸ ︷
0, . . . , 0) =

(εẑ0, N |ŷ1,0|
2|̂̃z0| , . . . , ̂̃zN/2, 

N/2−1︷ ︸︸ ︷
0, . . . , 0) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ŷk,m| = 1
N

∣∣ k∑
l=0

̂̃zl
̂̃zk−lw

lm
∣∣, k = 2, · · · , N/2,

|ŷk,m| = 1
N

∣∣ N/2∑
l=k−N/2

̂̃zl
̂̃zk−lw

lm
∣∣, k = N/2 + 1, · · · , N − 1,

m = 0, 1, · · · , r − 1.

(3.2)

Clearly, (3.2) is the relaxed form of (3.1).
(iii) Based on the result of (ii), subsection 3.4 concerns on the solution to the following equation system 

w.r.t. z̃ ∈ CN such that its DFT ̂̃z = (̂̃z0, . . . , ̂̃zN/2, 

N/2−1︷ ︸︸ ︷
0, . . . , 0):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ŷk,m| = 1
N

∣∣ k∑
l=0

̂̃zl
̂̃zk−lw

lm
∣∣, k = 1, · · · , N/2, (3.3A)

|ŷk,m| = 1
N

∣∣ N/2∑
l=k−N/2

̂̃zl
̂̃zk−lw

lm
∣∣, k = N/2 + 1, · · · , N − 1,

m = 0, 1, · · · , r − 1.

(3.3)

Clearly, (3.3) is also the relaxed form of (3.1) but less relaxed than (3.2) since it also contains the k = 1
case.

(iv) Having z̃ ∈ CN satisfying (3.3) at hand, the procedure in (translation technique-based) Approach 3.3
in subsection 3.5 will allow us to determine the solution to (3.1).

In summary, the purpose of step (i) is to determine ẑ0 ∈ R up to a sign. Since (3.2) in step (ii) is the 
relaxed form of (3.1), the solution to (3.1) is also the one to (3.2). We next consider (3.3) in step (iii) which 
is less relaxed than (3.2). We will select an appropriate translation of the solution to (3.3) so that such a 
translation not only satisfies (3.3) but also satisfies (3.3A) with k = 0, and consequently we find a solution 
to (3.1),

3.1. Auxiliary results

Note 3.1. ([7]) Consider the equation system w.r.t. z ∈ C:⎧⎪⎪⎨⎪⎪⎩
∣∣z + v1

∣∣ = n1,∣∣z + v2
∣∣ = n2,∣∣z + v3
∣∣ = n3,

(3.4)

where n1, n2, n3 ≥ 0, and v1, v2, v3 ∈ C are pairwise distinct. Suppose that there exists a solution z̊ = a + ib
to (3.4). If
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�
{v1 − v2

v1 − v3

}
�= 0, (3.5)

then z̊ is the unique solution and it is given through

(
a
b

)
= 1

2

(
c −d

e −f

)−1 (
n2

1 − n2
2 + |v2|2 − |v2

1 |
n2

1 − n2
3 + |v3|2 − |v2

1 |

)
, (3.6)

where v1 − v2 = c − id and v1 − v3 = e − if .

Comparing with Note 3.1, the following system of two equations has more than one solution.

Note 3.2. Consider the equation system w.r.t. z ∈ C:{∣∣z + mv1
∣∣ = n1,∣∣z + mv2
∣∣ = n2,

(3.7)

where n1, n2 ≥ 0, v1, v2 ∈ C are distinct and 0 �= m ∈ C. Suppose that there exists a solution z̊ = a + ib to 
(3.7).

(i) If m, v1, v2 ∈ R, then the other solution is ¯̊z and it is given through⎧⎨⎩ a = (n2
1 − n2

2)/[2m(v1 − v2)],

|b| =
√

n2
1 − (a + mv1)2.

(3.8)

(ii) If m ∈ C \ R and v1, v2 ∈ R, then there exits another solution z′ �= ¯̊z. Moreover, z̊ and z′ can be 
given by

z̊ = m(̊a + i̊b), z′ = m(̊a − i̊b) (3.9)

where ̊a, ̊b ∈ R are given by ⎧⎪⎪⎨⎪⎪⎩
å = (|n1

m
|2 − |n2

m
|2)/[2(v1 − v2)],

|̊b| =
√

|n1

m
|2 − (a + v1)2.

(3.10)

Proof. Item (i) is derived from the last paragraph of the proof of [7, Lemma 3.2]. We just need to prove 
item (ii). Denote z

m = å + i̊b. Then it follows from v1, v2 ∈ R that (3.7) is equivalent to⎧⎪⎨⎪⎩
(̊a + v1)2 + b̊2 = |n1

m
|2,

(̊a + v2)2 + b̊2 = |n2

m
|2.

(3.11)

Through the direct calculation we have å = (
∣∣n1

m

∣∣2 −
∣∣n2

m

∣∣2)/[2(v1 − v2)]. On the other hand, if (̊a, ̊b) is 
the solution to (3.11), then the other solution is (̊a, −̊b). Stated another way, the solutions to (3.7) are 
z̊ = m(̊a + i̊b) and z′ = m(̊a − i̊b). Since m ∈ C \ R, then z′ �= ¯̊z. �

To be clear in Remarks 3.1 and 3.3 that, the following lemma will be needed for the existence of the 
FROG measurements in Approaches 3.1 and 3.2.
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Lemma 3.3. If 5 ≤ r ∈ N, then there exist m1, . . . , m5 ⊆ {0, 1, . . . , r − 1} such that (1) 1 + w2ml �= 0
(l = 1, . . . , 5) and (2) wm1

1+w2m1 �= 1
2 , where w = e

i2π
r . Moreover, (3) there exists i ∈ {1, 2, . . . , r − 1} such that 

wi+w2i

1+w3i �= 1,

Proof. The proof will be given in section 5.2. �
The following theorem will be used in section 3.4.

Theorem 3.4. Suppose that z ∈ CN is a generic analytic signal such that N is even, and its DFT

ẑ = (ẑ0, ẑ1, . . . , ẑN/2, 0, . . . , 0) := (|̂z0|eiθ0 , |̂z1|eiθ1 , . . . , |̂zN/2|eiθN/2 , 0, . . . , 0) (3.12)

satisfies |̂z0| �= 0 and |̂z1| �= 0. Consider the following equation system w.r.t. z̃ ∈ CN such that ̂̃z =

(̂̃z0, . . . , ̂̃zN/2, 

N/2−1︷ ︸︸ ︷
0, . . . , 0):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ŷk,m| = 1
N

∣∣ k∑
l=0

̂̃zl
̂̃zk−lw

lm
∣∣, k = 1, · · · , N/2,

|ŷk,m| = 1
N

∣∣ N/2∑
l=k−N/2

̂̃zl
̂̃zk−lw

lm
∣∣, k = N/2 + 1, · · · , N − 1,

m ∈ Λ,

(3.13)

where |ŷk,m|2 is the [N, L]-FROG measurement of z, r = �N/L� ≥ 5 and Λ ⊆ {0, 1, . . . , r − 1} is arbitrary 
such that #Λ = 5. If |̂z̃0| �= |̂z0| then z̃ does not satisfy (3.13).

