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1. Introduction

This paper is a continuation of a project on characterizing the frame generator multi-
pliers under various settings, a topic that was initially motivated by the work of Dai and
Larson [4] on wandering vector multipliers and the WUTAM paper on basic properties of
wavelets [22]. Representative publications resulted from this project include [9,10,17-19].
Let A and B be two nonsingular real matrices so that AZ? and BZ? are both full-rank
lattices in R 4. We say that G(x) = (g1(x), ..., g(x))7, with 7 being the transpose and
g;(x) € L*(R9) for each j, is a Parseval (or normalized tight) Gabor multi-frame gen-
erator of length ~ for L?(R ) (for the separable time-frequency lattice AZ? x BZY) if
{e?miBmX) g (x — An): m,n € Z%, 1 < j <~} is a normalized tight frame, i.e.,

Yo D KemPmOg(x — An) P = ||f |7 (1.1)

1<j<ym,neZd

for all f(x) € L%(R9). In the special case that v = 1, G(x) = g1(x) is also called
a Parseval Gabor single-frame generator or simply a Parseval Gabor frame generator.
However for the sake of convenience in this paper a Parseval Gabor single-frame generator
will simply be regarded as a Parseval Gabor multi-frame generator with length v = 1.

Gabor multi-frames in higher dimensions play important roles in many applications
([5,6,14,15,23,24]).

A functional matrix M(x) = (fij(x))yx~, With fi;(x) € L>(R %) is called a functional
(matrix) Gabor multi-frame multiplier if H(x) = M (x)G(x) is a Parseval Gabor multi-
frame generator for L>(R 4) whenever G = (g1, g2, - - , g)7 is. Functional (matrix) Gabor
multi-frame multipliers provide a useful tool in the study of Parseval Gabor multi-frames.
As such, it is an interesting and important question to ask how they can be characterized.
This question has been answered for the special cases of d = 1 with any v > 1 ([9,20]),
and d = 2 with v = 1 [16]. In this paper, we provide a complete characterization for
functional (matrix) Gabor multi-frame multipliers with any number « > 1 of generators
at any dimension d > 1. Our result shall contain all the previously obtained results
in [9,16,20] with a unified approach. More specifically, we have proven the following
theorem.

Theorem 1.1. Let A and B be nonsingular real valued d X d matrices, and v be the
integer satisfying | det(AB)| < v < |det(AB)|+1. Let M (x) = (fi;(x))yxy with fi;(x) €
L*(R%). Then M(x) is a functional matriz Gabor multi-frame multiplier for the time-
frequency lattice AZ* x BZ® if and only if the following three conditions are satisfied:

(1) M(x) is unitary for a.e. x € R¢;

(2) For any n € Z\ {0}, M*(x)M(x + (B")"'n) equals A\n(x)I (a.e. x € R9) for
some unimodular scalar-valued function (that depends only on n) \y(x), where I is the
identity matriz and M™ denotes the conjugate transpose of M.

(3) M(x) is AZ%-periodic (as a function of x).
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Notice that in the case of v = 1, a functional matrix Gabor multi-frame multiplier is
a scalar function h(x) hence Theorem 1.1 has a simpler form:

Theorem 1.2. A scalar function h(x) € L>®(R %) is a functional Gabor multiplier for the
time-frequency lattice AZ% x BZ% if and only if the following two conditions hold:

(1) h(x) is unimodular for a.e. x € R4;
(2) For any n € Z%\ {0}, h(x)h(x + (B7)~1n) is AZ%-periodic.

Remark 1.3. The well-known density theorem in Gabor analysis tells us that if a time-
frequency lattice AZ? x BZ% admits a Gabor multi-frame generator of length ~ but does
not admit a Gabor multi-frame generator of length v — 1 (i.e., 7y is the minimal length),
then we necessarily have | det(AB)| < v < |det(AB)|+1 (cf. [7]). The converse is trivially
true when d = 1, and it is also proved to be true for higher dimensions when v = 1 by
D. Han and Y. Wang [13], and B. Bekka [1] with two completely different approaches.
The general case v > 1 for any dimension is implied by our proof of Theorem 1.1 (this
may be known in the literature already but we failed to find a reference). Our approach
can be considered as a refinement of the tiling approach from [13].

Remark 1.4. We shall point out that Theorem 1.1 still holds when v > | det(AB)| + 1.
It is only that |det(AB)| < v < |det(AB)| + 1 is the critical case that we need to focus
on hence it is more convenient for us to state the theorem this way. The generalization
to the non-minimum + is trivial as we shall see in Remark 6.1.

The following characterization is well known especially for one dimensional case (cf.
[2,8,21]). For high dimension and arbitrary time-frequency lattices, by using the char-
acterization of Parseval Gabor multi-frame generators in frequency domain from [3], we
can easily translate it into the following characterization in terms of time domain.

Proposition 1.5. Let A, B be nonsingular matrices with |det(A)| = a, |det(B)| = b,
and g1,92,- .9y € L*(R 1), Then G = (91,--,94)7 is a Parseval Gabor multi-frame
generator for L*(R ) if and only if the following identities hold (for a.e. x € R?):

> (G(x - An),G(x — An)) = b; (1.2)
neZd
> {G(x— An),G(x+ (B")"'1— An)) =0, V 1 € 2%\ {0}. (1.3)
neZd

Using Proposition 1.5, the sufficient part of Theorem 1.1 can be easily proven. Indeed,
let M (x) be a functional matrix satisfying the conditions (1)—(3) in Theorem 1.1, and
G(x) = (91, - ,94)7 be an arbitrary Parseval Gabor multi-frame generator. Denote
H(x) = M(x)G(x) = (m(x), -+ ,ny(x))7. Since M (x) is unitary for any x € R¢ a.e., it
is obvious that
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Z (H(x— An),H(x — An)) = Z (G(x —n),G(x —n)),

neZd nezd

hence (1.2) holds. Furthermore, by conditions (2) and (3) we have

Z (H(x — An), H(x — An + (B7)™'1))

neZd
= > (G(x— An),M*(x — An)M(x — An+ (B") "')G(x — An+ (B7) ')
neZd
= > (G(x— An), M*(x)M(x + (B")"'1)G(x — An+ (B7)"'1))
neZd
=X(x) Y (G(x—An),G(x— An+ (B7)7'1)) =0
nezZa

for any x € R¢ a.e. and any 1 # 0. Hence H(x) = M (x)G(x) is a Parseval Gabor multi-
frame generator. Thus the rest of the paper is devoted to the proof of the necessary part
of Theorem 1.1.

The rest of the paper is organized as follows. In the next section, we show that Theo-
rem 1.1 can be proven under a simplified setting. In Section 3 we provide some necessary
background knowledge regarding the lattice tiling and packing of R ¢. In Section 4 we
prove Theorem 1.1 for the case of v = 1 with any d > 1. In Section 5 we prove Theo-
rem 1.1 for the case of v > 1 with any d > 1.

