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1. Introduction

This paper is a continuation of a project on characterizing the frame generator multi-
pliers under various settings, a topic that was initially motivated by the work of Dai and 
Larson [4] on wandering vector multipliers and the WUTAM paper on basic properties of 
wavelets [22]. Representative publications resulted from this project include [9,10,17–19]. 
Let A and B be two nonsingular real matrices so that AZd and BZd are both full-rank 
lattices in R d. We say that G(x) = (g1(x), ..., gγ(x))τ , with τ being the transpose and 
gj(x) ∈ L2(R d) for each j, is a Parseval (or normalized tight) Gabor multi-frame gen-
erator of length γ for L2(R d) (for the separable time-frequency lattice AZd × BZd) if 
{e2πi〈Bm,x〉gj(x − An) : m, n ∈ Zd, 1 ≤ j ≤ γ} is a normalized tight frame, i.e.,

∑
1≤j≤γ

∑
m,n∈Zd

|〈f, e2πi〈Bm,x〉gj(x − An)〉|2 = ‖f‖2 (1.1)

for all f(x) ∈ L2(R d). In the special case that γ = 1, G(x) = g1(x) is also called 
a Parseval Gabor single-frame generator or simply a Parseval Gabor frame generator. 
However for the sake of convenience in this paper a Parseval Gabor single-frame generator 
will simply be regarded as a Parseval Gabor multi-frame generator with length γ = 1. 
Gabor multi-frames in higher dimensions play important roles in many applications 
([5,6,14,15,23,24]).

A functional matrix M(x) = (fij(x))γ×γ with fij(x) ∈ L∞(R d) is called a functional 
(matrix) Gabor multi-frame multiplier if H(x) = M(x)G(x) is a Parseval Gabor multi-
frame generator for L2(R d) whenever G = (g1, g2, · · · , gγ)τ is. Functional (matrix) Gabor 
multi-frame multipliers provide a useful tool in the study of Parseval Gabor multi-frames. 
As such, it is an interesting and important question to ask how they can be characterized. 
This question has been answered for the special cases of d = 1 with any γ ≥ 1 ([9,20]), 
and d = 2 with γ = 1 [16]. In this paper, we provide a complete characterization for 
functional (matrix) Gabor multi-frame multipliers with any number γ ≥ 1 of generators 
at any dimension d ≥ 1. Our result shall contain all the previously obtained results 
in [9,16,20] with a unified approach. More specifically, we have proven the following 
theorem.

Theorem 1.1. Let A and B be nonsingular real valued d × d matrices, and γ be the 
integer satisfying | det(AB)| ≤ γ < | det(AB)| +1. Let M(x) = (fij(x))γ×γ with fij(x) ∈
L∞(R d). Then M(x) is a functional matrix Gabor multi-frame multiplier for the time-
frequency lattice AZd × BZd if and only if the following three conditions are satisfied:
(1) M(x) is unitary for a.e. x ∈ R d;
(2) For any n ∈ Zd \ {0}, M∗(x)M(x + (Bτ )−1n) equals λn(x)I (a.e. x ∈ R d) for 
some unimodular scalar-valued function (that depends only on n) λn(x), where I is the 
identity matrix and M∗ denotes the conjugate transpose of M .
(3) λn(x) is AZd-periodic (as a function of x).
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Notice that in the case of γ = 1, a functional matrix Gabor multi-frame multiplier is 
a scalar function h(x) hence Theorem 1.1 has a simpler form:

Theorem 1.2. A scalar function h(x) ∈ L∞(R d) is a functional Gabor multiplier for the 
time-frequency lattice AZd × BZd if and only if the following two conditions hold:
(1) h(x) is unimodular for a.e. x ∈ R d;
(2) For any n ∈ Zd \ {0}, h(x)h(x + (Bτ )−1n) is AZd-periodic.

Remark 1.3. The well-known density theorem in Gabor analysis tells us that if a time-
frequency lattice AZd ×BZd admits a Gabor multi-frame generator of length γ but does 
not admit a Gabor multi-frame generator of length γ − 1 (i.e., γ is the minimal length), 
then we necessarily have | det(AB)| ≤ γ < | det(AB)| +1 (cf. [7]). The converse is trivially 
true when d = 1, and it is also proved to be true for higher dimensions when γ = 1 by 
D. Han and Y. Wang [13], and B. Bekka [1] with two completely different approaches. 
The general case γ > 1 for any dimension is implied by our proof of Theorem 1.1 (this 
may be known in the literature already but we failed to find a reference). Our approach 
can be considered as a refinement of the tiling approach from [13].

Remark 1.4. We shall point out that Theorem 1.1 still holds when γ ≥ | det(AB)| + 1. 
It is only that | det(AB)| ≤ γ < | det(AB)| + 1 is the critical case that we need to focus 
on hence it is more convenient for us to state the theorem this way. The generalization 
to the non-minimum γ is trivial as we shall see in Remark 6.1.

The following characterization is well known especially for one dimensional case (cf.
[2,8,21]). For high dimension and arbitrary time-frequency lattices, by using the char-
acterization of Parseval Gabor multi-frame generators in frequency domain from [3], we 
can easily translate it into the following characterization in terms of time domain.

Proposition 1.5. Let A, B be nonsingular matrices with | det(A)| = a, | det(B)| = b, 
and g1, g2, · · · , gγ ∈ L2(R d). Then G = (g1, ..., gγ)τ is a Parseval Gabor multi-frame 
generator for L2(R d) if and only if the following identities hold (for a.e. x ∈ R d):

∑
n∈Zd

〈G(x − An), G(x − An)〉 = b; (1.2)

∑
n∈Zd

〈G(x − An), G(x + (Bτ )−1l − An)〉 = 0, ∀ l ∈ Zd \ {0}. (1.3)

Using Proposition 1.5, the sufficient part of Theorem 1.1 can be easily proven. Indeed, 
let M(x) be a functional matrix satisfying the conditions (1)–(3) in Theorem 1.1, and 
G(x) = (g1, · · · , gγ)τ be an arbitrary Parseval Gabor multi-frame generator. Denote 
H(x) = M(x)G(x) = (η1(x), · · · , ηγ(x))τ . Since M(x) is unitary for any x ∈ R d a.e., it 
is obvious that
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∑
n∈Zd

〈H(x − An), H(x − An)〉 =
∑

n∈Zd

〈G(x − n), G(x − n)〉,

hence (1.2) holds. Furthermore, by conditions (2) and (3) we have
∑

n∈Zd

〈H(x − An), H(x − An + (Bτ )−1l)〉

=
∑

n∈Zd

〈G(x − An), M∗(x − An)M(x − An + (Bτ )−1l)G(x − An + (Bτ )−1l)〉

=
∑

n∈Zd

〈G(x − An), M∗(x)M(x + (Bτ )−1l)G(x − An + (Bτ )−1l)〉

= λl(x)
∑

n∈Zd

〈G(x − An), G(x − An + (Bτ )−1l)〉 = 0

for any x ∈ R d a.e. and any l 	= 0. Hence H(x) = M(x)G(x) is a Parseval Gabor multi-
frame generator. Thus the rest of the paper is devoted to the proof of the necessary part 
of Theorem 1.1.

The rest of the paper is organized as follows. In the next section, we show that Theo-
rem 1.1 can be proven under a simplified setting. In Section 3 we provide some necessary 
background knowledge regarding the lattice tiling and packing of R d. In Section 4 we 
prove Theorem 1.1 for the case of γ = 1 with any d ≥ 1. In Section 5 we prove Theo-
rem 1.1 for the case of γ > 1 with any d ≥ 1.

2. Auxiliary simplifications

Let A and B be nonsingular real valued d ×d matrices, and γ be the integer satisfying 
| det(AB)| ≤ γ < | det(AB)| + 1. Let P , Q be any two d × d matrices with integer entries 
and | det(P )| = | det(Q)| = 1. (Note that we will be making specific choices later for P , Q
later depending on our needs, but the statement here holds for any such P , Q.) Denote the 
matrix (PBτ AQ)−1 by D. This implies that AQD = (Bτ )−1P −1. For any set of functions 
{g̃1(x), ..., ̃gγ(x)} such that g̃j ∈ L2(R d), define gj(x) by gj(x) = g̃j((AQ)−1x) = g̃j(z)
where z = (AQ)−1x.

