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ARTICLE INFO ABSTRACT

Effective measurement of seasonal variations in the timing and amount of production is critical to managing

Keywords: spatially heterogeneous agroecosystems in a changing climate. Although numerous technologies for such mea-
Agricultural management surements are available, their relationships to one another at a continental extent are unknown. Using data
Eddy covariance collected from across the Long-Term Agroecosystem Research (LTAR) network and other networks, we inves-
GPP tigated correlations among key metrics representing primary production, phenology, and carbon fluxes in
Grqwing season length croplands, grazing lands, and crop-grazing integrated systems across the continental U.S. Metrics we examined
ir::;a,;::; Agroecosystem Research (LTAR) included gross. primary productivity (GPP) esti'mated from eddy covariance (EF) tower's and modelled from the
network Landsat satellite, Landsat NDVI, and vegetation greenness (Green Chromatic Coordinate, G¢c) from tower-
Landsat mounted PhenoCams for 2017 and 2018. Overall, our analysis compared production dynamics estimated from
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three independent ground and remote platforms using data for 34 agricultural sites constituting 51 site-years of
co-located time series.

Pairwise sensor comparisons across all four metrics revealed stronger correlation and lower root mean square
error (RMSE) between end of season (EOS) dates (Pearson R ranged from 0.6 to 0.7 and RMSE from 32.5 to 67.8)
than start of season (SOS) dates (0.46 to 0.69 and 40.4 to 66.2). Overall, moderate to high correlations between
SOS and EOS metrics complemented one another except at some lower productivity grazing land sites where
estimating SOS can be challenging. Growing season length estimates derived from 16-day satellite GPP (179.1
days) were significantly longer than those from PhenoCam Gcc (70.4 days, pagj < 0.0001) and EC GPP (79.6 days,
Padj < 0.0001). Landscape heterogeneity did not explain differences in SOS and EOS estimates. Annual integrated
estimates of productivity from EC GPP and PhenoCam G¢c diverged from those estimated by Landsat GPP and
NDVI at sites where annual production exceeds 1000 gC/m 2 yr™?. Based on our results, we developed a “metric
assessment framework” that articulates where and how metrics from satellite, eddy covariance and PhenoCams
complement, diverge from, or are redundant with one another. The framework was designed to optimize
instrumentation selection for monitoring, modeling, and forecasting ecosystem functioning with the ultimate
goal of informing decision-making by land managers, policy-makers, and industry leaders working at multiple

scales.

1. Introduction

An accurate understanding of agroecosystem dynamics is critical for
the design of management and policy strategies in a changing climate.
Climate change can alter growing seasons, water availability, and pro-
duction potential (Tracy et al., 2018). These changes may vary across
agroecosystems spanning a wide range of climates, operation scales,
production commodities, management practices, and stakeholder per-
ceptions. Monitoring agroecosystems from pasture or field-level to
landscape and regional scales is thus necessary to inform management
and policy decisions. Currently, efforts to monitor agroecosystems at
regional to global scales rely largely on time series data collected from
satellite remote sensing (Weiss et al., 2020). Day-to-day management
decisions at the field level, however, may be best served by ground-
based sensors that validate and verify satellite-derived metrics and
provide real-time, fine-scale estimates of crop or forage status (Browning
et al., 2015, Fritz et al.,, 2019). We have little understanding of the
varying relationships among sensor platforms in agroecosystems at a
national scale, which vary strongly in the amount and timing of pro-
duction, intensity of management, and degree of spatial heterogeneity.

Here we take advantage of data collected across the Long-Term
Agroecosystem Research (LTAR) network to investigate correlations
among several key ecosystem metrics across the continental U.S.,
including the consistency of metrics across sensors. We focused on
measuring phenology - defined as the timing of recurring events such as
germination and flowering, green-up, or senescence - as it is a key multi-
scale attribute in agroecosystems that is sensitive to management and
climate change. Phenology metrics, offer an effective means to assess the
utility of instruments used to monitor land surface dynamics in diverse
agricultural production systems. For instance, the phenological state of
different crops dictates the timing of pollination and pest and fertilizer
treatments, while livestock production can be optimized by matching
animal densities and distributions to seasonal dynamics in forage pro-
duction (Browning et al., 2017, Seo et al., 2019). However, such fine
scale phenological information is not often available to land managers,
and is further complicated by changing growing seasons. Shifts in
growing seasons in response to climate change have been reported
across many ecosystems worldwide (Kukal and Irmak, 2018), with
regional differences in the timing and magnitude of change (Buitenwerf
et al., 2015, Garonna et al., 2016). Increased global greenness has been
attributed to an elongated growing season resulting from changing crop
phenology (Gao et al., 2019). Phenology metrics, such as start and end of
the growing season and growing season length, can be used to estimate
the timing and amount of primary production along with its seasonal
and interannual variation. Thus, understanding patterns such as the
start, end, length, and shape of the growing season defined via multiple
metrics is key to integrating data across diverse sites and sensors to
better understand past trends and forecast future ones (Toomey et al.,

2015,Wu et al., 2017, Richardson et al., 2018b).

The USDA Agricultural Research Service LTAR network, singly and
in partnership with other networks, provides consistent measurements
across locations that span production system types, climatic and pro-
ductivity gradients (Baffaut et al., 2020). Management activities at these
locations can result in abrupt changes in biomass, such as end of season
harvest, or gradual changes, such as the use of fertilizers that progres-
sively enhance biomass over the growing season. Changes in biomass
due to management may or may not be discernible depending on the
limits of detection. For example, heavy grazing due to high livestock
density on a pasture can be readily detected due to rapid decreases in
aboveground biomass (Fan et al., 2011) whereas low density livestock
grazing may be undetectable or even increase aboveground biomass
through compensatory growth and/or manure fertilization (Belsky,
1986, Milchunas and Lauenroth, 1993, Frank and McNaughton, 1993,
Briske et al., 2008). High spatial and temporal heterogeneity is inherent
to agricultural landscapes (Hank et al., 2015), and requires the use of
field-scale sensors such as eddy covariance towers and PhenoCams to
detect important variations in phenology. To improve and extend
monitoring of agroecosystems to broader spatial extents, it is critical to
integrate data from both ground-based and satellite sensors. Thus, it is
necessary to compare the strengths and limitations of productivity
metrics across platforms and identify instances where satellite and
ground-based sensors are redundant, diverge from, or complement one
another. A deeper understanding of these relationships is made possible
by sensor networks that share consistent data collection and data man-
agement protocols that produce interoperable data streams.

