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Abstract. A quantum injective frame is a frame whose frame measurements for density
operators can be used to distinguish them in a quantum system, and the frame quantum
detection problem asks to characterize all such frames. This problem was recently settled
in [5] mainly for finite or infinite but discrete frames. In this paper, we consider the contin-
uous frame version of the quantum detection problem. Instead of using the frame element
itself, we use discrete representations of continuous frames to obtain several versions of
characterizations for quantum injective continuous frames. With the help of these charac-
terizations, we also examine the issues involving constructions and stability of continuous
quantum injective frames.

1. Introduction

The quantum detection problem by using discrete frame measurements was recently
settled by Botelho-Andrade, S., Casazza, P. G., Cheng, D., et al. for both finite and
infinite dimensional Hilbert spaces in [5], where the characterization was given in terms the
spanning properties of some derived sequences from the frame vectors. Naturally we would
wonder how much of the results from [5] is still valid for other type of frames, for instance,
continuous frames. While it is possible to have a similar type of characterizations in terms
of the range space of a continuous frame, it also seems unpractical to verify the injectivity
by performing uncountably many number of operations. The purpose of this paper is to
present a similar type of characterization for injective continuous frames in terms of their
discrete representations that were introduced in [12]. Constructions of injective continuous
frames and their stability will also be discussed.

Let us first recall some backgrounds and basics about frames and the quantum detection
problem. The notion of discrete frames was first introduced by Duffin and shaeffer [10], and
it allows (like basis) stable but not necessarilly unique decomposition of arbitrary element
into expression of the frame element. Later, motivated by the theory of coherent states in
mathematical physics [18], this concept was generalized to continuous frames whose families
is indexed by some locally compact space endowed with a Radon measure [1]. This type
of frames are also called frames associated with measurable spaces, or generalized frames
in the literature (c.f. [12, 2]. Continuous frames and coherent states are widely used in
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mathematical physics and harmonic analysis and they appear prominently in quantum
mechanics and quantum optics (c.f. [8, 11]).

In quantum theory, quantum state tomography asks to recover a state from the probabil-
ity of observing outcomes from a collection of measurements of the system on this state, and
retrieving data from quantum systems is carried out according to quantum measurement
theory [16, 6]. In this process positive operator-valued measure (POVM) [14, 17] plays an
important role. In this paper, we are mostly interested in POVMs that are derived from
the Hilbert space frame theory [13, 15], and we will call them Frame POVMs in short.

Recall that a POVM ν is called informationally complete if it can uniquely determine
density operators ρ (i.e., positive trace-one operators on a separable Hilbert space). More
precisely, ν is informationally complete if tr (ρ1ν(E)) = tr (ρ2ν(E)) for every measurable
set E implies that ρ1 = ρ2, where ρ1, ρ2 ∈ B(H) are density operators. The quantum
detection problem asks to “characterize” the OPVMs that are informationally complete.
(A much more subtle question is to characterize those that only distinguishes pure states.
This is often referred to as the phase-retrieval problem). In the case that a POVM ν is
derived from a discrete (Parseval) frame {xn}n∈I (purely atomic case, where I is finite or
countable), Botelho-Andrade, S., Casazza, P. G., Cheng, D., et al. settled the quantum
detection problem, in addition to many other results, for both the real and complex cases
and in both the finite dimensional and infinite dimension case [5, 7]. Due to the possible
peculiarities of underlying measure spaces, the continuous frame do not behave quite as well
as discrete counterparts. We propose to approach the quantum detection problem with a
discrete representation system of the involved continuous frame.

Let H is a separable Hilbert space. Here is a list of notations that will be used in this
paper.

• B(H) – the linear bounded operators on H;
• Bsa(H) – the the real linear space of self-adjoint bounded operators on H;
• B(H)+ – for the real cone of positive operators on H;
• S1(H) – the space of trace class operators on H;
• S2(H) – the Hilbert space of Hilbert-Schmidt operators endowed with the inner

product〈T, S〉HS = tr (TS∗);
• S(H) – the set of states or density operators on H consisting of ρ : ρ ∈ S1(H) such

that ρ ≥ 0 and tr(ρ) = 1.

Let Ω will be a locally compact Hausdorff space and Σ be the σ-algebra of Borel sets of
Ω. Following [13, 17, 14], we use the following definition for operator-valued measures.

Definition 1.1. A map ν : Σ → B(H) is an operator-valued measure (OVM) if it is
weakly countable additive, meaning that for every countable collection {Ek}k∈N ⊆ Σ with
Ei ∩ Ej = ∅ for i 6= j we have

ν

(⋃
k∈N

Ek

)
=
∑
k∈N

ν (Ek) .

where the convergence on the right side of the equation above is with respect to the ultra-
weak topology of B(H). We say ν is

(1) bounded if sup{‖ν(E)‖ : E ∈ Σ} <∞.
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(2) self-adjoint if ν(E)∗ = ν(E), for all E ∈ Σ.
(3) positive if ν(E) ∈ B(H)+, for all E ∈ Σ.
(4) spectral if ν (E1 ∩ E2) = ν (E1) ν (E2) for all E1, E2 ∈ Σ.

Moreover, ν is call a positive operator-valued measure (POVM) if it is positive and
ν(Ω) = IH, and is called a projection value measure (PVM) if it is self-adjoint and spectral.

Remark 1.2. The ultraweak topology and the weak operator topology coincides in the
bounded set of B(H), thus we simplify the definition of POVM.

Definition 1.3. Let Σ denote a σ-algebra of subsets of Ω, a positive operator-valued
measure (POVM) is a function µ : Σ→ B(H)+ satisfying

(1) µ(∅) = 0 (the zero operator).
(2) For every disjoint family {Ei}i∈I ⊂ Σ, we have

〈µ(∪i∈IEi)x, y〉 =
∑
i∈I
〈µ(Ei)x, y〉 ∀x, y ∈ H.

(3) µ(Ω) = I (the identity operator).

Given a state ρ, the quantum measurement is the map p performed by the POVM ν.
Given a POVM ν : Σ→ B(H)+ then p : Σ→ R

p(E) = tr(ρν(E)), ∀E ∈ Σ.

Let B(Σ,R) denoted the set of bounded function on Σ. Given a quantum system H and
a POVM ν : Σ→ B(H)+, the quantum detection problem asks the following question:
Is there a ”prefect” quantum measurement or underlying POVM ν for the following map
to be injective, and how to characterize such a POVM?

P : S(H)→ B(Σ,R), P(ρ)(E) = tr(ρν(E)), ∀E ∈ Σ.

