INJECTIVE CONTINUOUS FRAMES AND QUANTUM DETECTIONS

DEGUANG HAN, QIANFENG HU, AND RUI LIU

ABSTRACT. A quantum injective frame is a frame whose frame measurements for density
operators can be used to distinguish them in a quantum system, and the frame quantum
detection problem asks to characterize all such frames. This problem was recently settled
in [5] mainly for finite or infinite but discrete frames. In this paper, we consider the contin-
uous frame version of the quantum detection problem. Instead of using the frame element
itself, we use discrete representations of continuous frames to obtain several versions of
characterizations for quantum injective continuous frames. With the help of these charac-
terizations, we also examine the issues involving constructions and stability of continuous
quantum injective frames.

1. INTRODUCTION

The quantum detection problem by using discrete frame measurements was recently
settled by Botelho-Andrade, S., Casazza, P. G., Cheng, D., et al. for both finite and
infinite dimensional Hilbert spaces in [5], where the characterization was given in terms the
spanning properties of some derived sequences from the frame vectors. Naturally we would
wonder how much of the results from [5] is still valid for other type of frames, for instance,
continuous frames. While it is possible to have a similar type of characterizations in terms
of the range space of a continuous frame, it also seems unpractical to verify the injectivity
by performing uncountably many number of operations. The purpose of this paper is to
present a similar type of characterization for injective continuous frames in terms of their
discrete representations that were introduced in [12]. Constructions of injective continuous
frames and their stability will also be discussed.

Let us first recall some backgrounds and basics about frames and the quantum detection
problem. The notion of discrete frames was first introduced by Duffin and shaeffer [10], and
it allows (like basis) stable but not necessarilly unique decomposition of arbitrary element
into expression of the frame element. Later, motivated by the theory of coherent states in
mathematical physics [18], this concept was generalized to continuous frames whose families
is indexed by some locally compact space endowed with a Radon measure [1]. This type
of frames are also called frames associated with measurable spaces, or generalized frames
in the literature (c.f. [12, 2]. Continuous frames and coherent states are widely used in
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mathematical physics and harmonic analysis and they appear prominently in quantum
mechanics and quantum optics (c.f. [8, 11]).

In quantum theory, quantum state tomography asks to recover a state from the probabil-
ity of observing outcomes from a collection of measurements of the system on this state, and
retrieving data from quantum systems is carried out according to quantum measurement
theory [16, 6]. In this process positive operator-valued measure (POVM) [14, 17] plays an
important role. In this paper, we are mostly interested in POVMs that are derived from
the Hilbert space frame theory [13, 15], and we will call them Frame POVMs in short.

Recall that a POVM v is called informationally complete if it can uniquely determine
density operators p (i.e., positive trace-one operators on a separable Hilbert space). More
precisely, v is informationally complete if tr (p1v(E)) = tr (pov(E)) for every measurable
set E implies that p; = po, where p1,p2 € B(H) are density operators. The quantum
detection problem asks to “characterize” the OPVMs that are informationally complete.
(A much more subtle question is to characterize those that only distinguishes pure states.
This is often referred to as the phase-retrieval problem). In the case that a POVM v is
derived from a discrete (Parseval) frame {x, }ner (purely atomic case, where [ is finite or
countable), Botelho-Andrade, S., Casazza, P. G., Cheng, D., et al. settled the quantum
detection problem, in addition to many other results, for both the real and complex cases
and in both the finite dimensional and infinite dimension case [5, 7]. Due to the possible
peculiarities of underlying measure spaces, the continuous frame do not behave quite as well
as discrete counterparts. We propose to approach the quantum detection problem with a
discrete representation system of the involved continuous frame.

Let H is a separable Hilbert space. Here is a list of notations that will be used in this
paper.

B(H) — the linear bounded operators on H;

Bs,(H) — the the real linear space of self-adjoint bounded operators on H;

B(H)4 — for the real cone of positive operators on H;

S1(H) — the space of trace class operators on H;

Sa(H) — the Hilbert space of Hilbert-Schmidt operators endowed with the inner
product(T, S) gs = tr (1T°'S™*);

S(H) — the set of states or density operators on ‘H consisting of p : p € S1(H) such
that p > 0 and tr(p) = 1.

Let Q will be a locally compact Hausdorff space and ¥ be the o-algebra of Borel sets of
Q. Following [13, 17, 14], we use the following definition for operator-valued measures.

Definition 1.1. A map v : ¥ — B(H) is an operator-valued measure (OVM) if it is
weakly countable additive, meaning that for every countable collection {Ej}, .y € X with
E;NE;j =0 for i # j we have

V<U Ek> :ZV(Ek).

keN keN

where the convergence on the right side of the equation above is with respect to the ultra-
weak topology of B(H). We say v is

(1) bounded if sup{||[v(E)| : F € £} < 0.
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(2) self-adjoint if v(E)* = v(FE), for all E € X.
(3) positive if v(E) € B(H)4, for all E € X.
(4) spectral if v (Ey N E2) = v (E1) v (Es) for all By, Ey € Y.

Moreover, v is call a positive operator-valued measure (POVM) if it is positive and
v(Q) = Iy, and is called a projection value measure (PVM) if it is self-adjoint and spectral.

Remark 1.2. The ultraweak topology and the weak operator topology coincides in the
bounded set of B(#), thus we simplify the definition of POVM.