Lemma 2.1. The following two statements hold:
(1) G̃(x) = (g̃1(x), ..., ̃gγ(x))τ is a Parseval Gabor multi-frame generator for the time-
frequency lattice Zd × (Dτ )−1Zd if and only if G(z) = (g1(z), ..., gγ(z))τ is a Parseval 
Gabor multi-frame generator for the time-frequency lattice AZd × BZd.
(2) Let M̃(z) be a γ × γ functional matrix multiplier and define M(x) = M̃(z)
with z = (AQ)−1x. If M̃∗(z)M̃(z + Dk) is Zd-periodic for any z ∈ R d and k ∈
Zd \ {0}, then M∗(x)M(x + (Bτ )−1k) is AZd-periodic for any x ∈ R d and k ∈
Zd \ {0}. Moreover, if M̃∗(z)M̃(z + Dk) = λ̃k(z)I for some scalar function λ̃k(z), 
then M∗(x)M(x + (Bτ )−1k′) = λk′(x)I with λk′(x) = λ̃k(z).
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Lemma 2.1 implies that in order to prove Theorem 1.1, we only need to consider a 
special case of it, namely when A = Id×d and (BT )−1 = D, where D is of the form 
(PBT AQ)−1 for any P , Q with integer entries and | det(P )| = | det(Q)| = 1. Under this 
setting, it is necessary that 0 < | det(D−1)| = d0 ≤ γ < d0 + 1 and equations (1.2) and 
(1.3) become

∑
l∈L

〈G(x − l), G(x − l)〉 = d0, (2.1)

∑
l∈L

〈G(x − l), G(x − l − k)〉 = 0, ∀ k ∈ K \ {0}. (2.2)

3. The tiling and packing of R d by L and K

Let us introduce a few key concepts first. Let F be any full rank lattice of R d. A 
measurable set E is said to pack R d by F if E ∩ (E + f) = ∅ for any nontrivial f ∈ F . If 
E packs R d by F and also satisfies the condition R d = ∪f∈F (E + f), then we say that 
E tiles R d by F . In this case E is called a tile or a fundamental domain of F . For two 
measurable sets S1 and S2 that pack R d by F , we say that S1 and S2 are F-equivalent if 
∪f∈F (S1+f) = ∪f∈F (S2+f), and we say that S1 and S2 are F-disjoint if S1∩(S2+f) = ∅
for any nontrivial f ∈ F .

The materials in this section heavily rely on the work [13], more specifically the proofs 
in the sequence of lemmas there that lead to the proof of [13, Theorem 1.2], which states 
that if | det(D)| ≤ 1, then there exists a measurable set that tiles R d by K = DZd

and packs R d by L = Zd. From this point on, the lattices L, K always mean Zd, 
DZd respectively unless otherwise noted. The following long remark summarizes the 
results (with slight modifications) extracted from [13] that are necessary for us to prove 
Theorem 1.1.

Remark 3.1. Consider the group Td = R d/Zd with Ω = [0, 1)d a representative set of 
the group. Let π : R d −→ Td be the projection map and consider π((Bτ A)−1Zd). 
π((Bτ A)−1Zd) is a closed subgroup of Td, hence π((Bτ A)−1Zd) = S ⊕ F for some 
rational subspace S and finite set F [13, Lemma 2.1]. The proof of [13, Theorem 1.2] is 
divided into three cases: Case 1: S = Td; Case 2: S = {∅}; and Case 3: S 	= Td and 
S 	= {∅}. We will follow these cases to make the choices for P , Q and to extract the 
information we need. Let kj = Dlj where {l1, l2, ..., ld} is the standard basis for L. Let 
γ be the unique integer satisfying d0 ≤ γ < d0 + 1.

Case 1. In this case we can simply choose P = Q = Id×d in Lemma 2.1. There are two 
sub cases to consider here: (i) d0 = 1/| det(D)| = | det(AB)| is rational and (ii) d0 is 
irrational.

(i) d0 = p/q with (p, q) = 1. In this case we can partition DΩ into M2 parallelepipeds 
of the same volume μ0 where M2 can be any integer multiple of q. We have M2μ0 =
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q/p = 1/d0 hence μ0 = q/(M2p) = 1/(Np) where Nq = M2. On the other hand, we can 
partition Ω into M1 = Np rectangles such that each rectangle also has volume μ0. Denote 
these partitions of Ω and DΩ by P and P′ respectively, and arbitrarily order and name 
the ones in P as C1, C2, ..., CM1 , and the ones in P′ as C ′

1, C ′
2, ..., C ′

M2
. [13, Corollary 

2.3] assures that for any pair of Ci and C ′
j , there exists a measurable set J(Ci, C ′

j) that 
is L-equivalent to Ci and K-equivalent to C ′

j (we say J(Ci, C ′
j) is a matching of Ci and 

C ′
j). In particular, if there exists a rectangle C such that C ⊂ Ci and −l0 +C ⊂ −k0 +C ′

j

for some l0 ∈ L and k0 ∈ K, then −l0 + C can be selected as part of J(Ci, C ′
j). Recall 

that M1 = pN and M2 = qN . If q = 1, then d0 = p = γ is an integer and M1 = γM2. 
This means in this case we can divide the rectangles in P into γ groups F1, F2, ..., Fγ

such that each group contains M2 rectangles. If p > q > 1 (this happens when d0 > 1), 
then p = (γ − 1)q + r for some positive integer r < q (otherwise p = γq contradicts the 
condition that (p, q) = 1). It follows that M1 = Np = (γ −1)Nq +Nr = (γ −1)M2 +Nr. 
Thus in this case we can divide the rectangles in P into γ groups F1, F2, ..., Fγ such 
that each group Fj with j ≥ 2 contains M2 rectangles, and F1 contains the remaining 
Nr < Nq = M2 rectangles. Finally, if q > p ≥ 1 (that is, d0 < 1), then we have 
M1 < M2.

(ii) d0 is irrational. Here we need to consider the cases d0 > 1 and d0 < 1 separately.

First consider the case d0 > 1. We have d0 = γ −δ for some positive constant δ < 1. In 
this case we can still partition DΩ into M2 parallelepipeds (denoted by C ′

j ’s) of the same 
volume μ0 where M2 can be any arbitrarily chosen large positive integer, in particular, 
we will choose it large enough so that (1 − δ)M2 > 1. This time it is not possible to 
partition Ω into rectangles such that each rectangle also has the same volume μ0 since 
μ0 = 1/(M2d0) is irrational, however this can be done if we allow one of these rectangles 
to have volume less than μ0. Thus if M1 is the total number of rectangles in P named 
and ordered as Ci’s as before, we can assume that all Ci’s have volume μ0 except that 
CM1 has volume μ′ which is less than μ0. We leave it to our reader to verify that in 
this case M1 − (γ − 1)M2 = (1 − δ)M2 + 1 − (μ′/μ0) > (1 − δ)M2 > 1 by the choice 
of M2. This means that we can again divide the rectangles in P into γ groups F1, F2, 
..., Fγ such that each group Fj with j ≥ 2 contains M2 rectangles, and F1 contains the 
remaining rectangles including CM1 which has volume μ′. By the above inequality we 
see that F1 contain at least two rectangles, hence it also contains at least one rectangle 
that has volume μ0. The statement in (i) about J(Ci, C ′

j) applies if i 	= M1. For i = M1, 
CM1 can be matched to any parallelepiped of volume μ′ that is a subset of any of the 
C ′

j ’s.

Now consider the case d0 < 1. In this case we first partition Ω into M1 rectangular 
parallelepipeds of the same volume μ0 where M1 can be arbitrarily large. For example 
we can partition Ω into Nd small cubes of side length 1/N where N > 0 can be any 
arbitrarily chosen integer, obtaining M1 = Nd cubes, each with volume μ0 = 1/Nd. 
On the other hand, we can partition DΩ into M2 = Nd parallelepipeds such that each 
parallelepiped has volume 1/(d0Nd) > μ0. Denote these partitions of Ω and DΩ by P



Y. Diao et al. / Journal of Functional Analysis 280 (2021) 108960 7
and P′ respectively, and arbitrarily order and name the ones in P as C1, C2, ..., CM1 , and 
the ones in P′ as C ′

1, C ′
2, ..., C ′

M1
. [13, Corollary 2.3] assures that for any pair of Ci and 

C ′
j (1 ≤ i, j ≤ M1), there exists a measurable set J(Ci, C ′

j) that is L-equivalent to Ci and 
K-equivalent to a subset of C ′

j . We call J(Ci, C ′
j) a matching of Ci and C ′

j . In particular, 
if there exists a rectangular parallelepiped C such that C ⊂ Ci and −l0 + C ⊂ −k0 + C ′

j

for some l0 ∈ L and k0 ∈ K, then −l0 + C can be selected as part of J(Ci, C ′
j).