2. Auxiliary simplifications

Let A and B be nonsingular real valued d x d matrices, and -y be the integer satisfying
|det(AB)| < v < |det(AB)|+1. Let P, @ be any two d x d matrices with integer entries
and | det(P)| = | det(Q)| = 1. (Note that we will be making specific choices later for P, @
later depending on our needs, but the statement here holds for any such P, Q).) Denote the
matrix (PBTAQ)~! by D. This implies that AQD = (B™)~!P~!. For any set of functions
{31(%); -, 3 (x)} such that g; € L3(R 4), define g;(x) by g;(x) = 5;((AQ)"'x) = §,(2)
where z = (AQ) " 'x.

Lemma 2.1. The following two statements hold:

(1) G(x) = (§1(x), ..., §(x))7 is a Parseval Gabor multi-frame generator for the time-
frequency lattice Z4¢ x (D7)~*Z4 if and only if G(z) = (91(2),...,9,(2))7 is a Parseval
Gabor multi-frame generator for the time-frequency lattice AZ® x BZ®.

(2) Let M(z) be a v x v functional matriz multiplier and define M(x) = M(z)
with z = (AQ)™'x. If M*(z)M(z + Dk) is Z%-periodic for any z € R% and k €
74\ {0}, then M*(x)M(x+ (B™)"'k) is AZ%-periodic for any x € R? and k €
7%\ {0}. Moreover, if M*(z)M(z + Dk) = A(z)I for some scalar function M\(z),
then M*(x)M (x 4 (B7)7'K’) = A\ (x)I with A\ (x) = A(2).
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Lemma 2.1 implies that in order to prove Theorem 1.1, we only need to consider a
special case of it, namely when A = I;xq and (BT)~! = D, where D is of the form
(PBTAQ)™! for any P, Q with integer entries and | det(P)| = |det(Q)| = 1. Under this
setting, it is necessary that 0 < |det(D~!)| = dy <y < dy + 1 and equations (1.2) and
(1.3) become

> (G(x—1),G(x — 1)) = do, (2.1)
lel
> (G(x—1),G(x—1-k)) =0, Vk € £\ {0}. (2.2)
lel

3. The tiling and packing of R ¢ by £ and IC

Let us introduce a few key concepts first. Let F be any full rank lattice of R<. A
measurable set E is said to pack R ¢ by F if EN(E +f) = () for any nontrivial f € F. If
E packs R ¢ by F and also satisfies the condition R ¢ = Ugc #(E + f), then we say that
E tiles R by F. In this case F is called a tile or a fundamental domain of F. For two
measurable sets S; and S, that pack R ¢ by F, we say that S; and Sy are F-equivalent if
User(S1+f) = Uger(S2+£), and we say that S; and Sy are F-disjoint if S1N(Se+£) =0
for any nontrivial f € F.

The materials in this section heavily rely on the work [13], more specifically the proofs
in the sequence of lemmas there that lead to the proof of [13, Theorem 1.2], which states
that if |det(D)| < 1, then there exists a measurable set that tiles R¢ by K = DZ?
and packs R? by £ = Z% From this point on, the lattices £, K always mean Z<,
DZ% respectively unless otherwise noted. The following long remark summarizes the
results (with slight modifications) extracted from [13] that are necessary for us to prove
Theorem 1.1.

Remark 3.1. Consider the group T¢ = R4/Z? with Q = [0,1)? a representative set of
the group. Let 7 : R? — T9 be the projection map and consider 7((B™A)~1Z%).
7((BTA)~1Z4) is a closed subgroup of T¢, hence 7((BTA)~1Z4) = S & F for some
rational subspace S and finite set F' [13, Lemma 2.1]. The proof of [13, Theorem 1.2] is
divided into three cases: Case 1: S = T9; Case 2: S = {}; and Case 3: S # T¢ and
S # {0}. We will follow these cases to make the choices for P, @Q and to extract the
information we need. Let k; = D1; where {ly,1s,...,15} is the standard basis for £. Let
v be the unique integer satisfying dg < v < dy + 1.

Case 1. In this case we can simply choose P = (Q = x4 in Lemma 2.1. There are two
sub cases to consider here: (i) dg = 1/|det(D)| = | det(AB)| is rational and (ii) dp is
irrational.

(i) do = p/q with (p,q) = 1. In this case we can partition D) into My parallelepipeds
of the same volume gy where My can be any integer multiple of ¢q. We have Msug =
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q/p = 1/dy hence po = q/(Maop) = 1/(Np) where Ng = M. On the other hand, we can
partition 2 into M7 = Np rectangles such that each rectangle also has volume . Denote
these partitions of Q and D2 by B and P’ respectively, and arbitrarily order and name
the ones in ‘B as C1, Oy, ..., Oy, and the ones in P as Cf, Cs, ..., Oy, . [13, Corollary
2.3] assures that for any pair of C; and C7, there exists a measurable set J(C;, C}) that
is L-equivalent to C; and K-equivalent to C’} (we say J(Cj, C'J/) is a matching of C; and
Cj’) In particular, if there exists a rectangle C' such that C C C; and —1p+C C —ko-l-C]‘
for some 1y € £ and ko € K, then —1y + C can be selected as part of J(C;, C;) Recall
that M; = pN and My = gN. If ¢ = 1, then dy = p = v is an integer and M; = vMo.
E,
such that each group contains My rectangles. If p > ¢ > 1 (this happens when dy > 1),
then p = (v — 1)g + r for some positive integer r < ¢ (otherwise p = vq¢ contradicts the
condition that (p,q) = 1). It follows that M; = Np = (y—1)Ng+Nr = (y—1)Ms+ Nr.
Thus in this case we can divide the rectangles in B into v groups Fi, Fb, ..., F, such

This means in this case we can divide the rectangles in P into v groups Fi, Fs, ...

)

that each group F; with j > 2 contains M, rectangles, and F} contains the remaining
Nr < Ng = M> rectangles. Finally, if ¢ > p > 1 (that is, dy < 1), then we have
My < Ms.

(ii) dg is irrational. Here we need to consider the cases dy > 1 and dy < 1 separately.

First consider the case dy > 1. We have dy = v — 9 for some positive constant 6 < 1. In
this case we can still partition DS into M3 parallelepipeds (denoted by C?’s) of the same
volume po where My can be any arbitrarily chosen large positive integer, in particular,
we will choose it large enough so that (1 — 6)My > 1. This time it is not possible to
partition € into rectangles such that each rectangle also has the same volume i since
o = 1/(Mady) is irrational, however this can be done if we allow one of these rectangles
to have volume less than pg. Thus if M; is the total number of rectangles in ¥ named
and ordered as C;’s as before, we can assume that all C;’s have volume pg except that
Chr, has volume g/ which is less than pg. We leave it to our reader to verify that in
this case My — (y —1)Ma = (1 = 6)My + 1 — (¢ /po) > (1 — §)My > 1 by the choice
of M,. This means that we can again divide the rectangles in 8 into v groups Fiy, Fb,
..., Iy such that each group F; with j > 2 contains M, rectangles, and Fy contains the
remaining rectangles including Cps, which has volume p'. By the above inequality we
see that F} contain at least two rectangles, hence it also contains at least one rectangle
that has volume po. The statement in (i) about J(C;, C}) applies if i # M;. For i = My,
Chr, can be matched to any parallelepiped of volume p' that is a subset of any of the
C's.