Definition 1.3. Let ¥ denote a o-algebra of subsets of €2, a positive operator-valued
measure (POVM) is a function p : ¥ — B(H)4 satisfying

(1) u(0) =0 (the zero operator).

(2) For every disjoint family {E;};c; C X, we have

(W(Uier Bz, y) = > (i Ei)z,y) Yo,y € H.
i€l
(3) u(Q2) = I (the identity operator).

Given a state p, the quantum measurement is the map p performed by the POVM wv.
Given a POVM v : ¥ — B(H)4 thenp: ¥ — R

p(E) =tr(prv(E)), VE € X.

Let B(X,R) denoted the set of bounded function on ¥. Given a quantum system #H and
a POVM v : ¥ — B(H)4, the quantum detection problem asks the following question:
Is there a "prefect” quantum measurement or underlying POVM v for the following map
to be injective, and how to characterize such a POVM?

P: S(H) — B(S,R), P(p)(E) = tr(pv(E)),VE € X.

In other words, the above question is about the existence of informationally complete
POVM (IC-POVM) which can separate states. That is if for p1, p2 € S(H),

tr (p1v(E)) = tr (pev(E)), VE € 3.

it follows p; = po.

Let H be a complex Hilbert spaces and {2 a measure spaces with a positive measure pu.
Recall [8, 13] that a mapping F : Q — H is called a continuous frame with respect to (€2, u1)
or (Q, u)-frame if

(i) for all f € H,w > (f, F(w)) is a measurable function on €.
(ii) there exists constants A, B > 0 such that

AllfIIP < /Q (f, F@))*du(w) < B|IfI?, VfeH.

The constants A, B are the lower and upper bounds of the frame, respectively. If A = B,
then the continuous frame is called tight and if A = B = 1, then the continuous frame is
called Parseval or a coherent state. If €1 is at most countable with counting measure, then
it becomes a discrete frame. Associated to F is the frame operator Sz defined in the weak
sense by

SreH oM, (Sr(a)y) = /Q (o, F(w))(F(w), y)du(w)
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It follows from the definition that Sz is bounded, positive and invertible operator. We
define the following transform associated to F ,

Vr:H = L*(Q,p), Ve(z)(w):= (z, Flw)).

This operator is called the analysis operator and its adjoint operator is given by

Vi L2(Quu) = H, (VE(f), ) ¢=/Qf(W)<f(w),:v>dﬂ(W)-

Then we have Sy = VzVr, and
(z,5) = /Q (, F(@)) (G(w), y)dpu(w).

where G(w) := SZ'F(w) is the standard dual of F.
For (Q, p)-frame F, we define

v:¥— BMH)y, v(E)= /E]:(w) ® F(w)dp(w)

in the sense of
W(E)e.9) = [ (o F@)(Fw) () Voy € 1
which naturally induces an operator-valued measure (OVP). In the case that F is a Parseval
continuous frame, then we also have v(£2) = Iy, and so it induces a POVM. In what follows
we will use the term frame POVMs to refer to such operator-valued measures.
Let v be a frame OVM associated with a continuous frame F. Then quantum measure-
ment for a state p € S(H) is given by the map P: S(H) — B(X,R)

(1.1) P(p)(E) = tr(pv(E)) = tr (p(/E Fw)® f(w)d,u(w))) VE € ¥.
It is easy to verify that
(1.2) tr(pv(E)) = /E<pf(W)af(W)>du(W) VE € 3, p € S1(H).

Clearly, the quantum detection problem ask for the injectivity of the map P on S(H), in
which case we say that F is quantum injective. We are interested in the characterizations
of injective continuous frames and the existence problem of such frames for a given triple

(Quv,H).

2. CHARACTERIZATIONS OF QUANTUM INJECTIVE FRAMES

2.1. Injective Frames. Let (€2, X%, 1) be a measure space, where X is the o-algebra over (2
and p is o-finite positive measure. It is not hard to see (Proposition 2.2) that quantum injec-
tivity of a continuous (2, u)-frame F is equivalent to the condition that if (T'F(w), F(w)) =
0, for a.e w € Q) for a self-adjoint trace class operator T" with trace zero, then T" = 0. Sim-
ilarly, we say that F is Sa-injective (respectively, Sa-injective) if whenever a self-adjoint
Hilbert-Schmidt (respectively, self-adjoint trace-class) operator 7" satisfies

(T'F(w), F(w)) =0, for a.e. we .
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then T'= 0.

Clearly, we have “Ss-injectivity = Si-injectivity = quantum injectivity.” In the case that
F is a Parseval frame, quantum injectivity also implies the S;-injectivity (see Corollary 2.3).
We point out that the Parseval frame requirement it not too much to ask since every frame
is similar to a Parseval frame, and similar frames preserve S;-injectivity, here we say that
two continuous frames F and G are similar if there is bounded invertible operator S such
that F(w) = SG(w) (a.e. w € Q). We first point out the following two elementary facts:

Proposition 2.1. Given a measure space (2,3, pu) and a (Q, p)-frame F for H. For
7 =1,2, the following are equivalent:
(1) If T,S € S; are positive operators, and
(TF(w), F(w)) = (SF(w), F(w)), fora.e. weQ

thenT = S.
(2) If T,S € S; are self-adjoint operators, and
(TF(w), F(w)) = (SF(w), F(w)), for a.e. we
then T =S

(3) F is Sj-injective.