Case 2. In this case P and Q can be chosen so that D is a diagonal matrix with positive 
rational entries {p1/q1, p2/q2, ..., pd/qd} (with gcd(pi, qi) = 1). Here we need to choose P
and P′ specifically so that the elements in them are rectangular parallelepipeds whose 
sides are parallel to l1, ..., ld with corresponding side lengths of 1/q1, 1/q2, ..., 1/qd. 
Again, name and order (arbitrarily) the rectangles in Ω and DΩ by Ci’s and C ′

j ’s with 
1 ≤ i ≤ M1 = q1q2 · · · qd and 1 ≤ j ≤ M2 = p1p2 · · · pd. Then for any pair Ci and C ′

j , 
there exists a rectangle J(Ci, C ′

j) such that J(Ci, C ′
j) = l0 +Ci = k0 +C for some l0 ∈ L

and k0 ∈ K. In particular, if Ci is paired with C ′
j and −l0 + Ci = −k0 + C ′

j for some 
l0 ∈ L and k0 ∈ K, then J(Ci, C ′

j) = −l+Ci. Since d0 is rational, by a discussion similar 
to Case 1 (i), if d0 > 1 then the rectangles in P can be divided into γ groups F1, F2, ..., 
Fγ such that each group Fj with j ≥ 2 contains M2 rectangles, and F1 contains at least 
one and at most M2 rectangles. On the other hand, if d0 ≤ 1, then M1 ≤ M2.

Case 3. In this case P and Q can be chosen so that D =
[

D1 B0
0 D2

]
, where D2 is a d2 ×d2

diagonal matrix with positive rational entries {p1/q1, ..., pd2/qd2} (gcd(pi, qi) = 1 for each 
i) and [D1 B0 ]Zd (mod 1) is dense in [0, 1)d1 , d1+d2 = d. For the sake of convenience let 
{l′

1, l′
2, ..., l′

d1
} be the standard basis of R d1 , K1 be the lattice spanned by {k′

1, k′
2, ..., k′

d1
}

where k′
j = D1l′

j (1 ≤ j ≤ d1). Similarly, let {l′′
1 , l′′

2 , ..., l′′
d2

} be the standard basis of R d2 , 
K2 be the lattice spanned by {k′′

1 , k′′
2 , ..., k′′

d2
} where k′′

j = D2l′′
j = (pj/qj)l′′

j (1 ≤ j ≤ d2). 
Let Ω1 = [0, 1)d1 , Ω2 = [0, 1)d2 so that Ω = Ω1 × Ω2. It is apparent that D1Ω1 is a 
fundamental domain of K1 and D2Ω2 is a fundamental domain of K2. It is less apparent 
that Ω̃ = (D1Ω1) × (D2Ω2) is also a fundamental domain of K [13]. So instead of using 
DΩ, we will use Ω̃ = (D1Ω1) × (D2Ω2) instead. The advantage of this is that it allows 
us to obtain a partition of Ω̃ by partitioning D1Ω1 and D2Ω2 separately as described 
below.

(i) | det(D1)| is rational. Similar to Case 1 (i), we can partition D1Ω1 into paral-
lelepipeds Δ′

j ’s (1 ≤ j ≤ M ′
2) of the same volume μ0 and partition Ω1 into rectan-

gular parallelepipeds Δi’s (1 ≤ i ≤ M ′
1) with volume μ0 (μ0 can be chosen to be 

as small as we want). On the other hand, we partition Ω2 and D2Ω2 into rectangles 
Ri’s (1 ≤ i ≤ q1q2 · · · qd2) and R′

j ’s (1 ≤ j ≤ p1p2 · · · pd2) whose sides are parallel 
to l′′

1 , ..., l′′
d2

with corresponding side lengths of 1/q1, 1/q2, ..., 1/qd2 . Then the set 
{Δ′

j ×R′
i : 1 ≤ j ≤ M ′

2, 1 ≤ i ≤ p1p2 · · · pd2} is a partition P′ of Ω̃ whose total number of 
elements is M2 = M ′

2p1p2 · · · pd2 , and the set {Δj ×Ri : 1 ≤ j ≤ M ′
1, 1 ≤ i ≤ q1q2 · · · qd2}

is a partition P of Ω whose total number of elements is M1 = M ′
1q1q2 · · · qd2 . By a 

slightly modified version of [13, Sub Lemma 5], for any Cij = Δi × Rj ∈ P and any 
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C ′
i′j′ = Δ′

i′ × R′
j′ ∈ P′, there exists a measurable set J(Cij, C ′

i′j′) that is L-equivalent 
to Cij and K-equivalent to C ′

i′j′ . In particular, if Δi contains a small rectangle Δ0 such 
that −l0 +Δ0 ×Rj ⊂ −k0 +Δ′

i′ ×R′
j′ = −k0 +C ′

i′j′ , then −l0 +Δ0 ×Rj can be selected 
as part of J(Cij , C ′

i′j′). In the case that d0 > 1, the discussion in Case 1 (i) applies to 
M1 − (γ − 1)M2 here (since d0 is rational). That is, we can divide the elements in P into 
γ groups F1, F2, ..., Fγ such that each group Fj with j ≥ 2 contains M2 elements, and 
F1 contains at least one and at most M2 elements. On the other hand, if d0 ≤ 1, then 
M1 ≤ M2.

(ii) | det(D1)| is irrational hence d0 is also irrational. Similar to Case 1(ii), we also need 
to consider the cases d0 > 1 and d0 < 1 separately.

If d0 > 1, let δ = γ − d0 > 0. Similar to (i) above, we partition Ω2 and D2Ω2

into rectangles Ri’s (1 ≤ i ≤ q1q2 · · · qd2) and R′
j ’s (1 ≤ j ≤ p1p2 · · · pd2) whose sides 

are parallel to the l′′
1 , ..., l′′

d2
coordinates with corresponding side lengths of 1/q1, 1/q2, 

..., 1/qd2 . Similar to Case 1 (ii), we can partition D1Ω1 into parallelepipeds Δ′
j ’s (1 ≤

j ≤ M ′
2) of the same volume μ′

0 and partition Ω1 into rectangles Δi’s (1 ≤ i ≤ M ′
1) 

with volume μ′
0 (μ′

0 can be chosen to be as small as we want since we can choose 
M ′

2 as large as we want), with the exception that 0 < μ′′ = μ(ΔM ′
1
) < μ′

0. Similar 
to (i) above, the set {Δ′

j × R′
i : 1 ≤ j ≤ M ′

2, 1 ≤ i ≤ p1p2 · · · pd2} is a partition 
P′ of Ω̃ whose total number of elements is M2 = M ′

2p1p2 · · · pd2 , and the set {Δj ×
Ri : 1 ≤ j ≤ M ′

1, 1 ≤ i ≤ q1q2 · · · qd2} is a partition P of Ω whose total number of 
elements is M1 = M ′

1q1q2 · · · qd2 . The difference here is that all the elements in these 
partitions have measure μ0 = μ′

0/(q1q2 · · · qd2), except that the elements ΔM ′
1

× Ri

(for any 1 ≤ i ≤ q1q2 · · · qd2) have measure μ′′/(q1q2 · · · qd2). However, the inequality 
M1 − (γ − 1)M2 > (1 − δ)M2 still holds in this case as one can check, hence we will have 
(1 − δ)M2 > q1q2 · · · qd2 + 1 if M ′

2 is large enough. This ensures that we can place all the 
elements ΔM ′

1
×Ri into the group F1 as described in Case 1 (ii), and F1 will still contain 

at least one element whose measure is μ0. The statement in (i) about the matching of 
two elements with measure μ0 applies. A set of the form ΔM ′

1
× Ri, on the other hand, 

can be matched with a set Δ ×R′
j , where Δ is a properly chosen parallelepiped contained 

in a Δ′
i with a measure μ′′.