Now consider the case dy < 1. In this case we first partition €2 into M; rectangular
parallelepipeds of the same volume pg where M; can be arbitrarily large. For example
we can partition © into N small cubes of side length 1/N where N > 0 can be any
arbitrarily chosen integer, obtaining M; = N? cubes, each with volume pg = 1/N¢9.
On the other hand, we can partition D into My = N¢ parallelepipeds such that each
parallelepiped has volume 1/(dgN?) > po. Denote these partitions of 2 and DQ by
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and P’ respectively, and arbitrarily order and name the ones in 3 as Cy, Cs, ..., Ciy,, and
the ones in P’ as C1, Cy, ..., Cy . [13, Corollary 2.3] assures that for any pair of C; and
C7 (1 <4,j < M), there exists a measurable set .J(C;, C}) that is L-equivalent to C; and
K-equivalent to a subset of C}. We call J(C;, C}) a matching of C; and C}. In particular,
if there exists a rectangular parallelepiped C such that C C C; and —1g+C C —kgo + CJ’-
for some 1y € £ and kg € K, then —lp + C can be selected as part of J(C;, C7).

Case 2. In this case P and @ can be chosen so that D is a diagonal matrix with positive
rational entries {p1/q1, p2/q2, ..., pa/qa} (with ged(p;, ¢;) = 1). Here we need to choose P
and B’ specifically so that the elements in them are rectangular parallelepipeds whose
sides are parallel to 1y, ..., l; with corresponding side lengths of 1/¢q1, 1/qa, ..., 1/qa.
Again, name and order (arbitrarily) the rectangles in Q and D) by C;’s and C;»’s with
1<i< M =qq-qqand 1 < j < My = pips---pg. Then for any pair C; and CJ'.,
there exists a rectangle J(C;, C}) such that J(C;, C?}) = lo+ C; = ko +C for some 1y € £
and ko € K. In particular, if C; is paired with C} and —1y + C; = —ko + C’ for some
lp € £ and ko € K, then J(C;, C;) = —1+C;. Since dy is rational, by a discussion similar
to Case 1 (i), if dy > 1 then the rectangles in 3 can be divided into « groups Fi, Fb, ...,
F, such that each group F}; with j > 2 contains M, rectangles, and F} contains at least
one and at most My rectangles. On the other hand, if dy < 1, then M; < Ms.

Case 3. In this case P and @) can be chosen so that D = {%1 gg] , where Dy is a do X do

diagonal matrix with positive rational entries {p1/qu1, ..., Pa,/qa, } (ged(p;, q;) = 1 for each
i)and [D1  By]Z% (mod 1) is dense in [0, 1)%, dy+dy = d. For the sake of convenience let
{1}, 15, ..., 13 } be the standard basis of R 41 KC; be the lattice spanned by {k}, k5, ..., k) }
where k; = D11} (1 <j <d). Similarly, let {17, 15, ..., 1] } be the standard basis of R 2
K2 be the lattice spanned by {kY, k3, ...,kj, } where k] = Dol = (p;/q;)1] (1 < j < da).
Let Q1 = [0,1)%, Qy = [0,1)92 so that Q = Q; x Q. It is apparent that D€ is a
fundamental domain of Ky and D), is a fundamental domain of ICs. It is less apparent
that Q = (D1Q) x (D2€s) is also a fundamental domain of K [13]. So instead of using
D), we will use Q = (D1924) x (D2£)) instead. The advantage of this is that it allows
us to obtain a partition of Q by partitioning D12, and D55 separately as described
below.

(i) |det(Dy)| is rational. Similar to Case 1 (i), we can partition D;{); into paral-
lelepipeds A;-’s (1 < j < M) of the same volume pg and partition €; into rectan-
gular parallelepipeds A;’s (1 < ¢ < M]) with volume po (o can be chosen to be
as small as we want). On the other hand, we partition Q and D2 into rectangles
R’s (1 < i < q1qa---qq4,) and R;’s (1 <7 < pipa---pa,) whose sides are parallel
to 17, ..., 1, with corresponding side lengths of 1/q1, 1/ga, o 1/qq4,. Then the set
{Ag- xR 1<j<Mj1<i<pips---pa,} is a partition P’ of @ whose total number of
elements is My = Mip1ps - - - pa,, and theset {A;xR; : 1 <j < M{,1<i<qiq2 - -qa,}
is a partition P of  whose total number of elements is My = M{qiq2---qa,- By a
slightly modified version of [13, Sub Lemma 5], for any C;; = A; x R; € P and any
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Ciy = Al x R}, € P, there exists a measurable set J(Cj, Cj,;/) that is L-equivalent
to Cy; and K-equivalent to C/, ;- In particular, if A; contains a small rectangle Ay such
that —lo+A¢ x R; C —ko+ A, R;-, = —ko +C£,j,, then —lp+Ag x R; can be selected
as part of J(Cjj, Cg,j,). In the case that dy > 1, the discussion in Case 1 (i) applies to
My — (v — 1) My here (since dy is rational). That is, we can divide the elements in 9 into
v groups Fi, Fy, ..., F, such that each group F; with j > 2 contains M, elements, and
F} contains at least one and at most M5 elements. On the other hand, if dy < 1, then

My < Ms.

(ii) | det(Dq)] is irrational hence dy is also irrational. Similar to Case 1(ii), we also need
to consider the cases dy > 1 and dy < 1 separately.

If dg > 1, let 6 = v — dy > 0. Similar to (i) above, we partition Qs and Dss
into rectangles R;’s (1 < i < q1g2---qa4,) and R;-’s (1 <5 < pip2---pd,) whose sides
are parallel to the 17, ..., I ~coordinates with corresponding side lengths of 1/q1, 1/g2,
<y 1/qa,. Similar to Case 1 (ii), we can partition D1 into parallelepipeds A’’s (1 <
j < MJ) of the same volume py, and partition ; into rectangles A;’s (1 < ¢ < M)
with volume p (s can be chosen to be as small as we want since we can choose
M; as large as we want), with the exception that 0 < u” = u(Apy) < pg. Similar
to (i) above, the set {A} x R} : 1 < j < M, 1 < i < pipa---pa,} is a partition
P’ of 2 whose total number of elements is My = Mipips - - - pa,, and the set {A; x
Ri: 1<j<M,1<i<qqa qq,} is a partition P of Q whose total number of
elements is M; = M{q1q2 - - qa,- The difference here is that all the elements in these
partitions have measure po = f/(q1q2 - - - qa,), except that the elements Apy x R;
(for any 1 < i < ¢1¢2- - qa,) have measure p”/(q1q2 - - qa,). However, the inequality
My — (y—=1)M3 > (1 —6)Ms still holds in this case as one can check, hence we will have
(1—=06)Ms > q1q2 - - - qa, + 1 if M}, is large enough. This ensures that we can place all the
elements A My X R; into the group Fj as described in Case 1 (ii), and F; will still contain
at least one element whose measure is . The statement in (i) about the matching of
two elements with measure pg applies. A set of the form Ay X R;, on the other hand,
can be matched with a set A x R;-, where A is a properly chosen parallelepiped contained
in a Al with a measure u”.