Several locations in the LTAR network are associated with, or share
data with other research networks, such as the PhenoCam Network
(Richardson et al., 2018a), National Ecological Observatory Network
(NEON; Keller et al., 2008), AmeriFlux (Novick et al., 2018), and Long-
Term Ecological Research Network (LTER; Knapp et al., 2012). Coor-
dinated, co-located collection of high resolution datasets, via partner-
ship among research networks, provides wider coverage of PhenoCam
imagery, eddy covariance-derived fluxes, and meteorological measure-
ments. Ground-based sensor data also complement the diversity of
remote sensing applications in agriculture (Weiss et al., 2020, Reiner-
mann et al., 2020), which currently make it difficult to track the wide
array of local management practices using a common ontology at a
nationwide scale.

For some applications, remotely-sensed data may be sufficient (e.g.,
Smith et al., 2019), but may not have sufficient spatiotemporal resolu-
tion needed to monitor diverse agricultural landscapes and meet land
management needs for rapid decisions at fine scales. Dependence on
data products derived from satellite remote sensing in places where
these products do not accurately represent the production dynamics
(due to large pixel size, obstruction by cloud cover, long return cycles
and lack of ground validation) can foster uncertainty for land managers
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(e.g., Butterfield and Malmstrom, 2009). Cases where satellite-derived
and ground-based metrics are commensurate and well-correlated
create opportunities to scale up interpretations of local information
more broadly. In cases where satellite-derived and ground-based metrics
are divergent, near-surface digital cameras, or PhenoCams, offer daily
images to link ground-based and remotely-sensed metrics (e.g.,
Browning et al., 2017, Norris and Walker, 2020).

Several prior studies compared near-surface and satellite sensors at
regional and continental scales (Balzarolo et al, 2016; Klosterman et al.,
2014, Toomey et al., 2015, Wu et al., 2017). There are cases of strong
correlation between growing season metrics (SOS and EOS) from Phe-
noCam and eddy covariance in plant communities with distinct
phenological profiles such as deciduous broadleaf forests (Toomey et al.,
2015). In addition, there are those of low correlation between estimated
SOS and EOS dates from MODIS vegetation index values and eddy
covariance that can be improved depending on plant functional type and
the fitting algorithm used (Wu et al., 2017). Satellite and near-surface
sensors (i.e., PhenoCam and eddy covariance) generally agree as long
as the temporal and/or spatial resolutions of satellite data are not too
coarse, and the landscape is homogeneous (Yan et al., 2019, Richardson
et al., 2018b). Browning et al. (2017) evaluated agreement between
greenness metrics from satellite and PhenoCam in a desert grassland
system and found good agreement when the focal species in the Phe-
noCam analysis was a conspicuous shrub, but not so when the focal
species was a less abundant perennial grass. Even in arid systems with
mixed vegetation, PhenoCams worked well when the focal species rep-
resented the system.

In this study, we hypothesized that growing season metrics from
satellite and near-surface sensors would be correlated and that the
strength of the relationships vary depending on the scale of observation
and spatial heterogeneity. Given a homogenous landscape, indices of
vegetation greenness and primary productivity derived from satellite
and near-surface optical sensors are expected to yield similar estimates
for phenological transition dates despite differences in spatial resolu-
tion. As landscape heterogeneity increases due to different land cover
types, vegetation structure, and/or agricultural practices, the corre-
spondence of phenology and productivity estimates from different tools
or sensors may decrease (Richardson et al., 2018b). For example, the
spatial scale of a tower-mounted digital camera (i.e., PhenoCam) can
vary with configuration and typically captures a portion of a single field,
while modeled estimates of gross primary production from satellite
(GPP; Robinson et al., 2018) are aggregated over 0.8 ha circa multiple
30-m pixels (or considerably coarser for MODIS) and could incorporate
several crop types and possibly non-agricultural areas. Eddy covariance
towers are typically situated to sample a specific crop or ecosystem, but
their footprint often exceeds a hectare in size and the CO, flux mea-
surement footprint changes dynamically in response to shifts in wind
speed and direction. Notably, while satellite estimates and flux tower
measurements can only measure land-cover trends in aggregate
(Browning et al., 2017; Yan et al., 2019), PhenoCams can identify
phenological profiles of specific elements in the camera field of view (e.
g., plant functional group or cropping system).

2. Objectives and questions

We aim to use our analysis as a foundation for optimizing the choice
of instruments for agroecosystem monitoring by: 1) evaluating differ-
ences in phenology metrics derived from three different sensor platforms
in different U.S. agroecosystems and 2) using these comparisons to
develop a novel “metric assessment framework™ to help researchers and
managers identify instances where satellite and ground-based sensors
are redundant to, diverge from, or complement one another.

Our specific research questions were:

Among sensors (eddy covariance, PhenoCam, and satellite), what is
the correlation between phenology metrics [start of season (SOS),
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end of season (EOS), season length, and related daily and annual
estimates of timing and amount of production]?

Do differences in temporal and spatial scale of sensor metrics account
for variability in SOS and EOS?

Does the degree of site heterogeneity (e.g., surrounding land cover
classes or cropping systems) correlate with variation in pairwise
comparisons of metrics?

3. Data and methods
3.1. Network sites

The USDA Agricultural Research Service LTAR is a network of 18
locations collaborating to evaluate strategies for the sustainable inten-
sification of agriculture in croplands, rangelands, and integrated crop-
livestock systems nationwide. Integrated crop-livestock systems use
both; in some cases livestock graze the crops directly and in others they
do not. LTAR locations spanning cropland, grazing, and integrated crop-
livestock production systems represent a diversity of land production
potentials, climates, management approaches, and agricultural products
(Spiegal et al., 2018). The network represents roughly 49% of the cereal
production, 30% of the forage production, and 32% of the livestock
production in the United States (Kleinman et al., 2018).

We obtained data from 15 of the LTAR locations where production
and phenology metrics were available to meet the criterion of having co-
located PhenoCam and eddy covariance data for years 2017 and 2018.
For clarity, we refer to study sites as ‘locations’ and use the word ‘site’ to
refer to instrumented towers; in 12 cases, locations have more than one
contributing site. We also included two managed locations in NEON
(Konza Prairie Agroecosystem, Jornada LTER) and two in the LTER
network (Kellogg Biological Station, Sevilleta). Jornada Basin is a
location in all three networks (Supplemental Fig. 1). All sites used in the
analysis conduct rainfed agriculture except PRHPA meadl and mead2
sites (center pivot irrigation), and the ABS-UF pasture site (archboldpnot)
which receives occasional pump irrigation during the dry season in
Florida (Nov-Apr; Baffaut et al., 2020). Site names are found in Table 1.