In other words, the above question is about the existence of informationally complete
POVM (IC-POVM) which can separate states. That is if for ρ1, ρ2 ∈ S(H),

tr (ρ1ν(E)) = tr (ρ2ν(E)) , ∀E ∈ Σ.

it follows ρ1 = ρ2.
Let H be a complex Hilbert spaces and Ω a measure spaces with a positive measure µ.

Recall [8, 13] that a mapping F : Ω→ H is called a continuous frame with respect to (Ω, µ)
or (Ω, µ)-frame if

(i) for all f ∈ H, ω 7→ 〈f,F(ω)〉 is a measurable function on Ω.
(ii) there exists constants A,B > 0 such that

A‖f‖2 ≤
∫

Ω
|〈f,F(ω)〉|2dµ(ω) ≤ B‖f‖2, ∀f ∈ H.

The constants A, B are the lower and upper bounds of the frame, respectively. If A = B,
then the continuous frame is called tight and if A = B = 1, then the continuous frame is
called Parseval or a coherent state. If Ω is at most countable with counting measure, then
it becomes a discrete frame. Associated to F is the frame operator SF defined in the weak
sense by

SF : H → H, 〈SF (x), y〉 :=

∫
Ω
〈x,F(ω)〉〈F(ω), y〉dµ(ω)
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It follows from the definition that SF is bounded, positive and invertible operator. We
define the following transform associated to F ,

VF : H → L2(Ω, µ), VF (x)(ω) := 〈x,F(ω)〉.
This operator is called the analysis operator and its adjoint operator is given by

V ∗F : L2(Ω, µ)→ H, 〈V ∗F (f), x〉 :=

∫
Ω
f(ω)〈F(ω), x〉dµ(ω).

Then we have SF = V ∗FVF , and

〈x, y〉 =

∫
Ω
〈x,F(ω)〉〈G(ω), y〉dµ(ω).

where G(ω) := S−1
F F(ω) is the standard dual of F .

For (Ω, µ)-frame F , we define

ν : Σ→ B(H)+, ν(E) =

∫
E
F(ω)⊗F(ω)dµ(ω)

in the sense of

〈ν(E)x, y〉 =

∫
E
〈x,F(ω)〉〈F(ω), y〉dµ(ω),∀x, y ∈ H

which naturally induces an operator-valued measure (OVP). In the case that F is a Parseval
continuous frame, then we also have ν(Ω) = IH, and so it induces a POVM. In what follows
we will use the term frame POVMs to refer to such operator-valued measures.

Let ν be a frame OVM associated with a continuous frame F . Then quantum measure-
ment for a state ρ ∈ S(H) is given by the map P : S(H)→ B(Σ,R)

(1.1) P(ρ)(E) = tr(ρν(E)) = tr

(
ρ(

∫
E
F(ω)⊗F(ω)dµ(ω))

)
∀E ∈ Σ.

It is easy to verify that

(1.2) tr(ρν(E)) =

∫
E
〈ρF(ω),F(ω)〉dµ(ω) ∀E ∈ Σ, ρ ∈ S1(H).

Clearly, the quantum detection problem ask for the injectivity of the map P on S(H), in
which case we say that F is quantum injective. We are interested in the characterizations
of injective continuous frames and the existence problem of such frames for a given triple
(Ω, ν,H).

2. Characterizations of Quantum Injective Frames

2.1. Injective Frames. Let (Ω,Σ, µ) be a measure space, where Σ is the σ-algebra over Ω
and µ is σ-finite positive measure. It is not hard to see (Proposition 2.2) that quantum injec-
tivity of a continuous (Ω, µ)-frame F is equivalent to the condition that if 〈TF(ω),F(ω)〉 =
0, for a.e ω ∈ Ω for a self-adjoint trace class operator T with trace zero, then T = 0. Sim-
ilarly, we say that F is S2-injective (respectively, S2-injective) if whenever a self-adjoint
Hilbert-Schmidt (respectively, self-adjoint trace-class) operator T satisfies

〈TF(ω),F(ω)〉 = 0, for a.e. ω ∈ Ω.
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then T = 0.
Clearly, we have “S2-injectivity⇒ S1-injectivity⇒ quantum injectivity.” In the case that

F is a Parseval frame, quantum injectivity also implies the S1-injectivity (see Corollary 2.3).
We point out that the Parseval frame requirement it not too much to ask since every frame
is similar to a Parseval frame, and similar frames preserve Sj-injectivity, here we say that
two continuous frames F and G are similar if there is bounded invertible operator S such
that F(ω) = SG(ω) (a.e. ω ∈ Ω). We first point out the following two elementary facts:

Proposition 2.1. Given a measure space (Ω,Σ, µ) and a (Ω, µ)-frame F for H. For
j = 1, 2, the following are equivalent:

(1) If T, S ∈ Sj are positive operators, and

〈TF(ω),F(ω)〉 = 〈SF(ω),F(ω)〉, for a.e. ω ∈ Ω

then T = S.
(2) If T, S ∈ Sj are self-adjoint operators, and

〈TF(ω),F(ω)〉 = 〈SF(ω),F(ω)〉, for a.e. ω ∈ Ω

then T = S
(3) F is Sj-injective.
(4) For any T ∈ Sj, the condition 〈TF(ω),F(ω)〉 = 0 (a.e.ω ∈ Ω) implies that T = 0.

Proof. Clearly, we have (4) ⇒ (3) ⇒ (2) ⇒ (1). For (1) ⇒ (4), let T ∈ Sj be such that
〈TF(ω),F(ω)〉 = 0 (a.e.ω ∈ Ω). Write T = (T+

1 −T
−
1 )+i(T+

2 −T
−
2 ), where T+

1 , T
−
1 , T

+
2 , T

−
2

are positive operators in Sj . The 〈TF(ω),F(ω)〉 = 0 implies that 〈(T+
1 −T

−
1 )F(ω),F(ω)〉 =

0 and 〈(T+
2 −T

−
2 )F(ω),F(ω)〉 = 0, which in turn implies that 〈T+

1 F(ω),F(ω)〉 = 〈T−1 F(ω),F(ω)〉
and 〈T+

2 F(ω),F(ω)〉 = 〈T−2 F(ω),F(ω)〉. Thus, by (1), we get T+
1 = T−1 , T+

2 = T−2 and so
T = 0. �

The proof of the following fact is identical to that of Proposition 2.1 after taking the
trace condition into the consideration

Proposition 2.2. Given a (Ω, µ)-frame F for Hilbert space H. Then the following are
equivalent:

(1) F is quantum injective.
(2) If T, S are self-adjoint trace class operators and trace one, and

〈TF(ω),F(ω)〉 = 〈SF(ω),F(ω)〉, for a.e ω ∈ Ω

then T = S.
(3) If T are self-adjoint trace class operator and trace zero, and

〈TF(ω),F(ω)〉 = 0, for a.e ω ∈ Ω

then T = 0.
(4) If T are self-adjoint trace class operator and trace zero, and

〈TF(ω),F(ω)〉 = 0, for a.e ω ∈ Ω

then T = 0.