Proof. Suppose that ̂̃z0 = λ|̂z0|eiα such that 1 �= λ ≥ 0 and α ∈ R is arbitrary. If ̂̃z0 = 0 or ̂̃z1 = 0, then it 
is easy to check that FROG measurements at (1, 0) of z̃ and those of z are not identical, and the proof is 
concluded. Otherwise, we have λ > 0 and

2
N

∣∣̂z0ẑ1
∣∣ = |ŷ1,0| = 2

N

∣∣̂z̃0̂̃z1
∣∣, (3.14)

which implies |̂z̃1| =
∣∣ ẑ1

λ

∣∣. Now let ̂̃z1 = | ẑ1
λ |eiθ such that θ ∈ R is arbitrary. If the FROG measurements at 

(2, s) of z̃ and z are not identical, then the proof is concluded, where s ∈ Λ. Otherwise, we have

1
N

∣∣̂z0ẑ2 + ẑ2
1wm + ẑ2ẑ0w2m

∣∣ = |ŷ2,m| = 1
N

∣∣̂z̃0̂̃z2 + ̂̃z2
1wm + ̂̃z2̂̃z0w2m

∣∣, m ∈ Λ. (3.15)

Since ̂̃z0 = λ|̂z0|eiα and ̂̃z1 = | ẑ1
λ |eiθ, then (3.15) can be expressed as

∣∣̂z0ẑ2(1 + w2m) + ẑ2
1wm

∣∣2 =
∣∣∣λ|̂z0|eiα̂̃z2(1 + w2m) + | ẑ1

λ
|2ei2θwm

∣∣∣2
. (3.16)

It is easy to check that (3.16) is equivalent to

0 =(λ2 |̂z̃2|2 − |̂z2|2)|̂z0|2|1 + w2m|2 + ( 1
λ4 − 1)|̂z1|4

+ 2�
{

(1 + w2m)wm(λ|̂z0|eiα̂̃z2| ẑ1

λ
|2ei2θ − ẑ0ẑ2ẑ2

1)
}

,

(3.17)
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where m ∈ Λ. Multiplying both sides of (3.17) by w2m leads to

0 = (λ2 |̂z̃2|2 − |̂z2|2)ẑ2
0(1 + w2m)2 + ( 1

λ4 − 1)|̂z1|4w2m

+
[
(λ|̂z0|eiα̂̃z2| ẑ1

λ
|2ei2θ − λ|̂z0|eiα̂̃z2| ẑ1

λ
|2ei2θ) − (ẑ0ẑ2ẑ2

1 − ẑ0ẑ2ẑ2
1)

]
(1 + w2m)wm.

(3.18)

Consider the following equation w.r.t. x:

0 = (λ2 |̂z̃2|2 − |̂z2|2)ẑ2
0(1 + x2)2 + ( 1

λ4 − 1)|̂z1|4x2

+
[
(λ|̂z0|eiα̂̃z2| ẑ1

λ
|2ei2θ − λ|̂z0|eiα̂̃z2| ẑ1

λ
|2ei2θ) − (ẑ0ẑ2ẑ2

1 − ẑ0ẑ2ẑ2
1)

]
(1 + x2)x.

(3.19)

Clearly, if the polynomial on the right-hand side of (3.19) is not a zero polynomial, then it has at most 4
solutions. By (3.18), wm(m ∈ Λ) are the #Λ solutions to (3.19). Since #Λ = 5, then all the coefficients in 
(3.19) are zero. That is,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(λ2 |̂z̃2|2 − |̂z2|2)ẑ2
0 = 0,

( 1
λ4 − 1)|̂z1|4 = 0,

(
λ|̂z0|eiα̂̃z2| ẑ1

λ
|2ei2θ − λ|̂z0|eiα̂̃z2| ẑ1

λ
|2ei2θ

)
−

(
ẑ0ẑ2ẑ2

1 − ẑ0ẑ2ẑ2
1
)

= 0.

(3.20)

Since |̂z1| �= 0 then 1
λ4 − 1 = 0 and λ = 1, which contradicts with the previous assumption 1 �= λ ≥ 0. This 

completes the proof. �
3.2. Determination of ̂̃z0

In what follows, we establish an approach to determining ̂̃z0 in (3.1) up to a sign. Its theoretical guarantee 
will be presented in Theorem 3.5.

Approach 3.1. Input: [N, L]-FROG measurements 
{

|ŷ0,0|2, |ŷ0,1|2, |ŷ1,0|2, |ŷ2,i
(q)
2

|2
∣∣ : i

(1)
2 = 0, w2i

(q)
2 �= −1,

wi
(2)
2

1+w2i
(2)
2

�= 1
2 , 0 ≤ i

(q)
2 ≤ r − 1, q = 1, 2, . . . , 5

}
. %% w = ei2π/r and r = �N/L�.

Step 1: If |ŷ0,1| = 0, then ̂̃z0 =
√

N |ŷ0,0|
2 and we terminate the program. If not, then conduct Step 2 and 

Step 3 to find ̂̃z0.
Step 2: ̂̃z0 ←

√
N(|ŷ0,0|+|ŷ0,1|)

2 ; ̂̃z1 ← N |ŷ1,0|
2̂̃z0

;
Step 3: If the following equation system w.r.t. ̂̃z2:

1
N

|̂z̃0̂̃z2(1 + w2i
(q)
2 ) + ̂̃z2

1wi
(q)
2 | = |ŷ2,i

(q)
2

|, q = 1, 2, . . . , 5 (3.21)

does not have a solution, then ̂̃z0 ←
√

N(|ŷ0,0|−|ŷ0,1|)
2 .

Output: ̂̃z0.

Remark 3.1. (1) By Lemma 3.3, the requirement: w2i
(q)
2 �= −1, wi

(2)
2

2i
(2) �= 1

2 in Approach 3.1 can be satisfied.

1+w 2
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(2) Clearly, (3.21) is equivalent to the condition that ̂̃z2 lies in the 5 circles on C:

{
z :

∣∣∣z − (−̂̃z2
1wi

(q)
2 /(̂̃z0(1 + w2i

(q)
2 )))

∣∣∣ = N |ŷ2,i
(q)
2

|
}

, q = 1, 2 . . . , 5.

By the correlations among the five circles, it is easy to check that whether (3.21) has a solution.

The following theorem states that ̂̃z0 can be determined (up to a sign) by Approach 3.1.

Theorem 3.5. Suppose that z ∈ CN (with N being even) is a generic analytic signal such that its DFT 
ẑ = (ẑ0, ̂z1, . . . , ̂zN/2, . . . , 0) satisfies |̂z0| �= 0 and |̂z1| �= 0. If L is odd and r = �N/L� ≥ 5, then ̂̃z0 in (3.1)
can be determined up to a sign by Approach 3.1.

Proof. The proof will be presented in section 5.3. �
Remark 3.2. Recall that wm(m ∈ Λ) in the proof of Theorem 3.4 are distinctive and they are the zeros to 
the quartic polynomial on the right-hand side of (3.19). If r < 5, then #Λ < 5 and we can not guarantee 
that (3.20) holds (or λ in (3.20) equals to 1) or that the conclusion of Theorem 3.4 holds. It will be clear in 
section 5.3 that Theorem 3.5 is derived from Theorem 3.4. Therefore, if r < 5 then we can not guarantee 
that ẑ0 (or the unknown ̂̃z0 in (3.1)) be determined up to a sign by Approach 3.1.