Long-term (1981-2010) mean annual temperature and rainfall for
sites in this study range from 5.6 °C (at Northern Plains and Great Basin
LTAR locations) to 22.7°C (ABS-UF LTAR location) and from 200 mm
(Sevilleta LTER location) to 1084 mm (ABS-UF LTAR location),
respectively (Supplemental Table 1). There were regional differences in
mean annual temperature and annual precipitation in 2017 and 2018
(Fig. 1). In general, the water-limited sites in the southwest U.S were
warmer than average in both study years. In 2018, most of the sites,
particularly those in the eastern US, were substantially wetter than
average. Precipitation in 2018 for the Great Basin LTAR sites was
approximately 80% of the long-term average.

3.2. Sensor data

3.2.1. Canopy greenness data from PhenoCams

PhenoCam data for the study sites were obtained from the PhenoCam
Dataset V2.0 (Seyednasrollah et al., 2019a; Seyednasrollah et al., 2019b;
Milliman et al., 2019). For the PhenoCam sites used in this study, digital
images were collected at 30-minute intervals continuously from 4 am to
10 pm. Canopy greenness time series data were obtained from these
images by delineating appropriate regions of interest (ROIs), defined by
site investigators, and calculating the green chromatic coordinate (G¢c)
for each ROI as:

Geec = Gpn/(Rpy + Gpn + Bpn) where Rpy, Gpy and Bpy are the
average red, green and blue digital numbers inside the ROIs, respec-
tively. After extracting Gcc values, time series were obtained from the
90th percentile of canopy greenness at 3-day intervals for use in esti-
mating phenological transition dates. In comparison to the 1-day time
series data, the 3-day time series data are more robust with regard to
random noise and hence they are used in this analysis. Details about the
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Table 1
Details for 34 PhenoCam and eddy covariance towers (constituting 51 site-years) used in this study along with details of the eddy covariance data sourcing and
processing.
Location Location EC Tower Phenocam Name Production EC Processing EC Data EC Site
(State) system Reference Source
ABS-UF FL archboldpnot archboldpnot grazing Gomez-Casanovas LTAR US-IL1
et al., 2020
ABS-UF FL ufona ufona grazing Gomez-Casanovas LTAR US-ONA
et al.,, 2020
CAF WA boydnorth cafboydnorthltar01 cropland Russell et al., 2019 Ameriflux US-CF1
CAF WA cookeast cafcookeastltar01 cropland Russell et al., 2019 Ameriflux US-CF2
CAF WA cookwest cafcookwestltar01 cropland Russell et al., 2019 Ameriflux US-CF3
CMRB MO asp goodwater cropland Wood et al., 2019 LTAR US-Mol
CPER Cco agm cperagm grazing NA LTAR US-CX2
CPER Cco tgm cpertgm grazing NA LTAR US-CX1
GACP GA arsgacpl arsgacpl integrated Russell et al., 2019 LTAR NA
GACP GA arsgacp2 arsgacp2 integrated Russell et al., 2019 LTAR NA
GB arsgreatbasinltar098 arsgreatbasinltar098 grazing Flerchinger et al., 2020  LTAR US-Rws
JORN NM jerbajada jerbajada grazing NA LTAR US-Jol
JORN NM neon NEON.D14.JORN. grazing Metzger et al., 2019 NEON NEON.D14.JORN.
DP1.00033 DP4.00200.001
KBS MI T3 kelloggcorn cropland Abraha et al., 2015 LTER US-KM1
KONA KS KONA NEON.D06.KONA. cropland Metzger et al., 2019 NEON NEON.D06.KONA.
DP1.00033 DP4.00200.001
LCB MA op3 arsope3ltar integrated NA LTAR US-OPE
NP ND h5 mandanh5 cropland Saliendra et al., 2018 LTAR US-NP1
NP ND i2 mandani2 cropland Saliendra et al., 2018 LTAR US-NP2
PRHPA NE mead1 mead1 cropland Suyker et al., 2005 LTAR US-Nel
PRHPA NE mead2 mead2 cropland Suyker et al., 2005 LTAR US-Ne2
PRHPA NE mead3 mead3 cropland Suyker et al., 2005 LTAR US-Ne3
PRHPA NE meadpasture meadpasture grazing Suyker et al., 2005 LTAR NA
SEG NM grasslands sevilletagrass grazing Anderson-Teixeira Ameriflux US-Seg
et al., 2011
SEG NM shrublands sevilletashrub grazing Anderson-Teixeira Ameriflux US-Ses
et al., 2011
TG TX tworfpr tworfpr integrated NA LTAR US-Tx2
UCB PA hawbeckereddy hawbeckereddy integrated Skinner, 2008 LTAR US-HWB
UMRB MN morrisnorth arsmorris1 cropland Saliendra et al., 2018 LTAR NA
UMRB MN morrissouth arsmorris2 cropland Saliendra et al., 2018 LTAR NA
UMRB MN rosemountcons rosemountcons cropland Griffis et al., 2005 Ameriflux US-Ro4
UMRB MN rosemountconv rosemountconv cropland Griffis et al., 2005 Ameriflux US-Ro5
UMRB MN rosemountnprs rosemountnprs cropland Griffis et al., 2005 Ameriflux US-Ro6
WGEW AZ Kendall Grassland kendall grazing Scott et al., 2015 Ameriflux US-Wkg
WGEW AZ Lucky Hills luckyhills grazing Scott et al., 2015 Ameriflux US-Whs
Shrubland
NEON- ND USxWD NEON.D09.WOOD. grazing Metzger et al., 2019 NEON NEON.D09.WOOD.
Wood DP1.00033 DP4.00200.001

PhenoCam dataset and image processing are discussed by Seyednasrol-
lah et al. (2019b), Seyednasrollah et al. (2019c).

3.2.2. Carbon flux data from eddy covariance towers

The eddy covariance data were obtained from three different sources
including: the NEON data portal (2 sites), AmeriFlux (4 sites), and
directly from the LTAR sites (14 sites). The number of flux towers per
location ranged from one at Central Mississippi River Basin LTAR
location to four at Platte River High Plains Aquifer LTAR location (see
Table 1, Supplemental Fig. 1). Briefly, three-dimensional sonic ane-
mometers and an infrared gas analyzer were mounted above plant
canopies to measure the three wind velocity vector components, sonic
temperature, and concentrations of water vapor and carbon dioxide at
10 or 20 Hz. These values were processed to 30-minute fluxes of carbon
dioxide and water vapor at the individual sites using standardized
equations (e.g., Burba, 2013; Aubinet et al., 2012). See Table 1 for more
details on the processing and source of the flux data for each site.