In the case that d0 < 1, we first partition Ω2 into rectangular parallelepipeds whose 
sides are parallel to l′′

1 , ..., l′′
d2

with corresponding side lengths of 1/q1, 1/q2, ..., 1/qd2 , and 
partition Ω1 into M ′

1 = Nd1p1p2 · · · pd2 (congruent) rectangular parallelepipeds whose 
sides are parallel to l′

1, ..., l′
d1

with corresponding side lengths of 1/N , 1/N , ..., 1/N , 
1/(Np1p2 · · · pd2), where N can be any arbitrarily chosen positive integer. Combining 
these partitions yields a partition P of Ω = Ω1 × Ω2. If we name and number the 
rectangular parallelepipeds in the partition of Ω1 as Δ1, Δ2, ..., ΔM ′

1
, name and number 

the rectangular parallelepipeds in the partition of Ω2 as R1, R2, ..., RM ′′
1

where M ′′
1 =

q1q2 · · · qd2 , then P = {Cij = Δi × Rj : 1 ≤ i ≤ M ′
1, 1 ≤ j ≤ M ′′

1 }, and M1 = M ′
1M ′′

1 =
Nd1(p1p2 · · · pd2)(q1q2 · · · qd2) is the total number of partition elements in P. Notice that 
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the volume of each Δj is μ′
0 = 1/M ′

1 = 1/(Nd1p1p2 · · · pd2) and the volume of each Ri is 
μ′′

0 = 1/(q1q2 · · · qd2).

Next, we partition D1Ω1 into M ′
2 = Nd1q1q2 · · · qd2 congruent parallelepipeds. 

The volume of each of these parallelepipeds is μ(D1Ω1)/M ′
2 = | det(D1)|/M ′

2 ≥
1/(Nd1p1p2 · · · pd2) = μ′

0. We name and order these parallelepipeds as Δ′
i’s (1 ≤ i ≤ M ′

2). 
We now partition D2Ω2 into rectangular parallelepipeds that are congruent to the Ri’s 
and name/order them as R′

j ’s (1 ≤ j ≤ p1p2 · · · pd2). Combining these two parti-
tions yields a partition P′ of Ω̃ = DΩ1 × DΩ2: P′ = {C ′

i′j′ = Δ′
i′ × R′

j′ : 1 ≤
i′ ≤ M ′

2, 1 ≤ j′ ≤ M ′′
2 } where M ′′

2 = p1p2 · · · pd2 . Notice that the total number of 
partition elements in P′ is M2 = M ′

2M ′′
2 = Nd1(p1p2 · · · pd2)(q1q2 · · · qd2) = M1 but 

μ(Δ′
i′ × R′

j′) ≥ μ′
0/(q1q2 · · · qd2) = μ(Δi × Rj). Again by a slightly modified version of 

[13, Sub Lemma 5], for any Cij = Δi × Rj ∈ P and any C ′
i′j′ = Δ′

i′ × R′
j′ ∈ P′, there 

exists a measurable set J(Cij , C ′
i′j′) that is L-equivalent to Cij and K-equivalent to a 

subset of C ′
i′j′ . In particular, if Δi contains a small rectangular parallelepiped Δ0 such 

that −l0 +Δ0 ×Rj ⊂ −k0 +Δ′
i′ ×R′

j′ = −k0 +C ′
i′j′ , then −l0 +Δ0 ×Rj can be selected 

as part of J(Cij , C ′
i′j′).

This ends Remark 3.1.

Notice that in Remark 3.1, we used DΩ as the fundamental domain of K in Cases 1 
and 2, but used Ω̃ as the fundamental domain of K in Case 3. For the sake of simplicity, 
let us denote them by Ω′ with the understanding that it means either DΩ or Ω̃ depending 
on which case K belongs to. Let us call the pair of partitions P, P′ of Ω and Ω′ with the 
properties discussed in Remark 3.1 nice partition pair.

Remark 3.2. We note that in the above discussion, Ω′ can be replaced by any K-
translation of Ω′. Similarly, Ω can be replaced by any L-translation of Ω. Thus without 
loss of generality, one can always assume that Ω ∩ Ω′ is non-empty and contain interior 
points.

4. The proof of Theorem 1.1, part 1

We now proceed to prove Theorem 1.2, namely the special case γ = 1 of Theorem 1.1. 
Here d0 = | det(D−1)| ≤ 1 so | det(D)| = 1/d0 ≥ 1. In this case, the functional multiplier 
is a scalar function h(x) and we need to prove that h(x)h(x − k) = h(x − l)h(x − l − k)
for any x ∈ R d a.e., and for any l ∈ L and k ∈ K \ {0}.

4.1. A few useful lemmas

First, for the very special case of D = I, we have the following lemma, which follows 
by a generalized version of the proof of [16, 4.3 Type III Case].

Lemma 4.1. If D = I is the identity matrix, then Theorem 1.1 holds.
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We also have the following lemma, whose proof can be found in [16].

Lemma 4.2. [16, Lemma 2.4] Let h be a functional Gabor frame multiplier and let l ∈ L, 
k ∈ K \ {0} be any given pair of vectors, then h(x)h(x − k) = h(x − l)h(x − l − k) for 
any x ∈ R d if one of the following conditions holds:
(i) There exist disjoint and measurable sets E1, E2, E3, E4 and E5, with E2 being a 
rectangular parallelepiped, such that E3 = −k + E2, E4 = −l + E2, E5 = −l − k + E2, 
and E1 ∪ E2 ∪ E3 tiles R d by L while E1 ∪ E2 ∪ E4 packs R d by K;
(ii) k ∈ L and there exist disjoint and measurable sets E1, E2, E3, E4 and E5, with 
E2 being a rectangular parallelepiped, such that E3 = −k + E2, E4 = −l + E2, E5 =
−l − k + E2, E1 ∪ E2 tiles R d by L and E1 ∪ E2 ∪ E4 packs R d by K.

Notice that the given condition in (i) above implies that k /∈ L and l /∈ K, while the 
given condition in (ii) implies that l /∈ K.

Lemma 4.3. Let h be a functional Gabor frame multiplier and let l, l′ ∈ L, k, k′ ∈ K\{0}, 
then the following statements hold:
(i) If h(x)h(x − k) = h(x − l′)h(x − l′ − k) and h(x)h(x − k) = h(x + l′ − l) ×
h(x + l′ − l − k) for any x ∈ R d, then h(x)h(x − k) = h(x − l)h(x − l − k);
(ii) If h(x)h(x − k′) = h(x − l)h(x − l − k′) and h(x)h(x − k′ − k) = h(x − l) ×
h(x − l − k′ − k) for any x ∈ R d, then h(x)h(x − k) = h(x − l)h(x − l − k).

Proof. (i) Substituting x + l′ by x (by a slight abuse of notation) on both sides of the 
equation

h(x)h(x − k) = h(x + l′ − l)h(x + l′ − l − k),

we obtain

h(x − l′)h(x − l′ − k) = h(x − l)h(x − l − k).

But the left side of the above equation is h(x)h(x − k) by the given condition.

(ii) Since h is unimodular, the given condition leads to

h(x)h(x − l) = h(x − k′)h(x − l − k′)

and

h(x)h(x − l) = h(x − k′ − k)h(x − l − k′ − k).

Thus we have

h(x − k′)h(x − l − k′) = h(x − k′ − k)h(x − l − k′ − k).
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Substituting x − k′ by x on both sides of the above equation (again by a slight abuse of 
notation), we obtain

h(x)h(x − l) = h(x − k)h(x − l − k)

for any x ∈ R d a.e. �
Lemma 4.4. For any given k and l, if k /∈ L and l /∈ K, then there exist disjoint and 
measurable sets E1, E2, E3, E4 and E5, with E2 being a rectangular parallelepiped, such 
that E3 = −k + E2, E4 = −l + E2, E5 = −l − k + E2, and E1 ∪ E2 ∪ E3 tiles R d by L
while E1 ∪ E2 ∪ E4 packs R d by K. It follows that h(x)h(x − l) = h(x − k)h(x − l − k)
by Lemma 4.2.