3.3. Finding z̃ ∈ CN such that its DFT ̂̃z = (εẑ0, N |ŷ1,0|
2|̂̃z0| , ̂̃z2 . . . , ̂̃zN/2, 0, . . . , 0) satisfies (3.2)

Recall that ̂̃z0 in (3.1) can be determined (up to a sign) by Approach 3.1, and it follows from 3.1(B) that 
|̂z̃1| := N |ŷ1,0|

2|̂̃z0| . This subsection concerns on the solution to (3.2) w.r.t. z̃. For convenience, (3.2) is stated 

again as follows,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ŷk,m| = 1
N

∣∣ k∑
l=0

̂̃zl
̂̃zk−lw

lm
∣∣, k = 2, · · · , N/2,

|ŷk,m| = 1
N

∣∣ N/2∑
l=k−N/2

̂̃zl
̂̃zk−lw

lm
∣∣, k = N/2 + 1, · · · , N − 1,

m = 0, 1, · · · , r − 1,

(3.22)

where ̂̃z0 = εẑ0 with ε ∈ {1, −1} and ̂̃z1 := N |ŷ1,0|
2|̂̃z0| . In what follows, we establish an approach to find such a 

z̃ by the 3N/2 + 1 measurements:

{
|ŷ0,0|2, |ŷ0,1|2, |ŷ1,0|2, |ŷ2,i

(q)
2

|2, |ŷ3,0|2, |ŷ3,i3 |2, |ŷ
k,i

(p)
2

|2
∣∣ : i

(1)
2 = 0, w2i

(q)
k �= −1,

wi
(2)
2

1 + w2i
(2)
2

�= 1
2 ,

wi3 + w2i3

1 + w3i3
�= 1, wki

(p)
k �= −1, i

(1)
k = 0, i

(2)
k + i

(3)
k �= r, 0 ≤ i

(q)
2 ≤ r − 1, 1 ≤ i3 ≤ r − 1,

0 ≤ i
(p)
k ≤ r − 1, 4 ≤ k ≤ N/2, p = 1, 2, 3, q = 1, 2, 3, 4, 5

}
.

(3.23)

The theoretical guarantee for such an approach will be given in Theorem 3.6. The existence of the above 
measurements is addressed in the following remark.
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Remark 3.3. (1) Recall that the FROG measurements in (3.23) need to satisfy the requirements:

w2i
(q)
k �= −1,

wi
(2)
2

1 + w2i
(2)
2

�= 1
2 ,

wi3 + w2i3

1 + w3i3
�= 1,

which is guaranteed by Lemma 3.3.
(2) According to the analysis in [7, Page 1038], for any k ∈ {4, . . . , N/2} there exist {i

(p)
k : p = 1, 2, 3} ⊂

{0, 1, . . . , r − 1} such that wki
(p)
k �= −1, i(1)

k = 0 and i(2)
k + i

(3)
k �= r.

Approach 3.2. Input: FROG measurements in (3.23), ̂̃z0 (derived from Approach 3.1) and ̂̃z1 = N |ŷ1,0|
2|̂̃z0| .

Step 1: By Note 3.2 (i), choose a solution ̂̃z2 to⎧⎪⎨⎪⎩
|ŷ2,0| = 1

N

∣∣2̂̃z0̂̃z2 + ̂̃z2
1
∣∣,

|ŷ2,i
(2)
2

| = 1
N

∣∣̂z̃0̂̃z2 + ̂̃z2
1wi

(2)
2 + ̂̃z2̂̃z0w2i

(2)
2

∣∣.
Step 2: Given (̂̃z0, ̂̃z1, ̂̃z2). Use Note 3.2 (ii) and Note 3.1 to find the solution to the system w.r.t. ̂̃z3, ̂̃z4:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

|ŷ3,0| = 1
N

∣∣2̂̃z0̂̃z3 + 2̂̃z1̂̃z2
∣∣,

|ŷ3,i3 | = 1
N

∣∣̂z̃0̂̃z3 + ̂̃z1̂̃z2wi3 + ̂̃z1̂̃z2w2i3 + ̂̃z3̂̃z0w3i3
∣∣,

|ŷ4,i
(p)
4

| = 1
N

∣∣̂z̃0̂̃z4 + ̂̃z1̂̃z3wi
(p)
4 + ̂̃z2

2w2i
(p)
4 + ̂̃z3̂̃z1w3i

(p)
4 + ̂̃z4̂̃z0w4i

(p)
4

∣∣, p = 1, 2, 3.

(3.24)

Step 3: Given (̂̃z0, ̂̃z1, ̂̃z2, ̂̃z3, ̂̃z4). Use Note 3.1 to find iteratively the solution to the system w.r.t. ̂̃zj , j ≥ 5:

|ŷ
j,i

(p)
j

| = 1
N

∣∣̂z̃0̂̃zj + ̂̃z1̂̃zj−1wi
(p)
j + . . . + ̂̃zj

̂̃z0wji
(p)
j

∣∣, p = 1, 2, 3. (3.25)

Output: ̂̃z := (̂̃z0, ̂̃z1, · · · , ̂̃zN/2, 0, · · · , 0) and its IDFT z̃.

The following theorem guarantees that z̃ derived from Approach 3.2 is the solution to (3.22).

Theorem 3.6. Suppose that z ∈ CN is a generic analytic signal such that its DFT

ẑ = (ẑ0, ẑ1, . . . , ẑN/2, 0, . . . , 0) := (|̂z0|eiθ0 , |̂z1|eiθ1 , . . . , |̂zN/2|eiθN/2 , 0, . . . , 0). (3.26)

Let ̂̃z0 = εẑ0 and ̂̃z1 = N |ŷ1,0|
2|̂̃z0| with ε ∈ {1, −1}. Then the solutions to (3.22) are the vector 

(E(2)|̂z2|ei(θ2−2θ1), E(3)|̂z3|ei(θ3−3θ1), . . . , E(N/2)|̂zN/2|ei[θN/2−(N/2)θ1]) and its complex conjugate, where E(k)
takes ε and 1 for k being even and odd, respectively. Moreover, one of the two solutions can be determined 
through Approach 3.2.