While the software to process the eddy covariance data differed be-
tween sites, the same post-processing algorithms were used. A custom
Python V3 processing script was used to complete the quality assurance
and formatting. For the flux data, this step checked that values were
within a physically realistic range de-spiking. Data were de-spiked using
a 5-day moving window, to remove flux values that deviated by more
than three standard deviations of the 5-day mean (Vickers & Mabhrt,

1997). Meteorology data were bounds checked and units converted as
needed. Relative humidity (RH) values were deleted if RH < 0% or if RH
> 102%. If not provided, saturation vapor pressure was calculated via
Buck (1981) for the calculation of vapor pressure deficit. Any specific
quality assurance/quality control needs were accomplished on a site-to-
site basis as part of the initial compilation and processing of the data.

The flux data were gap-filled using the nighttime respiration method
in the stand-alone R version of REddyProc with the net CO; flux parti-
tioned into gross primary production (GPP) and ecosystem respiration
(Reco) (Reichstein et al., 2005, Wutzler et al., 2018). After gap-filling,
the 30-minute data were converted to daily sums and averages for the
different flux and meteorology values were computed. GPP was con-
verted to grams of carbon per day (g C m~2 day!) and summed over
daily, weekly, and yearly timescales.

3.2.3. Production data from satellite

We included a satellite-derived estimate of Gross Primary Production
(GPP) in addition to the commonly-used unitless Normalized Difference
Vegetation Index (NDVI) because modeled GPP values provide a
straightforward comparison with GPP estimated by eddy covariance. We
used the Landsat GPP product by Robinson et al. (2018), which provides
GPP values at a 30-m spatial resolution on a 16-day time-step. This
product is based on the MOD17 algorithm (MODerate Resolution Im-
aging Spectroradiometer) (Running et al, 2004) whose coarse
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Fig. 1. Thirty year (1981-2010) mean and standard deviation of mean annual
temperature and total annual precipitation calculated from the 4-km gridded
daily PRISM data for the LTAR PhenoCam sites (PRISM Climate Group, 2004).
Deviations from long-term precipitation and temperature for 2017 and 2018 are
represented by symbols to put study years in context of long-term normals.
Production systems are indicated by color and location names identified
with text.

resolution (500-m, Ver. 6) is unable to capture the production response
at high spatial resolution. One of the original MOD17 algorithms’ main
features is that it is not constrained by the spatial resolution of the
different parameters used, therefore, inputs with finer spatial resolution
and the optimization of parameters that better reflect conditions across
the contiguous United States (CONUS) are used to characterize GPP and
NPP at 30 m pixel resolution. (Robinson et al., 2018). Even though NDVI
is one of the main parameters used in the GPP model, we evaluated it
because of its widespread use. NDVI values were computed using a
smoothing and climatology approach for gap-filling to create continuous
16-day Landsat composites (Robinson et al., 2017, Robinson et al.,
2018).

Using Google Earth Engine, we extracted Landsat GPP at each Phe-
noCam tower location to pair with corresponding PhenoCam and flux
tower data. Modeled Landsat GPP values were aggregated to 90x90-m
(3x3 30-m pixels) to be commensurate with flux tower footprints (Li
et al., 2008) and PhenoCam fields of view that can range depending on
sensor configuration (e.g., circa 7300-m? area estimated by Browning
et al., 2017). The original values of Landsat GPP were transformed from
kg Cm216-day ! to g Cm 2 day ! to make pairwise comparisons with
the daily PhenoCam and flux tower measurements.

3.3. Estimating season start and end date

For each site in the analysis, there are four time series: 1) PhenoCam
G, 2) eddy covariance (EC) flux measurement derived GPP, 3) Landsat
NDVI, and 4) Landsat-derived GPP. The PhenoCam and EC flux tower
measurements are daily while the Landsat GPP and NDVI values are
reported every 16 days. For every available year of each time series and
for each of the three data streams we estimated the start and end of the
growing season based on the rising/falling method described in Seyed-
nasrollah et al. (2019b). The PhenoCam dataset provides a pre-
processed transition date product, while the two GPP datasets were
processed separately with the same methodology. Each time series was
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truncated to a calendar year and smoothed with a locally weighted
scatterplot smoothing (LOESS) algorithm. The start of season (SOS) es-
timate was the first day in which the smoothed time series reached 50%
of the maximum value of GPP or G¢c, and the end of season (EOS) es-
timate was the last day of each calendar year when the smoothed time
series dropped below 50% of the maximum values. Before choosing the
50% threshold, we also tested thresholds of 10% and 25%. A 25%
threshold had similar correspondence among the three data streams for
all towers (data not shown). The 10% threshold had very low corre-
spondence due to the higher uncertainty signified by the lower initial
slope of greenness curves and high daily variability in the three time
series, especially in dormant periods.

We characterized growing season patterns (i.e., phenological pro-
files) by amplitude and shape of annual curves. In addition, we tabulated
growing season length (GSL) as the difference between EOS and SOS for
each year, site and sensor combination.

3.4. Comparing phenology and productivity metrics and landscape
heterogeneity

3.4.1. Phenology metrics

To evaluate correlations among SOS and EOS metrics from different
sensors, we made six pairwise comparisons of SOS and EOS dates among
all sites (i.e., PhenoCam vs EC GPP, PhenoCam vs satellite GPP, EC GPP
vs satellite GPP, satellite NDVI vs satellite GPP, satellite NDVI vs EC GPP,
and satellite NDVI vs PhenoCam) and calculated the Pearson correlation
coefficient for each combination. Not all towers had complete years for
all three data sets, thus the sample sizes for each comparison vary
slightly. We tested for differences in GSL using a 2-way ANOVA (sensor
x production system) and used a post-hoc Tukey test to identify the
pairwise differences.

We examined correlations between annual productivity estimated as
the total in-season integral for all time series via six pairwise compari-
sons between sites. The in-season integral was computed as the sum of
the smoothed time series within the bounds of SOS and EOS dates. This
corresponds to the annual GPP for the EC and satellite time series, and
provides a unitless measure of summed G¢c that has previously shown to
be correlated with GPP (Toomey et al., 2015, Hufkens et al., 2016).

3.4.2. Landscape heterogeneity

We assessed how site heterogeneity affects the mismatch of transi-
tion date estimates from different sensors. We used the 30-m Cropland
Data Layer (CDL, USDA-NASS, 2021) to calculate, for each tower and
year, the Shannon diversity index (H) of all pixels within a 100-m radius
(Shannon, 1948, Turner, 1989). We fit six linear models, one for each
pairwise sensor comparison, using H as an explanatory variable and the
absolute difference in transition dates as the response, with the expec-
tation that transition date mismatch would rise with increasing het-
erogeneity of surrounding cropland (i.e., a positive slope).