Proof. We will prove the given statement by discussing the three different cases of D
given in Remark 3.1. The general strategy in each case is to choose a suitable nice 
partition pair P, P′ of Ω and Ω′ as described in Remark 3.1 with the following additional 
properties: (a) there exists a rectangular parallelepiped (which is chosen as our set E2) 
such that E2 ⊂ C0 ∩ C ′

0 for some C0 ∈ P and C ′
0 ∈ P′; (b) −k − l0 + E2 ⊂ C1 ∈ P, 

for some l0 ∈ L and C1 	= C0; (c) −l − k0 + E2 ⊂ C ′
1 ∈ P′, for some k0 ∈ K and 

C ′
1 	= C ′

0. We then assign a one to one correspondence between the elements of P and P′

in an arbitrary way to be used to define the matchings, except that C0 is matched with 
C ′

0 with the choice of E2 ⊂ J(C0, C ′
0) and C1 is matched with C ′

1 with the choice that 
k − l0 + C is matched with l − k0 + C in J(C1, C ′

1). Denote the union of the matchings 
by S. S tiles R d by L and packs R d by K by our construction. Let the portion of 
J(C1, C ′

1) that is L-equivalent to −k − l0 + C and K-equivalent to −l − k0 + C by J0, 
and define E1 = S \ (E2 ∪J0), E3 = −k +E2, E4 = −l+E2 and E5 = −l−k +E2. Since 
−l0 +E3 = −k−l0 +E2, E3 is L-equivalent to J0 hence E1 ∪E2 ∪E3 is L-equivalent to S. 
Thus E1 ∪ E2 ∪ E3 tiles R d by L. Similarly, E4 is K-equivalent to J0 hence E1 ∪ E2 ∪ E4

is K-equivalent to S, so E1 ∪ E2 ∪ E4 packs R d by K. Thus in the following cases we 
only need to show that a nice partition pair P, P′ of Ω and Ω′ that satisfies conditions 
(a) to (c) exists.

Case 1. Let x0 be an interior point of Ω ∩ DΩ near the origin. Since Ω is a fundamental 
domain of L, there exists l0 ∈ L such that x0 − k − l0 	= x0 is also an interior point of Ω
(since −k /∈ L). Similarly, there exists k0 ∈ K such that x0 − l − k0 	= x0 is an interior 
point of DΩ. It follows that we can choose a nice partition pair P, P′ of Ω and DΩ such 
that the diameters of the polytopes in them are smaller than min{| − k − l0|, | − l − k0|}. 
WLOG we can assume that there exist Ci0 ∈ P and C ′

j0
∈ P′ such that x0 is an interior 

point of Ci0 ∩ C ′
j0

, x0 − k − l0 is an interior point of another Ci1 in P, and x0 − l − k0 is 
an interior point of another C ′

j1
in P′ (otherwise we can replace x0 by a suitably chosen 

point very close to it). It follows that there exists a small rectangular parallelepiped E2

such that E2 ⊂ Ci0 ∩ C ′
j , k − l0 + C ⊂ Ci1 and l − k0 + C ⊂ C ′

j .

0 1
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Case 2. In this case P and P′ are as described in Case 2 of Remark 3.1 with the rect-
angular parallelepipeds named and ordered in an arbitrary way. Let E2 be the common 
rectangular parallelepiped of P and P′ containing the origin (say E2 = Ci0 = C ′

j0
). Simi-

lar to the proof of Case 1, there exist l0 ∈ L and k0 ∈ K such that −k−l0+E2 = Ci1 ∈ P

for some Ci1 ∈ P, and −l − k0 + E2 = C ′
j1

for some C ′
j1

∈ P′. i1 	= i0 and j1 	= j0 since 
−l /∈ K and −k /∈ L.

Case 3. Recall that in this case D =
[

D1 B0
0 D2

]
, where D2 is a d2 × d2 diagonal matrix 

with positive rational entries, [D1 B0 ]Zd (mod 1) is dense in [0, 1)d1 , and Ω̃ = D1Ω1 ×
D2Ω2 is a fundamental domain of K. There exist l0 ∈ L and k0 ∈ K such that −k − l0 =[

y1
y2

]
with y1 ∈ Ω1, y2 ∈ Ω2 and at least one of them is not 0, −l − k0 =

[
z1
z2

]
with 

z1 ∈ D1Ω1, z2 ∈ D2Ω2 and at least one of them is not 0. Thus the nice partition 
pair P, P′ of Ω and Õ obtained by combining a suitably chosen nice partition pair P1, 
P′

1 of Ω1 and D1Ω1, and the nice partition pair P2, P′
2 of Ω2 and D2Ω2 as described 

in Case 2 of Remark 3.1, we will have the following: there exists a small rectangular 
parallelepiped C ⊂ Ω1 ∩ D1Ω1 such that E2 = C × R, where R = Ri′

0
= R′

j′
0

is the 
common rectangular parallelepiped of P2 and P′

2 containing the origin, satisfies the 
condition that E2 ⊂ Ci0,i′

0
∩ C ′

j0,j′
0
, Ci0,i′

0
= Δi0 × Ri′

0
∈ P and C ′

j0,j′
0

= Δ′
j0

× R′
j′

0
∈ P′, 

−k − l0 + E2 ⊂ Ci1,i′
1

= Δi1 × Ri′
1

∈ P (Ci1,i′
1

	= Ci0,i′
0
), −l − k0 + E2 ⊂ C ′

j1,j′
1

=
Δ′

j1
× R′

j′
1

∈ P′ (C ′
j1,j′

1
	= C ′

j0,j′
0
). �

4.2. The main proof

We shall consider the following three cases: I. L 	⊂ K and K 	⊂ L; II. L ⊂ K; III. 
K ⊂ L but L 	⊂ K.

I. L 	⊂ K and K 	⊂ L. Let l ∈ L and k ∈ K \ {0} be any two vectors. If l /∈ K and 
k /∈ L, then by Lemma 4.4 we have h(x)h(x − l) = h(x − k)h(x − l − k). If l /∈ L and 
k ∈ K \ {0}, then choose any k′ ∈ K \ {0} such that k′ /∈ L, and apply Lemma 4.4 to 
the pairs (l, k′) and (l, k′ + k) (note that k′ + k /∈ L). Similarly, if l ∈ L and k /∈ K \ {0}, 
then choose any l′ ∈ L such that l′ /∈ K, and apply Lemma 4.4 to the pairs (l′, k) and 
(−l′+l, k) (note that −l′+l /∈ K). Finally, if l ∈ K and k ∈ L, then choose any l′ ∈ L such 
that l′ /∈ K and k′ ∈ K\{0} such that k′ /∈ L. The application of Lemma 4.4 to the pairs 
(l′, k′) and (−l′ + l, k′) leads to h(x)h(x − l) = h(x − k′)h(x − l − k′), and to the pairs 
(l′, k′ + k) and (−l′ + l, k′ + k) leads to h(x)h(x − l) = h(x − k′ − k)h(x − l − k′ − k). 
The result now follows by Lemma 4.3 (ii).

II. L ⊂ K. Notice that [ l1 l2 · · · ld ] = I is the identity matrix, so we have I = DU

for some d × d matrix U with integer entries since each lj is a linear combination of 
k1 = Dl1, k2 = Dl2, ..., kd = Dld with integer coefficients. It follows that D−1 = U is a 
matrix with integer entries hence | det(D−1)| ≥ 1 since | det(D−1)| is positive and is an 
integer. However we also have | det(D−1)| = d0 ≤ 1. Thus | det(D−1)| = 1 and it follows 
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that D itself is a matrix with integer entries and | det(D)| = 1. By Case 2 of Remark 3.1, 
we must have D = I and the result follows from Lemma 4.1.

III. K ⊂ L but L 	⊂ K. Since L 	⊂ K, there exists l′ ∈ L such that l′ /∈ K. In this case Ω
tiles R d by L and packs R d by K, and E1 = ∅, E2 = Ω, E3 = −k + E2, E4 = −l′ + E2, 
E5 = −l′ − k + E2 satisfy condition (ii) of Lemma 4.2 since −l′ + E2 is K-disjoint from 
E2. It follows that

h(x)h(x − k) = h(x − l′)h(x − l′ − k)

for any x ∈ R d a.e. Similarly, the sets E′
1 = ∅, E′

2 = Ω, E′
3 = −k+E′

2, E′
4 = −l+ l′ +E′

2, 
E′

5 = −l + l′ − k + E′
2 also satisfy condition (ii) of Lemma 4.2 since −l + l′ + E2 is also 

K-disjoint from E2. Thus we have

h(x)h(x − k) = h(x + l′ − l)h(x + l′ − l − k).

The result now follows from Lemma 4.3 (i).

5. The proof of Theorem 1.1, part 2

We now prove the remaining case of Theorem 1.1, namely the case γ > 1, which is 
uniquely determined by 1 < d0 ≤ γ < d0 + 1.

