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Abstract—Gaming is an important class of workloads for
mobile devices. They are not only one of the biggest markets
for game developers and app stores, but also amongst the most
stressful applications for the SoC. In these workloads, much
of the computation is user-driven, i.e. events captured from
sensors drive the computation to be performed. Consequently,
event processing constitutes the bulk of energy drain for these
applications. To address this problem, we conduct a detailed
characterization of event processing activities in several popular
games and show that (i) some of the events are exactly repetitive
in their inputs, not requiring any processing at all; or (ii) a
significant number of events are redundant in that even if the
inputs for these events are different, the output matches events
already processed. Memoization is one of the obvious choices
to optimize such behavior, however the problem is a lot more
challenging in this context because the computation can span
even functional/OS boundaries, and the input space required
for tables can takes gigabytes of storage. Instead, our Selecting
Necessary InPuts (SNIP) software solution uses machine learning
to isolate the input features that we really need to track in
order to considerably shrink memoization tables. We show that
SNIP can save up to 32% of the energy in these games without
requiring any hardware modifications.

I. INTRODUCTION

Gaming is an important application domain with an es-
timated 2.3 billion users playing games on their mobile
devices [1]. Games are extremely demanding in terms of
their hardware impositions, performance requirements, and
user interactions. When running a game, the CPU needs to
constantly interact with a diverse set of hardware units — main
memory, codecs, SD cards, GPUs, displays and the network —
to interactively respond in real-time to a continuous stream of
user inputs coming from input sensors such AR/VR wands,
screen, accelerometer, gyroscope, camera, etc. Even if one
were to offload much of the main processing to a back-
end server on the cloud, these hardware units still consume
a significant amount of energy, often leading to a drain on
the limited battery capacity in the mobile device. It has been
noted that heavy-weight games can drain the entire battery of
a mobile device in a couple of hours [2]. This paper looks
to develop a holistic solution to reduce end-to-end energy
consumption of the entire mobile device rather than a piece-
meal solution for any single component.

The main idea of our solution is selective event processing,
rather than reacting to every event. Gaming applications are
inherently event driven, with user input continuously (gen-
erated by numerous sensors) driving the computation. The
applications need to prepare and react to each such event,
which can result in significant energy consumption. Instead, if
we are selective about which event will really impact the game

behavior, we could avoid unnecessarily (re-)processing thou-
sands of events. Such redundant processing can happen due
to two classes of events: (i) Repeated Events: When the exact
same events keep recurring, the consequent actions/impact are
also usually repetitive. For instance, if a game registers for
a screen swipe or a button press event (with the OS), and
during execution, the user keeps pressing the same button
again and again, the application may not need to react to
every subsequent press. Since user inputs are highly complex,
one may expect we do find a significant number of repeated
events. However, our study shows that there were only around
2-5% of such repeated event executions across a spectrum
of 7 games. Upon closer examination, we find that “exact”
repetition has a lower probability, as opposed to close enough
inputs/events that eventually result in the exact/same game
behavior. This leads to the next category of (ii) Redundant
Events: These events, though they may not exactly match
to prior occurrences, they still do not impact the application
execution when they occur. For instance, a game that reacts
to rotation/gyroscope events for some windows of execution
(say for switching from portrait to landscape), may need to
react only for significant movement of the device as opposed
to minor movements (which can be largely ignored). Our
characterization of 7 different top chart games from the Play
Store show that, anywhere from 17% to 43% of the events
processed fall in the latter redundant category, not needing any
processing at all. Our solution is intended to avoid processing
both kinds of events, which can result in multiple hardware
component energy savings.

One of the previously proposed techniques for dealing with
redundancy/repetition is memoization. Essentially, we identify
frequently executing computations for which the input values
repeat, and maintain a table mapping these input values to
the corresponding output produced by the computation. Sub-
sequently, when the same input occurs for this computation,
the entire processing can be “snipped” by simply substituting
it with the output from the table. This popular technique has
drawn applicability at the instruction level (to ease functional
unit pressure) [3, 4], or even at functional levels [5] to
reduce computation. Our SNIP — Selecting Necessary InPuts
— solution is similar to this strategy with the following key
differences: (i) We do not stop at single Instructions or even
functional granularity for memoization. Instead, our solution
tries to snip the entire sequence of instructions, which could
potentially span multiple functions and even application-OS
boundaries, that are driven by the event we are targeting to
avoid processing; (ii) Apart from reducing the overhead of



fetching and executing these instructions, SNIP also avoids
the overheads when certain parts of the computation (in event
processing) are offloaded to accelerators/IPs on the mobile
SoC; and (iii) As pointed above, if we are to stick to exactly
matching inputs, the scope for optimization is relatively small.
Instead, we also include the Redundant Events in our memo-
ization, where even if the inputs do not exactly match, we can
still snip those computation to produce an output that is no
different than performing the entire computation. SNIP, thus,
goes well beyond prior techniques to identify and cut-short
computations for redundant events.

However, such an ambitious goal has considerable chal-
lenges. Memoization requires look-up tables, which are in-
dexed by the inputs to find the corresponding output. When we
move to such large granularity for memoization, the number
of inputs becomes enormous — spanning not just registers,
but also numerous memory locations. Further, each of these
can have a wide spectrum of values that we need to look up
the table. In fact, we find that required table sizes for the
games under consideration can run into gigabytes, defeating
the whole purpose of memoization. Hence, conventional ap-
proaches to doing this will simply not work.