In the case that dy < 1, we first partition €25 into rectangular parallelepipeds whose
sides are parallel to 17, ..., 1] with corresponding side lengths of 1/q1, 1/q2, ..., 1/qa,, and
partition Q into M| = N%pp,---pg, (congruent) rectangular parallelepipeds whose
sides are parallel to 1, ..., 1) with corresponding side lengths of 1/N, 1/N, ..., 1/N,
1/(Npip2 -+ pd,), where N can be any arbitrarily chosen positive integer. Combining
these partitions yields a partition 9 of @ = Q1 x Qs. If we name and number the
rectangular parallelepipeds in the partition of €y as Ay, Ao, ..., Ay, name and number
the rectangular parallelepipeds in the partition of Qs as Ry, Ra, ..., Ry where My =
1G2 - Qdy, then P={C;; =A; x Rj: 1 <i< M{,1<j <M/}, and My = M{M{ =
N4 (pipa -+ pa,)(q1G2 - - - qa,) is the total number of partition elements in 9. Notice that
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the volume of each A; is pf = 1/M{ = 1/(N%pips - - - pa,) and the volume of each R; is
wo = 1/(q192 -~ qa,)-

Next, we partition D;Q; into Mj = N%gqqy---qq, congruent parallelepipeds.
The volume of each of these parallelepipeds is u(D1Q1)/M5 = |det(Dy)|/M} >
1/(N%pips -+ pa,) = pfy. We name and order these parallelepipeds as Al’s (1 < i < M}).
We now partition D»€)s into rectangular parallelepipeds that are congruent to the R;’s
and name/order them as R;-’s (1 < j < pip2---pa,). Combining these two parti-
tions yields a partition P’ of Q@ = Dy x DQa: P’ = {C},;, = A}, x R}, + 1 <
i< My 1 < j < MY} where MY = pips---pa,. Notice that the total number of
partition elements in B’ is My = MiMY = N (pips---pa,)(qiqz - - qa,) = M but
WAL < RY) > pio/(9192 -+ qa,) = p(A; X R;). Again by a slightly modified version of
[13, Sub Lemma 5], for any Cj; = A; x R; € P and any Cj,; = Al x R}, € P', there
exists a measurable set J(Cj;,C} ;) that is L-equivalent to Cj; and K-equivalent to a
subset of CY, ;- In particular, if A; contains a small rectangular parallelepiped Ag such
that —lo+A¢ x R; C —ko + A}, x R}, = —ko+ Y, then —lo+ Ag x R; can be selected
as part of J(Cyj, Cr ).

This ends Remark 3.1.

Notice that in Remark 3.1, we used D{2 as the fundamental domain of X in Cases 1
and 2, but used Q as the fundamental domain of K in Case 3. For the sake of simplicity,
let us denote them by Q' with the understanding that it means either D2 or  depending
on which case K belongs to. Let us call the pair of partitions B, P’ of Q and Q' with the
properties discussed in Remark 3.1 nice partition pair.

Remark 3.2. We note that in the above discussion, ' can be replaced by any K-
translation of . Similarly, Q can be replaced by any L-translation of Q. Thus without
loss of generality, one can always assume that Q N’ is non-empty and contain interior
points.

4. The proof of Theorem 1.1, part 1

We now proceed to prove Theorem 1.2, namely the special case v = 1 of Theorem 1.1.
Here dy = |det(D1)| < 1 so |det(D)| = 1/do > 1. In this case, the functional multiplier

is a scalar function h(x) and we need to prove that h(x)h(x — k) = h(x —1)h(x —1—k)
for any x € R? a.e., and for any 1 € £ and k € K \ {0}.

4.1. A few useful lemmas

First, for the very special case of D = I, we have the following lemma, which follows
by a generalized version of the proof of [16, 4.3 Type III Case].

Lemma 4.1. If D = I is the identity matriz, then Theorem 1.1 holds.
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We also have the following lemma, whose proof can be found in [16].

Lemma 4.2. [16, Lemma 2.4] Let h be a functional Gabor frame multiplier and let1 € L,
k € K\ {0} be any given pair of vectors, then h(x)h(x —k) = h(x —Dh(x —1—-k) for
any x € R if one of the following conditions holds:

(i) There exist disjoint and measurable sets Fy, Es, E3, Ey; and Es, with Ey being a
rectangular parallelepiped, such that Fs3 = —k + Fy, By = =14+ F5, E5s = -1 —k + Fs,
and By U Ey U E5 tiles R4 by £ while By U Ey U Ey packs R4 by K;

(ii) k € L and there exist disjoint and measurable sets Ey, Fa, E3, E4 and Es, with
E5 being a rectangular parallelepiped, such that F3 = —k + FEo, Fy = —1+4 FEs, F5 =
—1—k+ Ey, E1 UE, tilesR¢ by L and E1 U E5 U E4 packs R¢ by K.

Notice that the given condition in (i) above implies that k ¢ £ and 1 ¢ K, while the
given condition in (ii) implies that 1 ¢ K.

Lemma 4.3. Let h be a functional Gabor frame multiplier and letl, I € L, k, k' € K\{0},
then the following statements hold:

(i) If h(x)h(x—k) = h(x — I')h(x =V —k) and h(x)h(x—k) = h(x +1 — 1) x
h(x +1 —1—Xk) for any x € R%, then h(x)h(x — k) = h(x — D)h(x — 1 — k);

(i) If h(x)h(x—k') = h(x — Dh(x—1-k') and h(x)h(x—k/'—k) = h(x — 1) x
h(x —1—X' —Kk) for any x € R?, then h(x)h(x — k) = h(x — )h(x —1— k).

Proof. (i) Substituting x + 1’ by x (by a slight abuse of notation) on both sides of the
equation

h(x)h(x —k) = h(x+1 = Dh(x+1 —1-k),
we obtain
h(x —1)h(x =1 — k) = h(x — )h(x — 1 - k).

But the left side of the above equation is h(x)h(x — k) by the given condition.

(ii) Since h is unimodular, the given condition leads to

h(x)h(x —1) = h(x — k')h(x —1-k/)

and

h(x)h(x —1) = h(x — k' —k)h(x —1— K — k).

Thus we have

h(x—K)h(x—1-K) = h(x— K —k)h(x—1— kK —K).



Y. Diao et al. / Journal of Functional Analysis 280 (2021) 108960 11

Substituting x — k’ by x on both sides of the above equation (again by a slight abuse of
notation), we obtain

h(x)h(x —1) = h(x —k)h(x —1—k)
forany x € R4 a.e. O

Lemma 4.4. For any given k and 1, if k ¢ L and 1 ¢ K, then there exist disjoint and
measurable sets E1, Es, E3, By and Es, with Es being a rectangular parallelepiped, such
that B3 = —k + Ey, By = —14+ E5, Es = —1—k + E5, and E; UE; U E3 tiles R by L
while Ey U Ey U Ey packs R by K. It follows that h(x)h(x — 1) = h(x — k)h(x — 1 — k)
by Lemma 4.2.