Corollary 2.3. If F is a Parseval frame, then it is S1-injective if and only if quantum
injective.
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Proof. Let F be a Parseval frame which is quantum injective. Then

I =

∫
Ω
F(ω)⊗F(ω)dµ(ω).

and thus

tr(T ) =

∫
Ω
〈TF(ω),F(ω)〉dµ(ω).

Now assume that

〈TF(ω),F(ω)〉 = 0, for a.e. ω ∈ Ω.

for some self-adjoint trace-class T . Then tr(T ) = 0. By the equivalence of (1) and (3) in
Proposition 2.2, we get that T = 0. Hence F is S1-injective. �

2.2. Characterizations of Injective Frames. In order to obtain characterizations of
quantum injective frames in terms of discrete frame sequences, we use the following con-
tinuous frame representations proposed in [12].

Proposition 2.4. Let {ei}i∈I be an orthonormal basis for H. Then the following are equiv-
alent:

(1) F is a Parseval (Ω, µ)-frame for H.
(2) There exists an orthonormal set {ϕi}i∈I in L2(Ω, µ) having the property that∑

i∈I |ϕi(ω)|2 <∞ for a.e. ω ∈ Ω and F(ω) =
∑

i∈I ϕi(ω)ei holds for a.e. ω ∈ Ω.

For general continuous frames, we also have

Proposition 2.5. The following are equivalent:

(1) F is a (Ω, µ)-frame for H.
(2) F(ω) =

∑
i∈I ϕi(ω)ei for some orthonormal basis {ei}i∈I of H and some family

{ϕi}i∈I in L2(Ω, µ) with the properties that {ϕi}i∈I is a Riesz basis for span {ϕi}i∈I
and that

∑
i∈I |ϕi(ω)|2 <∞ for a.e. ω ∈ Ω.

(3) F(ω) =
∑

i∈I ϕi(ω)ei for some Riesz basis {ei}i∈I of H and some set {ϕi}i∈I or-

thonormal in L2(Ω, µ) with the property that, for a.e. ω ∈ Ω,
∑

i∈I |ϕi(ω)|2 <∞.
(4) F(ω) =

∑
i∈I ϕi(ω)ei for some Riesz basis {ei}i∈I of H and some family {ϕi}i∈I in

L2(Ω, µ) with the properties that {ϕi}i∈I is a Riesz basis for span {ϕi}i∈I and that∑
i∈I |ϕi(ω)|2 <∞ for a.e. ω ∈ Ω.

We first presents several characterizations for S2-injective frames.

Theorem 2.6. Let F be a (Ω, µ)-frame for the H with representation F(ω) =
∑

i∈I ϕi(ω)ei
for some orthonormal basis {ei}i∈I of H. Then the following are equivalent:

(1) F is S2-injective.

(2) The operators (ϕi(ω)ϕj(ω))i,j spans the self-adjoint Hilbert-Schmidt operators on
the Hilbert space `2(I) i.e. S2(`2(I))sa for a.e. ω ∈ Ω.

Proof. Our proof starts with two observation:
First, let F be a (Ω, µ)-frame for H and F(ω) =

∑
i∈I ϕi(ω)ei for some orthonormal basis

{ei}i∈I of H and some family {ϕi}i∈I in L2(Ω, µ) with the properties that {ϕi}i∈I is a Riesz
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basis for span {ϕi}i∈I and that
∑

i∈I |ϕi(ω)|2 <∞ for a.e. ω ∈ Ω. We define the operator(
ϕi(ω)ϕj(ω)

)
i,j
.

We claim it is self-adjoint Hilbert-Schmidt operator on `2(I) for a.e. ω ∈ Ω. Obviously it
is self-joint. Meanwhile, its Hilbert-Schmidt norm is finite for a.e. ω ∈ Ω. based on the
following computation∥∥∥∥(ϕi(ω)ϕj(ω)

)
i,j

∥∥∥∥
2

=

 ∑
i∈I,j∈I

|ϕi(ω)ϕj(ω)|2
1/2

=
∑
i∈I
|ϕi(ω)|2 <∞.

Secondly, we set ai,j = 〈Tei, ej〉 and define the operator (ai,j)i,j on `2(I). We propose to

prove an analogous results for (ai,j)i,j namely, it is self-adjoint Hilbert-Schmidt operator

on Hilbert space. Since T is self-adjoint, then

ai,j = 〈Tei, ej〉 = 〈ei, T ej〉 = 〈Tej , ei〉 = aj,i

hence the matrix (may be infinite) (ai,j)i,j is self-adjoint. Furthurmore

‖(ai,j)i,j‖2 =

 ∑
i∈I,j∈I

|ai,j |2
1/2

=

 ∑
i∈I,j∈I

|〈Tei, ej〉|2
1/2

=

(∑
i∈I
‖Tei‖2

)1/2

= ‖T‖2

Now we use the representation of (Ω, µ)-frame and we obtain

〈TF(ω),F(ω)〉 =

〈
T (
∑
i∈I

ϕi(ω)ei), (
∑
j∈I

ϕj(ω)ej)

〉
=
∑
i∈I

∑
j∈I

ϕi(ω)ϕj(ω)〈Tei, ej〉

=
∑
i∈I

∑
j∈I

ϕi(ω)ϕj(ω)aij

=

〈(
ϕi(ω)ϕj(ω)

)
i,j
, (ai,j)i,j

〉
HS

Recall that all self-adjoint Hilbert-Schmidt operators under the inner product 〈T, S〉HS =
tr(TS∗) is real Hilbert space. By orthogonality, we conclude that if F is S2-injective, then

orthogonal complement space of span{(ϕi(ω)ϕj(ω))i,j} for a.e. ω ∈ Ω is 0, hence that the

operators (ϕi(ω)ϕj(ω))i,j spans S2(`2(I))sa for a.e. ω ∈ Ω.
Conversely, for any Self-adjoint Hilbert-Schmidt operator T satisfies

〈TF(ω),F(ω)〉 = 0, for a.e ω ∈ Ω, then〈(
ϕi(ω)ϕj(ω)

)
i,j
, (ai,j)i,j

〉
HS

= 0, for a.e ω ∈ Ω

Since span{((ϕi(ω)ϕj(ω))i,j)a.e ω∈Ω} is S2(`2(I))sa, we have (ai,j)i,j = 0, hence (ai,j)i,j = 0
as well as T = 0. Thus F is S2-injective. �
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Definition 2.7. Let H denote the direct sum of real Hilbert spaces `2 in the sense

H =

(∑
i∈I
⊕`2

)
`2

Remark 2.8. we can define the inner product 〈X,Y 〉H =
∑

i∈I〈xi, yi〉. whereX = (xi)i∈I, Y =
(yi)i∈I are in H. Under the conditions stated above, it follows that H is a Hilbert space.