5.1. A few more lemmas

Lemma 5.1. Let D be as given in Remark 3.1, γ be the unique integer determined by 
d0 ≤ γ < d0 + 1 where d0 = 1/| det(D)| > 1. Then there exist measurable sets E1, E2, 
..., Eγ such that
(1) μ(Ej) = | det(D)| = 1/d0 for 2 ≤ j ≤ γ and 0 < μ(E1) ≤ 1/d0;
(2) Ei and Ej are L-disjoint if i 	= j and ∪1≤j≤γEj tiles R d by L;
(3) Ej tiles R d by K for each j ≥ 2 and E1 packs R d by K.

Proof. Let P and P′ be as defined in Remark 3.1 and F1, F2, ..., Fγ be the groups defined 
there. Assign an arbitrary one to one correspondence between the elements of Fj and the 
elements of P′ (j ≥ 2) so they are paired according to this one to one correspondence. 
The union of the matchings of these pairs is a measurable set Ej that is L-equivalent to 
the union of the sets in Fj and K-equivalent to Ω′. For F1 we assign an arbitrary one to 
one mapping from F1 to P′, and each pair leads to a matching of an element in F1 and a 
subset of its corresponding element in P′. The union of these matchings is a measurable 
set E1 that is L-equivalent to the union of the sets in F1 and K-equivalent to a subset of 
Ω′. Ei and Ej are L-disjoint since Fi and Fj contain disjoint subsets of Ω if i 	= j, and 
∪1≤j≤γEj is L-equivalent to Ω hence tiles R d by L. �
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Lemma 5.2. For any given k ∈ K \ {0}, the following statements hold.

(1) If k /∈ L, then there exists a choice of E1, ..., Eγ such that E1 contains a rectan-
gular parallelepiped C such that −k + C ⊂ E2;

(2) If k ∈ L, then there exists a choice of E1, ..., Eγ such that E1 contains a rectan-
gular parallelepiped C such that C ′ = −ki0 + C ⊂ E2 for some ki0 = Dli0 .

Proof. (1) We will prove this by discussing the three different cases of D given in Re-
mark 3.1.

Case 1. Let l0 ∈ L be such that −k − l0 = π(−k) ∈ Ω. Since k /∈ L, π(−k) 	= 0. 
Let x0 be an interior point of Ω such that x0 + π(−k) is also an interior point of Ω. 
Choose a nice partition pair P, P′ of Ω and DΩ such that the diameters of the polytopes 
in them are smaller than |π(−k)|. WLOG we can assume that x0 is an interior point 
of DΩ as well by Remark 3.2. Furthermore, we can assume that there exist Ci0 ∈ P

and C ′
j0

∈ P′ such that x0 is an interior point of Ci0 ∩ C ′
j0

, and x0 + π(−k) is also 
an interior point of another Ci1 (otherwise we can replace x0 by a point very close 
to it). It follows that there exists a small rectangle C such that C ⊂ Ci0 ∩ C ′

j0
and 

π(−k) + C ⊂ Ci1 . We now place Ci0 in the group F1 and Ci1 in the group F2 (F1 and 
F2 are as defined in Remark 3.1), and match both Ci0 and Ci1 to C ′

j0
. By Remark 3.1, 

we can choose C to be a subset of the matching of Ci0 and C ′
j0

since it is both L-
equivalent and K-equivalent to itself. Similarly, we can choose −k + C to be a subset 
of the matching of Ci1 and C ′

j0
, since it is K-equivalent to C ⊂ C ′

j0
and is L-equivalent 

to π(−k) + C ⊂ Ci1 (since −k + C = l0 + (π(−k) + C) ⊂ l0 + Ci1). Thus C ⊂ E1 and 
−k + C ⊂ E2.

Case 2. Let l0 ∈ L be such that −k − l0 = π(−k) ∈ Ω. Let C ′ be the common rectangle 
of P and P′ containing the origin. In this case π(−k) + C ′ is another rectangle of P. 
Similar to the discussion in Case 1, we can choose to have C ⊂ E1 and −k + C ⊂ E2.

Case 3. Let l0 ∈ L be such that −k − l0 = π(−k) ∈ Ω. Similar to the discussion of Case 
1, if we choose the diameters of the parallelepipeds in P′ small enough, then there exist 
Cij = Δi × Rj ∈ P and C ′

i′j′ = Δ′
i′ × R′

j′ ∈ P′ such that Rj = R′
j′ , Δi ∩ Δ′

i′ contains a 
small rectangle C0, and π(−k) + C0 × Rj ⊂ Ci1j1 = Δi1 × Rj1 ∈ P. We place Cij in the 
group F1 and Ci1j1 in the group F2, and match both Cij and Ci1j1 to C ′

i′j′ . Again by 
Remark 3.1, we can choose C = C0 × Ri to be a subset of the matching of Cij and C ′

i′j′

since it is both L-equivalent and K-equivalent to itself. Similarly, we can choose −k + C

to be a subset of the matching of Ci1j1 and C ′
i′j′ , since it is K-equivalent to C ⊂ C ′

i′j′

and is L-equivalent to π(−k) + C ⊂ Ci1j1 . Thus C ⊂ E1 and −k + C ⊂ E2.

(2) Notice that at least one of the kj’s has length less than 1. Let kj0 be one such. 
The discussions in the above apply here with π(−k) replaced by kj0 . It follows that in 
each case there exists a small rectangle C such that C ⊂ E1 and kj0 + C ⊂ E2. �
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5.2. The main proof

We now proceed to prove Theorem 1.1 for the case of γ ≥ 2, under the simplified 
setting of A = Id×d and (BT )−1 = D, where D is of the form (PBT AQ)−1 as described 
in Remark 3.1. The proof is divided into three parts. In Part 1 we show that if M(x) is 
a Parseval Gabor multi-frame multiplier, then M(x) is unitary. In Part 2 we show that 
M∗(x)M∗(x − k) = λk(x)I for any k ∈ K \ {0}, where λk(x) is a scalar function that 
depends only on k and x. In the last part we show that M∗(x)M∗(x − k) is L-periodic.

Remark 5.3. Notice that the discussions in the last section can be applied to any trans-
lation of Ω (together with the set Ω′, of course). Thus in order to verify that equations 
(2.1) and (2.2) hold for any x ∈ R d a.e., we only need to verify them for any x ∈ Ω a.e.
We should stress that the statement here is different from the statement of Remark 3.2.

Part 1. Let M(x) be a γ × γ functional matrix Gabor multi-frame multiplier for the 
time-frequency lattice Zd × (Dτ )−1Zd. First, if G(x) is a Parseval Gabor multi-frame 
generator for L2(R d) and H(x) = M(x)G(x), then H(x) satisfies equation (2.1), that 
is:

d0 =
∑

n∈Zd

〈M(x − n)G(x − n), M(x − n)G(x − n)〉

=
∑

n∈Zd

〈G(x − n), M∗(x − n)M(x − n)G(x − n)〉.

Combining the above with

d0 =
∑

n∈Zd

〈G(x − n), G(x − n)〉,

we obtain

∑
n∈Zd

〈G(x − n), (I − M∗(x − n)M(x − n))G(x − n)〉 = 0. (5.1)

Now let {ξ1, ξ2, ..., ξγ} be any orthonormal basis for Cγ , and define

G(x) =
∑

1≤j≤γ

√
d0χEj

(x)ξj ,

where E1, E2, ..., Eγ are as defined in Lemma 5.1. For any x ∈ Ω, x ∈ Ej for some 
j, and equations (2.1) and (2.2) hold trivially for G(x) so it is a Parseval Gabor multi-
frame generator for L2(R d) by Remark 5.3. Furthermore, we have G(x − n) = 0 for any 
n ∈ Zd \ {0} and G(x) = ξj . Thus (5.1) becomes
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d0〈ξj , (I − M∗(x)M(x))ξj〉 = 0.

Since ξj can be any unit vector in Cγ , this implies that M∗(x)M(x) = I for any x ∈ Ω
a.e., hence for x ∈ R d a.e. by Remark 5.3.

Part 2. Let k0 ∈ K \ {0} be any vector. There are two cases to consider: k0 /∈ L or 
k0 ∈ L.