(4) For any T € S;, the condition (T'F(w), F(w)) =0 (a.e.w € Q) implies that T = 0.
Proof. Clearly, we have (4) = (3) = (2) = (1). For (1) = (4), let T' € S; be such that
(TF(w), F(w)) =0 (a.e.w € Q). Write T = (T} =Ty ) +i(Ty =Ty ), where Ty, Ty, T, Ty
are positive operators in S;. The (T F(w), F(w)) = 0 implies that (T3 —T; ) F(w), F(w)) =
0 and (T, =Ty )F(w), F(w)) = 0, which in turn implies that (T} F(w), F(w)) = (T} F(w), F(w))
and (T, F(w), F(w)) = (Ty F(w), F(w)). Thus, by (1), we get T;" =T, , Ty” = T, and so
T=0. U

The proof of the following fact is identical to that of Proposition 2.1 after taking the
trace condition into the consideration

)

Proposition 2.2. Given a (2, p)-frame F for Hilbert space H. Then the following are
equivalent:

(1) F is quantum injective.
(2) If T, S are self-adjoint trace class operators and trace one, and

(TF(w), F(w)) = (SF(w), F(w)), for a.ew e

then T = S.
(3) If T are self-adjoint trace class operator and trace zero, and

(TF(w),F(w)) =0, for a.ew e

then T = 0.
(4) If T are self-adjoint trace class operator and trace zero, and

(T'F(w),F(w)) =0, for a.ew e
then T' = 0.

Corollary 2.3. If F is a Parseval frame, then it is Si-injective if and only if quantum
mnjective.
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Proof. Let F be a Parseval frame which is quantum injective. Then

I= /Q]:(w) ® F(w)dp(w).
and thus
() = [ (TFG). F(e))dute).
Now assume that
(TF(w), F(w)) =0, for a.e. w e .

for some self-adjoint trace-class T'. Then tr(T") = 0. By the equivalence of (1) and (3) in
Proposition 2.2, we get that T'= 0. Hence F is Si-injective. (]

2.2. Characterizations of Injective Frames. In order to obtain characterizations of
quantum injective frames in terms of discrete frame sequences, we use the following con-
tinuous frame representations proposed in [12].

Proposition 2.4. Let {e;},c; be an orthonormal basis for H. Then the following are equiv-
alent:
(1) F is a Parseval (Q, u)-frame for H.
(2) There exists an orthonormal set {@;};cp in L?(Q, 1) having the property that
Y icl i (w)[* < 0o for a.e. w e Q and F(w) = Yicipi(w)e; holds for a.e. w € Q).

For general continuous frames, we also have

Proposition 2.5. The following are equivalent:
(1) F is a (Q, u)-frame for H.
w) = > cqpilw)ei for some orthonormal basis {e;};. o and some family

2) F iel f h [ basi ier of " and famil
{@i}icr in L*(S2, p) with the properties that {¢;};; is a Riesz basis for span {¢;}
and that Y, i (w)|? < 00 for a.e. w e Q.

(3) F(w) = Y icrpi(w)e; for some Riesz basis {e;};c; of H and some set {p;},op or-
thonormal in L*(2, i) with the property that, for a.e. w € Q,% ", s (w)|* < 0.

(4) F(w) = > ;crpi(w)e; for some Riesz basis {e;};c; of H and some family {p;};c in
L*(), p) with the properties that {¢;},c; is a Riesz basis for span{y;};c; and that
Y icl lpi(w)|? < o0 for a.e. w e Q.

S

We first presents several characterizations for Ss-injective frames.

Theorem 2.6. Let F be a (Q, pu)-frame for the H with representation F(w) = >, wi(w)e;
for some orthonormal basis {e;};c; of H. Then the following are equivalent:
(1) F is Sp-injective.
(2) The operators (pi(w)pj(w))i; spans the self-adjoint Hilbert-Schmidt operators on
the Hilbert space lo(I) i.e. Sa(lo(D))sq for a.e. w € Q.

Proof. Our proof starts with two observation:
First, let 7 be a (Q, pu)-frame for H and F(w) = >, pi(w)e; for some orthonormal basis
{ei};ep of H and some family {¢;},o; in L?(€2, 1) with the properties that {¢;}; is a Riesz
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basis for spamn {y;};c; and that >, lgs(wW)|* < oo for a.e. w € Q. We define the operator
(eitwes@)), -

We claim it is self-adjoint Hilbert-Schmidt operator on ¢5(I) for a.e. w € Q. Obviously it
is self-joint. Meanwhile, its Hilbert-Schmidt norm is finite for a.e. w € (2. based on the
following computation

1/2

= Y leiw)e; @) = Jpi(w)]* < .

2 iel,jel i€l

(@),

;; on £2(I). We propose to
prove an analogous results for (am)ij namely, it is self-adjoint Hilbert-Schmidt operator

on Hilbert space. Since T is self-adjoint, then

Secondly, we set a; j = (T’e;, ;) and define the operator (a; ;)

aij = (Tei, ¢j) = (i, Tej) = (Tej, ei) = aji

hence the matrix (may be infinite) (a; ;), . is self-adjoint. Furthurmore

i?j
1/2 1/2 12
ai)iglhy = D laigl? = D [Teiep) = (Z||T€i”2) = [Tz
i€l jel icljel i€l

