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A B S T R A C T   

Effective measurement of seasonal variations in the timing and amount of production is critical to managing 
spatially heterogeneous agroecosystems in a changing climate. Although numerous technologies for such mea
surements are available, their relationships to one another at a continental extent are unknown. Using data 
collected from across the Long-Term Agroecosystem Research (LTAR) network and other networks, we inves
tigated correlations among key metrics representing primary production, phenology, and carbon fluxes in 
croplands, grazing lands, and crop-grazing integrated systems across the continental U.S. Metrics we examined 
included gross primary productivity (GPP) estimated from eddy covariance (EC) towers and modelled from the 
Landsat satellite, Landsat NDVI, and vegetation greenness (Green Chromatic Coordinate, GCC) from tower- 
mounted PhenoCams for 2017 and 2018. Overall, our analysis compared production dynamics estimated from 
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three independent ground and remote platforms using data for 34 agricultural sites constituting 51 site-years of 
co-located time series. 

Pairwise sensor comparisons across all four metrics revealed stronger correlation and lower root mean square 
error (RMSE) between end of season (EOS) dates (Pearson R ranged from 0.6 to 0.7 and RMSE from 32.5 to 67.8) 
than start of season (SOS) dates (0.46 to 0.69 and 40.4 to 66.2). Overall, moderate to high correlations between 
SOS and EOS metrics complemented one another except at some lower productivity grazing land sites where 
estimating SOS can be challenging. Growing season length estimates derived from 16-day satellite GPP (179.1 
days) were significantly longer than those from PhenoCam GCC (70.4 days, padj < 0.0001) and EC GPP (79.6 days, 
padj < 0.0001). Landscape heterogeneity did not explain differences in SOS and EOS estimates. Annual integrated 
estimates of productivity from EC GPP and PhenoCam GCC diverged from those estimated by Landsat GPP and 
NDVI at sites where annual production exceeds 1000 gC/m−2 yr−1. Based on our results, we developed a “metric 
assessment framework” that articulates where and how metrics from satellite, eddy covariance and PhenoCams 
complement, diverge from, or are redundant with one another. The framework was designed to optimize 
instrumentation selection for monitoring, modeling, and forecasting ecosystem functioning with the ultimate 
goal of informing decision-making by land managers, policy-makers, and industry leaders working at multiple 
scales.   

1. Introduction 

An accurate understanding of agroecosystem dynamics is critical for 
the design of management and policy strategies in a changing climate. 
Climate change can alter growing seasons, water availability, and pro
duction potential (Tracy et al., 2018). These changes may vary across 
agroecosystems spanning a wide range of climates, operation scales, 
production commodities, management practices, and stakeholder per
ceptions. Monitoring agroecosystems from pasture or field-level to 
landscape and regional scales is thus necessary to inform management 
and policy decisions. Currently, efforts to monitor agroecosystems at 
regional to global scales rely largely on time series data collected from 
satellite remote sensing (Weiss et al., 2020). Day-to-day management 
decisions at the field level, however, may be best served by ground- 
based sensors that validate and verify satellite-derived metrics and 
provide real-time, fine-scale estimates of crop or forage status (Browning 
et al., 2015, Fritz et al., 2019). We have little understanding of the 
varying relationships among sensor platforms in agroecosystems at a 
national scale, which vary strongly in the amount and timing of pro
duction, intensity of management, and degree of spatial heterogeneity. 

Here we take advantage of data collected across the Long-Term 
Agroecosystem Research (LTAR) network to investigate correlations 
among several key ecosystem metrics across the continental U.S., 
including the consistency of metrics across sensors. We focused on 
measuring phenology - defined as the timing of recurring events such as 
germination and flowering, green-up, or senescence - as it is a key multi- 
scale attribute in agroecosystems that is sensitive to management and 
climate change. Phenology metrics, offer an effective means to assess the 
utility of instruments used to monitor land surface dynamics in diverse 
agricultural production systems. For instance, the phenological state of 
different crops dictates the timing of pollination and pest and fertilizer 
treatments, while livestock production can be optimized by matching 
animal densities and distributions to seasonal dynamics in forage pro
duction (Browning et al., 2017, Seo et al., 2019). However, such fine 
scale phenological information is not often available to land managers, 
and is further complicated by changing growing seasons. Shifts in 
growing seasons in response to climate change have been reported 
across many ecosystems worldwide (Kukal and Irmak, 2018), with 
regional differences in the timing and magnitude of change (Buitenwerf 
et al., 2015, Garonna et al., 2016). Increased global greenness has been 
attributed to an elongated growing season resulting from changing crop 
phenology (Gao et al., 2019). Phenology metrics, such as start and end of 
the growing season and growing season length, can be used to estimate 
the timing and amount of primary production along with its seasonal 
and interannual variation. Thus, understanding patterns such as the 
start, end, length, and shape of the growing season defined via multiple 
metrics is key to integrating data across diverse sites and sensors to 
better understand past trends and forecast future ones (Toomey et al., 