Proof. We will prove the given statement by discussing the three different cases of D
given in Remark 3.1. The general strategy in each case is to choose a suitable nice
partition pair 3, B’ of Q and Q' as described in Remark 3.1 with the following additional
properties: (a) there exists a rectangular parallelepiped (which is chosen as our set Es)
such that Fy C Cy N C} for some Cy € P and C) € P'; (b) —k — 1y + B2 C Cy € B,
for some 1y € £ and Cy # Co; (¢) =1 — ko + E; C Cf € Y, for some kg € K and
C1 # C}. We then assign a one to one correspondence between the elements of 3 and
in an arbitrary way to be used to define the matchings, except that Cy is matched with
C{, with the choice of Ey C J(Coy, C{)) and C is matched with Cf with the choice that
k — 1y + C is matched with 1 — ko + C in J(Cy, CY). Denote the union of the matchings
by S. S tiles R? by £ and packs R? by K by our construction. Let the portion of
J(Cy,C1) that is L-equivalent to —k — 1y + C and K-equivalent to —1 — kg + C by Jy,
and define Fy = S\ (E2UJy), B3 = —k+ Es, £y = —14+ F5 and E5 = —1—k+ F5. Since
—lp+ E3 = —k—1y+ E5, E3 is L-equivalent to Jy hence F1UFEsU Ej3 is L-equivalent to S.
Thus E1 U Ey U Es tiles R ¢ by £. Similarly, E4 is K-equivalent to Jy hence F1 UE> U E,
is K-equivalent to S, so F1 U Fy U E, packs R¢ by K. Thus in the following cases we
only need to show that a nice partition pair B, P’ of Q and ' that satisfies conditions
(a) to (c) exists.

Case 1. Let x¢ be an interior point of Q N DS near the origin. Since 2 is a fundamental
domain of £, there exists 1y € £ such that xo — k — 1y # xq is also an interior point of {2
(since —k ¢ L£). Similarly, there exists kg € K such that xqg — 1 — kg # xq is an interior
point of DS). It follows that we can choose a nice partition pair B, P’ of Q and D2 such
that the diameters of the polytopes in them are smaller than min{| —k —1y|,| —1—ko|}.
WLOG we can assume that there exist Cj, € P and C € P’ such that x is an interior
point of C;, N C;-O, xo —k —lp is an interior point of another C;, in B3, and x¢9 —1— kg is
an interior point of another C} in P’ (otherwise we can replace xo by a suitably chosen
point very close to it). It follows that there exists a small rectangular parallelepiped Es
such that s C C;y, NC%  k—1g+C C Cy, andl—ko—l—C’CC';-l.

Jo?
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Case 2. In this case P and P’ are as described in Case 2 of Remark 3.1 with the rect-
angular parallelepipeds named and ordered in an arbitrary way. Let E5 be the common
rectangular parallelepiped of B and 9P’ containing the origin (say Es = C;, = C}O). Simi-
lar to the proof of Case 1, there exist Iy € £ and ko € K such that —k—1p+FEs = C;, € B
for some C;, € B, and —1—ko + Ep = C, for some C} € P'. iy # ip and j; # jo since
—1¢ Kand -k ¢ L.

Case 3. Recall that in this case D = {Dol gg] , where Ds is a ds X do diagonal matrix
with positive rational entries, [D;  Bo] Z® (mod 1) is dense in [0,1)%, and Q = D10 x
D55 is a fundamental domain of K. There exist 1y € £ and kg € K such that —k —1y =

z; with y1 € 4, y2 € Qs and at least one of them is not 0, —1 — ko = [;;] with

z1 € D1Qy, zo € DyQ)y and at least one of them is not 0. Thus the nice partition
pair B, P’ of Q and O obtained by combining a suitably chosen nice partition pair 31,
P of Q1 and D14, and the nice partition pair Pao, P, of Qg and D2Qs as described
in Case 2 of Remark 3.1, we will have the following: there exists a small rectangular
parallelepiped C' C Q; N D1y such that By = C x R, where R = Ry = R;(,) is the
common rectangular parallelepiped of 9By and P, containing the origin, satisfies the
condition that Fy C Cj i1 N O;'o,j{,’ Cig ity = Aiy X Ryy € P and Cgl'o,j{) = Al x R;,(,) ey,
“k—lo+E> CCi i = Ay xRy € B (Cipiy # Cigiy), -1—ko+E2 CC} o =
! / ! / !
Ajy x By € P (G, 0 # Oy jy)- D

J1.91

4.2. The main proof

We shall consider the following three cases: I. £ ¢ K and X ¢ £; II. £ C K; IIL
KcLbut L ¢ K.

I. L Kand K ¢ L. Let1l € £ and k € £\ {0} be any two vectors. If 1 ¢ K and
k ¢ £, then by Lemma 4.4 we have h(x)h(x —1) = h(x — k)h(x —1—k). If 1 ¢ £ and
k € K\ {0}, then choose any k' € K\ {0} such that k’ ¢ £, and apply Lemma 4.4 to
the pairs (L, k') and (1, k" + k) (note that k' +k ¢ £). Similarly, if 1 € £ and k ¢ K\ {0},
then choose any 1’ € £ such that ' ¢ K, and apply Lemma 4.4 to the pairs (I',k) and
(=V+1L k) (note that —1'+1 ¢ K). Finally, if 1 € K and k € L, then choose any 1’ € £ such
that " ¢ K and k' € K\ {0} such that k’ ¢ L. The application of Lemma 4.4 to the pairs
(I',k’) and (=1 + L, k') leads to h(x)h(x — 1) = h(x — k')h(x — 1 — k’), and to the pairs
(I' k' +k) and (-1 + 1k’ + k) leads to h(x)h(x —1) = h(x — k' — k)h(x —1 -k’ — k).
The result now follows by Lemma 4.3 (ii).

II. £ C K. Notice that [1; 1z --- 13] =1 is the identity matrix, so we have I = DU
for some d x d matrix U with integer entries since each l; is a linear combination of
k; = D1y, ky, = Dl,, ..., kg = D], with integer coefficients. It follows that D~! = U is a
matrix with integer entries hence |det(D~1)| > 1 since |det(D~1!)] is positive and is an
integer. However we also have | det(D~1)| = dog < 1. Thus |det(D~1)| = 1 and it follows
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that D itself is a matrix with integer entries and |det(D)| = 1. By Case 2 of Remark 3.1,
we must have D = I and the result follows from Lemma 4.1.

III. K C L but £ ¢ K. Since £ ¢ K, there exists I € £ such that 1’ ¢ K. In this case Q
tiles R by £ and packs R by K, and By =0, By = Q, E3 = —k + Ey, By = —1' + E,
Es = -1 — k + Ej5 satisfy condition (ii) of Lemma 4.2 since —1' + Esy is K-disjoint from
Es. It follows that

h(x)h(x — k) = h(x —')h(x = I' — k)

for any x € R? a.e. Similarly, the sets E} =), E}, = Q, E = ~k+E}, B} = —1+1'+ E},
EL = —-1+1 — k + E}, also satisfy condition (ii) of Lemma 4.2 since —141' + E5 is also
K-disjoint from FE5. Thus we have

h(x)h(x —k) = h(x+1' = Dh(x+1 —1—k).
The result now follows from Lemma 4.3 (i).
5. The proof of Theorem 1.1, part 2

We now prove the remaining case of Theorem 1.1, namely the case v > 1, which is
uniquely determined by 1 < dg < v <dy+ 1.