3.5. Aggregating management information

To provide management context for selected agroecosystems, we
present the sensor time series at two LTAR network (one cropland and
one grazing land) sites in 2017 and 2018. The Upper Mississippi River
Basin (UMRB) ARS research location in Stevens County, MN (45.6838°,
—95.8005°) has towers deployed in two adjacent fields planted with
soybeans in 2017 and wheat or corn in 2018. The UMRB cropland site
experienced a range of management activities on two fields across two
growing seasons. The first field, Field 1 South, was planted with soy-
beans in 2017 and with corn in 2018. The second field, Field 2 North,
was planted with soybeans in 2017 and wheat in 2018 followed by a
cover crop planted in late 2018.

At Central Plains Experimental Range (CPER) in Weld County, CO,
(40.8330°, —104.760°) towers are in part of an experiment comparing
the effects of traditional rangeland management (TRM; 10 herds in 10
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pastures) with collaborative adaptive rangeland management (CARM; a
single large herd rotated among 10 pastures) (Wilmer et al., 2018). At
CPER, the single large herd was rotated into the 123-ha (CARM) pasture
in June of 2017 (244 head of cattle) and late July of 2018 (280 head),
with each instance lasting approximately-two weeks. These short-term,
high intensity grazing events in the CARM treatment pasture were
contrasted with the traditional moderate intensity grazing treatment
(TRM) pasture (23 head in 2017 and 26 head in 2018 from early May to
late September).

4. Results
4.1. Phenological profiles across LTAR network and platforms

Phenological profiles for croplands had the highest daily GPP with a
single peak in productivity that was common across all sensor types
(Fig. 2). Grazing sites had lower daily GPP overall (relative to cropland
sites) and exhibited high between-site variability for all sensors (Fig. 2B,
E, H, K). Productivity profiles for integrated system sites had multiple
peaks in productivity across all sensors, with maximum GPP values
slightly lower than croplands (Fig. 2C, F, I). Across sensors, GPP from
eddy covariance towers demonstrated the highest daily and annual
between-site variability while satellite GPP had the lowest. Among
production systems, croplands exhibited the least inter-annual vari-
ability with integrated systems and grazing sites exhibiting the most
variability between 2017 and 2018 growing seasons (Fig. 2A, D, G, H).
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Mean growing season length (GSL) was significantly different across
production systems (F = 12.06, df = 2, p < 0.0001) and metric type (F =
36.4, df = 3, p < 0.0001). Growing season length estimates derived from
16-day Satellite GPP (179.1 days) were significantly longer than those
from PhenoCam GCC (70.4 days, pagj < 0.0001) and EC GPP (79.6 days,
Padj < 0.0001). Comparison of estimates of GSL by metric type revealed
mean GSL from satellite GPP and NDVI was longer than estimates from
PhenoCam Gcc (pagj < 0.0001) and EC GPP (pagj < 0.0001; see Supp.
Table 2). GSL from PhenoCam G¢c and EC GPP were not significantly
different (pagj = 0.888). Mean GSL differed significantly among pro-
duction systems and pairwise comparisons revealed that mean GSL for
cropland sites was significantly shorter compared to grazing sites (Fig. 3,
Padj = 0.0001) and integrated sites (pagj < 0.0001) but did not differ
between grazing and integrated sites (pagj = 0.482; Supp. Table 2).

4.2. Correlations among phenology metrics

Correlations (Pearson r) and root mean square error (RMSE) values
between the estimates for EOS across sensors were higher than estimates
for SOS (Fig. 4). Pearson correlation for SOS estimates between sensors
ranged from 0.46 to 0.69, while EOS estimates had values from 0.50 to
0.70. RMSE values for SOS estimates ranged from 40.4 to 66.2, while
EOS estimates ranged from 32.5 to 67.8. The largest RMSE corresponded
to EOS estimates between satellite NDVI and EC GPP (Fig. 4L). Outliers
for SOS estimates which drove the low correlations were primarily low
productivity grazing sites. Dates for 2018 SOS at two grazing sites were
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Fig. 3. Mean growing season length (EOS date - SOS date) from eddy covariance GPP, PhenoCam Gc¢c, Landsat GPP and NDVI time series by production system. Error
bars represent one SD. Letters in parentheses indicate significant groupings among production systems (along x-axis), and among metric types (along legend) using a

2-way ANOVA.

earlier via EC GPP than via PhenoCam (Fig. 4B) and three were earlier
than satellite GPP (Fig. 4C). Specific site references are provided in the
Fig. 4 caption.

When clustering along the 1:1 line is considered with the correlation
coefficient and RMSE, seasonal start and end dates from PhenoCams and
EC had high agreement and low RMSE values (40.4 for SOS, Fig. 4B and
35.0 for EOS, Fig. 4E) even with outlier SOS dates at grazing sites where
EC SOS preceded those detected by PhenoCam. The dynamics for EC
GPP and PhenoCam G are more similar to one another than either is to
satellite GPP. Satellite NDVI and GPP were highly correlated as expected
given the fact that NDVI is an input to the GPP algorithm. Satellite es-
timates of SOS were consistently earlier than EC tower estimates.
Overall, moderate to high correlations between metrics from different
sensors complemented one another with special consideration for lower
productivity sites where estimating SOS is more challenging to identify.

4.3. Correlations for production metrics

The annual integral, representing annual productivity for satellite
and EC GPP, satellite NDVI, and a unitless metric for PhenoCam Gcc,
were moderately correlated among all four metrics (Fig. 5). Correlation
among the annual integrals was lowest with Phenocam and Satellite GPP
measurements (Fig. 5 A). Satellite NDVI had high agreement with the
three other sensors (Fig. 5 D, E, F). EC GPP measurements had annual
integrals which correlated well with both Satellite NDVI and GPP, and
slightly lower for PhenoCam GCC (Fig. 5B, C, E).

Satellite GPP for cropland and integrated sites between 1000 and
1500 gC m~2 yr~! exhibited low correspondence and were highly var-
iable for both PhenoCam G¢c (Fig. 5A) and EC GPP (Fig. 5C). Thus, the
annual estimates of productivity from EC GPP and PhenoCam Gcc
diverged (i.e., differed strongly) from satellite GPP estimates at sites
with annual production above 1000 gC m~2 yr~1,

4.4. Effects of landscape heterogeneity on differences in phenology metrics

Landscape heterogeneity had no effect on transition date disagree-
ment for start of season metrics. In all six pairwise comparisons of start
of season (SOS), landscape heterogeneity within a 100 m radius had
little effect on disagreement between sensors (Fig. 6). We chose the 100
m radius to be conservatively within the tower footprint. Differences in
SOS dates for sensor comparisons were highest for the grazing sites
identified in Fig. 4C (Fig. 6A-C). There was, however, a significant effect
of landscape heterogeneity on differences for EOS estimates between
PhenoCam GCC and satellite GPP EOS estimates (p = 0.017), satellite
NDVI and EC GPP (p = 0.034), and satellite NDVI and PhenoCam Gcc (p

= 0.006), although the explanatory power was low for all three of these
cases. (Fig. 7). Negative slopes in the satellite NDVI comparisons (that
yielded later EOS estimates) were primarily driven by low productivity
grazing sites highlighted as outliers in Fig. 4.