To address the above challenges, SNIP uses the following
software based approach:

e Pre-processing/Profiling: Mobile applications go through
extensive debugging and testing, before getting deployed in
the App store. We suggest another phase of profiling, which
could happen either before the application is deployed (as
part of the testing phases by different users), or continuously
from the usage by different users as they play their games.
The purpose of such profiling is to collect event data that is
needed to build lookup tables as is discussed next. Thus
the app is distributed along with its profile data when
downloaded.

o Shrinking the Table: Thousands of input locations, each
containing possibly millions of values, make memoization
tables hard to construct. We use a machine learning tech-
nique called Permutation Feature Importance (PFI) [6, 7]
which is essentially a feature extraction utility that is very
useful for our needs. It trains on the input-output data for
each event, to identify only a subset of “essential inputs”
that is needed for a bulk of memoization needs. After this
stage, numerous input possibilities will get mapped to a
small subset of output values/actions. By capturing only the
necessary inputs (and their values), SNIP requires less than
1% of the original table that would have been needed, while
still sufficing to succinctly capture a significant number
of memoization opportunities. Hence, the term SNIP, for
Selecting Necessary InPuts. SNIP can be run on the cloud,
not needing the mobile devices limited resources.

e Looking up the Table and Memoization: Note that, once
compressed, we can no longer simply lookup the table with
the original inputs. Instead, we compose a hash of the input
for looking up the table. The output is anyway in “non-
compressed” form, which we can pick up to replace the
corresponding computation.
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Fig. 1: Example game execution in a smart phone. The user
generated events are captured at sensors, to be processed at both
CPUs and IPs and finally produces the outputs back to the user.

e Correctness issues: Since it is a lossy compression of
the table, we can get into erroneous behaviors. Although
important, gaming is not a mission critical domain (unlike
financial, healthcare, etc.). At the same time, we still would
like to reduce errors as much as possible. Hence, we allow
some over-ride mechanisms (i) Developer over-rides - where
the developer can over-ride with necessary input fields
that cannot be left out in the compressed form, and (ii)
Continuous learning — where the PFI adapts to changes in
user behavior by continuously learning and updating the
necessary input fields.

The entire SNIP framework, comprising the profiler and
compiler which snips the computation using the reduced
tables, is completely implemented in software for Android
OS. We have experimentally evaluated this approach using
7 most popular games from the Play store on a Google Pixel
XL phone with Snapdragon 821 SoC. Results show a 32%
average energy saving, which is a significant portion of battery
drainage on mobile devices. Even if the profiler is not able to
do a perfect job in the first attempt (to avoid errors), within
a handful of usages and continuous profiling, we are able to
make the executions almost completely error free.

II. OVERVIEW OF GAMING WORKLOADS

Gaming workloads perform event-driven computations to
react to various user actions, gestures, etc., and render the
resulting output to the user. For example, Fig. 1 shows a user
playing a typical Augmented Reality (AR) game [2] on a
phone, where the user swipes, tilts and walks with the device.
The user’s objective is to capture the various objects that are
augmented into the scene that is captured continuously in the
phone’s camera (and simultaneously processed and displayed
on its screen). To achieve this, the game uses the input data
(walking, tilting, swiping, camera feeds, etc.) to process and
respond back to the user. Under the hood, the gaming device
captures the three events below continuously: (i) swipe action
is captured using a series of touch events on the screen; (ii)
tilt is captured using a series of gyro events; and (iii) walk is
captured using a series of both the camera feed and the GPS
position. To understand the implications of such events in the
hardware, we next walk through the example in Fig. 1 and
illustrate what happens in the hardware.

A. What happens in the hardware?

Towards better performance and energy efficient executions,
the apps running on contemporary System on Chip (SoC)
designs leverage a combination of compute units (such as
general purpose CPU, GPU cores) and domain-specific ac-
celerators/IPs (such as encoders, decoders, neural networks,



image processors), to take advantage of the spectrum of per-
formance and energy efficiency tradeoffs offered by them. To
understand how these components get orchestrated and work
together during execution, we next delve into what happens
in the underlying hardware during application execution. As
depicted in Fig. 1, the event generation begins with the user
interacting with the device. As the user interacts (e.g., swipes,
walks with the phone, etc.), the corresponding sensors are read
by the sensor hub (step 2 in Fig. 1), and the values of the
sensors are subsequently passed on to the CPU as interrupts.
The OS framework for these interrupts (e.g., SensorManager in
Android [8]) processes these raw sensor values into high-level
events (e.g., swipe, tilt, etc.) — that are further passed onto the
game execution at the CPU through shared memory between
the sensor hub’s runtime and the game workload execution
(step 3 in Fig. 1). This is accomplished using the Binder
framework in Android [9]. The workload execution at the CPU
subsequently processes these events using a sequence of event
handler functions in CPU as well as accelerator/IPs and after
processing, renders the outputs back to the user (e.g., display
“pokemon is captured” on the screen).

In short, the CPU cores initiate and manage all the event
handling and initial processing, and it subsequently offloads
the heavier tasks such as frame/audio rendering, storing and
batching events etc., to domain-specific microphone, display
controller, codecs, GPUs and sensor hubs.

B. Characterizing the game executions

100% Since there are

multiple components
that interact closely
during game
executions, we first
study the normalized
energy  breakdown
in these components
(grouped as sensors,
memory, CPUs and
IPs) in a modern Pixel XL class phone hardware in Fig. 2. As
seen, the sensors and memory consume very small portion of
the total energy (< 10%), while the rest is split more or less
equally between the CPU and IPs. The major components of
energy consumption are from the CPU and IP executions,
where the CPU consumes 40% to 60% of the total energy,
and the IPs also consuming 34% to 51% of the total energy.