5.1. A few more lemmas

Lemma 5.1. Let D be as given in Remark 3.1, v be the unique integer determined by
do < v < dy+ 1 where dy = 1/|det(D)| > 1. Then there exist measurable sets Ey, Fs,
..., B such that

(1) u(E;) = | det(D)| = 1/do for 2 < j < v and 0 < u(Ey) < 1/do;

(2) E; and E; are L-disjoint if i # j and Ui<;<~E; tiles R4 by L;

(3) E; tiles R by K for each j > 2 and Ey packs R? by K.

Proof. Let P and P’ be as defined in Remark 3.1 and Fy, Fs, ..., F, be the groups defined
there. Assign an arbitrary one to one correspondence between the elements of F; and the
elements of P’ (j > 2) so they are paired according to this one to one correspondence.
The union of the matchings of these pairs is a measurable set £ that is L-equivalent to
the union of the sets in F; and K-equivalent to {'. For F; we assign an arbitrary one to
one mapping from F; to P, and each pair leads to a matching of an element in F; and a
subset of its corresponding element in B’. The union of these matchings is a measurable
set F; that is L-equivalent to the union of the sets in F} and K-equivalent to a subset of
(Y. E; and E; are L-disjoint since F; and F; contain disjoint subsets of  if ¢ # j, and
Ui<j<E; is L-equivalent to {2 hence tiles R dhy L. O
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Lemma 5.2. For any given k € K\ {0}, the following statements hold.

(1) If k ¢ L, then there exists a choice of E1, ..., E, such that Ey contains a rectan-
gular parallelepiped C' such that —k + C C Fo;

(2) If k € L, then there exists a choice of E1, ..., E, such that Ey contains a rectan-
gular parallelepiped C such that C' = —k;, + C C Ey for some k;, = D, .

Proof. (1) We will prove this by discussing the three different cases of D given in Re-
mark 3.1.

Case 1. Let 1y € £ be such that -k — 1y = n(=k) € Q. Since k ¢ £, n(—k) # 0.
Let x¢ be an interior point of  such that x¢ + 7(—k) is also an interior point of .
Choose a nice partition pair 9B, 33’ of Q and DS such that the diameters of the polytopes
in them are smaller than |7(—k)|. WLOG we can assume that xo is an interior point
of D) as well by Remark 3.2. Furthermore, we can assume that there exist C;, € B
and C} € P’ such that xo is an interior point of C;, N C%
an interior point of another C;, (otherwise we can replace xg by a point very close
to it). It follows that there exists a small rectangle C' such that C' C C;, N C}  and
m(=k) + C C C;;. We now place C;, in the group F; and C;, in the group Fy (F; and
F5 are as defined in Remark 3.1), and match both C;, and C;, to Cj’-o. By Remark 3.1,
we can choose C' to be a subset of the matching of C;, and 7 since it is both L-

and xg + 7(—k) is also

equivalent and K-equivalent to itself. Similarly, we can choose —k + C' to be a subset
of the matching of C;, and C’;-U, since it is KC-equivalent to C' C C’;-O and is L-equivalent
to m(—=k) + C C C;, (since —k + C =1y + (7(=k) + C) C Iy + C;;). Thus C C E; and
-k + C C Es.

Case 2. Let 1p € £ be such that —k — 1y = 7(—k) € Q. Let C’ be the common rectangle
of P and P’ containing the origin. In this case m(—k) + C’ is another rectangle of .
Similar to the discussion in Case 1, we can choose to have C' C Ey and —k + C' C Fs.

Case 3. Let 1y € £ be such that —k — 1y = w(—k) € . Similar to the discussion of Case
1, if we choose the diameters of the parallelepipeds in B’ small enough, then there exist
Cij=A; x Rj € P and C},;, = A}, x R}, € P such that R; = R},, A; N Aj, contains a
small rectangle Cy, and 7(—k) + Co x R; C Cj,;, = A, x R;, € PB. We place C; in the
group Fy and Cj,;, in the group F», and match both C;; and Cj,;, to C{,j,. Again by
Remark 3.1, we can choose C'= Cy x R; to be a subset of the matching of Cj; and C},,
since it is both L-equivalent and K-equivalent to itself. Similarly, we can choose —k + C
to be a subset of the matching of C;,;, and Cj,;, since it is K-equivalent to C' C Cj,,
and is L-equivalent to 7(—k)+ C C C;,;,. Thus C C E; and —k + C C Es.

(2) Notice that at least one of the k;’s has length less than 1. Let k;, be one such.
The discussions in the above apply here with 7(—k) replaced by k;,. It follows that in
each case there exists a small rectangle C' such that C' C E; and k;, + C C E,. O
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5.2. The main proof

We now proceed to prove Theorem 1.1 for the case of v > 2, under the simplified
setting of A = Ijxq and (BT)~! = D, where D is of the form (PBT AQ)~! as described
in Remark 3.1. The proof is divided into three parts. In Part 1 we show that if M (x) is
a Parseval Gabor multi-frame multiplier, then M (x) is unitary. In Part 2 we show that
M*(x)M*(x — k) = M(x)I for any k € K\ {0}, where \(x) is a scalar function that
depends only on k and x. In the last part we show that M*(x)M*(x — k) is L-periodic.

Remark 5.3. Notice that the discussions in the last section can be applied to any trans-
lation of © (together with the set ', of course). Thus in order to verify that equations
(2.1) and (2.2) hold for any x € R¢ a.e., we only need to verify them for any x € Q a.e.
We should stress that the statement here is different from the statement of Remark 3.2.

Part 1. Let M(x) be a v x « functional matrix Gabor multi-frame multiplier for the
time-frequency lattice Z¢ x (D7)~'Z9. First, if G(x) is a Parseval Gabor multi-frame
generator for L2(R9) and H(x) = M(x)G(x), then H(x) satisfies equation (2.1), that
is:

do = Z (M(x —n)G(x —n), M(x —n)G(x —n))

nezZd

= Z (G(x—m), M*(x —n)M(x — n)G(x — n)).

neZd

Combining the above with

dy= Y (G(x—n),G(x —n)),

neZd

we obtain

> (G(x—n),(I - M*(x —n)M(x — n))G(x —n)) = 0. (5.1)
nezZa

Now let {&1, &2, ..., &} be any orthonormal basis for C7, and define

Gx)= > Vdoxg, ()&,

1<5<~y

where Eq, E», ..., E, are as defined in Lemma 5.1. For any x € €2, x € E; for some
J, and equations (2.1) and (2.2) hold trivially for G(x) so it is a Parseval Gabor multi-
frame generator for L2(R ¢) by Remark 5.3. Furthermore, we have G(x —n) = 0 for any
n € Z4\ {0} and G(x) = &;. Thus (5.1) becomes
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do(&j, (I — M™(x)M(x))&;) = 0.

Since ¢; can be any unit vector in C7, this implies that M*(x)M (x) = I for any € Q2
a.e., hence for z € R a.e. by Remark 5.3.

Part 2. Let ko € K\ {0} be any vector. There are two cases to consider: ko ¢ £ or
ko € L.