2015,Wu et al., 2017, Richardson et al., 2018b). 
The USDA Agricultural Research Service LTAR network, singly and 

in partnership with other networks, provides consistent measurements 
across locations that span production system types, climatic and pro
ductivity gradients (Baffaut et al., 2020). Management activities at these 
locations can result in abrupt changes in biomass, such as end of season 
harvest, or gradual changes, such as the use of fertilizers that progres
sively enhance biomass over the growing season. Changes in biomass 
due to management may or may not be discernible depending on the 
limits of detection. For example, heavy grazing due to high livestock 
density on a pasture can be readily detected due to rapid decreases in 
aboveground biomass (Fan et al., 2011) whereas low density livestock 
grazing may be undetectable or even increase aboveground biomass 
through compensatory growth and/or manure fertilization (Belsky, 
1986, Milchunas and Lauenroth, 1993, Frank and McNaughton, 1993, 
Briske et al., 2008). High spatial and temporal heterogeneity is inherent 
to agricultural landscapes (Hank et al., 2015), and requires the use of 
field-scale sensors such as eddy covariance towers and PhenoCams to 
detect important variations in phenology. To improve and extend 
monitoring of agroecosystems to broader spatial extents, it is critical to 
integrate data from both ground-based and satellite sensors. Thus, it is 
necessary to compare the strengths and limitations of productivity 
metrics across platforms and identify instances where satellite and 
ground-based sensors are redundant, diverge from, or complement one 
another. A deeper understanding of these relationships is made possible 
by sensor networks that share consistent data collection and data man
agement protocols that produce interoperable data streams. 

Several locations in the LTAR network are associated with, or share 
data with other research networks, such as the PhenoCam Network 
(Richardson et al., 2018a), National Ecological Observatory Network 
(NEON; Keller et al., 2008), AmeriFlux (Novick et al., 2018), and Long- 
Term Ecological Research Network (LTER; Knapp et al., 2012). Coor
dinated, co-located collection of high resolution datasets, via partner
ship among research networks, provides wider coverage of PhenoCam 
imagery, eddy covariance-derived fluxes, and meteorological measure
ments. Ground-based sensor data also complement the diversity of 
remote sensing applications in agriculture (Weiss et al., 2020, Reiner
mann et al., 2020), which currently make it difficult to track the wide 
array of local management practices using a common ontology at a 
nationwide scale. 

For some applications, remotely-sensed data may be sufficient (e.g., 
Smith et al., 2019), but may not have sufficient spatiotemporal resolu
tion needed to monitor diverse agricultural landscapes and meet land 
management needs for rapid decisions at fine scales. Dependence on 
data products derived from satellite remote sensing in places where 
these products do not accurately represent the production dynamics 
(due to large pixel size, obstruction by cloud cover, long return cycles 
and lack of ground validation) can foster uncertainty for land managers 
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(e.g., Butterfield and Malmström, 2009). Cases where satellite-derived 
and ground-based metrics are commensurate and well-correlated 
create opportunities to scale up interpretations of local information 
more broadly. In cases where satellite-derived and ground-based metrics 
are divergent, near-surface digital cameras, or PhenoCams, offer daily 
images to link ground-based and remotely-sensed metrics (e.g., 
Browning et al., 2017, Norris and Walker, 2020). 

Several prior studies compared near-surface and satellite sensors at 
regional and continental scales (Balzarolo et al, 2016; Klosterman et al., 
2014, Toomey et al., 2015, Wu et al., 2017). There are cases of strong 
correlation between growing season metrics (SOS and EOS) from Phe
noCam and eddy covariance in plant communities with distinct 
phenological profiles such as deciduous broadleaf forests (Toomey et al., 
2015). In addition, there are those of low correlation between estimated 
SOS and EOS dates from MODIS vegetation index values and eddy 
covariance that can be improved depending on plant functional type and 
the fitting algorithm used (Wu et al., 2017). Satellite and near-surface 
sensors (i.e., PhenoCam and eddy covariance) generally agree as long 
as the temporal and/or spatial resolutions of satellite data are not too 
coarse, and the landscape is homogeneous (Yan et al., 2019, Richardson 
et al., 2018b). Browning et al. (2017) evaluated agreement between 
greenness metrics from satellite and PhenoCam in a desert grassland 
system and found good agreement when the focal species in the Phe
noCam analysis was a conspicuous shrub, but not so when the focal 
species was a less abundant perennial grass. Even in arid systems with 
mixed vegetation, PhenoCams worked well when the focal species rep
resented the system. 