Now we use the representation of (€2, u)-frame and we obtain

(TF(w), F(w)) = <T(Z pi(wes), O %’(W)ej)>
i€l jel
=Y pilw)p;(w)(Tei e;)
i€l jel
= ZZ%(W%(W%;‘

iel jel

= < <g0i (@W)i ;i (ai’j)i’j>HS

%

Recall that all self-adjoint Hilbert-Schmidt operators under the inner product (T, S) gs =
tr(7°S™) is real Hilbert space. By orthogonality, we conclude that if F is Se-injective, then
orthogonal complement space of span{(y;(w)y;(w))i;} for a.e. w € Q2 is 0, hence that the

operators (¢;(w)e;j(w))i; spans Sa(la(I))sq for a.e. w € €
Conversely, for any Self-adjoint Hilbert-Schmidt operator T' satisfies
(T'F(w), F(w)) =0, for a.e w € Q, then

<(§0i<w)80j(w)>i7j : (ai,j)i,j>HS =0, foraew e

Since Span{((gai(w)goj(w))i’j)a.e wEQ} is SQ(EQ(H))SQ, we have (m)lﬂ = 0, hence (ai,j)i,j =0
as well as T'= 0. Thus F is Se-injective. (|
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Definition 2.7. Let H denote the direct sum of real Hilbert spaces £5 in the sense

H = (Z @fz)
1€l 0o

Remark 2.8. we can define the inner product (X, Y)m = >, cy(s, ¥i). where X = (2)ier, Y =
(yi)ier are in H. Under the conditions stated above, it follows that H is a Hilbert space.

Theorem 2.9. Let F be a (2, p)-frame for Hilbert space H and F(w) = > ;cpi(w)e; for
some orthonormal basis {e;};c; of H, then the following are equivalent:

(1) F is Sa-injective,
(2) the sequence

2(@)) -

~—

(lp1(w)? Re(pr(w)p2(w)), Im (1
|p2(w)[?, Re(2(w)ps(w)), Im (s

[03(w)|?, Re(ps(w)pa(w)), Im(es
spans H for a.e. w € Q.

€ &
S| 6
“
€

4(&))

B
S

Proof. Let T be self-adjoint Hilbert-Schmidt operator and {e; };c1 be the orthonormal basis
for H and the representation of F is F(w) = >, wi(w)e;. We set

aij = (Tei ej)  bij = pi(w)p;(w).
Define A = (A1, Ay, Az -+ A; -+ )ie1 where
A; = (aii,2Re(aiir1), —2Im(aii+1), 2 Re(aiiv2), —2Im(a;iy2), -+ )
and B = (B, B, B3+ B; -+ );e1 where
Bi = (bii, Re(bi,i+1), Im(bii+1), Re(biit2), Im(biit2), )

We can check at once that A is in H as

1/2 1/2
il = Qs 5 = €, €5 = €;
1Al < | D0 120, > 12(Tei ) < 2[|Te|
j>i,j€l j>i,5€l
1/2 1/2
[Allg = (Z ”Ai”2> < (Z@HT@!)Q) =2|T|us
i€l i€l

Similarly we can verify B is in H too.

(TF(w), Fw) = <T(Z piwe), Y@ (W)ej)>

il jel
= Z Z pi(w)pj(w)(Tei, ;)
il jel
=22 aibiy
el jel
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By the same method as in the previous theorem, then the theorem follows. ([
Theorem 2.10. Let F be a (2, u)-frame for the Hilbert spaces H then the following are
equivalent:
(1) F is Sp-injective.
(2) For every orthonormal basis € = {e; : i € I} and the corresponding representation
F(w) = reri(w)e;, then the sequence

(e (@), lpa (@) [s(@) - 5 li(@)?, - )
spans the real Hilbert spaces lo(I) for a.e. w € Q.

Proof. We set

H(E) = Span{(‘¢1(w)’27 ‘902("‘))’27 ‘903("‘))’27 M) ’@i(w)P? t )}
(1)=(2) If the statement was not true. Given an orthonormal basis &€ = {¢; : i € I} and
(9, p)-frame F, then we have the representation F(w) = >, @i(w)e; such that H(E) #
£(I). Therefore there exist non-zero vector A = (A1, Aa---A;---) € £(I) such that A L H(E).
Define
Te; = M\ie; for 1 €1
It is easy to verify T is non-zero self-adjoint Hilbert operator. Furthermore
(TF(w), Fw)) = Y Mlpi(w)* =0.
1€l
This is contradicts the fact that F is Se-injective.
(2)=(1) Let T be a self-adjoint Hilbert-Schmidt operator such that
(TF(w), F(w)) =0, fora.e. weq.

As T is a Hilbert-Schmidt operator and hence compact operator, so there is an eigenbasis
€ = {e;j:ie€l} (Schmidt-orthogonalized, normalized and completed as an orthonormal
basis) for T with respect to the eigenvalue {\;};cr, further T' is self-adjoint so that \; €
R, Vi € I. For the continuous frame F and an orthonormal basis £ = {e; : ¢ € I}, we have
representation F(w) = >, wi(w)e;, then

(TF (W), Fw)) =D Ailgi(w)]* =0.
i€l

Meanwhile since T" is Hilbert-Schmidt operator, we know (A1, A2 -+ A;---) € £a(I) as

SR = Y [Tei]? < o0

i€l i€l

By assumption H(E) = (1), moreover
()\1’)\2)\1) J_H(g)

Therefore, (A1, A2---A;--+) =0 and hence T'= 0. Thus F is Sy-injective O

Now we give a characterization for quantum injective frames.