Case 1. kg ¢ L. Let C be a small rectangle with the property described in and guaranteed
by Lemma 5.2. For a.e. o € R %, we can perform a translation so that xq € C’ where C”
is the translation of C. Let Q¢ be the corresponding translation of €2, then the previous
discussions apply to ¢ and C’. Thus WLOG we can assume that xq € C. We can choose
Eq, ..., B, such that C C Ey and —kg + C C Ey by Lemma 5.2. Define

G(x) = Z MXEQ(X)fqa

1<q¢<y

where {{1, &2, ..., &, } is any orthonormal basis for R 7. (2.1) and (2.2) hold trivially, hence
G(x) is a Parseval Gabor multi-frame generator for L?(R ). For M (x)G(x) at x¢ and
ko, equation (2.2) contains only one term (since xg — ko € E3):

<]\4(X0)C;’(X0)7 M(XO - ko)G(XO - k0)> = do(]\l(XQ)fl7 M(XO - k0)§2> =0. (52)

That is, ] M*(x0)M (x¢ — ko)&2 = 0. Since {&1,&2,...,&} is arbitrary, we can replace
& and & by e; and e; for any distinct ¢, j between 1 and v where {e;,es,...,eq} is
the standard basis for R % That is, e] M*(x¢)M(xo — ko)e; = 0 for any i # j. This
implies that M™*(x0)M (xo — ko) is a diagonal matrix. On the other hand, if we replace
& and & by (e; + ej)/\/i and (e; — ej)/\/§ respectively, then equation (5.2) leads
to el M*(xo)M(xo — ko)e; = e[ M*(xq)M(xo — ko)e; for any i and j, proving that
M*(x0) M (x0 — ko) = Ak, (x0)I with Ag,(x0) being a unimodular scalar function.

Case 2. kg € L. Let C and k;, be as given in Lemma 5.2 (2) so that C C E; and
—k;, + C C E,. For any orthonormal basis {&1, &2, ..., } for R7, define

G(x) = /do/2 (X5, (X)E1 + X—ko+B1 (X)€2 + X B, (X)E1 — X—kot B2 (X)E2)
+ Z \/%XEQ (X)§q~

3<q<y

Equations (2.1) and (2.2) hold trivially for any x € E;, j > 3, and (2.1) also holds
trivially for x € Ey U Es. For x € Fy, and any k € K\ {0}, (2.2) contains only two
non-trivial terms corresponding to 1 = 0 and 1 = kg, that is:

D (G(x—1),G(x—1-k))

lel
= (G(x),G(x — k) + (G(x — ko), G(x — ko — k). (5.3)
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If x —k ¢ Ey, then x — kg — k ¢ —kg + F> and both terms in (5.3) equal to zero. If
x —k € Es, then x — kg —k € —kg + F5 and (5.3) becomes:

(G(x),G(x — k)) + (G(x — ko), G(x — ko — k))
= (do/2) ((&1,&1) + (&2, —&2)) = 0.

Thus (2.2) holds for any x € F; and any k € K\ {0}. Similarly, (2.2) holds for any x € E5
and any k € K\ {0}. This proves that G(x) is a Parseval Gabor multi-frame generator
for L2(R4). Now consider M (x)G(x) at x¢ and kg € K \ {0}. Equation (2.2) contains
only one nontrivial term corresponding to 1 = 0 (since the other possible non-trivial term
corresponds to 1 = kg but G(xg — ko — ko) = 0):

(M (x0)G(x0), M (x0 — ko)G(x0 — ko)) = (do/2)(M (x0)&1, M (%0 — ko)&2) = 0.

That is, ] M™*(x9)M (x¢0 — ko)&2 = 0. Since & and &; are arbitrary, repeating the ar-
gument used in Case 1 leads to M™*(x¢)M (xo — ko) = Ak, (X0)I with A, (x¢) being a
unimodular scalar function.

Part 3. Continue the discussion from Part 2 under the same setting and consider the two
different cases.

Case 1. kg ¢ L. Recall that we have C C E; and —ko+C C Es. For any given 1y € £\{0},
define

G(X) =V d0/2 (XEl (X)el + X-1o+E: (X)GQ + XE, (X)el — X—1o+E> (X)eg)
+ Z \/%XEE, (X)eq-

3<q<vy

Again, equations (2.1) and (2.2) hold trivially for any x € Ej}, j > 3, and (2.1) also holds
trivially for x € Ey U Es. For any x € Eq, and any k € £\ {0}, (2.2) contains only two
non-trivial terms corresponding to 1 = 0 and 1 = 1y, that is:

D (G(x—1),G(x—1-k))

lel
= (G(x),G(x —k)) + (G(x —1p),G(x — 1p — k)). (5.4)

If x —k ¢ Es, then x — 1y —k ¢ —ly + E2 and both terms in (5.4) equal to zero. If
x —k € Ey, then x — 1y —k € 1y + E; and (5.3) becomes:

(G(x),G(x = k) + (G(x = 1), G(x = 1y — k))
= (do/2) ({e1, 1) + (e2, —€2)) = 0.

Thus (2.2) holds for any x € E; and any k € K\ {0}. Similarly, (2.2) holds for any
x € Ey and any k € K\ {0}. This proves that G(x) is a Parseval Gabor multi-frame
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generator for L2(R %). Now consider M (x)G(x) at xo and ko € K\ {0}. Equation (2.2)
contains two nontrivial terms corresponding to 1 =0 and 1 =1y (since xg — kg € Es and
Xg—lgp— ko € —1p + EQ)I

(M(x0)G(x0), M (x0 — ko)G(x0 — ko))
+ <M(X0 — lO)G(XO — l()), M(X() -1y — ko)G(XO -1y — k0)>
(d0/2) (<M(X0)el, M(XO — ko)e1> — <M(X0 — 10)82, M(XO — 10 — ko)eg>)

This implies that e] M*(xo)M (xo — ko)er = eJM*(xo — 1o) M (x0 — 1o — ko)ez. Since
M*(x0)M (x¢ — ko) and M*(x¢ — lo)M (x9 — lp — ko) are both scalar multiples of the
identity matrix I« 4, this means that M*(xo)M (xo — ko) = M™*(x¢ —1o) M (x0 — 1o — ko)
as desired.

Case 2. kg € L. Recall that we have C' C E; and —k;, + C C E; for some k;, with
1 <ip < d. For any given ly € £\ {0}, we need to consider several different cases.

Subcase 1. 1y # tkg. In this case we define

X) =V d0/2 (XEI (X)el + X—ko+E: (X)el + X—10+E (X)GQ — X-lo—ko+E1 (X)GQ)
T+ v d /2 XEZ X €1 — X—ko+E- (X)el + X—lg+Es (X)Gz + X—1lo—ko+E> (X)e2)

+ Z dox g, (x

3<q<y

Equations (2.1) and (2.2) hold trivially for any x € E;, j > 3, and (2.1) also holds
trivially for x € F; U Es. For any x € Eq, and any k € K\ {0}, (2.2) contains only four
non-trivial terms corresponding to 1 =0, 1 = kg, 1 =1y and 1 = 1y + kg, that is:

> (G(x—1),G(x—1-k))

leL
= (G(x),G(x —k)) + (G(x — ko), G(x — ko — k))
+(G(x = 1), G(x — 1o = k)) + (G(x = 1o — ko), G(x — 1o — ko — k))
= \/do/2(e1,G(x — k)) + /do/2(e1, G(x — ko — k))
+ Vdo/2(es, G(x — 1y — k)) + /do/2(—es, G(x — 1y — ko — k)). (5.5)
IfX*k¢E2andX7k¢7k0+E2,theHX7lofk¢710+E2andX7107k07k¢