In this study, we hypothesized that growing season metrics from 
satellite and near-surface sensors would be correlated and that the 
strength of the relationships vary depending on the scale of observation 
and spatial heterogeneity. Given a homogenous landscape, indices of 
vegetation greenness and primary productivity derived from satellite 
and near-surface optical sensors are expected to yield similar estimates 
for phenological transition dates despite differences in spatial resolu
tion. As landscape heterogeneity increases due to different land cover 
types, vegetation structure, and/or agricultural practices, the corre
spondence of phenology and productivity estimates from different tools 
or sensors may decrease (Richardson et al., 2018b). For example, the 
spatial scale of a tower-mounted digital camera (i.e., PhenoCam) can 
vary with configuration and typically captures a portion of a single field, 
while modeled estimates of gross primary production from satellite 
(GPP; Robinson et al., 2018) are aggregated over 0.8 ha circa multiple 
30-m pixels (or considerably coarser for MODIS) and could incorporate 
several crop types and possibly non-agricultural areas. Eddy covariance 
towers are typically situated to sample a specific crop or ecosystem, but 
their footprint often exceeds a hectare in size and the CO2 flux mea
surement footprint changes dynamically in response to shifts in wind 
speed and direction. Notably, while satellite estimates and flux tower 
measurements can only measure land-cover trends in aggregate 
(Browning et al., 2017; Yan et al., 2019), PhenoCams can identify 
phenological profiles of specific elements in the camera field of view (e. 
g., plant functional group or cropping system). 

2. Objectives and questions 

We aim to use our analysis as a foundation for optimizing the choice 
of instruments for agroecosystem monitoring by: 1) evaluating differ
ences in phenology metrics derived from three different sensor platforms 
in different U.S. agroecosystems and 2) using these comparisons to 
develop a novel “metric assessment framework” to help researchers and 
managers identify instances where satellite and ground-based sensors 
are redundant to, diverge from, or complement one another. 

Our specific research questions were: 

Among sensors (eddy covariance, PhenoCam, and satellite), what is 
the correlation between phenology metrics [start of season (SOS), 

end of season (EOS), season length, and related daily and annual 
estimates of timing and amount of production]? 
Do differences in temporal and spatial scale of sensor metrics account 
for variability in SOS and EOS? 
Does the degree of site heterogeneity (e.g., surrounding land cover 
classes or cropping systems) correlate with variation in pairwise 
comparisons of metrics? 

3. Data and methods 

3.1. Network sites 

The USDA Agricultural Research Service LTAR is a network of 18 
locations collaborating to evaluate strategies for the sustainable inten
sification of agriculture in croplands, rangelands, and integrated crop- 
livestock systems nationwide. Integrated crop-livestock systems use 
both; in some cases livestock graze the crops directly and in others they 
do not. LTAR locations spanning cropland, grazing, and integrated crop- 
livestock production systems represent a diversity of land production 
potentials, climates, management approaches, and agricultural products 
(Spiegal et al., 2018). The network represents roughly 49% of the cereal 
production, 30% of the forage production, and 32% of the livestock 
production in the United States (Kleinman et al., 2018). 

We obtained data from 15 of the LTAR locations where production 
and phenology metrics were available to meet the criterion of having co- 
located PhenoCam and eddy covariance data for years 2017 and 2018. 
For clarity, we refer to study sites as ‘locations’ and use the word ‘site’ to 
refer to instrumented towers; in 12 cases, locations have more than one 
contributing site. We also included two managed locations in NEON 
(Konza Prairie Agroecosystem, Jornada LTER) and two in the LTER 
network (Kellogg Biological Station, Sevilleta). Jornada Basin is a 
location in all three networks (Supplemental Fig. 1). All sites used in the 
analysis conduct rainfed agriculture except PRHPA mead1 and mead2 
sites (center pivot irrigation), and the ABS-UF pasture site (archboldpnot) 
which receives occasional pump irrigation during the dry season in 
Florida (Nov-Apr; Baffaut et al., 2020). Site names are found in Table 1. 