Theorem 2.11. Given a (2, u)-frame for Hilbert space H. Then the following are equiva-
lent:
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(1) F is quantum injective.
(2) For every orthonormal basis {e; : i € I} for H, and F(w) = Yoy pi(w)e;. then the
closed span of

(1@ lp2 (@), o), -+ lps()?, ) we

is real space co(I)

Proof. By Proposition 2.2, we know that F is quantum injective is equivalent to the con-
dition that (T'F(w), F(w)) =0 (a.e. w € Q) for some trace class self-adjoint operator T of
trace zero implies T' = 0. Set

H(E) := span™{(|p1(w)?, [02(w)*, los(@)?, - s [pi(@) P, -+ ,w € D)}

(1)=(2): If not, H(E) # co(I), then by Hahn Banach separation theorem, there exists
non-zero vector A = ()\;) € ¢1(I) and we take \ as linear functional on cy(I) (co(I)* = ¢1(I))
such that H(E) € KerA. Then we define T'e; = \;e;, then

<T~7: Z Ai |901 =
€L

which is a contradiction. Hence H(E) # co(I).
(2)=-(1): For any self-adjoint trace class operator, then from [19], there is some orthonor-
mal basis {e;}ier such that T'x = >, Ai(, e;)e;, Vo € H, where (A;) € £1(I). Then

(TF(w = Ailpi(w

i€l

If for a.e.Q2 € Q, (I'F(w), F(w)) = 0, since H(E) = cp(I), then we have (A;) = 0 hence
we conclude that T'=0 g

3. EXISTENCE AND PERTURBATION THEORY OF THE INJECTIVE FRAME

3.1. Method to construct the injective frame. We are now in a position to show the
existence of such continuous frames and construct some concrete examples. For any con-
tinuous Parseval frame F, we write its representation F(w) = >, ; wi(w)e;. Now emphasis
is put on the index set I, from which we can conclude the following dimension formula and
distinguish whether a Hilbert space is a finite-dimensional or an infinite-dimensional space.

Corollary 3.1. For every Parseval (2, u)-frame F for a Hilbert space H, we have
dim# = [ |F)Pdu(w).
Q

Proof. By preceding proposition, we can write F(w) = >, @i(w)e; for some orthonormal
basis {e;},; of H and an orthonormal set {¢;},; in L?(€2, y). Thus

/ | F()]Pduw) / S @) du) = 3 lgill? = card(T) = dim .

i€l i€l
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First, we may assume card(l) is finite, that is H is a finite-dimensional Hilbert space.
Even if H is finite-dimensional, we still can consider the continuous frame for .

Suppose we have an n-dimensional Hilbert space H, and we have continuous Parseval
frame F. Its representation is F(w) = > 1" ; ¢;(w)e; for some orthonormal basis {e;}!" ,
and orthonormal set {¢;(w)}7; in La(£2, p).

We want to construct a continuous frame to give injectivity, from theorem 2.9, it is
equivalent to find orthonormal set {¢;}!" such that the sequence

(le1(@) P, Re(@1(w)p2(w)), Im(p1(w)p2(w)) - -, Re(p1 (w)@n(w)), Im(p1 (w)Pa(w));
|2 (w)? Pn

s Re(pa(w)ps(w)), Im(pa(w)ps(w)) - - Re(pa(w)@n(w)), Im (@2 (w)@n(@));
3 len(@) ).

span the real Hilbert space 632. This is equivalent to that pointwise multiplication vector

{¢:®i}, and {Re(yi;), Im(p;9;) }1<i<j<n are linear independent.
Base on the above analysis, we give a way to construct continuous frames to give injec-
tivity. We consider compactly supported wavelet basis. Let

Ri={weQ:Repi(w) #0} I[;:={we Q:Imy;(w) #0}

Theorem 3.2. Suppose R; is the support of Re p; (the real part of ;) and I; is the support
of Imp;. Let I = 0 and in the interval Ry, let {p1,Reps,Imepy--- Rep,,Imp,} be
linearly independent ; Let I;\Ry = ) and in In the interval Ro\ Ry, let {p2, Re p3, Im s - - -
Re g, Im ¢, } linearly independent; Let Is\(R1 U Rg) = () and in the interval R3\(R1 U R3),
let {3, Re s, Im ey ---Repy, Im p, } linearly independent; Continuing this procedure until
in the interval R, \U}—]' (R;), pn # 0, then we get a continuous frame F(w) = Y1 | ¢;(w)e;
which gives injectivity.

Proof. Suppose {e;}!_; is orthonormal basis for H, F(w) is continuous frame and its rep-
resentation is F(w) = > pi(w)e;. We set (T'e;, e5) = a;j = oy j + 165, then

(TF(W), Fw)) = (T pilw)er), O piw)es))
i=1 j=1

= Z Z pi(w)pj(w)(Tei, €;)
i=1 j=1
=3 aipi(w)p;(w)
i=1 j=1
= > 20 Re(pi(w)p;(w)) — 28, Tm(ps(w)p;(w))
1<i<j<n
If (TF(w),F(w)) = 0, we first take w € R,\ U (R;), then g;(w) = 0 (1 < i <
n — 1), it follows that «a,, = O,namely a,, = 0. Second we take w € R,_1\ U?;f (R;),
then ¢;i(w) = 0(1 < ¢ < n—1) and {¢p—1,Repy, Imy,} are linearly independent, it is
equivalent to that {¢2 |, Re(¢n_1%n),Im(¢n_1%,)} are linearly independent, it follows
that On—1n—1 = Oaan—l,n = OaBn—l,n = 0, that is p—1n—-1 = O7an—l,n = Oaan,n—l = 0.
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Continuing to choose w in different intervals, we conclude that a;; = 0 (1 <i,5 < n). It
follows that T' = 0. O

As a byproduct of this results, if we consider the countable set 2 and counting measure g
then card(£2) > n? is necessary because if (£2, u)-frame F gives injectivity then {¢;%;}, and
{Re(pi®;), Im(p;$;) }1<icj<n are linear independent. Directly from the above construction
method, we can get a simple example.