While it may
seem similar across
all the games in
the x-axis, they are
actually sorted in the
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Fig. 2: Both CPU and IPs consume
almost equal amount of energy.
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Fig. 3: Rampant battery drain in games. — aS evident in their
battery drain characteristics (same x-axis ordering in Fig.
3). For example, lightweight games such as Colorphun [10]
involves an occasional touch event from the user and even

this drains the battery fast ~ 8.5 hours (vs. ~ 20 hours for
idle phone). It gets much worse as the game play gets more
and more complex: AR (Chase Whisply [11]), 3D graphics
games (Race Kings [12]), etc. the battery drains from a 100%
charge to 0% in ~ 3 hours (6 faster than the idle phone).
Combining the above two observations, to solve this ram-
pant battery drain problem, we look into the “whole” SoC
execution rather than optimizing for an individual component.

C. Opportunities, drawbacks, and challenges

Since the SoC is for general purpose executions, a particular

game execution may not need all its hardware. In turn, we
can use this domain knowledge to optimize execution. For
the example in Fig. 1, the hardware execution starts from the
sensors generating raw values, to the output generation at the
display/speakers, etc. The opportunities are:
At the sensors: Each of the sensors have a range of values it
can generate for an external user interaction. For example, a
gravity/rotation sensor has value limits from 0° to 360° its x
(o), y (B) and z(y) rotation angles, that captures the accurate
way in which the device is currently held by the user. However,
the execution may only require whether the device is held in
landscape (B > 90°) or portrait mode (8 < 90°), and not
care about the rest of the details at all. In such scenarios, as
discussed in [13], one could employ a low fidelity mode for
the sensors to save energy.

However, the drawback of such an optimization is that our
workloads do not consume much energy at the sensors itself
(Fig. 2). Optimizing at this level could result in very small
energy benefits overall.

When processing an event and generating output: After
the sensor values are obtained at the OS, the app event
handler is invoked with the corresponding sensor data packed
into an event object as arguments. To actually leverage the
domain-level behavior, we first need to understand when/which
the event values are useful/not useful before processing
them. For example, a swipe-up in Fig. 1 may only be
relevant when the game has a pokemon displayed for the
user to swipe up and has no effect otherwise. To under-
stand whether there is scope for such “wasted processing”
in the game execution, we present the % of events that
resulted in no change in the game state at all in Fig. 4.
We  observe
that, in all the
workloads,
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catapult to release an object aimed towards a target. But,
when the catapult is stretched to the maximum, no matter
what the user swipe action is, it has no effect on the game.
Thus, it leads to the highest useless events (43%). If such
useless events are identified before processing them, we can
(i) save energy from not executing CPU and (ii) not invoke
the accelerators. To do so, we could use prior occurrences of
events to track whether it resulted in output changes or not
and then short-circuit subsequent occurrences. Such lookup
table approaches have been studied in the past [3, 14] in the
context of scientific computations. However, in the context
of mobile game executions that are already draining battery,
there are three main questions to determine its feasibility: (i)
are the inputs and outputs reasonably small to fit a lookup
table?, (ii) are all the input/output locations known apriori?,
and (iii) is there any dynamism/variations in loading inputs
or generating outputs among repeating instances?

III. IMPRACTICALITY OF LOOKUP TABLE APPROACH
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Fig. 5: Compute scenarios: (a) has determinis- record itself
tic locations for input/outputs; (b) has varying consisting
input/output locations and count. of the

input/output values seen in prior executions. Using this
history, future executions can index into a particular record
based on the current input values, and get the outputs directly
without actually executing the computations. For such an
approach to be feasible, all the locations from where the
inputs are loaded and outputs are stored should be known
apriori (Fig. 5(a)). However, the various hardware components
involved in the compute black box (CPU cores and IPs) in a
mobile SoC often involve dynamic memory accesses during
execution, as shown in Fig. 5(b) — where two instances of the
computation (shown as different shades), consume varying
number of inputs from varying locations, and also produce
outputs to store into different locations.

To overcome the variability and still use a lookup mecha-
nism, we consider the lookup table to contain the input values
from all the possible input locations, i.e., union of all the input
locations; and short-circuit the execution for all the possible
outputs, i.e., union of all output locations. We study the impact
of this approach for a sample game execution, AB Evolution
[15], by plotting the size of the lookup table necessary for
short-circuiting varying portions of the game execution in
Fig. 6. Here, the x-axis plots the execution coverage in terms
of the % of events weighted by the number of dynamic
instructions each instance of the event processing executed —
to account for the dynamism in context-sensitive processing.
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entire memory capacity (6GB) to short circuit 3%, and the
entire SD card capacity (64GB) for short-circuiting 39% of
the execution. This is because:
e Since this approach includes the union of all the input/output
locations in each record, the sizes of the records are huge.
e In addition, the input values used by each event are not
common and can have a wide range of values — resulting
in millions of records in the lookup table. This is further
exacerbated by the fact that games execute a large number
of events, causing the lookup table to explode in volume.
e Not utilizing the output redundancy: As illustrated earlier
in Fig. 4, up to 43% of outputs are exactly the same as prior
executions. While even a one byte difference in the input
record can potentially create a new entry in this lookup table
approach, the outputs are still going to be the same for up
to 43% of the events.
While prior works use lookup tables to optimize redundant
output generations in other workload domains [3, 14], there is
a clear contrast in games, where the table grows in both row
size and number of rows. Thus, we next look into reducing
both these aspects by exploiting the innate characteristics of
input-outputs observed in game executions to identify the best
heuristics to detect and short-circuit redundant computations.