Proof. The proof will be presented in subsection 5.4. �
3.4. On the solution to (3.3)

As noted at the beginning of section 3, our final approach for FROG-PR is derived from the two relaxed 
FROG-PR problems in (3.2) ((3.22)) and (3.3). Recall that (3.2) has been addressed in Theorem 3.6. We 
now address (3.3) with the following theorem.
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Theorem 3.7. Suppose that z ∈ CN is a generic analytic signal such that N is even, and its DFT

ẑ = (ẑ0, ẑ1, . . . , ẑN/2, 0, . . . , 0) := (|̂z0|eiθ0 , |̂z1|eiθ1 , . . . , |̂zN/2|eiθN/2 , 0, . . . , 0) (3.27)

satisfies |̂z0| �= 0 and |̂z1| �= 0. Moreover, consider the system w.r.t. z̃ ∈ CN such that supp(̂̃z) ⊆ {0, . . . , N/2}:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ŷk,m| = 1
N

∣∣ k∑
l=0

̂̃zl
̂̃zk−lw

lm
∣∣, k = 1, · · · , N/2,

|ŷk,m| = 1
N

∣∣ N/2∑
l=k−N/2

̂̃zl
̂̃zk−lw

lm
∣∣, k = N/2 + 1, · · · , N − 1,

m = 0, 1, · · · , r − 1,

(3.28)

where {|ŷk,m|2} are the [N, L]-FROG measurements of z and r = �N/L� ≥ 5. Then z̃ is uniquely determined 
up to the arbitrary rotation, arbitrary translation and reflection. Moreover, if requiring that the phases of 
the first two components of ̂̃z be zeros, then z̃ can be determined (up to the reflection) such that its DFT is

̂̃z =
(
|̂z0|, |̂z1|,E(2)|̂z2|ei(θ2−2θ1), . . . ,E(N/2)|̂zN/2|ei[θN/2−(N/2)θ1], 0, . . . , 0

)
, (3.29)

where E(k) takes sgn(ẑ0) and 1 for k being even and odd, respectively.

Proof. Note that the DFT of the γ-translation of z̃ is (̂̃z0, ̂̃z1ei2πγ/N , . . . , ̂̃zN/2ei2π(N/2)γ/N , 0, . . . , 0). We first 
prove that (̂̃z0, ̂̃z1ei2πγ/N , . . . , ̂̃zN/2ei2π(N/2)γ/N , 0, . . . , 0) satisfies (3.28). By the direct calculation we obtain

1
N

∣∣ k∑
l=0

̂̃zle
−i2πlγ/N̂̃zk−le

−i2π(k−l)γ/N wlm
∣∣

= 1
N

|e−i 2kπ
N γ |

∣∣ N−1∑
l=0

̂̃zl
̂̃zk−lw

lm
∣∣

=|ŷk,m|, m = 0, 1, · · · , r − 1,

(3.30)

and

1
N

∣∣ N/2∑
l=k−N/2

̂̃zle
−i2πlγ/N̂̃zk−le

−i2π(k−l)γ/N wlm
∣∣

= 1
N

|e−i 2kπ
N γ |

∣∣ N/2∑
l=k−N/2

̂̃zl
̂̃zk−lw

lm
∣∣

=|ŷk,m|, m = 0, 1, · · · , r − 1.

(3.31)

Thus (3.28) is satisfied. By [7, Proposition 2.2], the DFT of the reflection and arbitrary rotation of z̃
satisfies (3.28), respectively. Since the arbitrary rotation can lead to the ambiguity, we assign that ̂̃z0 > 0. 
By Theorem 3.4, if |̂z̃0| �= |̂z0|, then ̂̃z does not satisfy (3.28). Now we choose ̂̃z0 = |̂z0|. On the other hand,

2
N

∣∣̂z̃0̂̃z1
∣∣ = |ŷ1,0| = 2

N

∣∣̂z0ẑ1
∣∣, (3.32)

from which we derive |̂z̃1| = N |ŷ1,0|
2|̂z0| = |̂z1|. As proved above, any translation of z̃ is also a solution, then we 

assign ̂̃z1 by N |ŷ1,0| . Now it follows from Theorem 3.6 that
2|̂z0|
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(
|̂z0|, |̂z1|,E(2)|̂z2|ei(θ2−2θ1),E(3)|̂z3|ei(θ3−3θ1), . . . ,E(N/2)|̂zN/2|ei[θN/2−(N/2)θ1], 0, . . . , 0

)
is the solution to (3.28), up to the arbitrary rotation, arbitrary translation and reflection, where E(k) takes 
sgn(ẑ0) and 1 for k being even and odd, respectively. Naturally, if requiring the phases of the first two 
components of ̂̃z to be zeros, then z̃ is the solution (up to the reflection) to (3.28). �
3.5. Determination of generic analytic signals of even lengths by FROG measurements

In what follows we establish the approach for the FROG-PR of generic analytic signals of even lengths. 
This is the key approach which leads to the main result of this paper.

Approach 3.3. Input: (3N/2 + 1) FROG measurements in (3.23) of z.
Step 1: Conduct Approach 3.1 to obtain the corresponding output ̂̃z0.
Step 2: Conduct Approach 3.2 to obtain the output ̂̃z := (̂̃z0, ̂̃z1, · · · , ̂̃zN/2, 0, · · · , 0).
Step 3: Construct ̂̊z = (̂̊z0, . . . , ̂̊zN/2, 0, . . . , 0) ∈ CN , where ̂̊zk = ̂̃zke−i 2k

N arg(̂̃zN/2), k = 0, . . . , N/2.
Output: ̊z = IDFT(̂̊z). %% IDFT is the inverse discrete Fourier transform.

Now comes to our main theorem.

Theorem 3.8. Let z ∈ CN be a generic analytic signal such that N is even and its DFT

ẑ = (ẑ0, ẑ1, . . . , ẑN/2, 0, . . . , 0) (3.33)

satisfies |̂z0| �= 0 and |̂z1| �= 0. Suppose that z̊ is the output of Approach 3.3 conducted by the 3N/2 + 1
[N, L]-FROG measurements in (3.23) of z, where L is odd and �N/L� ≥ 5. Then ̊z is the solution to (3.1)
up to the π-rotation, integer-translation and reflection.

Proof. Note that ̊z is the (−arg(̂̃zN/2)
π )-translation of z̃ in Theorem 3.7. Then, by Theorem 3.7, ̊z is a solution 

to (3.28), up to the arbitrary rotation, arbitrary translation and reflection. So any solution to (3.28) can 
be derived from the composition of the rotation, translation and reflection of ̊z. We next prove that ̊z is a 
(analytic) solution to (3.1). Note that both ̂̊z0 and ̂̊zN/2 are real-valued. Then, by Proposition 2.1 (i), ̊z is 
analytic. Comparing (3.1) and (3.28), we only need to check (3.1A). Indeed,

1
N

∣∣̂̊z2
0 + ̂̊z2

N/2wNm/2∣∣ = 1
N

∣∣|̂z0|2 + |̂zN/2|2wNm/2∣∣ = |ŷ0,m|, m = 0, 1, · · · , r − 1. (3.34)

Note that any solution to (3.1) is a solution to (3.28). Thus any solution to (3.1) is the composition of the 
rotation, translation and reflection of ̊z, and hence, by Proposition 2.2, we complete the proof. �
4. An application: recovery of phase derivative of decaying signals

In this section, we apply Theorem 3.8 to the recovery of the phase derivative for an analytic signal A(x)
provided that x, the real part of A(x), is of decaying energy, a natural condition that have been addressed 
in applications (e.g. [13,43]).

4.1. Recovery of phase derivative of decaying signals

We start with the definition of phase derivative for analytic signals. For a real-valued signal x =
(x0, . . . , xN−1) ∈ RN , its associated analytic signal A(x) = ((A(x))0, . . . , (A(x))N−1) is denoted by 
(|(A(x))0|ei arg((A(x))0), . . . , |(A(x))N−1|ei arg((A(x))N−1)). Denote ϕ(k) = arg((A(x))k) and
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ϕ∗(k) := (ϕ(k) − ϕ(k − 1))mod 2π. (4.1)

Then Ψ∗
A(x) := (ϕ∗(0), . . . , ϕ∗(N −1)) is referred to as the phase derivative of A(x) (cf. [19]). Following [19], 

Ψ∗
A(x) is also referred to as the (analytic) phase derivative of x. In what follows, based on Theorem 3.8, we 

establish an approach for the recovery of Ψ∗
A(x) provided that |x0| > |x1| > · · · > |xN−1|. Its theoretical 

guarantee will be established in Proposition 4.1.