Example 3.3. Let ¢; be the i-th column vector of the following matrix. Then we define

Flw) =3 pilw)e;

1 00 --- 0
110 --- 0
1 10 --- 0
2n —1 . .
1 0 0 - 1
1 0 0 - i
010 - 0
01 1 - 0
01 i - 0
2n — 3
010 1
010 i
0 00 1
N—_——

Obviously F is continuous frame. Besides we can write it as a discrete frame, namely
{eiting Udei+ej i <jh -y Ule +ie;1i <j},_,. An trivial to verification show that
F gives injectivity of the self-adjoint matrix on /5.

So far we have not constructed general examples even a Parseval frame though we can
turn it into a Parseval frame by applying S~1/2, where S is the frame operator of the
frame. While there are some methods to construct a specific frame based on a given
frame operator[9], however we will investigate the representation of continuous frame on a
countable set and this yield an alternative approach to construct injective frames directly for
finite dimensional Hilbert space. Furthermore we will give a method to construct a general
injective frame even injective Parseval frame by the way of induction. The following Lemma
will be useful.

Lemma 3.4. Let A € My, 4ny ni+n, be partitioned as A = ( ﬁl’l ﬁlﬂ ) , If det (Aq 1) #
2,1 A22

0, then
det(A) = det (Al,l) det (AQ}Q — AQJAI&ALQ)
If det (A22) # 0, then

det(A) = det (A272) det (A171 — A172A£§A271>
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Lemma 3.4 is the result of classical matrix theory and the proof is omitted.

For n=1, we take a; # 0, then it is done. For n = 2, our goal is to find 4-dimensional
vector 1, 9 such that pointwise multiplication vector {¢1271, Re(¢192), Im(v192), v2@3}
are linearly independent, if we suppose s is real vector, then it is equivalent to that
{0191, 192, P21, P2} are linearly independent, that is the determinant of the matrix
(gpi@)lgigjgg is not zero.

TABLE 1. From Vector to Matirx

14 a1 by 1{ aiai alE biay blE
as by axa@y | agby  boay  baba

(a1 )— 3{ az b3 == (ama ) — 3{ asaz | asbs bsaz bsbs — e

as by a4y | asbs bsag baby
~— ~ —m—
2 1 3

From the above Table 1 we can see that from n = 1 to n = 2, the vectors becomes

. .. A A .
matrix. For n = 2 we can partition My as My4 = Al’l ALQ ) , where Aj; is the
2,1 2.2
corresponding matrix of M; 1 = (aja;) whose determinant is not 0. By the Lemma 3.4, if
as bg
we can find suitable b; and B = [ a3 b3 | such that det (AQ,Q - Ag,lAi%A172> £ 0, we
aq b4

attain our goal.
If we set by then Ay =0,

det <A272 — AQJA;&ALQ) = det(AZQ) = bobgby det D

az az by
where D is | a3 a3 b3 | . The determinant of As 5 is not 0 is equivalent to that the column
ag az by
bo
vectors of matrix D are linearly independent and all coordinates of | b3 | are non-zero.
by

Suppose when the dimension is n, we have already got vectors {1, p2,- - ¢, } such that
{cpi@}lgi,jgn are linearly independent, then the determinant of the corresponding matrix
is not 0, denoted as By 1, then for n + 1, our aim is to find a (2n + 1) x (n + 1) matrix A
and a column vector ¢,41, and we set

ainl e a1n a1 n+1 #Pln+1
azr - azn a2 n+1 #P2,n+1
A= : : : and Qi1 = ;
a2n,1 T a2nn a2n n+1
@2n+1,1 " A2nt+ln A2n41n+1

Pn2 n+1
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then the process of vector transformation can be shown by the following table.

TABLE 2. Fromnton+1

©Y1,1 te Pin P1,n+1
p Y21 te P2.n Y2 n4+1
P11 P1,n n2
¥21 0 P2 : :
n2 3 ¥n21 Yn2n Pn2 n+l
— ai 1 ce a1,n a1,n+1
: ) on+1 a1 tee a2 n a2 n41
Yn21 °° Pn2n . . .
—_—
n G2n,1 te A2n,n A2n,n+1
aon+1,1 " A2pn+ln  @2n+1,n+1
n+1

Meanwhile the corresponding matrix an be written as
Biyx Bipg
B — ) i
< By1 Bop
where By is the matrix corresponding to {¢;}1<i<n, if we suppose ¢y,4+1 = 0, then

det(B) = det(BLl) det (BZQ - Bg’lBillBl’z)
= det(BLl) det(BQ,Q)

=det(B1,1) - @1n+102.0+1 -+ - A2n+1,n+1 det(C).

where
a1 a1l ot Qip a1 a1 n+1
az,1 a1 -t Q2p az,n, a2 n+1
C= :
a2n,1 a2n,1 T an,n A2n,n An,n+1
A2n+1,1 a2n4+1,1 °° OGpni+ln A2n+ln  Ontln+l

Thus if we set ¢,+1 = 0 and find the matrix C' whose the column vectors are linearly
independent and all coordinates of the last column are non-zero, then we get n+ 1 column
vector {¢; }1<i<n+1 such that F = Z?jll ;e; gives injectivity.