IV. INPUT-OUTPUT BEHAVIOR OF EVENT PROCESSING

In order to overcome the above drawbacks of lookup table
size, we need to answer the following questions: what is in
these huge input/output records?, are all these necessary to
capture the redundant outputs in Fig. 4?2, if not, what parts of
input/output to keep? and what to trim down? To answer, we
define the categories of inputs the lookup table should contain,
and use the definition to explore the feasibility of trimming the
inputs/outputs of event processing, while minimizing errors.

A. Inputs Characteristics

For processing events, the execution not only takes the sen-
sor events as input, but also the internal application state data
from memory/storage, and external data from network/cloud.
These three categories of input data respectively reside in
different locations: Event Objects (In.Event), Previous Execu-
tion Output (In.History), and External Sources (In.Extern). To
understand whether they are amenable for memoization or not,
we next study their individual size/location characteristics in
detail for an example execution of AB Evolution game in Fig.
7a by plotting the size spread of each of these categories in
the x-axis and their cumulative % occurrences among various
events processed during the game execution in y-axis.
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Fig. 7: Example characteristics of AB Evolution game illustrates that (a) the three types of inputs vary in sizes and vary for different
instances of event processing; (b) likewise, the three types of outputs also vary similarly; and (c) the reason for such variations is

the dynamism involved in these game executions.

Event Objects (In.Event): These contain the sensor values
from user interactions and are passed as arguments to event
handlers. Fig. 7a (x-axis) shows that the size of In.Events are
relatively small and varies from 2 to 640 bytes (different event
types have different sizes). While all event processing consume
In.Event data, these inputs are also easily located using their
object handles, and have fixed size for the same event type. For
example, the event handler for detecting a change of swipes,
always gets a MotionEvent object of a fixed size passed as
argument to the handler — making the handler know its location
in memory. Previous Execution OQutput (In.History): While
In.Event data are instantaneous user interactions captured from
sensors, the game needs the context involved in the execution
progress. To understand the huge spread of sizes for In.History
in Fig. 7a (600 bytes to 119 kB), we next use the example in
Fig. 7c. Here, a user playing some AR game has two options
to walk in. If it is an empty room, processing the camera
feed will result in a plain surface to render the AR objects on
top. Owing to the simplicity, the input data is also relatively
small. On the other hand, if the room is cluttered with a lot of
physical objects, the camera feed generates many options for
rendering the AR objects, making the input size larger. This
user input-based data size variation illustrates that this input
cannot be found in static memory locations and, as seen in Fig.
7a, In History is consumed as input in 47% of the execution.

External Sources (In.Extern): This is the data received from
outside the scope of an application execution. For example,
data from the cloud, network, etc., are not within the scope of
the application executing inside the phone. We observe from
Fig. 7a that In.Extern input is only used in the < 0.05% of the
events, as most of the images/audio, etc. are read from external
sources only a limited number of times during execution and
are stored in memory for future (becomes In.History). Note
that, the audio, images etc. are also huge in size and thus
consume 1MB size of inputs in those instances of execution.

To summarize, In.Event can be used to index into the lookup
table because of their ubiquitous occurrence (53%) in event
processing and their fixed-size and fixed-location property.
On the other hand, In.History and In.Extern do not have a
fixed size and also are not statically located in the memory.
Therefore, it is impractical for using them in lookup tables.

B. Shrinking the table using event data to lookup

Stemming from the previous characterization, we next study
the effects of trimming the naive lookup table by using only
the input fields from In.Event categories for indexing the table.
Since this scheme only uses In.Event data to index into the
lookup table, there is a chance that it can lead to wrong
outputs. For example, if a swipe up event is generated in
the example in Fig. 1, it may lead to increase in a user’s
game score output only when the Pokemon object is displayed
(In.History category). When the object is not displayed, the
swipe up event will not result in any change. By considering
only the swipe event (In.Event data) to index into the lookup
table, and not using the knowledge of whether a pokemon is
being displayed or not (no In.History data), the memoization
may sometime lead to correct outputs and erroneous outputs
some other times as well.

To understand the impact of such a scheme on both
execution coverage and erroneous outputs, we present the
differences in employing In.Event based memoization with
respect to the naive lookup table approach in Fig. 8(a).
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The breakdown of erroneous outputs. explored  in
Sec. III (19GB in Fig. 6) for short-circuiting 27% of the

execution. This lookup table can easily fit in the memory,
and can even reside in the software [16].

While this can help in improving the overall energy effi-
ciency, this scheme can match more than one possible outputs
for 22% of the total execution. Since there is no way of
knowing which of these possible outputs is correct without
additional input data, namely the In.History and In.Extern
inputs that are not known prior to execution, this scheme



cannot be realized for short-circuiting redundant events. Thus,

the clear advantage of implementing a much smaller lookup

table by only indexing the In.Event data is not possible as it
can result in erroneous outputs.

Note that, similar to different input categories, outputs also
belong to the categories below. Fig. 7b shows that there are
three categories of outputs:

e Out.Temp: Temporary responses from a game to the user
such as a displayed frame block, vibrate/haptic feedback
etc., are categorized as Out.Temp. Even if this category
of outputs is short-circuited to a wrong output value, the
execution itself does not get affected except for the par-
ticular user reaction. This could still go unnoticed by the
user and can result in expected correct execution progress.
Note in Fig. 7b that, these outputs are usually < 64 bytes
in size. For example, there may be a tile in the displayed
frame for the user that is wrong due to an erroneous output
from this In.Event based lookup table. Since 60 frames or
higher [17, 18] are displayed per second in these devices,
one frame’s tile being wrong will have little to no impact on
the user as well (displayed for < 16ms — while the user’s
reaction time is =~ 10 x —20x slower [19]).

e The other two categories, Out.History and Out.Extern
compliment the In.History and In.Extern respectively, i.e.,
Out.History outputs are used as inputs in subsequent
event processing and Out.Extern are outputs sent to the
cloud/network, etc. Therefore, if we short-circuit either
of the Out.History or Out.Extern outputs wrong, the
execution itself risks becoming erroneous as these outputs
are used subsequently as inputs to future executions. Thus,
as long as the erroneous results of this approach is not in
these two output categories, it could still be a useful tool for
identifying and short-circuiting redundant executions, albeit
with wrong Out.Temp outputs.