Approach 4.1. Input: (3N/2 + 1) FROG measurements in (3.23) of z.
Step 1: Conduct Approach 3.3 and the output is ̊z = (̊z0, . . . , ̊zN−1). Denote �(̊z) = (�(̊z0), . . . , �(̊zN−1))
and kmax = arg maxk{|�(̊zk)| : k = 0, . . . , N − 1}.
Step 2: If |�(̊zkmax−1)| > |�(̊zkmax+1)|, then, through rearranging the order of the elements of ¯̊z =
(¯̊z0, . . . , ̄̊zN−1), construct ˜̊z = (˜̊z0, . . . , ̃̊zN−1) such that |�(˜̊z0)| > |�(˜̊z1)| > · · · > |�(˜̊zN−1)|.
Step 3: If |�(̊zkmax−1)| < |�(̊zkmax+1)|, then, through rearranging the order of the elements of z̊ =
(̊z0, . . . , ̊zN−1), construct ˜̊z = (˜̊z0, . . . , ̃̊zN−1) such that |�(˜̊z0)| > |�(˜̊z1)| > · · · > |�(˜̊zN−1)|.
Output: Compute and output the phase derivative of ˜̊z.

The following proposition states that the output of Approach 4.1 is the phase derivative of z. As will be 
explained in (4.4) and (4.7) that the key ingredient for the recovery of phase derivative is the effect of the 
ambiguity in Theorem 3.8 on the phase distribution.

Proposition 4.1. Suppose that the analytic signal A(x) is as in Theorem 3.8 such that its real part x =
(x0, x1, · · · , xN−1) is decaying, namely, |x0| > |x1| > · · · > |xN−1|. Then the phase derivative derived from 
Approach 4.1 is identical to that of A(x).

Proof. Suppose that z̊ is the output of Approach 3.3. Then it follows from Theorem 3.8 that z̊ equals to 
A(x) up to the π-rotation, integer-translation and reflection. Denote A(x) by z = (z0, z1, . . . , zN−1). It is 
easy to check that the π-rotation does not alter the phase derivative of any analytic signal. The reflection 
of z is expressed as

zref = (zref,0, . . . , zref,N−1) = (z̄0, z̄N−1, . . . , z̄1). (4.2)

Moreover, for any fixed l ∈ {1, . . . , N − 1}, the l-translation zl
tr of zref is

(zl
tr,0, . . . , zl

tr,N−1) = (z̄N−l, z̄N−l−1, . . . , z̄1, z̄0, z̄N−1, . . . , z̄N−l+1). (4.3)

A common thing shared by (4.2) and (4.3) is that

|�(zref,kmax−1)| > |�(zref,kmax+1)|, |�(zl
tr,k̂max−1)| > |�(zl

tr,k̂max+1)|, (4.4)

where kmax = arg maxk{|�(zref,k)| : k = 0, . . . , N − 1} and k̂max = arg maxk{|�(zl
tr,k)| : k = 0, . . . , N − 1}. 

On the other hand, the l-translation of z is

zl
tr = (zl, . . . , zN−1, z0, z1, . . . , zl−1). (4.5)

And the reflection of zl
tr is

zl
tr,ref = (zl

tr,ref,0, . . . , zl
tr,ref,N−1) = (zl, zl−1, . . . , z̄1, z0, zN−1, . . . , zl+1). (4.6)

Clearly, zl
tr,ref still satisfies the property (4.4) as zref and zl

tr. But
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Fig. 4.1. (a) Black dot-line: the real part xε̂
−0.900742,50 of the analytic signal A(xε̂

−0.900742,50); Blue dot-line: the real part of the 
reconstructed version (by Approach 3.3) of A(xε̂

−0.900742,50). (b) Black dot-line: the imaginary part of A(xε̂
−0.900742,50); Blue 

dot-line: the imaginary part of the reconstructed version of A(xε̂
−0.900742,50). (c) Black dot-line: the real part xε

0.9120,60 of the 
analytic signal A(xε

0.9120,60); Blue dot-line: the real part of the reconstructed version (by Approach 3.3) of A(xε
0.9120,60). (d) Black 

dot-line: the imaginary part of A(xε
0.9120,60); Blue dot-line: the imaginary part of the reconstructed version of A(xε

0.9120,60). (For 
interpretation of the colors in the figure, the reader is referred to the web version of this article.)

|�(zl
tr,ref,k̇max−1)| < |�(zl

tr,ref,k̇max+1)|, (4.7)

where k̇max = arg maxk{|�(zl
tr,ref,k)| : k = 0, . . . , N − 1}. Now it follows from (4.4) and (4.7) that ˜̊z

constructed in Approach 4.1 satisfies ˜̊z = z or ˜̊z = −z. The proof is concluded. �
4.2. Simulation

As an example, we performed simulation to recover the phase derivatives of the analytic signals of 
exponentially decaying ones defined by

xε
α,N = (ε0, ε1α, . . . , εN−1αN−1) ∈ RN , (4.8)

where α ∈ (−1, 1) and ε = (ε0, . . . , εN−1) with εi ∈ {1, −1}. Note that xε̂
α,N is such a signal example 

examined in [37, Page 290], where ε̂ = (1, . . . , 1). We choose A(xε̂
−0.900742,50) and A(xε

0.9120,60) as two 
examples to check Approach 4.1. See Fig. 4.1 for the result of FROG-PR of Approach 3.3 by the FROG 
measurements in (3.23) with L = 5. As illustrated in Fig. 4.1, we found that the recovery results are the 
π-rotation of the reflection of A(xε̂

−0.900742,50), and the 12-translation of the reflection of A(xε
0.9120,60).

For the phase derivative Ψ∗
A(x) := (ϕ∗(0), . . . , ϕ∗(N − 1)) of an analytic signal A(x), its recovery version 

is denoted by Ψ̃∗
A(x) := (ϕ̃∗(0), . . . , ϕ̃∗(N − 1)). And the recovery error function is defined as (|ϕ∗(0) −

ϕ̃∗(0)|, . . . , |ϕ∗(N − 1) − ϕ̃∗(N − 1)|). The phase derivatives of A(xε̂
−0.900742,50) and A(xε

0.9120,60) are plotted 
in Fig. 4.2. See Fig. 4.3 for the recovery error functions of the phase derivatives of A(xε̂

−0.900742,50) and 
A(xε

0.9120,60). Clearly, the two phase derivatives are recovered efficiently. The error is mainly derived from 
the roundoff error of FROG-PR. In general, the efficiency of phase retrieval deteriorates as the dimension 
increases ([1]). However, the error (O(10−6)) (corresponding to the signal length 60) in Fig. 4.3 (b) is much 
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Fig. 4.2. (a) The phase derivative of A(xε̂
−0.900742,50). (b) The phase derivative of A(xε

0.9120,60).