4.5. Metric correspondence in context of management at two sites

For the cropland location (UMRB) growth trajectories (i.e.,
increasing values) followed planting date and were discernible for all
four metrics in both years and fields (Fig. 8A and 8B). Management
activities preceding harvest (e.g., tillage, herbicide and fertilizer appli-
cations) occurred prior to peak greenness and peak productivity with no
noticeable effect on sensor time series. In both fields and growing sea-
sons, harvest had a distinct effect on PhenoCam G¢c, where the lowest
G value occurred at the end of crop senescence, and increased slightly
on or around the harvest date (Fig. 8A and B).

The peak of satellite GPP in both cropland fields was offset (earlier)
from PhenoCam G¢c and EC GPP by several weeks, except for the 2018
corn crop (Fig. 8A). In late 2018 satellite GPP did not show any increase
from a growing cover crop, which produced increases in the EC GPP and
PhenoCam Ggc signals and a prolonged decrease or browndown signal
in NDVI.

At the grazing location (CPER) in 2017 there was a noticeable
decline in PhenoCam G¢c and EC GPP followed by an increase that
coincided with the period of high intensity grazing near peak produc-
tivity at the CARM pasture (Fig. 8C). In the same year, the 133-ha TRM
pasture experienced a similar drop and subsequent increase in Pheno-
Cam Ggc and EC GPP, but the timing and magnitude of the drop and rise
seemed to differ between the grazing intensity treatments (Fig. 8C and
D). In 2018, the high intensity grazing event occurred later in the season,
following peak productivity, with less noticeable differences in Pheno-
Cam Gcc and EC GPP between the two treatments. Small late season
increases in G¢c in both pastures occurred in 2017 only.

Certain management activities are readily discerned in the sensor
time series (e.g., planting, harvest) and others are not (e.g. herbicide and
fertilizer applications in Fig. 8A and B). In addition, satellite GPP did not
capture seasonal dynamics of multiple crop growth cycles (Fig. 8B).
Detection of grazing effects are specific to time series and grazing
practice (Fig. 8 Cand D, e.g., large herd for short duration versus smaller
herd for longer duration).

5. Discussion

Agroecosystems comprise complex actively-managed landscapes
that are vital to sustainably meeting the world’s growing demand for



D.M. Browning et al.

A. SOS Estimate

B. SOS Estimate

Ecological Indicators 131 (2021) 108147

C. SOS Estimate

300 300+ 300
1.2
6
200{ AA_ 2000 A o 2000 4
A a 2
100 Site Years : 51 100- ° Site Years : 41 100 7 Site Years : 51
3 =049 r=0.46 8 A =047
e ] bias = -46.00 e bias= 2.15 o A AT A, 6
8 1 RMSE = 57.7 8 14 RMSE =40.4 ) 1 RMSE = 66.2
2 D.EOS Estimate &  E.EOSEstimate 2 F.EOS Estimate
< c 9L A
o o o o S
300 Production System 300_ w A A 300 t
o cropland A
A gezng A
2001 M integrated 5 200+ 200
s
100 Site Years : 54 100- Site Years : 41 100 Site Years : 51
r=0.60 r=0.62 r=0.70
bias = 15.26 bias = -11.32 bias = -26.14
1 RMSE = 32.5 14 RMSE = 35.0 1 RMSE = 42.0
1 100 200 300 1 100 200 300 1 100 200 300
Satellite GPP Eddy Covariance GPP Eddy Covariance GPP
G. SOS Estimate H. SOS Estimate |. SOS Estimate
300 300+ 300
2001 A 200 2000 %, %A
Ay, 11©A
100 A Site Years : 66 100 A Site Years : 49 100 A Site Years : 49
r=0.61 r=0.69 o 0.53
S bias = -10.65 s ) bias = 34.41 s bias = 40.18
o RMSE =42.7 @) RMSE =459 &) RMSE = 62.8
QO 4 kA = o 41/ P S A A
2 J. EOS Estimate 2 K. EOS Estimate 2 L. EOS Estimate
[ A [ 40 ] [ A A
© Al © ©
] )] ]
300 300+ 300
A
A A8
200 200+ 200
100 Site Years : 66 100+ Site Years : 52 100 Site Years : 49
r=0.64 r=0.50 r=0.50
bias = -26.35 bias = -41.15 bias = -54.82
1 RMSE =41.5 11 RMSE = 54.0 1 RMSE = 67.8
1 100 200 300 1 100 200 300 1 100 200 300
Satellite GPP Phenocam Eddy Covariance GPP

Fig. 4. Six pairwise comparisons of estimated transition dates for start of season (SOS) and end of season (EOS) with Pearson (r) coefficient and RMSE. Comparisons
of SOS dates from PhenoCam and satellite GPP (A), PhenoCam and EC GPP (B), and satellite GPP and EC GPP (C) along with EOS dates for the same pairwise
comparisons (D, E, and F, respectively). Comparisons for SOS dates from satellite NDVI and satellite GPP (G), satellite NDVI and PhenoCam (H), and satellite NDVI
and EC GPP (I) along with EOS dates for the same pairwise comparisons (J, K, L, respectively). The solid line represents the 1:1 line. Point color and shapes respect the
three agroecosystem types: cropland, grazing, and integrated sites. The number of site-years analyzed were not the same for all site-sensor combinations. Points
considered outliers are identified with numbers representing Site-PhenoCam-year: 1) JER-jerbajada-2017, 2) JER-NEON.D14.JORN.DP1.00033-2017, 3) GACP-
arsgacp1-2018, 4) NEON- NEON.D06.KONA.DP1.00033-2017, 5) CPER-cpertgm-2018, 6) WGEW-luckyhills-2018, 7) ABS-UF-ufona-2018, 8) LTER-sevilletashrub-2018,
9) LTER-sevilletashrub-2017, 10) ABS-UF-archboldpnot-2018, and 11) ABS-UF-archboldpnot-2017.

food. Until recently, agroecosystems were not well-represented in
existing research and data networks. Using data from the LTAR and
collaborating networks, we offer foundational steps to evaluate re-
lationships among growing season and production metrics.

We hypothesized that high landscape heterogeneity would lead to
larger differences in metrics from different sensors. We found no effect

of landscape heterogeneity on SOS differences, and a negative effect on
EOS differences (Figs. 6 and 7). We selected a conservative radius within
100-m radius of the tower that has been shown to be a reasonable tower
footprint (Chu et al., 2021). In the case of EOS estimates higher het-
erogeneity made sensor estimates more similar. This could be due to low
productivity grazing sites having low to no heterogeneity (i.e.,
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Transition dates were defined using a threshold of 50% of the maximum as explained in section 3.3.