Fig. 8(b) shows the breakdown of erroneous outputs produced

as a result of this scheme and as seen, 44% of the erroneous

executions are Out.Temp, and so, even if it has errors, it
will only lead to minimal quality degradation to the user. On
the other hand, the remaining 56% of erroneous executions
fall into the other two output categories (Out.History and

Out.Extern) being wrong, and so, the scheme cannot be viable

to short-circuit redundant event processing.

We next analyze how such erroneous executions can be
avoided by augmenting this mechanism to still take advantage
of a relatively small lookup table.

V. SELECTING NECESSARY INPUTS (SNIP)

Motivated by the fact that ~ 600 bytes of In.Event fields
of the IMB input data are enough to short-circuit 14% of the
execution, we further investigate whether there are other “in-
fluential” input fields from In.History and In.Extern categories
that can help avoid erroneous outputs or not?. Since there is
no specific fixed location or fixed size known for these most-
influential/necessary input fields to identify, we actually need
to search the mega bytes of inputs that determine the correct
outputs when short-circuiting executions. Therefore, finding

necessary input fields could involve much complex techniques
such as scouring through gigabytes of profile data. We next
address this problem with our proposed SNIP approach.

A. Identifying necessary inputs

While dataflow analysis techniques such as [4, 20] traverse
through the dataflow graphs within a function or basic blocks
and find the necessary inputs for every output, such schemes
do not scale well to analyze executions spanning multiple
function calls, OS, and IP invocations, that are a common
occurrence in mobile game executions. Fortunately, scouring
big data to identify necessary fields are well known in the
machine learning domain, where mature techniques such as
Permutation Feature Importance (PFI [6, 7]) have already been
employed. In the context of identifying necessary input fields,
the PFI takes the lookup table described in Sec. III, and
trims it down by identifying a subset of input fields that is
most influential in accurately short-circuiting the output fields.
Towards achieving this, PFI searches through different random
permutations of input fields and measure the % output fields
that resulted in erroneous values. By repeating this process
for different permutations of input fields, it identifies the
permutation of input fields (usually a small subset of the input
fields), that results in the least erroneous outputs.

oo d Our goal is
sl to trim down
60% the number of
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Fig. 9: Permutation Feature Importance . .
[6] identifies the most influential input Towards this, Fig.

fields from all input categories. 9 demonstrates an
example execution of the PFI approach to identify necessary

input fields for AB Evolution game, where it starts with the
complete set of input fields (left most bar in the x-axis =
IMB size) to short-circuit all the output fields with 100%
accuracy, akin to the naive lookup table approach. Moving
from left to right in x-axis, PFI iteratively trims the input
fields further and further with not much loss of accuracy
among the outputs short-circuited (y-axis) at first — where
just 1% of output fields are erroneous even with the input
fields getting trimmed down to 1200 bytes. After 1200 bytes
however, the error rate rapidly increases — approximately 1%
for every ~50 bytes of trimming. These 1.2kB constitute the
most necessary input fields for this application.

To understand what category of inputs constitute these nec-
essary input fields, we also color-code the category of inputs
that got trimmed down from the previous input permutation
to the left, that resulted in the corresponding decrease in the
% of outputs that can be short-circuited with 100% accuracy.
The right most bar belongs to In.Event category, indicating
that just 50 bytes in In.Event category can short-circuit 12% of
the output fields with 100% accuracy. Similarly, PFI also auto-
matically identifies around 1kB of input fields from In.History
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Fig. 10: Overall flow of the proposed methodology

category at various points of x-axis to be necessary for short-
circuiting the execution. It also identifies some of the fields
from In.Extern category as necessary. In total, these fields
only represent =~ 1.2kB of data (approximately 0.2% of the
total input fields), and can predict 99% all of the outputs in
the event processing with 100% accuracy. On the other end
of the spectrum, using PFI approach can disregard all of the
remaining 99.8% of the input fields with only 1% of the output
fields with erroneous values. And, in order to short-circuit the

1% of output fields with 100% accuracy, we also need all

the remaining input fields in the lookup table. As mentioned

earlier, we can still tolerate erroneous executions if all the 1%

of the erroneous output fields belong to the Out. Temp category.
Towards using PFI for picking all necessary inputs, we need

to ensure that SNIP to address the challenges below:

e Minimizing overheads at the mobile phone: PFI trains on
profile data that typically exceeds the total storage capacity
of a mobile phone (Fig. 6). Thus, we need to employ
mechanisms with minimal overheads to transfer the profile
data to an offline cloud and only get the necessary input
fields back from the cloud.

e Dealing with correctness from profile: Since the necessary
input combination produced by PFI can also have certain a
% of erroneous output fields (for just 1% of the outputs),
if those fields belong to Out.History category, it can subse-
quently cause the whole execution to be erroneous.

e Dealing with correctness at runtime: Since PFI operates
on profiled data, it is not clear if the profile captures all the
scenarios/input variations that can occur during execution.
In case of an insufficient profile, PFI can miss learning some
of the necessary input fields, which can result in a higher
% of erroneous outputs.