Theorem 2.9. Let F be a (Ω, µ)-frame for Hilbert space H and F(ω) =
∑

i∈I ϕi(ω)ei for
some orthonormal basis {ei}i∈I of H, then the following are equivalent:

(1) F is S2-injective,
(2) the sequence

( |ϕ1(ω)|2,Re(ϕ1(ω)ϕ2(ω)), Im(ϕ1(ω)ϕ2(ω)) · · · ,

|ϕ2(ω)|2,Re(ϕ2(ω)ϕ3(ω)), Im(ϕ2(ω)ϕ3(ω)) · · · ,

|ϕ3(ω)|2,Re(ϕ3(ω)ϕ4(ω)), Im(ϕ3(ω)ϕ4(ω)) · · · , · · · )
spans H for a.e. ω ∈ Ω.

Proof. Let T be self-adjoint Hilbert-Schmidt operator and {ei}i∈I be the orthonormal basis
for H and the representation of F is F(ω) =

∑
i∈I ϕi(ω)ei. We set

ai,j = 〈Tei, ej〉 bi,j = ϕi(ω)ϕj(ω).

Define A = (A1, A2, A3 · · ·Ai · · · )i∈I where

Ai = (ai,i, 2 Re(ai,i+1),−2 Im(ai,i+1), 2 Re(ai,i+2),−2 Im(ai,i+2), · · · )
and B = (B1, B2, B3 · · ·Bi · · · )i∈I where

Bi = (bi,i,Re(bi,i+1), Im(bi,i+1),Re(bi,i+2), Im(bi,i+2), · · · )
We can check at once that A is in H as

‖Ai‖ ≤

 ∑
j≥i,j∈I

|2ai,j |2
1/2

=

 ∑
j≥i,j∈I

|2〈Tei, ej〉|2
1/2

≤ 2‖Tei‖

‖A‖H =

(∑
i∈I
‖Ai‖2

)1/2

≤

(∑
i∈I

(2‖Tei‖)2

)1/2

= 2‖T‖HS

Similarly we can verify B is in H too.

〈TF(ω),F(ω)〉 =

〈
T (
∑
i∈I

ϕi(ω)ei), (
∑
j∈I

ϕj(ω)ej)

〉
=
∑
i∈I

∑
j∈I

ϕi(ω)ϕj(ω)〈Tei, ej〉

=
∑
i∈J

∑
j∈I

ai,jbi,j

= 〈A,B〉H
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By the same method as in the previous theorem, then the theorem follows. �

Theorem 2.10. Let F be a (Ω, µ)-frame for the Hilbert spaces H then the following are
equivalent:

(1) F is S2-injective.
(2) For every orthonormal basis E = {ei : i ∈ I} and the corresponding representation
F(ω) =

∑
I∈I ϕi(ω)ei, then the sequence(

|ϕ1(ω)|2, |ϕ2(ω)|2, |ϕ3(ω)|2, · · · , |ϕi(ω)|2, · · ·
)

spans the real Hilbert spaces `2(I) for a.e. ω ∈ Ω.

Proof. We set

H(E) := span{
(
|ϕ1(ω)|2, |ϕ2(ω)|2, |ϕ3(ω)|2, · · · , |ϕi(ω)|2, · · ·

)
}

(1)⇒(2) If the statement was not true. Given an orthonormal basis E = {ei : i ∈ I} and
(Ω, µ)-frame F , then we have the representation F(ω) =

∑
i∈I ϕi(ω)ei such that H(E) 6=

`(I). Therefore there exist non-zero vector λ = (λ1, λ2 · · ·λi · · · ) ∈ `(I) such that λ ⊥ H(E).
Define

Tei = λiei for i ∈ I
It is easy to verify T is non-zero self-adjoint Hilbert operator. Furthermore

〈TF(ω),F(ω)〉 =
∑
i∈I

λi|ϕi(ω)|2 = 0.

This is contradicts the fact that F is S2-injective.
(2)⇒(1) Let T be a self-adjoint Hilbert-Schmidt operator such that

〈TF(ω),F(ω)〉 = 0, for a.e. ω ∈ Ω.

As T is a Hilbert-Schmidt operator and hence compact operator, so there is an eigenbasis
E = {ei : i ∈ I} (Schmidt-orthogonalized, normalized and completed as an orthonormal
basis) for T with respect to the eigenvalue {λi}i∈I, further T is self-adjoint so that λi ∈
R, ∀ i ∈ I. For the continuous frame F and an orthonormal basis E = {ei : i ∈ I}, we have
representation F(ω) =

∑
i∈I ϕi(ω)ei, then

〈TF(ω),F(ω)〉 =
∑
i∈I

λi|ϕi(ω)|2 = 0.

Meanwhile since T is Hilbert-Schmidt operator, we know (λ1, λ2 · · ·λi · · · ) ∈ `2(I) as∑
i∈I
|λi|2 =

∑
i∈I
‖Tei‖2 <∞

By assumption H(E) = `2(I), moreover

(λ1, λ2 · · ·λi · · · ) ⊥ H(E)

Therefore, (λ1, λ2 · · ·λi · · · ) = 0 and hence T = 0. Thus F is S2-injective �

Now we give a characterization for quantum injective frames.

Theorem 2.11. Given a (Ω, µ)-frame for Hilbert space H. Then the following are equiva-
lent:
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(1) F is quantum injective.
(2) For every orthonormal basis {ei : i ∈ I} for H, and F(ω) =

∑
I∈I ϕi(ω)ei. then the

closed span of(
|ϕ1(ω)|2, |ϕ2(ω)|2, |ϕ3(ω)|2, · · · , |ϕi(ω)|2, · · ·

)
ω ∈ Ω.

is real space c0(I)

Proof. By Proposition 2.2, we know that F is quantum injective is equivalent to the con-
dition that 〈TF(ω),F(ω)〉 = 0 ( a.e. ω ∈ Ω) for some trace class self-adjoint operator T of
trace zero implies T = 0. Set

H(E) := spanc0{
(
|ϕ1(ω)|2, |ϕ2(ω)|2, |ϕ3(ω)|2, · · · , |ϕi(ω)|2, · · · , ω ∈ Ω)