—1g—ko+Es and each term in (5.5) equals zero. If x—k € Fy, then x—ko—k € —kg+ FEs,
x—1lp—ke-1ly+ FEy and x — 1y — kg — k € =1y — kg + E5. Thus (5.5) becomes:

(d0/4) ((el,e1> + <el7 —61> + <eg,62> + (—eg,e2>) =0.
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If x—k € —kg+ FE5, then x — kg —k € —2kg+ Fo, x — g —k € =1y — kg + F> and
x —1lg— ko — k € —1g — 2kg + E5. Since —2kq + F» is disjoint from E5 and —kg + Es,
G(x — ko — k) # (V/do/2)e;. Similarly, —1y — 2kg + Es is disjoint from —lg + Eo and
—1p — ko + E5 hence G(x — 1y — kg — k) # (v/do/2)ez. It follows that (5.5) contains only
two nontrivial terms corresponding to G(x — k) and G(x — 1y — k), which becomes:

(do/4) ({e1, —e1) + (e2,e2)) = 0.

The case x € Ej can be similarly verified. Thus G(x) is a Parseval Gabor multi-frame
generator for L?(R 9). Substituting G(x) in (2.2) by M (x)G(x) with x = x¢ and k = kg
then yields (keep in mind that G(x¢ — 2kg) = 0 and G(xo — 1y — 2ko) = 0):

(M(x0)G(x0), M (x0 — ko)G(x0 — ko))
+ (M (x0 — lo)G(x0 — o), M(x9 — 1o — ko)G(x0 — 1o — ko))
= (do/4) ((M(x0)e1, M (xo — ko)e1) — (M(xo —lp)ea, M (xo — 1o — ko)ez))
=0.
This implies that e]M*(xo)M (xo — ko)er = eI M*(x¢ — lo)M (x9 — lp — ko)ea. This
means that M* (x0) M (xo — ko) = M*(xo — lo)M(x0 — o — ko) as desired.

Subcase 2. 1y = kq. In this case we define

x) = V/do/2 (XE, (X)e1 + X—1o+£, (X)(—€1 + €2) + X211, (X)e2)
+/do/2 (B, (X)e1 + X145, (%) (€1 + €2) — X—21045, (X)e)
+ Z \/CTOXEq (X)eq

3<q<y

We leave it to our reader to verify that equations (2.1) and (2.2) hold for any x € Q
(hence for any x € R9) and for any k € K\ {0}, that is, G(x) is a Parseval Gabor
multi-frame generator for L(R ). Substituting G(x) in (2.2) by M (x)G(x) with x = x
and k = kg then yields

M (x0)G(x0), M (x0 — ko)G(x0 — ko))
(x 0

+ <M 0 — )G(XQ — 10), M(XO — 10 — ko)G(XO — 10 — k0)>
= (do/4) ((M(x0)e1, M (xo — ko)(—e1 + e2)))
+ (do/4) ((M(x0 — lo)(—e1 +e2), M(xo — 1o — ko)ez))

=0.

That is,
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eIM*(Xo)M(XO - ko)(—e1 + ez)
= —(—e1 + eg)TM*(XO — lo)M(XO — 10 — ko)eg.

Since M*(xo)M (x0 — ko) and M*(xo — o) M (xo — lp — ko) are both scalar multiples
of the identity matrix I x4, the above simplifies to

eIM*(Xo)M(XO — ko)el = egM*(xo — lo)M(XO — 10 — ko)eg.

This means that M*(xo)M (xo — ko) = M*(x¢ — lo) M (x¢ — lp — ko) as desired.

Subcase 3. Iy = —kg. In this case we define G(x) by

G(X) = \/%/2 (X10+E1 (X)el + XE; (X)(_el + e2) + X—lo+E; (X)eQ)
+ V/do/2 (Xio+-5, (X)e1 + X5, (X)(e1 + €2) — X_1,4+5, (X)e2)

+ Z \/d—OXEq (X)eq-

3<g<~y
The rest of the proof is similar to Subcase 2 and is left to the reader.

Since ko € K, lg € £ are arbitrary and xq is any point in R? (in the a.e. sense), we
have shown that M*(x)M (x —k) is L-periodic for any x € R¢ a.e. and any k € K\ {0}.
This concludes the proof of Theorem 1.1.

6. Final remarks

Remark 6.1. While Theorem 1.1 is only stated and proved for the case when + is the
minimal length of all Gabor multi-frame generators, it holds for any v > |det(AB)|.
More specifically, if 1 < |det(AB)| < < |det(AB)| + 1, then for any 4" > -, the proof
is almost identical to the one given in Section 5.2 by defining E 1 = --- = Ey = 0.
On the other hand, if v =1 (that is, |det(AB)| < 1), then there exists a measurable set
E such that E tiles R? by £ and packs R < by K. In this case the proof in Section 5.2
can be modified by defining Ey = E, E; = --- = E,» = () in Part 1, and by defining
Ey=E,Ey=-ko+ E, E35=---=E, = ( in Part 2 and Part 3. The verification is
straightforward and is left to the reader.

Remark 6.2. Suppose that G = (91,92, ,9,)7 and G = (41, Ja, - ,§)" form a Gabor
multi-frame generator dual pair in the sense that

f _ Z Z <f7 627\'1’(Bm,x)gj (X - An)>e27ri(Bm,x)gj (X - Al’l)

1<j<ym,nezZ?

for any f € L>(R?). By a similar characterization as Proposition 1.5, this is equivalent
to the conditions that
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Z (G(x — An),G(x — An)) = b;

nezZa

> (G(x—An),G(x+ (B")"'1- An)) =0, V1€ 2%\ {0}.
neza

Let M be a functional (matrix) Gabor multi-frame multiplier. Then M satisfies all
the conditions in Theorem 1.1. By replacing one of G’s from the argument following
Proposition 1.5, we immediately get that (MG, M é) is also a dual pair, which implies
that MG is a Gabor multi-frame generator. Therefore a multiplier that preserves Parseval
Gabor multi-frame generators also preserves any Gabor multi-frame generators. It would
be interesting to know how to characterize all the M that preserves (not necessarily
Parseval) Gabor multi-frame generators. More generally, let M = [T};]mxm with Tj;
being bounded linear operators on L?(R ¢). We say that M is an operator matriz Gabor
multi-frame multiplier if it maps any Gabor multi-frame generator G = (g1, ..., gm)" to
a multi-frame generator H = (hq,...h,,)", where h; = Z;"Zl T;;g,. It may not be an
easy task to obtain a complete characterization for all such multipliers even for the case
m = - = 1. In this case, the set of all the multipliers is a very rich class of operators.
In fact, by the operator parametrization theorem for Gabor frame generators [11,12]
for Gabor frame generators, any invertible operator either in the von Neumann algebra
A or in its commutant A’ is an operator Gabor frame multiplier and hence so are
their products, where A is the von Neumann algebra generated by the translation and
modulation operators associated with the time-frequency lattice AZ? x BZ?. However,
it remains unclear how to characterize all the multipliers.
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