Fig. 4.3. (a) Recovery error function of the phase derivative of A(xε̂
−0.900742,50); (b) Recovery error function of the phase derivative 

of A(xε
0.9120,60).

smaller than that (O(10−5)) in Fig. 4.3 (a) (corresponding to the signal length 50). Therefore, the simulation 
result implies that the efficiency of FROG-PR is also related with the signal itself.

5. The proofs

5.1. Proof of Proposition 2.1

We just need to prove (i). Item (ii) can be proved similarly. By (1.3), we only need to prove the sufficiency. 
Denote z = x + iy such that where x̂ and ŷ, the DFTs of x and y, can be expressed by

x̂k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẑ0 k = 0,
1
2 ẑk 1 ≤ k ≤ N/2 − 1,

ẑN/2 k = N/2,

1
2
¯̂zN−k N/2 + 1 ≤ k ≤ N − 1,

(5.1)

and

iŷk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, k = 0,
1
2 ẑk, 1 ≤ k ≤ N/2 − 1,

0, k = N/2,

−1
2
¯̂zN−k, N/2 + 1 ≤ k ≤ N − 1.

(5.2)
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We claim that x̄k = xk and ȳk = yk. Indeed, it follows from

xk = 1
N

N−1∑
n=0

x̂ne2πikn/N , yk = 1
N

N−1∑
n=0

ŷne2πikn/N

that

x̄k = 1
N

N−1∑
n=0

x̂ne2πikn/N

= 1
N

N−1∑
n=0

¯̂xne2πik(N−n)/N

= 1
N

N−1∑
n=0

x̂N−ne2πik(N−n)/N

= 1
N

N−1∑
n=0

x̂
n

e2πikn/N

= xk,

(5.3)

and similarly,

iyk = 1
N

N−1∑
n=0

ŷne2πikn/N

= 1
N

N−1∑
n=0

¯̂yne2πik(N−n)/N

= 1
N

N−1∑
n=0

−iŷN−ne2πik(N−n)/N

= 1
N

N−1∑
n=0

−iŷne2πikn/N

= −iyk,

(5.4)

where the third identities in (5.3) and (5.4) are derived from (5.1) and (5.2). �
5.2. Proof of Lemma 3.3

(1) If r is odd, then for any m ∈ {0, 1, 2, . . . , r − 1}, 4m
r is not an odd integer and consequently, 1 +

w2m = 1 + e
i4mπ

r �= 0. Therefore, for the odd integer r ≥ 5, there exist at least 5 numbers, denoted by 
m1, . . . , m5 ⊆ {0, 1, 2, . . . , r − 1} such that 1 + w2ml �= 0, l = 1, . . . , 5. Now assume that r is even. If r = 6, 
then 1 + w2m = 1 + e

i2mπ
3 . Note that 2m

3 is not an odd integer. Thus for any m ∈ {0, 1, 2, . . . , 5}, we have 
1 + w2m �= 0. If r > 6 and even (or r ≥ 8), then 4m ≤ 4(r − 1) < 4r. If 1 + w2m = 0, then 4m = r or 
4m = 3r. Thus there exist at most two numbers, denoted by m̄1 and m̄2, in {0, 1, 2, . . . , r − 1} such that 
1 +w2m̄k = 0, k = 1, 2. Therefore there exist at least 5 numbers, denoted by m1, . . . , m5 ⊆ {0, 1, 2, . . . , r−1}
such that 1 + w2ml �= 0(l = 1, . . . , 5).

(2) Let m ∈ {1, 2 . . . , r − 1}. If wm

1+w2m = 1
2 , then and so (wm − 1)2 = 0, i.e., wm = 1. Since 2 ≤ 2m ≤

2(r − 1) < 2r, we have wm �= 1, and hence there exists m1 ∈ {1, 2, . . . , r − 1} such that wm1
2m1 �= 1 .
1+w 2
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(3) We first prove that if r ≥ 5, then there exist at least three numbers in {1, 2, . . . , r − 1}, denoted by 

m1, m2, m3, such that 1 + w3mk = 1 + e
i6mkπ

r �= 0.
For r = 5 and any m ∈ {1, 2, . . . , 4}, 6m

r is not an odd integer. Therefore 1 + w3m = 1 + e
i6mπ

5 �= 0. 
Let r ≥ 6 and m ∈ {1, 2, . . . , r − 1}. Suppose that 1 + w3m = 1 + e

i6mπ
r = 0. Since 6

r ≤ 6m
r ≤ 6(r−1)

r <

6, we have 1 + e
i6mπ

r = 0 which implies that 6m
r ∈ {1, 3, 5}. Thus there exist at most three numbers 

m̄1, m̄2, m̄3 ∈ {1, 2, . . . , r − 1} such that 1 + w3m̄k = 0, and therefore there exist at least three numbers 
m1, m2, m3 ∈ {1, 2, . . . , r − 1} such that 1 + w3mk �= 0.

Now we prove that there exists at least a number i ∈ {m1, m2, m3} such that wi+w2i

1+w3i �= 1. Note that 
for any m ∈ {m1, m2, m3}, wm+w2m

1+w3m = 1 is equivalent to (wm − 1)(w2m − 1) = 0. Thus we have wm = 1
or w2m = 1. Since 2 ≤ 2m ≤ 2(r − 1) < 2r, there does not exist m ∈ {m1, m2, m3} such that wm = 1. If 
w2m = e

i4mπ
r = 1, then from 4 ≤ 4m ≤ 4(r − 1) < 4r we have that 4m = 2r. Thus there exists at most one 

number, e.g. m1 ∈ {m1, m2, m3} such that wm1 +w2m1

1+w3m1 = 1, and consequently there exists i ∈ {m2, m3} such 

that wi+w2i

1+w3i �= 1. �
5.3. Proof of Theorem 3.5

Since z is analytic, we have that both ẑ0 and ẑN/2 are real-valued. We first consider the equation system 
w.r.t. the real-valued variables ̂̃z0, ̂̃zN/2 ∈ R:⎧⎪⎨⎪⎩

1
N

∣∣̂z2
0 + ẑ2

N/2
∣∣ = |ŷ0,0| = 1

N

∣∣̂z̃2
0 + ̂̃z2

N/2
∣∣, (5.5A)

1
N

∣∣̂z2
0 − ẑ2

N/2
∣∣ = |ŷ0,1| = 1

N

∣∣̂z̃2
0 − ̂̃z2

N/2
∣∣. (5.5B)

(5.5)

It is easy to check that the solutions to (5.5) are

(̂̃z0, ̂̃zN/2) =
(

±
√

N(|ŷ0,0| + |ŷ0,1|)
2 , ±

√
N(|ŷ0,0| − |ŷ0,1|)

2

)
(5.6)

and

(̂̃z0, ̂̃zN/2) =
(

±
√

N(|ŷ0,0| − |ŷ0,1|)
2 , ±

√
N(|ŷ0,0| + |ŷ0,1|)

2

)
. (5.7)

If |ŷ0,1| = 0, then |̂z̃0| = |̂z̃N/2| and consequently ẑ0 can be determined (up to a sign) by Approach 3.1.
If |ŷ0,1| �= 0 (equivalently |̂z0| �= |̂zN/2|), then we need to prove that if a signal z̃ ∈ CN whose DFT 

(̂̃z0, . . . , ̂̃zN/2, 0, . . . , 0) satisfies

̂̃z0 ∈ {ẑN/2, −ẑN/2} and ̂̃zN/2 ∈ {ẑ0, −ẑ0}, (5.8)

then it does not have the same [N, L]-FROG measurements as z. This follows from Theorem 3.4. �
5.4. Proof of Theorem 3.6

We divide the proof into three parts based on the three steps from Approach 3.2.