}
(1)⇒(2): If not, H(E) 6= c0(I), then by Hahn Banach separation theorem, there exists

non-zero vector λ = (λi) ∈ `1(I) and we take λ as linear functional on c0(I) (c0(I)∗ = `1(I))
such that H(E) ∈ Kerλ. Then we define Tei = λiei, then

〈TF(ω),F(ω)〉 =
∑
i∈I

λi|ϕi(ω)|2 = 0,

which is a contradiction. Hence H(E) 6= c0(I).
(2)⇒(1): For any self-adjoint trace class operator, then from [19], there is some orthonor-

mal basis {ei}i∈I such that Tx =
∑

i∈I λi〈x, ei〉ei, ∀x ∈ H, where (λi) ∈ `1(I). Then

〈TF(ω),F(ω)〉 =
∑
i∈I

λi|ϕi(ω)|2

If for a.e.Ω ∈ Ω, 〈TF(ω),F(ω)〉 = 0, since H(E) = c0(I), then we have (λi) = 0 hence
we conclude that T = 0 �

3. Existence and perturbation theory of the injective frame

3.1. Method to construct the injective frame. We are now in a position to show the
existence of such continuous frames and construct some concrete examples. For any con-
tinuous Parseval frame F , we write its representation F(ω) =

∑
i∈I ϕi(ω)ei. Now emphasis

is put on the index set I, from which we can conclude the following dimension formula and
distinguish whether a Hilbert space is a finite-dimensional or an infinite-dimensional space.

Corollary 3.1. For every Parseval (Ω, µ)-frame F for a Hilbert space H, we have

dimH =

∫
Ω
‖F(ω)‖2dµ(ω).

Proof. By preceding proposition, we can write F(ω) =
∑

i∈I ϕi(ω)ei for some orthonormal

basis {ei}i∈I of H and an orthonormal set {ϕi}i∈I in L2(Ω, µ). Thus∫
Ω
‖F (ω)‖2dµ(ω) =

∫
Ω

∑
i∈I
|ϕi(ω)|2 dµ(ω) =

∑
i∈I
‖ϕi‖2 = card(I) = dimH.

�
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First, we may assume card(I) is finite, that is H is a finite-dimensional Hilbert space.
Even if H is finite-dimensional, we still can consider the continuous frame for H.

Suppose we have an n-dimensional Hilbert space H, and we have continuous Parseval
frame F . Its representation is F(ω) =

∑n
i=1 ϕi(ω)ei for some orthonormal basis {ei}ni=1

and orthonormal set {ϕi(ω)}ni=1 in L2(Ω, µ).
We want to construct a continuous frame to give injectivity, from theorem 2.9, it is

equivalent to find orthonormal set {ϕi}ni such that the sequence

(|ϕ1(ω)|2,Re(ϕ1(ω)ϕ2(ω)), Im(ϕ1(ω)ϕ2(ω)) · · · ,Re(ϕ1(ω)ϕn(ω)), Im(ϕ1(ω)ϕn(ω));

|ϕ2(ω)|2,Re(ϕ2(ω)ϕ3(ω)), Im(ϕ2(ω)ϕ3(ω)) · · · ,Re(ϕ2(ω)ϕn(ω)), Im(ϕ2(ω)ϕn(ω));

· · · ; |ϕn(ω)|2).

span the real Hilbert space `n
2

2 . This is equivalent to that pointwise multiplication vector
{ϕiϕi}, and {Re(ϕiϕj), Im(ϕiϕj)}1≤i<j≤n are linear independent.

Base on the above analysis, we give a way to construct continuous frames to give injec-
tivity. We consider compactly supported wavelet basis. Let

Ri := {ω ∈ Ω : Reϕi(ω) 6= 0} Ii := {ω ∈ Ω : Imϕi(ω) 6= 0}

Theorem 3.2. Suppose Ri is the support of Reϕi (the real part of ϕi) and Ii is the support
of Imϕi. Let I1 = ∅ and in the interval R1, let {ϕ1,Reϕ2, Imϕ2 · · · Reϕn, Imϕn} be
linearly independent ; Let I2\R1 = ∅ and in In the interval R2\R1, let {ϕ2,Reϕ3, Imϕ3 · · ·
Reϕn, Imϕn} linearly independent; Let I3\(R1∪R2) = ∅ and in the interval R3\(R1∪R2),
let {ϕ3,Reϕ4, Imϕ4 · · ·Reϕn, Imϕn} linearly independent; Continuing this procedure until
in the interval Rn\∪n−1

i=1 (Ri), ϕn 6= 0, then we get a continuous frame F(ω) =
∑n

i=1 ϕi(ω)ei
which gives injectivity.

Proof. Suppose {ei}ni=1 is orthonormal basis for H, F(ω) is continuous frame and its rep-
resentation is F(ω) =

∑n
i=1 ϕi(ω)ei. We set 〈Tei, ej〉 = ai,j = αi,j + iβi,j , then

〈TF(ω),F(ω)〉 = 〈T (
n∑
i=1

ϕi(ω)ei), (
n∑
j=1

ϕj(ω)ej)〉

=
n∑
i=1

n∑
j=1

ϕi(ω)ϕj(ω)〈Tei, ej〉

=
n∑
i=1

n∑
j=1

ai,jϕi(ω)ϕj(ω)

=
∑

1≤i≤j≤n
2αi,j Re(ϕi(ω)ϕj(ω))− 2βi,j Im(ϕi(ω)ϕj(ω))

If 〈TF(ω),F(ω)〉 = 0, we first take ω ∈ Rn\ ∪n−1
i=1 (Ri), then ϕi(ω) = 0 (1 ≤ i ≤

n − 1), it follows that αn,n = 0,namely an,n = 0. Second we take ω ∈ Rn−1\ ∪n−2
i=1 (Ri),

then ϕi(ω) = 0(1 ≤ i ≤ n − 1) and {ϕn−1,Reϕn, Imϕn} are linearly independent, it is
equivalent to that {ϕ2

n−1,Re(ϕn−1ϕn), Im(ϕn−1ϕn)} are linearly independent, it follows
that αn−1,n−1 = 0, αn−1,n = 0, βn−1,n = 0, that is an−1,n−1 = 0, an−1,n = 0, an,n−1 = 0.
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Continuing to choose ω in different intervals, we conclude that ai,j = 0 (1 ≤ i, j ≤ n). It
follows that T = 0. �

As a byproduct of this results, if we consider the countable set Ω and counting measure µ
then card(Ω) ≥ n2 is necessary because if (Ω, µ)-frame F gives injectivity then {ϕiϕi}, and
{Re(ϕiϕj), Im(ϕiϕj)}1≤i<j≤n are linear independent. Directly from the above construction
method, we can get a simple example.