B. Methodology

Fig. 10 shows the overall flow of the proposed methodology
with the following steps:
Record and send events to cloud: The first step in SNIP is
to record the different inputs and outputs of event processing
observed when the user is playing a game. This can be
done either during the rigorous testing phases involved in
app development [21] or continuously when users play the
game. We describe the latter approach in Fig. 10. As recording
the input-output of event processing is data intensive (Fig.
6), SNIP records only the event inputs and send them to the
cloud. To trace these event data, future android versions can
instrument the Binder instances from Android HAL to dump
all the events into a background service similar to logcat [22].
In our experiments, we use the debug features of Android
Studio to record these events of the phone connected to an

Android Studio [23] host. Since camera is not a part of the
sensorhub, we leverage the existing screen record features in
the debuggers to capture the camera feed.

Run app on AOSP Emulator and build the profile: At the
cloud, we use an offline profiler based on the AOSP emulator
setup [23] running the game app with input events from the
previous step in Fig. 10. In order to capture the input-output
behavior accurately, the recorded events are fed in the same
manner as if the user is playing the game once again in the em-
ulator using additional tools such as [21, 23, 24]. During this
emulation, we dump the input and outputs consumed by the
event processing (across various game execution threads) by
instrumenting the emulator to record memory traces [24, 25]
along with additional information about the source of the
data accesses (e.g., CPU instruction, IP, sensor hub, etc.). To
achieve this, we use various tools in the existing Android
framework such as heap profiler [26] to capture the whole
memory dump and function call execution trace from Android
Studio. On top of the traces, we use a set of analysis tools such
as apat [27], hprof and dmtrace [23] to process the memory
dumps and obtain the exact input and output addresses, the
data in those addresses (from the memory dump) and the call
stack.

PFI gets necessary inputs: Once the input-output data is
available from the previous step, SNIP runs the PFI technique
on the profiled data to get the necessary input fields. To ensure
correctness during execution, SNIP allows two options:
Option 1: Developer intervention: This option is useful when
PFI is applied on the testing phase of app development, where
the necessary input fields from PFI, can be fed back to the
app developers for corrections as shown in Fig. 10. As seen,
the necessary input fields are mapped to the source code’s
variables using the additional information tracked during the
above profile phase, and the app developers can fine tune
the necessary inputs by adding more necessary inputs and/or
marking Out. Temp variables that can tolerate errors.

Option 2: Continuous learning: Instead of statically fixing
the necessary inputs for an app during the development stage,
SNIP also facilitates continuous learning by just looping
through the initial steps (without developer intervention stage)
by recording events, building the profile and developing a PFI
based lookup approach repeatedly when the user is playing
the game. This option is more generic than the developer
intervention, as it allows to fix any short comings due to
insufficient profile data. We will demonstrate in Sec. VII that
this continuous learning can effectively adapt and control the
erroneous executions based on user behaviors.

User feedback vs. Options 1 and 2: While SNIP already
could use developer feedback to decide on whether an erro-
neous output field will impact the execution, user experience
rating can also be taken as feedback to understand this impact
as examined in [28]. In this paper, we have limited the scope to
energy efficiency, without unduly impacting user experience.
We will conduct user experience studies in the future.

Using the lookup table during execution: After the PFI
based lookup table is built, it contains only the necessary



inputs and is subsequently sent to the device as an over-the-air
update, along with additional code instrumentation as shown
in Fig. 10. As seen, the lookup table is loaded as a hash table
during app initialization. During execution, on any event, the
table is indexed with the event hash-code and if hit, all the
other necessary inputs are loaded and compared against the
corresponding important input entries in the lookup table. If
the comparisons lead to a match, the execution is directly
short-circuited. Else, process the event as baseline.

Thus, SNIP could achieve minimal overhead, and also tunes
towards a user’s game play to potentially short-circuit all the
redundant event processing. We next evaluate whether SNIP
could actually be beneficial to game executions or not (in
comparison to baseline and state of the art), and if not, how
to minimize the short comings.

VI. EXPERIMENTAL SETUP
A. Game Workloads

We consider a mix of both open source and off the shelf
games from Play store with a mix of input data characteristics
as described below, to study the effects of SNIP on a wide
spectrum of game workload execution behaviors. All these
apps are consistently ranked as top games in Play Store [29].
Simple Touch based games: Simple In.Event based games
such as Colorphun [10] and Memory Game [30] involve the
user to touch specific places on the display to score and make
forward progress. These games are also light on graphics and
compute components, and mainly use CPU and display for
most of their execution.

Swipe based games: Games such as Candy Crush [31] and
Greenwall [32] (open source version Fruit Ninja [33] game)
involve swipe as the major In.Event input, and also have more
animations in the game outputs compared to the simple touch
based games. These games also display more components
on the screen compared to touch based games, with which
the users can interact, performs animated reactions, and more
computations in each event processing as well.

Multi In.Event games: AB Evolution or Angrybirds Evolu-
tion [15], Chase Whisply [11] and Race Kings [12] games have
much more complex In.Event objects involving drag, tilt, and
multi-touch events. Unlike the above four games, these games
also use 3D rendering in the screen with the GPU heavily
involved to process the events, that involve heavy physics
computations [34]. In addition to other IPs, ChaseWhisply also
uses the camera feed continuously to render AR objects in it
and display them to the user.