Case 1. k0 /∈ L. Let C be a small rectangle with the property described in and guaranteed 
by Lemma 5.2. For a.e. x0 ∈ R d, we can perform a translation so that x0 ∈ C ′ where C ′

is the translation of C. Let Ωt be the corresponding translation of Ω, then the previous 
discussions apply to Ωt and C ′. Thus WLOG we can assume that x0 ∈ C. We can choose 
E1, ..., Eγ such that C ⊂ E1 and −k0 + C ⊂ E2 by Lemma 5.2. Define

G(x) =
∑

1≤q≤γ

√
d0χEq

(x)ξq,

where {ξ1, ξ2, ..., ξγ} is any orthonormal basis for R γ. (2.1) and (2.2) hold trivially, hence 
G(x) is a Parseval Gabor multi-frame generator for L2(R d). For M(x)G(x) at x0 and 
k0, equation (2.2) contains only one term (since x0 − k0 ∈ E2):

〈M(x0)G(x0), M(x0 − k0)G(x0 − k0)〉 = d0〈M(x0)ξ1, M(x0 − k0)ξ2〉 = 0. (5.2)

That is, ξτ
1 M∗(x0)M(x0 − k0)ξ2 = 0. Since {ξ1, ξ2, ..., ξγ} is arbitrary, we can replace 

ξ1 and ξ2 by ei and ej for any distinct i, j between 1 and γ where {e1, e2, ..., ed} is 
the standard basis for R d. That is, eτ

i M∗(x0)M(x0 − k0)ej = 0 for any i 	= j. This 
implies that M∗(x0)M(x0 − k0) is a diagonal matrix. On the other hand, if we replace 
ξ1 and ξ2 by (ei + ej)/

√
2 and (ei − ej)/

√
2 respectively, then equation (5.2) leads 

to eτ
i M∗(x0)M(x0 − k0)ei = eτ

j M∗(x0)M(x0 − k0)ej for any i and j, proving that 
M∗(x0)M(x0 − k0) = λk0(x0)I with λk0(x0) being a unimodular scalar function.

Case 2. k0 ∈ L. Let C and ki0 be as given in Lemma 5.2 (2) so that C ⊂ E1 and 
−ki0 + C ⊂ E2. For any orthonormal basis {ξ1, ξ2, ..., ξγ} for R γ , define

G(x) =
√

d0/2 (χE1(x)ξ1 + χ−k0+E1(x)ξ2 + χE2(x)ξ1 − χ−k0+E2(x)ξ2)

+
∑

3≤q≤γ

√
d0χEq

(x)ξq.

Equations (2.1) and (2.2) hold trivially for any x ∈ Ej , j ≥ 3, and (2.1) also holds 
trivially for x ∈ E1 ∪ E2. For x ∈ E1, and any k ∈ K \ {0}, (2.2) contains only two 
non-trivial terms corresponding to l = 0 and l = k0, that is:

∑
l∈L

〈G(x − l), G(x − l − k)〉

= 〈G(x), G(x − k)〉 + 〈G(x − k0), G(x − k0 − k)〉. (5.3)
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If x − k /∈ E2, then x − k0 − k /∈ −k0 + E2 and both terms in (5.3) equal to zero. If 
x − k ∈ E2, then x − k0 − k ∈ −k0 + E2 and (5.3) becomes:

〈G(x), G(x − k)〉 + 〈G(x − k0), G(x − k0 − k)〉
= (d0/2) (〈ξ1, ξ1〉 + 〈ξ2, −ξ2〉) = 0.

Thus (2.2) holds for any x ∈ E1 and any k ∈ K\{0}. Similarly, (2.2) holds for any x ∈ E2
and any k ∈ K \ {0}. This proves that G(x) is a Parseval Gabor multi-frame generator 
for L2(R d). Now consider M(x)G(x) at x0 and k0 ∈ K \ {0}. Equation (2.2) contains 
only one nontrivial term corresponding to l = 0 (since the other possible non-trivial term 
corresponds to l = k0 but G(x0 − k0 − k0) = 0):

〈M(x0)G(x0), M(x0 − k0)G(x0 − k0)〉 = (d0/2)〈M(x0)ξ1, M(x0 − k0)ξ2〉 = 0.

That is, ξτ
1 M∗(x0)M(x0 − k0)ξ2 = 0. Since ξ1 and ξ2 are arbitrary, repeating the ar-

gument used in Case 1 leads to M∗(x0)M(x0 − k0) = λk0(x0)I with λk0(x0) being a 
unimodular scalar function.

Part 3. Continue the discussion from Part 2 under the same setting and consider the two 
different cases.

Case 1. k0 /∈ L. Recall that we have C ⊂ E1 and −k0+C ⊂ E2. For any given l0 ∈ L \{0}, 
define

G(x) =
√

d0/2 (χE1(x)e1 + χ−l0+E1(x)e2 + χE2(x)e1 − χ−l0+E2(x)e2)

+
∑

3≤q≤γ

√
d0χEq

(x)eq.

Again, equations (2.1) and (2.2) hold trivially for any x ∈ Ej , j ≥ 3, and (2.1) also holds 
trivially for x ∈ E1 ∪ E2. For any x ∈ E1, and any k ∈ K \ {0}, (2.2) contains only two 
non-trivial terms corresponding to l = 0 and l = l0, that is:

∑
l∈L

〈G(x − l), G(x − l − k)〉

= 〈G(x), G(x − k)〉 + 〈G(x − l0), G(x − l0 − k)〉. (5.4)

If x − k /∈ E2, then x − l0 − k /∈ −l0 + E2 and both terms in (5.4) equal to zero. If 
x − k ∈ E2, then x − l0 − k ∈ −l0 + E2 and (5.3) becomes:

〈G(x), G(x − k)〉 + 〈G(x − l0), G(x − l0 − k)〉
= (d0/2) (〈e1, e1〉 + 〈e2, −e2〉) = 0.

Thus (2.2) holds for any x ∈ E1 and any k ∈ K \ {0}. Similarly, (2.2) holds for any 
x ∈ E2 and any k ∈ K \ {0}. This proves that G(x) is a Parseval Gabor multi-frame 
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generator for L2(R d). Now consider M(x)G(x) at x0 and k0 ∈ K \ {0}. Equation (2.2)
contains two nontrivial terms corresponding to l = 0 and l = l0 (since x0 − k0 ∈ E2 and 
x0 − l0 − k0 ∈ −l0 + E2):

〈M(x0)G(x0), M(x0 − k0)G(x0 − k0)〉

+ 〈M(x0 − l0)G(x0 − l0), M(x0 − l0 − k0)G(x0 − l0 − k0)〉

= (d0/2) (〈M(x0)e1, M(x0 − k0)e1〉 − 〈M(x0 − l0)e2, M(x0 − l0 − k0)e2〉)

= 0.

This implies that eτ
1M∗(x0)M(x0 − k0)e1 = eτ

2M∗(x0 − l0)M(x0 − l0 − k0)e2. Since 
M∗(x0)M(x0 − k0) and M∗(x0 − l0)M(x0 − l0 − k0) are both scalar multiples of the 
identity matrix Id×d, this means that M∗(x0)M(x0 − k0) = M∗(x0 − l0)M(x0 − l0 − k0)
as desired.

Case 2. k0 ∈ L. Recall that we have C ⊂ E1 and −ki0 + C ⊂ E2 for some ki0 with 
1 ≤ i0 ≤ d. For any given l0 ∈ L \ {0}, we need to consider several different cases.

Subcase 1. l0 	= ±k0. In this case we define

G(x) =
√

d0/2 (χE1(x)e1 + χ−k0+E1(x)e1 + χ−l0+E1(x)e2 − χ−l0−k0+E1(x)e2)

+
√

d0/2 (χE2(x)e1 − χ−k0+E2(x)e1 + χ−l0+E2(x)e2 + χ−l0−k0+E2(x)e2)

+
∑

3≤q≤γ

√
d0χEq

(x)eq.