Example 3.3. Let ϕi be the i-th column vector of the following matrix. Then we define
F(ω) =

∑n
i=1 ϕi(ω)ei

2n− 1



2n− 3


...



1 0 0 · · · 0
1 1 0 · · · 0
1 i 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1
1 0 0 · · · i
0 1 0 · · · 0
0 1 1 · · · 0
0 1 i · · · 0
...

...
...

. . .
...

0 1 0 · · · 1
0 1 0 · · · i

...
0 0 0 · · · 1


︸ ︷︷ ︸

n

Obviously F is continuous frame. Besides we can write it as a discrete frame, namely
{ei}ni=1 ∪ {ei + ej : i < j}ni,j=1 ∪{ei + iej : i < j}ni,j=1. An trivial to verification show that

F gives injectivity of the self-adjoint matrix on `n2 .

So far we have not constructed general examples even a Parseval frame though we can
turn it into a Parseval frame by applying S−1/2, where S is the frame operator of the
frame. While there are some methods to construct a specific frame based on a given
frame operator[9], however we will investigate the representation of continuous frame on a
countable set and this yield an alternative approach to construct injective frames directly for
finite dimensional Hilbert space. Furthermore we will give a method to construct a general
injective frame even injective Parseval frame by the way of induction. The following Lemma
will be useful.

Lemma 3.4. Let A ∈Mn1+n2,n1+n2 be partitioned as A =

(
A1,1 A1,2

A2,1 A2,2

)
, If det (A1,1) 6=

0, then

det(A) = det (A1,1) det
(
A2,2 −A2,1A

−1
1,1A1,2

)
If det (A2,2) 6= 0, then

det(A) = det (A2,2) det
(
A1,1 −A1,2A

−1
2,2A2,1

)
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Lemma 3.4 is the result of classical matrix theory and the proof is omitted.
For n=1, we take a1 6= 0, then it is done. For n = 2, our goal is to find 4-dimensional

vector ϕ1, ϕ2 such that pointwise multiplication vector {ϕ1ϕ1,Re(ϕ1ϕ2), Im(ϕ1ϕ2), ϕ2ϕ2}
are linearly independent, if we suppose ϕ2 is real vector, then it is equivalent to that
{ϕ1ϕ1, ϕ1ϕ2, ϕ2ϕ1, ϕ

2
2} are linearly independent, that is the determinant of the matrix

(ϕiϕj)1≤i≤j≤2 is not zero.

Table 1. From Vector to Matirx

( a1 )→

1 {

3

{
a1 b1
a2 b2
a3 b3
a4 b4


︸︷︷︸

2

→ · · · ⇒ ( a1a1 )→

1 {

3

{
a1a1 a1b1 b1a1 b1b1
a2a2 a2b2 b2a2 b2b2
a3a3 a3b3 b3a3 b3b3
a4a4 a3b4 b4a4 b4b4


︸︷︷︸

1
︸ ︷︷ ︸

3

→ · · ·

From the above Table 1 we can see that from n = 1 to n = 2, the vectors becomes

matrix. For n = 2 we can partition M4,4 as M4,4 =

(
A1,1 A1,2

A2,1 A2,2

)
, where A1,1 is the

corresponding matrix of M1,1 = (a1a1) whose determinant is not 0. By the Lemma 3.4, if

we can find suitable b1 and B =

a2 b2
a3 b3
a4 b4

 such that det
(
A2,2 −A2,1A

−1
1,1A1,2

)
6= 0, we

attain our goal.
If we set b1 then A1,2 = 0,

det
(
A2,2 −A2,1A

−1
1,1A1,2

)
= det(A2,2) = b2b3b4 detD

where D is

a2 a2 b2
a3 a3 b3
a4 a4 b4

 . The determinant of A2,2 is not 0 is equivalent to that the column

vectors of matrix D are linearly independent and all coordinates of

b2b3
b4

 are non-zero.

Suppose when the dimension is n, we have already got vectors {ϕ1, ϕ2, · · ·ϕn} such that
{ϕiϕj}1≤i,j≤n are linearly independent, then the determinant of the corresponding matrix
is not 0, denoted as B1,1, then for n + 1, our aim is to find a (2n + 1) × (n + 1) matrix A
and a column vector ϕn+1, and we set

A =


a1,1 · · · a1,n a1,n+1

a2,1 · · · a2,n a2,n+1
...

. . .
...

...
a2n,1 · · · a2n,n a2n,n+1

a2n+1,1 · · · a2n+1,n a2n+1,n+1

 and ϕn+1 =


ϕ1,n+1

ϕ2,n+1
...
...

ϕn2,n+1


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then the process of vector transformation can be shown by the following table.

Table 2. From n to n+ 1

n2




ϕ1,1 · · · ϕ1,n

ϕ2,1 · · · ϕ2,n
...

...
...

...
. . .

...
ϕn2,1 · · · ϕn2,n


︸ ︷︷ ︸

n

→

n2


2n+ 1





ϕ1,1 · · · ϕ1,n ϕ1,n+1

ϕ2,1 · · · ϕ2,n ϕ2,n+1
...

...
...

...
...

. . .
...

...
ϕn2,1 · · · ϕn2,n ϕn2,n+1

a1,1 · · · a1,n a1,n+1

a2,1 · · · a2,n a2,n+1
...

. . .
...

...
a2n,1 · · · a2n,n a2n,n+1

a2n+1,1 · · · a2n+1,n a2n+1,n+1


︸ ︷︷ ︸

n+1

Meanwhile the corresponding matrix an be written as

B =

(
B1,1 B1,2

B2,1 B2,2

)
where B1,1 is the matrix corresponding to {ϕi}1≤i≤n, if we suppose ϕn+1 = 0, then

det(B) = det(B1,1) det
(
B2,2 −B2,1B

−1
1,1B1,2

)
= det(B1,1) det(B2,2)

= det(B1,1) · a1,n+1a2,n+1 · · · a2n+1,n+1 det(C).

where

C =


a1,1 a1,1 · · · a1,n a1,n a1,n+1

a2,1 a2,1 · · · a2,n a2,n a2,n+1
...

...
. . .

...
...

...
a2n,1 a2n,1 · · · an,n a2n,n an,n+1

a2n+1,1 a2n+1,1 · · · an+1,n a2n+1,n an+1,n+1


Thus if we set ϕn+1 = 0 and find the matrix C whose the column vectors are linearly
independent and all coordinates of the last column are non-zero, then we get n+ 1 column
vector {φi}1≤i≤n+1 such that F =

∑n+1
i=1 φiei gives injectivity.