D.M. Browning et al.

Absolute Difference in Transition Dates (Days)

200+

1501

100+

a
o
L

o
1

200+

150+

100

(63
o
1

o
1

End of Season (EOS) Heterogeneity Analysis

Ecological Indicators 131 (2021) 108147

Phenocam - Satellite GPP Transitions

Phenocam - EC Transitions

Satellite GPP - EC Transitions

R?=0.13
p =0.017

R?=0.00017
p =0.944
o
2
| |
8 GRS | P
B)|

R?=0.02
p =0.379

Satellite NDVI - EC Transitions

Satellite NDVI - Phenocam Transitions

Batellite NDVI - Satellite GPP Transitiong

o

T R?=0.11 R?=0.17 R?=0.05
1 p =0.034 p=0.006 ||, p =0.097
1 [}

‘ : 5 l o ‘

t\\i\ o 8 ° o
i : ] =

2] . . El . . F) . .

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Landscape Heterogeneity (Shannon diversity) within 100m

|Production Type © cropland 4 grazing = integratedl

Fig. 7. Absolute difference in EOS transition date estimates (y-axis) between metrics from different sensors explained by landscape heterogeneity using the Shannon
diversity index (x-axis). Values near zero indicate similar EOS dates for the two metrics while higher values indicate the first metric corresponds to a later EOS date.
Transition dates were defined using a threshold of 50% of the maximum as explained in section 3.3.
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consisting of a single land cover pixel type).

Our comparisons of seasonal productivity patterns across 34 U.S.
agricultural sites indicate that while metrics produced by different
sensors were correlated, correlations between metrics varied across
production systems with selected lower productivity grazing lands
serving as outliers (Figs. 4 and 5). Below, we consider our findings in the
context of complementarity, redundancy, and divergence among sensor
metrics.

5.1. Metric assessment framework - complementarity, redundancy, and
divergence of metrics

The metric assessment framework is conceptual and can be applied
to situations where individuals or groups have access to data from
multiple sensors and where decisions regarding optimal sensor use are
needed. The framework comprises relationships among metrics
including “redundancy”, “complementarity”, and “divergence” (Fig. 9).
This is not an exhaustive list of relationships among metrics and sensors,
only the most salient in our experience. We refrain from suggesting
specific thresholds for each relationship and instead offer the framework
as a flexible approach for optimizing the selection of sensors and metrics
for a range of applications.

5.1.1. Redundancy

Redundant metrics are those that are highly correlated and that offer
similar interpretation (Fig. 9A). If sensors offer redundant information,
users can consider acquisition, installation and maintenance costs for
each sensor, personnel costs for processing the data, internet access and
risk of vandalism as criteria for selection in the case of resource limi-
tation. Redundant independent metrics can also be helpful for filling
data gaps as needed. In this study, we found sensor redundancy between
PhenoCam and eddy covariance estimates of EOS and SOS which were
well correlated and offered similar transition dates (Fig. 4B). Exceptions
most commonly occurred in lower productivity, water-limited grazing
systems.

5.1.2. Complementarity

Complementary metrics provide more information together on
phenological patterns than each metric does individually. The nature of
the relationships is contingent on the management, monitoring, or
research goals. If sensors have complementary relationships, decision
makers can use the same evaluation criteria described above (in case of

A. Redundancy

B. Complementary
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redundancy), in addition to considering whether the added information
is worth the cost of both instruments (Fig. 9B). In this study, PhenoCam
image time series were complementary to both EC and satellite time
series by increasing spatial and temporal resolution with ground-level
imagery that is captured multiple times daily. The daily near-surface
PhenoCam image time series currently offers the capacity to discern
phenological profiles for specific plant functional types or crop types (e.
g., Browning et al., 2017; Hufkens et al., 2019) and an independent
source of land surface phenology with which EC and satellite time series
metrics can be verified. Daily time series can be further leveraged to
evaluate outlying data points (e.g., Fig. 9B) and devise automated image
classification protocols to identify specific plant growth phases. Phe-
noCams are cost-effective and can be useful for monitoring agricultural
production. There is ample opportunity for PhenoCams to complement
other sensors by partitioning data into the important phenological
periods.

5.1.3. Divergence

Divergent metrics are weakly correlated, provide different signals for
the same phenomena that lead to different interpretations and the cause
is unknown (Fig. 9C). We highlight three divergent scenarios. The first
example of divergence was the poor relationship between annual pro-
duction values estimated from satellite GPP with either PhenoCam Gc¢c
or EC GPP at sites with >1000 gC m 2 yr~’. The second case of diver-
gence pertained to SOS dates from NDVI and GPP from satellite for some
sites. In these few cases, high NDVI values in early winter led to early
SOS estimates not seen in the modelled satellite GPP data product (see
grazing land sites in Fig. 4G). Here NDVI can be influenced by gap-filling
or low quality pixels, while the derived GPP product constrains these
values, resulting in more realistic SOS estimates in these cases.

The third example of divergence was detected in the lower produc-
tivity grazing systems in New Mexico and Arizona. This was likely due to
flux dynamics in water-limited ecosystems where periods of greenness
are decoupled from GPP due to stomatal regulation (Biederman et al.,
2017; Yan et al., 2019). Many grazing lands comprise perennial grasses
that have extensive shallow (<1 m) root systems. Thus, the onset and
end of season measured by uptake differs from patterns of above ground
greenness (Delpierre et al., 2016). More research is needed to under-
stand the causes of divergence between sensors. Differences may be
related to different scales of detection or measuring different underlying
processes. In cases of low correspondence in annual production esti-
mates, one might consider using a different satellite GPP data product (e.
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Fig. 9. Relationships in the metric assessment framework using data points from hypothetical, yet common situations in diverse production types (colored symbols).
The framework is designed to help the user compare relative benefits of metrics from different sensors to meet specific management, monitoring or research goals. We
define a redundant relationship where two sensors provide essentially the same information and interpretation (A); a complementary relationship where dis-
agreements are well understood and can be integrated into decision making (B); and a divergent relationship where there is high disagreement between two sensors

and the underlying cause is unknown (C).
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g., one with a shorter revisit time than the 16-day revisit interval used
here).

5.2. Key challenges identified across sensors and site types

While all four metrics examined can be used to address broadly
similar questions in agroecosystems, they are, by design, built to capture
different processes at different temporal and spatial scales. Our com-
parisons suggest some key principles to bear in mind when integrating
sensor outputs across agricultural systems and scales.