Equations (2.1) and (2.2) hold trivially for any x ∈ Ej , j ≥ 3, and (2.1) also holds 
trivially for x ∈ E1 ∪ E2. For any x ∈ E1, and any k ∈ K \ {0}, (2.2) contains only four 
non-trivial terms corresponding to l = 0, l = k0, l = l0 and l = l0 + k0, that is:

∑
l∈L

〈G(x − l), G(x − l − k)〉

= 〈G(x), G(x − k)〉 + 〈G(x − k0), G(x − k0 − k)〉

+ 〈G(x − l0), G(x − l0 − k)〉 + 〈G(x − l0 − k0), G(x − l0 − k0 − k)〉

=
√

d0/2〈e1, G(x − k)〉 +
√

d0/2〈e1, G(x − k0 − k)〉

+
√

d0/2〈e2, G(x − l0 − k)〉 +
√

d0/2〈−e2, G(x − l0 − k0 − k)〉. (5.5)

If x − k /∈ E2 and x − k /∈ −k0 + E2, then x − l0 − k /∈ −l0 + E2 and x − l0 − k0 − k /∈
−l0−k0+E2 and each term in (5.5) equals zero. If x−k ∈ E2, then x−k0−k ∈ −k0+E2, 
x − l0 − k ∈ −l0 + E2 and x − l0 − k0 − k ∈ −l0 − k0 + E2. Thus (5.5) becomes:

(d0/4) (〈e1, e1〉 + 〈e1, −e1〉 + 〈e2, e2〉 + 〈−e2, e2〉) = 0.
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If x − k ∈ −k0 + E2, then x − k0 − k ∈ −2k0 + E2, x − l0 − k ∈ −l0 − k0 + E2 and 
x − l0 − k0 − k ∈ −l0 − 2k0 + E2. Since −2k0 + E2 is disjoint from E2 and −k0 + E2, 
G(x − k0 − k) 	= (

√
d0/2)e1. Similarly, −l0 − 2k0 + E2 is disjoint from −l0 + E2 and 

−l0 − k0 + E2 hence G(x − l0 − k0 − k) 	= (
√

d0/2)e2. It follows that (5.5) contains only 
two nontrivial terms corresponding to G(x − k) and G(x − l0 − k), which becomes:

(d0/4) (〈e1, −e1〉 + 〈e2, e2〉) = 0.

The case x ∈ E2 can be similarly verified. Thus G(x) is a Parseval Gabor multi-frame 
generator for L2(R d). Substituting G(x) in (2.2) by M(x)G(x) with x = x0 and k = k0
then yields (keep in mind that G(x0 − 2k0) = 0 and G(x0 − l0 − 2k0) = 0):

〈M(x0)G(x0), M(x0 − k0)G(x0 − k0)〉

+ 〈M(x0 − l0)G(x0 − l0), M(x0 − l0 − k0)G(x0 − l0 − k0)〉

= (d0/4) (〈M(x0)e1, M(x0 − k0)e1〉 − 〈M(x0 − l0)e2, M(x0 − l0 − k0)e2〉)

= 0.

This implies that eτ
1M∗(x0)M(x0 − k0)e1 = eτ

2M∗(x0 − l0)M(x0 − l0 − k0)e2. This 
means that M∗(x0)M(x0 − k0) = M∗(x0 − l0)M(x0 − l0 − k0) as desired.

Subcase 2. l0 = k0. In this case we define

G(x) =
√

d0/2 (χE1(x)e1 + χ−l0+E1(x)(−e1 + e2) + χ−2l0+E1(x)e2)

+
√

d0/2 (χE2(x)e1 + χ−l0+E2(x)(e1 + e2) − χ−2l0+E2(x)e2)

+
∑

3≤q≤γ

√
d0χEq

(x)eq.

We leave it to our reader to verify that equations (2.1) and (2.2) hold for any x ∈ Ω
(hence for any x ∈ R d) and for any k ∈ K \ {0}, that is, G(x) is a Parseval Gabor 
multi-frame generator for L2(R d). Substituting G(x) in (2.2) by M(x)G(x) with x = x0
and k = k0 then yields

〈M(x0)G(x0), M(x0 − k0)G(x0 − k0)〉

+ 〈M(x0 − l0)G(x0 − l0), M(x0 − l0 − k0)G(x0 − l0 − k0)〉

= (d0/4) (〈M(x0)e1, M(x0 − k0)(−e1 + e2)〉)

+ (d0/4) (〈M(x0 − l0)(−e1 + e2), M(x0 − l0 − k0)e2〉)

= 0.

That is,
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eτ
1M∗(x0)M(x0 − k0)(−e1 + e2)

= −(−e1 + e2)τ M∗(x0 − l0)M(x0 − l0 − k0)e2.

Since M∗(x0)M(x0 − k0) and M∗(x0 − l0)M(x0 − l0 − k0) are both scalar multiples 
of the identity matrix Id×d, the above simplifies to

eτ
1M∗(x0)M(x0 − k0)e1 = eτ

2M∗(x0 − l0)M(x0 − l0 − k0)e2.

This means that M∗(x0)M(x0 − k0) = M∗(x0 − l0)M(x0 − l0 − k0) as desired.

Subcase 3. l0 = −k0. In this case we define G(x) by

G(x) =
√

d0/2 (χl0+E1(x)e1 + χE1(x)(−e1 + e2) + χ−l0+E1(x)e2)

+
√

d0/2 (χl0+E2(x)e1 + χE2(x)(e1 + e2) − χ−l0+E2(x)e2)

+
∑

3≤q≤γ

√
d0χEq

(x)eq.

The rest of the proof is similar to Subcase 2 and is left to the reader.

Since k0 ∈ K, l0 ∈ L are arbitrary and x0 is any point in R d (in the a.e. sense), we 
have shown that M∗(x)M(x −k) is L-periodic for any x ∈ R d a.e. and any k ∈ K \{0}. 
This concludes the proof of Theorem 1.1.

6. Final remarks

Remark 6.1. While Theorem 1.1 is only stated and proved for the case when γ is the 
minimal length of all Gabor multi-frame generators, it holds for any γ ≥ | det(AB)|. 
More specifically, if 1 < | det(AB)| ≤ γ < | det(AB)| + 1, then for any γ′ > γ, the proof 
is almost identical to the one given in Section 5.2 by defining Eγ+1 = · · · = Eγ′ = ∅. 
On the other hand, if γ = 1 (that is, | det(AB)| ≤ 1), then there exists a measurable set 
E such that E tiles R d by L and packs R d by K. In this case the proof in Section 5.2
can be modified by defining E1 = E, E2 = · · · = Eγ′ = ∅ in Part 1, and by defining 
E1 = E, E2 = −k0 + E, E3 = · · · = Eγ′ = ∅ in Part 2 and Part 3. The verification is 
straightforward and is left to the reader.

Remark 6.2. Suppose that G = (g1, g2, · · · , gγ)τ and G̃ = (g̃1, ̃g2, · · · , ̃gγ)τ form a Gabor 
multi-frame generator dual pair in the sense that

f =
∑

1≤j≤γ

∑
m,n∈Zd

〈f, e2πi〈Bm,x〉gj(x − An)〉e2πi〈Bm,x〉g̃j(x − An)

for any f ∈ L2(R d). By a similar characterization as Proposition 1.5, this is equivalent 
to the conditions that
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∑
n∈Zd

〈G̃(x − An), G(x − An)〉 = b;

∑
n∈Zd

〈G̃(x − An), G(x + (Bτ )−1l − An)〉 = 0, ∀ l ∈ Zd \ {0}.

Let M be a functional (matrix) Gabor multi-frame multiplier. Then M satisfies all 
the conditions in Theorem 1.1. By replacing one of G’s from the argument following 
Proposition 1.5, we immediately get that (MG, MG̃) is also a dual pair, which implies 
that MG is a Gabor multi-frame generator. Therefore a multiplier that preserves Parseval 
Gabor multi-frame generators also preserves any Gabor multi-frame generators. It would 
be interesting to know how to characterize all the M that preserves (not necessarily 
Parseval) Gabor multi-frame generators. More generally, let M = [Tij ]m×m with Tij

being bounded linear operators on L2(R d). We say that M is an operator matrix Gabor 
multi-frame multiplier if it maps any Gabor multi-frame generator G = (g1, ..., gm)τ to 
a multi-frame generator H = (h1, ...hm)τ , where hi =

∑m
j=1 Tijgj . It may not be an 

easy task to obtain a complete characterization for all such multipliers even for the case 
m = γ = 1. In this case, the set of all the multipliers is a very rich class of operators. 
In fact, by the operator parametrization theorem for Gabor frame generators [11,12]
for Gabor frame generators, any invertible operator either in the von Neumann algebra 
A or in its commutant A′ is an operator Gabor frame multiplier and hence so are 
their products, where A is the von Neumann algebra generated by the translation and 
modulation operators associated with the time-frequency lattice AZd × BZd. However, 
it remains unclear how to characterize all the multipliers.
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