Long-term (1981–2010) mean annual temperature and rainfall for 
sites in this study range from 5.6 ◦C (at Northern Plains and Great Basin 
LTAR locations) to 22.7℃ (ABS-UF LTAR location) and from 200 mm 
(Sevilleta LTER location) to 1084 mm (ABS-UF LTAR location), 
respectively (Supplemental Table 1). There were regional differences in 
mean annual temperature and annual precipitation in 2017 and 2018 
(Fig. 1). In general, the water-limited sites in the southwest U.S were 
warmer than average in both study years. In 2018, most of the sites, 
particularly those in the eastern US, were substantially wetter than 
average. Precipitation in 2018 for the Great Basin LTAR sites was 
approximately 80% of the long-term average. 

3.2. Sensor data 

3.2.1. Canopy greenness data from PhenoCams 
PhenoCam data for the study sites were obtained from the PhenoCam 

Dataset V2.0 (Seyednasrollah et al., 2019a; Seyednasrollah et al., 2019b; 
Milliman et al., 2019). For the PhenoCam sites used in this study, digital 
images were collected at 30-minute intervals continuously from 4 am to 
10 pm. Canopy greenness time series data were obtained from these 
images by delineating appropriate regions of interest (ROIs), defined by 
site investigators, and calculating the green chromatic coordinate (GCC) 
for each ROI as: 

GCC = GDN/(RDN + GDN + BDN) where RDN, GDN and BDN are the 
average red, green and blue digital numbers inside the ROIs, respec
tively. After extracting GCC values, time series were obtained from the 
90th percentile of canopy greenness at 3-day intervals for use in esti
mating phenological transition dates. In comparison to the 1-day time 
series data, the 3-day time series data are more robust with regard to 
random noise and hence they are used in this analysis. Details about the 
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PhenoCam dataset and image processing are discussed by Seyednasrol
lah et al. (2019b), Seyednasrollah et al. (2019c). 

3.2.2. Carbon flux data from eddy covariance towers 
The eddy covariance data were obtained from three different sources 

including: the NEON data portal (2 sites), AmeriFlux (4 sites), and 
directly from the LTAR sites (14 sites). The number of flux towers per 
location ranged from one at Central Mississippi River Basin LTAR 
location to four at Platte River High Plains Aquifer LTAR location (see 
Table 1, Supplemental Fig. 1). Briefly, three-dimensional sonic ane
mometers and an infrared gas analyzer were mounted above plant 
canopies to measure the three wind velocity vector components, sonic 
temperature, and concentrations of water vapor and carbon dioxide at 
10 or 20 Hz. These values were processed to 30-minute fluxes of carbon 
dioxide and water vapor at the individual sites using standardized 
equations (e.g., Burba, 2013; Aubinet et al., 2012). See Table 1 for more 
details on the processing and source of the flux data for each site. 

While the software to process the eddy covariance data differed be
tween sites, the same post-processing algorithms were used. A custom 
Python V3 processing script was used to complete the quality assurance 
and formatting. For the flux data, this step checked that values were 
within a physically realistic range de-spiking. Data were de-spiked using 
a 5-day moving window, to remove flux values that deviated by more 
than three standard deviations of the 5-day mean (Vickers & Mahrt, 

1997). Meteorology data were bounds checked and units converted as 
needed. Relative humidity (RH) values were deleted if RH < 0% or if RH 
> 102%. If not provided, saturation vapor pressure was calculated via 
Buck (1981) for the calculation of vapor pressure deficit. Any specific 
quality assurance/quality control needs were accomplished on a site-to- 
site basis as part of the initial compilation and processing of the data. 

The flux data were gap-filled using the nighttime respiration method 
in the stand-alone R version of REddyProc with the net CO2 flux parti
tioned into gross primary production (GPP) and ecosystem respiration 
(Reco) (Reichstein et al., 2005, Wutzler et al., 2018). After gap-filling, 
the 30-minute data were converted to daily sums and averages for the 
different flux and meteorology values were computed. GPP was con
verted to grams of carbon per day (g C m−2 day−1) and summed over 
daily, weekly, and yearly timescales. 

3.2.3. Production data from satellite 
We included a satellite-derived estimate of Gross Primary Production 

(GPP) in addition to the commonly-used unitless Normalized Difference 
Vegetation Index (NDVI) because modeled GPP values provide a 
straightforward comparison with GPP estimated by eddy covariance. We 
used the Landsat GPP product by Robinson et al. (2018), which provides 
GPP values at a 30-m spatial resolution on a 16-day time-step. This 
product is based on the MOD17 algorithm (MODerate Resolution Im
aging Spectroradiometer) (Running et al., 2004) whose coarse 

Table 1 
Details for 34 PhenoCam and eddy covariance towers (constituting 51 site-years) used in this study along with details of the eddy covariance data sourcing and 
processing.  