5.2.1. Eddy covariance in remote agroecosystem landscapes

Eddy covariance flux tower measurements have provided numerous
ecological insights (Baldocchi, 2020) and are commonly used to verify
larger-scale modeling efforts (Jung et al., 2011, Zhang et al., 2015,
Robinson et al., 2018, Badgley et al., 2019, Pei et al., 2020). By
measuring biogeochemical fluxes at the ecosystem level they give a true
phenological profile of soil and plant carbon fluxes processes within the
tower footprint with high temporal frequency; even though energy
balance closure problems at a site can affect the calculation of turbulent
fluxes (Foken, 2008, Mauder et al., 2020). Instruments are expensive to
establish, maintain and the data are difficult to process. Across the three
production systems featured in this paper, EC towers were more com-
mon in cropland systems with heavily instrumented field and pasture-
level operations. Establishing and maintaining EC towers can be cost-
prohibitive for remote research sites.

In many western U.S. grazing systems, landscape elements based on
dominant vegetation and soils are diverse and much of the terrain is
remote (Browning et al., 2015). The combination of remote, diverse soil-
landscape units makes the deployment and upkeep of EC instruments
challenging. In the case of remote grazing lands, identifying sensors (e.
g., PhenoCam) that yield metrics that are redundant or complementary
to EC is beneficial. We found that annual production estimates from
PhenoCams were better correlated with those from EC in grazing lands
and moderately correlated in integrated and cropping systems. This
finding suggests that less expensive PhenoCams might be a suitable
proxy for EC towers in remote grazing systems. This solution is predi-
cated on the availability of internet or cell phone network coverage. For
example, PhenoCam and satellite data can be combined to provide a
locally calibrated estimate of productivity (Wang et al., 2020).

5.2.2. Resolution of satellite revisit frequency

Earlier SOS, later EOS, and hence longer growing season length
(GSL) estimated from the satellite platform was a consistent and unex-
pected finding. The general trend of increasing GSL from EC to Pheno-
Cam to satellite (Fig. 3) could be explained by the size of the area over
which the GPP and G¢¢ values are estimated. However, the pattern of
longer GSL for sensors integrating over larger areas did not hold for
grazing land sites that demonstrated the shortest mean GSL. This might
be due to the larger range in latitude and precipitation for grazing land
sites in this study (e.g., Fig. 1). We cannot attribute this effect to land-
scape heterogeneity, as the Shannon diversity index of surrounding land
cover was poorly correlated with SOS differences among sensors
although it did affect EOS estimates. Another possible explanation is that
earlier onset dates were artifacts of the smoothing algorithm used in the
upstream Landsat GPP dataset combined with a coarse 16-day temporal
resolution.

We recognize that new satellite platforms provide higher spatial
resolution and revisit frequencies than the Landsat GPP data product
(Robinson et al., 2018) used in this study. A combination of increased
spatial and temporal resolutions based on the fusion of Landsat and
MODIS data, harmonized Landsat Sentinel-2 time series and future
Landsat missions would be useful to evaluate in the future (Gao et al.,
2015, Claverie et al., 2018; Bolton et al., 2020). We used the Landsat
satellite GPP data product because it is the only GPP product available at
a 30-m spatial resolution with CONUS coverage and also fully accessible
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through the Google Earth Engine platform. Another satellite platform
that could potentially become a viable option for estimating produc-
tivity and phenological parameters is Planet Labs constellation, which
has spatial resolutions ranging from 0.5 to 7 m and short (<16 days)
revisit times (Moon et al., In Review). Agreements between research
institutions and companies in the private sector, such as Planet Labs, are
emerging and could allow for new options.

5.2.3. Tracking multiple growing seasons

The perennialization of cover is increasingly an objective in cropping
systems (Wittwer et al., 2017). In the focal years of this study (2017 and
2018), a pattern of multiple growth cycles in one year was evident in
integrated systems, but multiple cropping cycles per year is also a
common aspect of crop-only systems, notably those associated with
diversification objectives (Spiegal et al., 2018). Moreover, growing
season length and phenological profiles are projected to increasingly
shift with climate change (Hufkens et al., 2016). Detecting the start and
end of the growing season from time series with multiple annual cycles is
not a trivial task (Richardson et al., 2018a). We overcame this challenge
by choosing the last EOS date for the calendar year, which may have
over-estimated production by including fallow periods or time between
first harvest and second growth in cropland systems. One solution to this
problem would be to refine algorithms for identifying growing season
start and end to improve estimates of annual production. For example
we found better correspondence using a 50% threshold for our transition
date extraction, and a suite of other methods are available which may be
more appropriate in some scenarios (White et al., 2009).

5.3. Future directions

Linking on-the-ground agricultural management activities and so-
phisticated monitoring tools is among the greatest opportunities pro-
vided by the LTAR network. Future directions will explore the degree to
which we can use sensor platforms to evaluate the impacts of manage-
ment activities and climate change, including changes in the relation-
ships among GPP, climate, and growing season length. Importantly, a
priority will be assessing how those relationships can be used to predict
the effects of management on sustainability outcomes such as soil
health, carbon sequestration, food and fiber production, water conser-
vation and overall human well-being.

Boundary organizations such as the Department of Interior Climate
Adaptation Science Centers, NOAA Regional Integrated Science and
Assessments and the USDA Climate Hub network operate at the interface
of science to service, ultimately supporting management decisions.
Climate Hubs translate scientific information and data into decision
support tools, enabling producers and the USDA service agencies (e.g.,
National Resource Conservation Service, Farm Services Agency and Risk
Management Agency) to support climate-informed decision-making.
The USDA Climate Hubs are uniquely poised to interface with scientists
and data networks to develop systems that enable economically viable
agricultural management decisions relevant for cropland, grazing lands,
and integrated systems in subtropical, temperate, and semi-arid regions
that are represented in this analysis.

Despite the importance of management effects in agroecosystems,
the collection and curation of detailed management data is notoriously
difficult. In addition, complementing EC and satellite time series with
regard to productivity and season length, ground-based PhenoCam
photographs can help identify timing and nature of management events
(e.g., dates of harvest, irrigation, grazing or fire) and even the effects of
management on sustainability outcomes such as avian biodiversity.
Cropping systems for site-years featured in this study constituted largely
corn, soybean, and corn-soybean and cover crop rotations (Spiegal et al.,
2018). Thus, there is potential for the PhenoCam network and auto-
mated image classification to develop datasets for management activ-
ities in croplands, and in grazing lands to some extent, that can be used
as inputs for models and context for monitoring (Lombardozzi et al.,
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2020). Understanding how growing season metrics correlate or vary
across platforms is foundational to informed decision-making for tech-
nological investment. We offer the metric assessment framework
designed to optimize instrumentation selection for monitoring,
modeling, and forecasting ecosystem functioning with the ultimate goal
of informing decisions to meet sustainability goals in agriculture.
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