Based on the above analysis, we can give an way to construct injective frames for n-
dimension Hilbert space.
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Theorem 3.5. We define the matrix

Wii 0 0 .0
W271 WQQ 0 s 0
0

Ws1 Wi Wi

Wn,l Wn,? Wn,?) to Wn,n
where for any 1 <1 < n, we choose 2l—1 linearly independent column vectors {Vj j }h1<k<2i—1
in R%=1 and all coordinates of Vig—1(1 <1 < n) are not zero. We suppose that i will be
used to denote the complex unit and set
Viok—1+ 1@ Vi, kil;
Wik =
Viok—1, k=l.

then we take the column vector {¢;} and define F = Z?jll wie; is the frame that gives
injectivity for the self-adjoint operator on the C".

Due to the representation of the continuous frame, if we want to construct a Parseval
frame, we only need to choose orthonormal set {¢;}. Thus we have the following corollary.

Corollary 3.6. we define the matriz

)\171U1’1 0 0 cee 0
A21U21  Ao2Uzs 0 e 0
A3,1U31 A3pUs2 A33Ussg - 0
An,l Un,l )\n,2Un,2 )\n,3Un,3 e )\n,nUn,n
where
V2

2 (Viok—1+ i Viow), kil;
Uy =

Viok—1, k=l.
the coefficient {\; ;};<i satisfies

Ng#0 for 1<j<i<n, and ) [N;f=1¥1<j<n
J<i
Besides column vectors{V; j}j<i are orthonormal basis for R® and all coordinates of V;; are

not zero for alll < i <n . We take the column vector {;%V}lggn and define F = o e
Then F is the Parseval frame that gives injectivity.

Remark 3.7. Obviously F = > | ge; gives injective from the theorem (2.9). Meanwhile
from the equivalent characterization of continuous frame, it is easily seen that is Parseval
frame. The representation of continuous frame on countable set provides a different per-
spective on the frame, while if we take the row vectors, it actually is the ordinary discrete
frame. It is not difficult to verify its frame operator is I, equivalent to being the Parseval
frame.
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For the infinite dimensional Hilbert space, the situation is different. Given a con-
tinuous frame F, unlike finite dimensional cases, from the Theorem 2.9, {¢;p;}, and
{Re(¢i®;), Im(9i®@;) }1<i<j may be finite linearly independent, but they may w-dependent
which implies it can not give injectivity. A typical counterexample is as follows

Example 3.8. For a infinite dimensional Hilbert space H, let F be the canonical Parseval
continuous frame with respect to a o-finite measure space (2, p), which is

for w e Q

Xlrﬁf

where {Q} is a countable sequence of mutually disjoint, finite, positive measure subsets of
Q) with union €.
X0
p(€2:)
Q). Therefore F is not injective because by the equivalent characterization of theorem 2.6
the operators

, then F(w) :== Y2, pi(w)e;, for we

Proof. For simplicity of notation we set ¢;(w) =

0 : 0
(ei@e@), = |
0 : 0
can not span the S3(f2)sqe. Or we can compute directly. For w € Q, then w € , for some

k it follows that

(TF(w), F(w)) = (Teg,er) =0

1
p(€2)
from which we can not derive T' = 0. O

However we give a concrete example that is injective.

Example 3.9. Given Hilbert space H and its orthonormal basis {e@}?il. Suppose x =
X[0,1), ¥ = X[0,1/2) — iX[1/2,1)- For integer n, € NT, define

e1(t) =x
palt) =x(t — 1)+ (4(t ~ 3)
palt) =x(t —2) + ¥(8(t— 3 — ) +YE(E—1- 3 — )
1 1 1 1 1 1
pa(t) =x(t=3) +9(16(t — 5 — ;= ) +P(16(t 1 -5 — - —2))
FYO6(E 27—~ 1)

On(t) =x(t—n+1) + Y@ (t—1+27 D 4o 4 (2t —n+ 1 +27 1)
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Define F : R™ — H by F(t) = >.°, ¢i(t)e;. Let m be the Lebegue measure on R, then
(R*, m)-frame F is the continuous frame for H which gives injectivity.

Proof. : First, we verify (RT,m)-frame F is the continuous frame for H . We observe
V {cn} € {2, the value of > 7 | cphi(t) can only be ¢;,2¢;, (1 —1i)¢; for i <t < i+ 1, thus

[e.e] [e.e] e}
Z lenl® < | ch@iw < 42 lenl?s Y {en} €62
n=1 n=1 n=1

By the equivalent characterization of Riesz basis from [8], we conclude that {¢;} is Riesz
basis for span {¢;} hence that F(t) = ;2 i(t)e; is continuous frame for H by Corollary
2.5.