Based on the above analysis, we can give an way to construct injective frames for n-
dimension Hilbert space.
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Theorem 3.5. We define the matrix
W1,1 0 0 · · · 0
W2,1 W2,2 0 · · · 0
W3,1 W3,2 W3,3 · · · 0

...
...

...
. . .

...
Wn,1 Wn,2 Wn,3 · · · Wn,n


where for any 1 ≤ l ≤ n, we choose 2l−1 linearly independent column vectors {Vl,k}1≤k≤2l−1

in R2l−1, and all coordinates of Vl,2l−1(1 ≤ l ≤ n) are not zero. We suppose that i will be
used to denote the complex unit and set

Wl,k =

 Vl,2k−1 + i Vl,2k, k¡l;

Vl,2k−1, k=l.

then we take the column vector {ϕi} and define F =
∑n+1

i=1 ϕiei is the frame that gives
injectivity for the self-adjoint operator on the Cn.

Due to the representation of the continuous frame, if we want to construct a Parseval
frame, we only need to choose orthonormal set {ϕi}. Thus we have the following corollary.

Corollary 3.6. we define the matrix
λ1,1U1,1 0 0 · · · 0
λ2,1U2,1 λ2,2U2,2 0 · · · 0
λ3,1U3,1 λ3,2U3,2 λ3,3U3,3 · · · 0

...
...

...
. . .

...
λn,1Un,1 λn,2Un,2 λn,3Un,3 · · · λn,nUn,n


where

Ul,k =


√

2
2 (Vl,2k−1 + i Vl,2k), k¡l;

Vl,2k−1, k=l.

the coefficient {λi,j}j≤i satisfies

λi,j 6= 0 for 1 ≤ j ≤ i ≤ n, and
∑
j≤i
|λi,j |2 = 1,∀ 1 ≤ j ≤ n

Besides column vectors{Vi,j}j≤i are orthonormal basis for Ri and all coordinates of Vi,i are

not zero for all 1 ≤ i ≤ n . We take the column vector {ϕ̃i}1≤i≤n and define F̃ =
∑n

i=1 ϕ̃iei.
Then F is the Parseval frame that gives injectivity.

Remark 3.7. Obviously F =
∑n

i=1 ϕ̃iei gives injective from the theorem (2.9). Meanwhile
from the equivalent characterization of continuous frame, it is easily seen that is Parseval
frame. The representation of continuous frame on countable set provides a different per-
spective on the frame, while if we take the row vectors, it actually is the ordinary discrete
frame. It is not difficult to verify its frame operator is I, equivalent to being the Parseval
frame.
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Fortheinfinitedimensional Hilbertspace,thesituationisdifferent. Givenacon-
tinuousframeF,unlikefinitedimensionalcases,fromthe Theorem2.9,{ϕiϕi},and
{Re(ϕiϕj),Im(ϕiϕj)}1≤i<jmaybefinitelinearlyindependent,butthey may ω-dependent
whichimpliesitcannotgiveinjectivity. Atypicalcounterexampleisasfollows

Example3.8. ForainfinitedimensionalHilbertspaceH,letFbethecanonicalParseval
continuousframewithrespecttoaσ-finite measurespace(Ω,µ),whichis

F(ω):=
∞

i=1

χΩi

µ(Ωi)
ei, forω∈Ω

where{Ωk}isacountablesequenceofmutuallydisjoint,finite,positivemeasuresubsetsof
ΩwithunionΩ.

Proof.Forsimplicityofnotationwesetϕi(ω)=
χΩi

µ(Ωi)
,thenF(ω):= ∞

i=1ϕi(ω)ei,forω∈

Ω.ThereforeF isnotinjectivebecausebytheequivalentcharacterizationoftheorem2.6
theoperators

ϕi(ω)ϕj(ω)
i,j

=







0
... 0

··· 1
µ(Ωk) ···

0
... 0







cannotspantheS2(2)sa. Orwecancomputedirectly.Forω∈Ω,thenω∈Ωkforsome
kitfollowsthat

TF(ω),F(ω)=
1

µ(Ω)
Tek,ek =0

fromwhichwecannotderiveT=0.

Howeverwegiveaconcreteexamplethatisinjective.

Example3.9. Given Hilbertspace H anditsorthonormalbasis{ei}
∞
i=1. Supposeχ=

χ[0,1),ψ=χ[0,1/2)−iχ[1/2,1).Forintegern,∈N+,define

ϕ1(t)=χ

ϕ2(t)=χ(t−1)+ψ(4(t−
1

2
)

ϕ3(t)=χ(t−2)+ψ(8(t−
1

2
−

1

4
))+ψ(8(t−1−

1

2
−

1

4
))

ϕ4(t)=χ(t−3)+ψ(16(t−
1

2
−

1

4
−

1

8
))+ψ(16(t−1−

1

2
−

1

4
−

1

8
))

+ψ(16(t−2−
1

2
−

1

4
−

1

8
))

...

ϕn(t)=χ(t−n+1)+ψ(2n(t−1+2
1

n 1
)+···+ψ(2n(t−n+1+2

1
n 1

))

...
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Define F : R+ → H by F(t) =
∑∞

i=1 ϕi(t)ei. Let m be the Lebegue measure on R+, then
(R+,m)-frame F is the continuous frame for H which gives injectivity.

Proof. : First, we verify (R+,m)-frame F is the continuous frame for H . We observe
∀ {cn} ∈ `2 , the value of

∑∞
n=1 cnϕi(t) can only be ci, 2ci, (1− i)ci for i ≤ t < i+ 1, thus

∞∑
n=1

|cn|2 ≤ ‖
∞∑
n=1

cnϕi‖2 ≤ 4

∞∑
n=1

|cn|2, ∀ {cn} ∈ `2

By the equivalent characterization of Riesz basis from [8], we conclude that {ϕi} is Riesz
basis for span {ϕi} hence that F(t) =

∑∞
i=1 ϕi(t)ei is continuous frame for H by Corollary

2.5.
By the definition of F ,we get

F(t) =



e1, t ∈ [0, 1
2);

e1 + e2, t ∈ [1
2 ,

5
8);

e1 − ie2, t ∈ [5
8 ,

3
4);

...
...

e2, t ∈ [1, 7
4);

e2 + e3, t ∈ [7
4 ,

29
16);

e2 − ie3, t ∈ [29
16 ,

15
8 );

...
...