B. System Setup

All our studies and experiments are conducted in a Pixel
XL class mobile device, that has a Qualcomm Snapdragon 821
SoC [35] containing Quad-core Kryo CPUs, a 4 GB LPDDR4
memory and a 32 GB internal storage, and is powered by a
3450 mAh battery. Using this hardware for our experiments
has two specific objectives, namely, (i) measure the energy
consumption of the different hardware components in the app
execution; and (ii) record the event data during app execution

to subsequently send to cloud to follow the steps in Sec. V.
We next describe the system setup to achieve the objectives.
Measuring the energy at hardware components: While
there are multiple ways of measuring energy at the hardware
[36-38], we use Qualcomm’s Trepn power monitor app [37]
installed in the phone, that can tap into any process or the
whole system execution to collect detailed stats on battery
consumption, CPU, memory, GPU, and other hardware usage.
To record individual components’ energy consumption, we
deploy specific microbenchmark apps to use only specific
components, namely, CPU, CPU+memory, display, sensors,
camera, audio and video codecs and measure their power
consumption using the Trepn app. With this system, any
game’s events recorded (using the process described next) can
be plugged-in with the power consumption of the different
components to get a detailed time series view of component
level energy consumption in the course of execution.

To compute the duration taken to drain a 100% charged

battery, we also make use of the above system to measure the
game play’s power consumption behavior over a duration of
~ 5-10 minutes, to calculate how long the execution will take
to consume 3450 mAh (100% battery capacity).
Recording the events in game execution: In order to record
all the events occurring during execution (as described in Sec.
V-B), we customize the Android OS to log all the event data
occurring in the execution. In our experiments, we connect the
phone to an Android Debugger [39] client and collect the event
logs directly and use it for building the profile with the setup
described earlier. However, we envision that the system will be
able to transfer the event logs to cloud from any smartphone
in the future. While capturing all the sensor activities and
events are straightforward (by instrumenting binder threads),
capturing the camera feed is a special case because of how the
hardware is built in modern SoCs [35]. For tracking camera
events, we run a screen record process that simultaneously
record the camera feed into a video file that are sent to the
cloud for building the PFI. In the future, the screen record
feature in upcoming Android versions [40] can be leveraged to
accomplish this across all apps. We next use this experimental
setup to study the effectiveness and drawbacks of SNIP.

VII. RESULTS
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specifically test the dif-

ferent aspects of our

proposal namely, opti-
mizing only the CPU part [14, 42], optimizing only the IP
part [43] and the lookup table overheads. They are:

e Max CPU: To study the effects of short-circuiting the CPU
computations alone using prior approaches such as [3, 14,
42] for game executions, and also understand the energy
gap between optimizing just for CPU execution (example

TABLE I: Example Code in Games
and what parts can be optimized by
the prior works.



in Table I) vs optimizing the whole SoC in SNIP, we present
the Max CPU scheme. Note that, this scheme also assumes
quantifies the maximum benefits from techniques such as
[42] which assumes all data to be known apriori (recall from
Fig. 5(a)), whereas the game execution needs our proposed
lookup table solution to find all inputs apriori.

e Max IP: Prior approaches such as [43] show that IPs
can be switched to sleep states when they are idle. This
scheme studies the impact of such techniques in game
executions (example in Table I) and also quantifies the gap
between short-circuiting just the IP calls vs the whole event
processing in SNIP.

e SNIP: This is our proposed technique, where both CPU and
IPs can benefit from avoiding redundant event processing
and hence both IPs and CPUs can save their energy.

e No Overheads: This scheme follows the exact same
optimization steps of SNIP. In addition, it does not incur any
overheads in terms of lookup table costs and comparisons
on each input event processing and shows the scope for
future optimizations in this domain.

A. Energy benefits and overheads of SNIP approach

We next discuss the energy benefits from the schemes
described earlier and the reason for these benefits in Fig. 11.
First, Fig. 11a shows the energy benefits for all the schemes
w.r.t baseline execution, where we observe that both Max CPU
and Max IP have limited energy benefits in games, where Max
CPU can save 0.5% (Chase Whisply) to 13% (Race Kings),
and Max IP saves 0.7% (Memory Game) to 9% (Candy Crush)
in terms of energy. In contrast, by taking both SNIP can benefit
anywhere between 24% (Race Kings) to 37% (AB Evolution)
of the event processing energy, translating to an extra battery
life of 1.6 hours on an average and a maximum of 2.6 hours
in Colorphun game. This benefit is mainly from the better
opportunity to short-circuit the event processing end-to-end
instead of optimizing only certain parts of the execution as
shown in the example code in Table 1. For example, Max
CPU can only optimize repeated CPU Func; and not the IP;
calls and Max IP can optimize for only the /P, invocations.
Quantitatively, Fig. 11b shows the % of executions that can be
short-circuited by each of the above schemes. As seen, Max
CPU and Max IP could potentially short-circuit a maximum
of 26% and 15 % of the execution for Colorphun but the
energy gains from Colorphun is just 0.6% and 5% respectively.
This is primarily because Colorphun game is already a light
weight application, and even the overheads for looking up the
necessary inputs (Fig. 11c) compares 7.5kB of data on every
event. On the other hand, SNIP can potentially short-circuit
anywhere between 40% (Race Kings) to 61% (Candy Crush)
of the execution with an average scope for short-circuiting
52% of the execution — that translates to 32% average energy
savings (or 1.6 hours of extra battery life).

Note that, SNIP approach also has additional overheads
as seen in Fig. 11lc, where it needs to load a lookup table
(memory operations) and compare against each and every
necessary input for that event (Comparisons x PFI Input

Size) in the table in order to find when to short-circuit the
execution. In order to measure this overhead, we also present
SNIP scheme without any overheads from these comparisons
to save additional energy of anywhere from 1% (Colorphun,
Greenwall, and AB Evolution) to 3% (Race Kings) with the
exception of 12% in Memory Game — due to the high amount
of comparisons for each event processing. On an average, the
overheads in SNIP approach can consume 3% of the execution
energy — indicating the PFI based Selecting Necessary InPuts
scheme to be viable, software based alternative compared to
the traditional memoization approaches.