By the definition of F,we get

€1, tE[
e1 + ea, tE[
e1 — ieg, tE[

olonl= O
o 00|l
~— —

€2, tE[
ez +e3, tE] ;
ez —ie3, t€[fG, §)

(
For any self-adjoint Hilbert-Schmidt operator T if

(TF),F(t) =0, aeteR"
then if we choose t € [0,3) U [1,T) we get
(Ter,e1) = 0;(T'(e1 + e2),(e1 +e2)) = 0; (T'(e1 —ieq), (e1 —iea)) = 0; (Tea, e2) = 0;
it follows that
(Tei,e1) =0; (Tey,ea) = (Teg,e1) =0; (Tea,eq) =0;
Repeating the previous argument in all intervals in R leads to (T'e;,e;) = 0 for all i, j €

N*which imply 7" = 0 hence F is injective. O

3.2. Small perturbation of the injective frame. As stated in the previous theorem,
we have constructed injective continuous frames. Now we proceed to describe the property
of the injective frame after a small perturbation. To do this, we need to define a metrics
between frames. Intuitively there is a standard metric measuring the distance between
frames.

Definition 3.10. Given two (2, u)-frames F, G for Hilbert space H, the distance between
F,Gis

P(F.G) = / 17 () — G(w)|Pdpu(w).
Q
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If we suppose that {e;};; is an orthonormal basis for H and the representation of 7 and
G are F(w) = > ;cppi(w)es, G(w) = > icp di(w)e; respectively, then we can compute that

2(F.g) = /nf (@)]Pdu(w).
/ 1S (i(w) — duw))eilPdpw).

i€l

/ S i) — 1) ().

i€l
= " llpi — oill3.
i€l
In the case of the finite dimension Hilbert space, we shall have established the following
perturbation theorem.

Theorem 3.11. Given the continuous frame F gives injectivity, if for all € > 0,
d(F,G) < e.
then the continuous frame G also gives injectivity.
Proof. Let the representation of F be F(w) = Y 1 | piei,w € €. and another continuous
frame G(w) = Y., ¢i(w)e; such that d(F,G) < e. then we claim that G is injective.
We prove the result by way of contradiction. If not, by Theorem 2.9, this is equivalent to
that {¢;%i}, and {Re(v;®;), Im(p;@;) i<icj<n are linearly independent, then there exist

not all zero scalar ¢; ;, where ¢;; € R, and ¢;; = ¢j; (without loss of generality we can
assume max |¢; j| <1 for 1 <i,j <n) such that

Y idilw)d@) =0 acweQ
1<4,j<n
However we can compute

/‘ Z cijpip;ldp(w)

1<i,5<n

= [ 1 D ciglpilw)e; (@) — di(w)d;(w))ldu(w)

Q 1< j<n

< i1 / 0 ()73 (@) — 64(w)F @) duw)
l<7,]<n

= Y e / 01(0) 25 (@) — i(w)85 (@) + i) B (@) — 6i(w)y (@)|dp(w)
1<4,5<n

=Y ey r( i)l (@) — b)) + [ lore) — 1)1 (w )!du(w)>
1<2]<n ’ / J / ’

< > leigl(gillzlies = dillz + 165ll2ll0i — ¢ill2)

1<i,j<n



INJECTIVE CONTINUOUS FRAMES AND QUANTUM DETECTIONS 19

By the definition of continuous frame, ¢; are Riesz basis for [¢;]1<i<pn, thus we get a
constant C7 such that [|¢;]| < C1 V1 < i <n. Same for ¢;, we have ||¢;]| < CoV1<j<n.
Thus we conclude that

I Y el < 2Ce.
1<i,j<n
where C' = max{C}, C2}.
Meanwhile F gives injectivity, so ZKL j<n Ci,jPiPj # 0, thus its Li-norm can not small
enough. However we can take ¢ sufficiently small. It is a contradiction. Thus we have
proved the claim. O

However in infinite dimension, the situation becomes quite different. The following exam-
ple shows that the property that the continuous frame gives injectivity will not be preserved
after a small perturbation.

Example 3.12. Let F(t) = > 2, vi(t)e; be the injective frame for Hilbert space H as in
example 3.9, Then for any ¢ > 0, there is a frame G such that d(F,G) < e, but G is not
injective.

Proof. Let the representation of G be the G(t) = > 7 | ¢n(t)en. Let any e > 0. since the

n
series Y 7, on converges, Ve > 0 there exists integer N such that

we can set
©on(t), n < N;

x(t—n), n>N.
it is easy to check that G(t) = > 7 | ¢n(t)e; is continuous frame for H and

00 1/2 00 1/2 0o 1/2
d(F.G) = (Zuwn—%@ - (Z IIWn—X('—n)H) - (Z 2”) <.
n=1 n=N

n=N
However G can not give injectivity since if we set

o0
T = Z ci(e; ®eir1 +eiyr1 @ e;)
i=N+1
where real number sequence {¢;} is in f9, which means for z,y € H

oo

Tx = Z ci((z, eir1)es, +(z, ei)eir1)
i=N+1

It is easily seen that T is self-adjoint Hilbert-Schmidt operator and ¢ € [0, N) then
G(t) = em or G(t) = ey, + €, for some m,n < N. Moreover
(em, €i)(€it1, €n) + (€m, €it1)(€is en) = 0,Ym,n < N,i > N

hence

(TG(t),Gt) =0
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and t € [N,00) G(t) = e; for some j > N, and

(Ig(t),gt) = (Tej, ej) = i ciej, ei)(eir, ej) + (€, €ir1){ei, e;) = 0.
i=N+1
Therefore
(TG(t),Gt) =0 VteR".
which implies G is not injective. ([l
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