For any self-adjoint Hilbert-Schmidt operator T if

〈TF(t),F(t)〉 = 0, a.e t ∈ R+

then if we choose t ∈ [0, 3
4) ∪ [1, 7

4) we get

〈Te1, e1〉 = 0; 〈T (e1 + e2), (e1 + e2)〉 = 0; 〈T (e1 − ie2), (e1 − ie2)〉 = 0; 〈Te2, e2〉 = 0;

it follows that

〈Te1, e1〉 = 0; 〈Te1, e2〉 = 〈Te2, e1〉 = 0; 〈Te2, e2〉 = 0;

Repeating the previous argument in all intervals in R+ leads to 〈Tei, ej〉 = 0 for all i, j ∈
N+which imply T = 0 hence F is injective. �

3.2. Small perturbation of the injective frame. As stated in the previous theorem,
we have constructed injective continuous frames. Now we proceed to describe the property
of the injective frame after a small perturbation. To do this, we need to define a metrics
between frames. Intuitively there is a standard metric measuring the distance between
frames.

Definition 3.10. Given two (Ω, µ)-frames F ,G for Hilbert space H, the distance between
F ,G is

d2(F ,G) =

∫
Ω
‖F(ω)− G(ω)‖2dµ(ω).



18 DEGUANG HAN, QIANFENG HU, AND RUI LIU

If we suppose that {ei}I∈I is an orthonormal basis for H and the representation of F and
G are F(ω) =

∑
i∈I ϕi(ω)ei, G(ω) =

∑
i∈I φi(ω)ei respectively, then we can compute that

d2(F ,G) =

∫
Ω
‖F(ω)− G(ω)‖2dµ(ω).

=

∫
Ω
‖
∑
i∈I

(ϕi(ω)− φi(ω))ei‖2dµ(ω).

=

∫
Ω

∑
i∈I
|ϕi(ω)− φi(ω)|2dµ(ω).

=
∑
i∈I
‖ϕi − φi‖22.

In the case of the finite dimension Hilbert space, we shall have established the following
perturbation theorem.

Theorem 3.11. Given the continuous frame F gives injectivity, if for all ε ≥ 0,

d(F ,G) < ε.

then the continuous frame G also gives injectivity.

Proof. Let the representation of F be F(ω) =
∑n

i=1 ϕiei, ω ∈ Ω. and another continuous
frame G(ω) =

∑∞
i=1 φi(ω)ei such that d(F ,G) < ε. then we claim that G is injective.

We prove the result by way of contradiction. If not, by Theorem 2.9, this is equivalent to
that {ϕiϕi}, and {Re(ϕiϕj), Im(ϕiϕj)}1≤i<j≤n are linearly independent, then there exist
not all zero scalar ci,j , where ci,i ∈ R, and ci,j = cj,i (without loss of generality we can
assume max |ci,j | ≤ 1 for 1 ≤ i, j ≤ n) such that∑

1≤i,j≤n
ci,jφi(ω)φj(ω) = 0 a.e ω ∈ Ω

However we can compute∫
Ω
|
∑

1≤i,j≤n
ci,jϕiϕj |dµ(ω)

=

∫
Ω
|
∑

1≤i,j≤n
ci,j(ϕi(ω)ϕj(ω)− φi(ω)φj(ω))|dµ(ω)

≤
∑

1≤i,j≤n
|ci,j |

∫
Ω
|ϕi(ω)ϕj(ω)− φi(ω)φj(ω)|dµ(ω)

=
∑

1≤i,j≤n
|ci,j |

∫
Ω
|ϕi(ω)ϕj(ω)− ϕi(ω)φj(ω) + ϕi(ω)φj(ω)− φi(ω)φj(ω)|dµ(ω)

=
∑

1≤i,j≤n
|ci,j |

(∫
Ω
|ϕi(ω)||ϕj(ω)− φj(ω)|dµ(ω) +

∫
Ω
|ϕi(ω)− φi(ω)||φj(ω)|dµ(ω)

)
<

∑
1≤i,j≤n

|ci,j | (‖ϕi‖2‖ϕj − φj‖2 + ‖φj‖2‖ϕi − φi‖2)
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By the definition of continuous frame, ϕi are Riesz basis for [ϕi]1≤i≤n, thus we get a
constant C1 such that ‖ϕi‖ ≤ C1 ∀ 1 ≤ i ≤ n. Same for φj , we have ‖φj‖ ≤ C2 ∀ 1 ≤ j ≤ n.
Thus we conclude that

‖
∑

1≤i,j≤n
ci,jϕiϕj‖1 ≤ 2Cε.

where C = max{C1, C2}.
Meanwhile F gives injectivity, so

∑
1≤i,j≤n ci,jϕiϕj 6= 0, thus its L1-norm can not small

enough. However we can take ε sufficiently small. It is a contradiction. Thus we have
proved the claim. �

However in infinite dimension, the situation becomes quite different. The following exam-
ple shows that the property that the continuous frame gives injectivity will not be preserved
after a small perturbation.

Example 3.12. Let F(t) =
∑∞

i=1 ϕi(t)ei be the injective frame for Hilbert space H as in
example 3.9, Then for any ε > 0, there is a frame G such that d(F ,G) < ε, but G is not
injective.

Proof. Let the representation of G be the G(t) =
∑∞

n=1 φn(t)en. Let any ε > 0. since the

series
∑∞

n=1

n

2n
converges, ∀ε > 0 there exists integer N such that

∞∑
n=N

n

2n
≤ ε2

we can set

φn(t) =

 ϕn(t), n ≤ N ;

χ(t− n), n > N .

it is easy to check that G(t) =
∑∞

n=1 φn(t)ei is continuous frame for H and

d(F ,G) =

( ∞∑
n=1

‖ϕn − φn‖

)1/2

=

( ∞∑
n=N

‖ϕn − χ(· − n)‖

)1/2

=

( ∞∑
n=N

n

2n

)1/2

≤ ε.

However G can not give injectivity since if we set

T =

∞∑
i=N+1

ci(ei ⊗ ei+1 + ei+1 ⊗ ei)

where real number sequence {ci} is in `2, which means for x, y ∈ H

Tx =

∞∑
i=N+1

ci(〈x, ei+1〉ei,+〈x, ei〉ei+1)

It is easily seen that T is self-adjoint Hilbert-Schmidt operator and t ∈ [0, N) then
G(t) = em or G(t) = em + en for some m,n ≤ N . Moreover

〈em, ei〉〈ei+1, en〉+ 〈em, ei+1〉〈ei, en〉 = 0,∀m,n ≤ N, i > N

hence
〈TG(t),Gt〉 = 0
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and t ∈ [N,∞) G(t) = ej for some j > N , and

〈TG(t),Gt〉 = 〈Tej , ej〉 =
∞∑

i=N+1

ci〈ej , ei〉〈ei+1, ej〉+ 〈ej , ei+1〉〈ei, ej〉 = 0.

Therefore

〈TG(t),Gt〉 = 0 ∀ t ∈ R+.

which implies G is not injective. �
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