5.4.1. Determination of ̂̃z2 in (3.22)

Proposition 5.1. Suppose that N is even and z ∈ CN is a generic analytic signal such that its DFT

ẑ = (ẑ0, ẑ1, . . . , ẑN/2, 0, . . . , 0) := (|̂z0|eiθ0 , |̂z1|eiθ1 , . . . , |̂zN/2|eiθN/2 , 0, . . . , 0) (5.9)
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satisfies |̂z0|, |̂z1| �= 0. The [N, L]-FROG measurements of z are {|ŷk,m|2 : k = 0, 1, · · · , N −1; m = 0, . . . , r−
1}. Denote by ̂̃z0 the output of Approach 3.1 such that ̂̃z0 = εẑ0 with ε ∈ {1, −1}. Define ̂̃z1 := N |ŷ1,0|

2|̂z0| such 

that 2
N

∣∣̂z̃0̂̃z1
∣∣ = 2

N

∣∣̂z0ẑ1
∣∣ = |ŷ1,0|. Then the solutions to the system of equations w.r.t. ̂̃z2:

1
N

∣∣̂z̃0̂̃z2(1 + w2m) + ̂̃z2
1wm

∣∣ = |ŷ2,m|, m = 0, . . . , r − 1, (5.10)

are ε|̂z2|ei(θ2−2θ1) and ε|̂z2|ei(−θ2+2θ1). Moreover, one of the two solutions can be determined by Step 1 in 
Approach 3.2.

Proof. Clearly, |̂z̃1| = |̂z1| and ̂̃z1 = |̂z1|ei(θ1−θ1). For ̂̃z2 = ε|̂z2|ei(θ2−2θ1) and m = 0, 1, . . . , r − 1, compute

1
N

∣∣̂z̃0̂̃z2 + ̂̃z2
1wm + ̂̃z2̂̃z0w2m

∣∣
= 1

N

∣∣̂z0 |̂z2|ei(θ2−2θ1) + (|̂z1|ei(θ1−θ1))2wm + |̂z2|ei(θ2−2θ1)ẑ0w2m
∣∣

= 1
N

|ei(2θ1)|
∣∣̂z0ẑ2 + ẑ2

1wm + ẑ2ẑ0w2m
∣∣

= 1
N

∣∣̂z0ẑ2 + ẑ2
1wm + ẑ2ẑ0w2m

∣∣
= |ŷ2,m|.

(5.11)

Therefore, ̂̃z2 = ε|̂z2|ei(θ2−2θ1) is the solution to (5.10). Moreover, it follows from Lemma 3.3 (2) that there 
exists m1 ∈ {1, 2, . . . , r − 1} such that wm1

1+w2m1 �= 1
2 . For m = 0 and m1, (5.10) is equivalent to

|ŷ2,m|
|(1 + w2m)̂̃z0|

= 1
N

∣∣̂z̃2 + wm

1 + w2m

̂̃z2
1̂̃z0

∣∣. (5.12)

It is easy to check that wm

1+w2m ∈ R for any m ∈ {0, m1}. Thus, by Note 3.2 (i) and (5.11), the solutions 
to (5.12) are ε|̂z2|ei(θ2−2θ1) and ε|̂z2|ei(−θ2+2θ1). By the similar calculation as (5.11), ε|̂z2|ei(−θ2+2θ1) is the 
other solution to (5.10). The proof is concluded. �
5.4.2. Determination of ̂̃z3, ̂̃z4 in (3.22)

Let z ∈ CN be a generic analytic signal such that its [N, L]-FROG measurements are {|ŷk,m|2 : k =
0, 1, · · · , N − 1; m = 0, . . . , r − 1}. Denote its DFT by

ẑ = (ẑ0, ẑ1, . . . , ẑN/2, 0, . . . , 0) := (|̂z0|eiθ0 , |̂z1|eiθ1 , . . . , |̂zN/2|eiθN/2 , 0, . . . , 0). (5.13)

Recall that in (3.22), ̂̃z0 = εẑ0 with ε ∈ {1, −1} is the output of Approach 3.1, and ̂̃z1 = |̂z1|. Consequently, 
by the similar analysis in the proof of Proposition 5.1, ε|̂z2|ei(θ2−2θ1) and ε|̂z2|ei(−θ2+2θ1) are the solutions 
to (5.10) w.r.t. ̂̃z2.

Proposition 5.2. Let the generic analytic signal z ∈ CN be as above. If we choose ̂̃z2 = ε|̂z2|ei(θ2−2θ1), then 
the solution to the system of equations w.r.t. ̂̃z3 and ̂̃z4:⎧⎪⎪⎪⎨⎪⎪⎪⎩

|ŷ3,m| = 1
N

∣∣̂z̃0̂̃z3 + ̂̃z1̂̃z2wm + ̂̃z2̂̃z1w2m + ̂̃z3̂̃z0w3m
∣∣,

|ŷ4,m| = 1
N

∣∣̂z̃0̂̃z4 + ̂̃z1̂̃z3wm + (̂̃z2)2w2m + ̂̃z3̂̃z1w3m + ̂̃z4̂̃z0w4m
∣∣,

m = 0, 1, . . . , r − 1,

(5.14)
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is (|̂z3|ei(θ3−3θ1), ε|̂z4|ei(θ4−4θ1)). Similarly, if ̂̃z2=ε|̂z2|ei(−θ2+2θ1), then the solution to (5.14) is (|̂z3|ei(−θ3+3θ1),

ε|̂z4|ei(−θ4+4θ1)). Moreover, the solution can be determined by Step 2 in Approach 3.2.

Proof. Clearly, ̂̃z1 = |̂z1|ei(θ1−θ1). Suppose that we choose ̂̃z2 = ε|̂z2|ei(θ2−2θ1). Then it follows from

1
N

∣∣̂z̃0̂̃z3 + ̂̃z1̂̃z2wm + ̂̃z2̂̃z1w2m + ̂̃z3̂̃z0w3m
∣∣

= 1
N

∣∣εẑ0 |̂z3|ei(θ3−3θ1) + |̂z1|ei(θ1−θ1)ε|̂z2|ei(θ2−2θ1)wm + ε|̂z2|ei(θ2−2θ1) |̂z1|ei(θ1−θ1)w2m

+ |̂z3|ei(θ3−3θ1)εẑ0w3m
∣∣

= 1
N

|ei3(−θ1)|
∣∣̂z0ẑ3 + ẑ1ẑ2wm + ẑ2ẑ1w2m + ẑ0ẑ3w3m

∣∣
= 1

N

∣∣̂z0ẑ3 + ẑ1ẑ2wm + ẑ2ẑ1w2m + ẑ0ẑ3w3m
∣∣

=|ŷ3,m|

that ̂̃z3 = |̂z3|ei(θ3−3θ1) is a solution to

|ŷ3,m| = 1
N

∣∣̂z̃0̂̃z3 + ̂̃z1̂̃z2wm + ̂̃z2̂̃z1w2m + ̂̃z3̂̃z0w3m
∣∣, m = 0, 1, . . . , r − 1. (5.15)