B. Continuous learning to avoid developer intervention

The above analysis assume the profile and the developer
instrumentation to accurately capture all necessary input fields
for the execution to result in correct execution. However, in
practical purposes prior studies such as [44] show that users
generate vastly different events/inputs and it is important for
any event learning approach such as PFI in SNIP to fine tune

the learning continuously (Option 2 in Sec. V-B).
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Fig. 12: Avoiding developer intervention is
possible with adaptive, continuous learning.

behavior contin-
uously. We plot
the different in-
stances of the same user playing a sample game in X-axis,
and plot the % erroneous output fields in y-axis as a result of
short-circuiting using SNIP without developer intervention for
AB Evolution game. In this experiment, we artificially keep
the initial few iterations of the profile to be insufficient for PFI
to not capture all the necessary input fields of the subsequent
execution. Therefore, we also observe the initial few iterations
of short-circuiting using PFI to be approximately 40% erro-
neous for the first few instances of execution. However, as
more and more instances of user events get to the cloud, a
more accurate lookup table is built. Thus, after a few initial
bad runs, the % of erroneous output fields get to < 0.1% in
just 40 training epochs.

To avoid developer intervention (Option 1 in Sec. V-B), one
could train the PFI model and test on subsequent event records
till a confidence threshold is reached. This could ensure that
the user will only start experiencing PFI based short-circuiting
when the % of erroneous output fields is negligible. As a
future extension, the profiler can also direct the mobile phone
to “clear” the PFI lookup table if it detects the error rate to
worsen (although not observed in our experiments), as well as
receive user feedback on the quality of execution — to even
“turn off” SNIP feature.

C. Overheads and limitations

For SNIP to be effective, the mobile phone should just
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Fig. 11: (a) Energy benefits using various schemes; (b) The % execution that can leverage each of the optimizations; (c) The
overheads in SNIP are due to the extra energy spent at the CPU and memory for looking up the table before each event processing.

capture and send the user events to the server. Therefore, at
the client side, the event collection overhead is negligible.
However, at the backend, processing 2 minutes game play
to get a sleek lookup table could take around 2 days of
processing in a 48 core, 64GB memory Xeon ES class server.
In this process, the lookup table size gets shrunk from 100s
of GBs to 600MB. While this back-end overhead is costly,
techniques such as federated Al [45] can be explored as future
research directions for reducing the backend overheads as well
as performing collective learning.

VIII. RELATED WORK

We next discuss the related works to SNIP below:

A. Memoization

Prior works such as [3, 14, 46] have built look up tables
(both in hardware and software) for short-circuiting such
repeated computations in the CPU execution contexts for
scientific workloads. For example, [3, 14] use hardware table
to short circuit data flow graphs based on register informa-
tion, [16, 47] uses a software based compiler and runtime
memoization engine, [42] replaces frequently executed hot
codes with a trained CNN engine to approximately short
circuit the execution. However, as the example code in Table
I illustrates, these prior works cannot be directly adopted to
fully exploit short-circuit the end to end execution from event
generation and all the nested function calls crossing app/OS/IP
invocations occurring in a mobile game execution.

B. Mobile SoC Optimizations

In mobile SoC, many prior works such as [13, 43, 48] target
optimizations towards a single component such as CPU [49-
51], video codecs [52, 53], sensors [54, 55], interconnects [48],
memory [56], neural/vision processing [57] and battery [58,
59], and while considering the whole SoC, works such as [56]
aim to meet the QoS requirements of frame based apps by
reorganizing the IP scheduling. The most related work to our
proposal is [43] where individual IPs are aggressively switched
to sleep states when they are idle, to save energy. While SNIP
also aims to conserve energy of the whole SoC, it creates
more opportunities by exploiting the significant occurrences
of redundant event processing and snips the computation to
get the outputs directly.

C. ML based Optimizations

ML is emerging as a useful tool to optimize different parts
of the system such as prefetchers [60], branch predictors
[61], approximating executions [42] and scheduling [58, 59]
in the recent years. Particularly techniques such as [58, 59]
are already implemented in mobile phones, and they focus
on better user interactions, manage the battery as per user
behavior, etc. by training appropriate ML models for them.
However, Android battery optimization techniques are not
domain specific and just learn to suspend/kill idle threads in
the whole system. SNIP exploits the redundant events in these
games to bring additional gains on top of the existing energy
savings from the Android battery optimization techniques.

IX. CONCLUSIONS

Although gaming is a widely popular domain of applica-
tions in mobile phones, these applications drain the battery
much faster than many other classes of applications. This
is primarily because of the user-driven interactive mode of
operation, where the generated events continuously stress the
SoC. In this paper, we propose a software solution, called
SNIP, to minimize the energy consumption by exploiting the
repetitive nature of inputs and outputs. While memoization
can identify and short-circuit redundant events, the event
processing involves multiple function calls spanning to even
OS and IP invocations and hence, the lookup table size
becomes prohibitively large. Our proposed solution SNIP uses
a machine learning technique on the execution profile, to trim
down the lookup table size by keeping only a small subset
of necessary inputs needed to generate correct outputs. The
complete SNIP design consists of a lightweight event tracker
at the smartphone, a cloud based offline profiler, a Permutation
Feature Importance (PFI) module to trim down the lookup
table size, and subsequent compiler based code instrumenta-
tion to leverage the PFI lookup table during execution. We
have implemented and evaluated SNIP approach on a Pixel
XL phone and observe that we can save 32% energy in 7
popular games while being almost completely error free.
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