As for the above system, it follows from the analysis in [7, Page 1037] that ̂̃z′
3 = |̂z3|ei(−θ3+3θ1+2θ̃2) with 

θ̃2 = arg(̂̃z2) is the other solution to (5.15). By [7, Lemma 4.2], however, if we choose ̂̃z′
3 as the solution, 

then there does not exist any other solution to

|ŷ4,m| = 1
N

∣∣̂z̃0̂̃z4 + ̂̃z1̂̃z3wm + (̂̃z2)2w2m + ̂̃z3̂̃z1w3m + ̂̃z4̂̃z0w4m
∣∣, m = 0, 1, . . . , r − 1. (5.16)

Therefore, we just need to consider ̂̃z3 = |̂z3|ei(θ3−3θ1).
Having ̂̃z2 = ε|̂z2|ei(θ2−2θ1) and ̂̃z3 = |̂z3|ei(θ3−3θ1), we can verify that ̂̃z4 = ε|̂z4|ei(θ4−4θ1) is a solution to 

(5.16). Indeed this follows from:

1
N

∣∣∣̂z̃0̂̃z4 + ̂̃z1̂̃z3wm + (̂̃z2)2w2m + ̂̃z3̂̃z1w3m + ̂̃z4̂̃z0w4m
∣∣∣

= 1
N

∣∣ε2ẑ0 |̂z4|ei(θ4−4θ1) + |̂z1|ei(θ1−θ1) |̂z3|ei(θ3−3θ1)wm + ε2[|̂z2|ei(θ2−2θ1)]2w2m

+ |̂z3|ei(θ3−3θ1) |̂z1|ei(θ1−θ1)w3m + ε2 |̂z4|ei(θ4−4θ1)ẑ0w4m
∣∣

= 1
N

|ei4(−θ1)|
∣∣̂z0ẑ4 + ẑ1ẑ3wm + ẑ2

2w2m + ẑ3ẑ1w3m + ẑ0ẑ4w4m
∣∣

= 1
N

∣∣̂z0ẑ4 + ẑ1ẑ3wm + ẑ2
2w2m + ẑ3ẑ1w3m + ẑ0ẑ4w4m

∣∣
=|ŷ4,m|.

We next prove that ̂̃z4 = ε|̂z4|ei(θ4−4θ1) is the unique solution to (5.16) for the generic analytic signal z. 
Suppose that ̂̃z0, ̂̃z1 and ̂̃z2 are fixed. Since ẑ3 is generic then ̂̃z3 = |̂z3|ei(θ3−3θ1) = ẑ3ei3θ1 is also generic. 
We next use Note 3.1 to determine ̂̃z4. For the generic ̂̃z3, recall that the corresponding v1−v2

v1−v3
in Note 3.1

(3.5) is a rational polynomial w.r.t. ̂̃z3. Therefore it is easy to check that (3.5) holds, and the solution to 
(5.16) is unique for the choice of (̂̃z0, ̂̃z1, ̂̃z2, ̂̃z3) = (εẑ0, |̂z1|, ε|̂z2|ei(θ2−2θ1), |̂z3|ei(θ3−3θ1)). And (̂̃z3, ̂̃z4) can be 
determined by Step 2 in Approach 3.2. Now we concluded the proof of the first part, and the second part 
can be proved similarly. �
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5.4.3. Determination of ̂̃zk in (3.22) for k ≥ 5
We first prove that if (̂̃z0, · · · , ̂̃zk−1) =

(
εẑ0, |̂z1|, · · · , E(k − 1)|̂zk−1|ei[θk−1−(k−1)θ1]), then ̂̃zk =

E(k)|̂zk|ei(θk−kθ1) satisfies

|ŷk,m| = 1
N

∣∣ k∑
l=0

̂̃zl
̂̃zk−lw

lm
∣∣, m = 0, 1, . . . , r − 1. (5.17)

Indeed, from

1
N

∣∣ k∑
l=0

̂̃zl
̂̃zk−lw

lm
∣∣

= 1
N

∣∣ k∑
l=0

|̂zl|ei(θl−lθ1) |̂zk−l|ei[θk−l−(k−l)θ1]wlm
∣∣

= 1
N

|ei(kα)|
∣∣ k∑

l=0

ẑlẑk−lw
lm

∣∣
=|ŷk,m|, m = 0, 1, . . . , r − 1,

(5.18)

we get that ̂̃zk = E(k)|̂zk|ei(θk−kθ1) satisfies (5.17). Through the similar analysis in the proof of Propo-
sition 5.2 that ̂̃zk = E(k)|̂zk|ei(θk−kθ1) is the unique solution to (5.17). Similarly, we can prove that if 
(̂̃z0, · · · , ̂̃zk−1) =

(
εẑ0, |̂z1|, · · · , E(k − 1)|̂zk−1|ei[−θk−1+(k−1)θ1]), then ̂̃zk = E(k)|̂zk|ei(−θk+kθ1) is the unique 

solution to (5.17). Now by Note 3.1, ̂̃zk can be determined through Step 3 in Approach 3.2.

5.4.4. (3.22) has two complex conjugation solutions
According to sections 5.4.1, 5.4.2 and 5.4.3, the solutions to (3.22) are the vector 

(
E(2)|̂z2|ei(θ2−2θ1),

E(3)|̂z3|ei(θ3−3θ1), . . . , E(N/2)|̂zN/2|ei[θN/2−(N/2)θ1]) and its complex conjugate.

6. A final remark

If L is even and r = �N/L� ≥ 5, then

1
N

(̂̃z2
0 + ̂̃z2

N/2) = |ŷ0,m|, m = 0, 1, · · · , r − 1. (6.1)

Therefore in this case |ŷ0,m| can not be expressed by the form of (5.5B). And Step 3 in Approach 3.1 does 
not hold for the case of L being even. Clearly, ̂̃z0 ∈

[
−

√
N |ŷ0,0|, 

√
N |ŷ0,0|

]
. Assume that we assign ̂̃z0 by 

an arbitrary value α ∈
[

−
√

N |ŷ0,0|, 
√

N |ŷ0,0|
]
. Then it holds that α �= ±ẑ0 with probability 1. Now it 

follows from 2
N

∣∣̂z̃0̂̃z1
∣∣ = |ŷ1,0| that |̂z̃1| = N |ŷ1,0|

2|α| . For any θ ∈ [0, 2π), assign the phase θ to ̂̃z1 as N |ŷ1,0|
2|α| eiθ. 

Then, by the proof of Theorem 3.4, the system w.r.t. ̂̃z2

1
N

∣∣̂z̃0̂̃z2(1 + w2m) + ̂̃z2
1wm

∣∣ = |ŷ2,m|, m = 0, . . . , r − 1 (6.2)

does not have a solution. This implies that, with probability 1, Approach 3.3 does not hold for the FROG-
PR problem with even L and r = �N/L� ≥ 5, and so a different approach need to be developed for this 
case in the future work.
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