Location Location 
(State) 

EC Tower Phenocam Name Production 
system 

EC Processing 
Reference 

EC Data 
Source 

EC Site 

ABS-UF FL archboldpnot archboldpnot grazing Gomez-Casanovas 
et al., 2020 

LTAR US-IL1 

ABS-UF FL ufona ufona grazing Gomez-Casanovas 
et al., 2020 

LTAR US-ONA 

CAF WA boydnorth cafboydnorthltar01 cropland Russell et al., 2019 Ameriflux US-CF1 
CAF WA cookeast cafcookeastltar01 cropland Russell et al., 2019 Ameriflux US-CF2 
CAF WA cookwest cafcookwestltar01 cropland Russell et al., 2019 Ameriflux US-CF3 
CMRB MO asp goodwater cropland Wood et al., 2019 LTAR US-Mo1 
CPER CO agm cperagm grazing NA LTAR US-CX2 
CPER CO tgm cpertgm grazing NA LTAR US-CX1 
GACP GA arsgacp1 arsgacp1 integrated Russell et al., 2019 LTAR NA 
GACP GA arsgacp2 arsgacp2 integrated Russell et al., 2019 LTAR NA 
GB  arsgreatbasinltar098 arsgreatbasinltar098 grazing Flerchinger et al., 2020 LTAR US-Rws 
JORN NM jerbajada jerbajada grazing NA LTAR US-Jo1 
JORN NM neon NEON.D14.JORN. 

DP1.00033 
grazing Metzger et al., 2019 NEON NEON.D14.JORN. 

DP4.00200.001 
KBS MI T3 kelloggcorn cropland Abraha et al., 2015 LTER US-KM1 
KONA KS KONA NEON.D06.KONA. 

DP1.00033 
cropland Metzger et al., 2019 NEON NEON.D06.KONA. 

DP4.00200.001 
LCB MA op3 arsope3ltar integrated NA LTAR US-OPE 
NP ND h5 mandanh5 cropland Saliendra et al., 2018 LTAR US-NP1 
NP ND i2 mandani2 cropland Saliendra et al., 2018 LTAR US-NP2 
PRHPA NE mead1 mead1 cropland Suyker et al., 2005 LTAR US-Ne1 
PRHPA NE mead2 mead2 cropland Suyker et al., 2005 LTAR US-Ne2 
PRHPA NE mead3 mead3 cropland Suyker et al., 2005 LTAR US-Ne3 
PRHPA NE meadpasture meadpasture grazing Suyker et al., 2005 LTAR NA 
SEG NM grasslands sevilletagrass grazing Anderson-Teixeira 

et al., 2011 
Ameriflux US-Seg 

SEG NM shrublands sevilletashrub grazing Anderson-Teixeira 
et al., 2011 

Ameriflux US-Ses 

TG TX tworfpr tworfpr integrated NA LTAR US-Tx2 
UCB PA hawbeckereddy hawbeckereddy integrated Skinner, 2008 LTAR US-HWB 
UMRB MN morrisnorth arsmorris1 cropland Saliendra et al., 2018 LTAR NA 
UMRB MN morrissouth arsmorris2 cropland Saliendra et al., 2018 LTAR NA 
UMRB MN rosemountcons rosemountcons cropland Griffis et al., 2005 Ameriflux US-Ro4 
UMRB MN rosemountconv rosemountconv cropland Griffis et al., 2005 Ameriflux US-Ro5 
UMRB MN rosemountnprs rosemountnprs cropland Griffis et al., 2005 Ameriflux US-Ro6 
WGEW AZ Kendall Grassland kendall grazing Scott et al., 2015 Ameriflux US-Wkg 
WGEW AZ Lucky Hills 

Shrubland 
luckyhills grazing Scott et al., 2015 Ameriflux US-Whs 

NEON- 
Wood 

ND USxWD NEON.D09.WOOD. 
DP1.00033 

grazing Metzger et al., 2019 NEON NEON.D09.WOOD. 
DP4.00200.001  
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resolution (500-m, Ver. 6) is unable to capture the production response 
at high spatial resolution. One of the original MOD17 algorithms’ main 
features is that it is not constrained by the spatial resolution of the 
different parameters used, therefore, inputs with finer spatial resolution 
and the optimization of parameters that better reflect conditions across 
the contiguous United States (CONUS) are used to characterize GPP and 
NPP at 30 m pixel resolution. (Robinson et al., 2018). Even though NDVI 
is one of the main parameters used in the GPP model, we evaluated it 
because of its widespread use. NDVI values were computed using a 
smoothing and climatology approach for gap-filling to create continuous 
16-day Landsat composites (Robinson et al., 2017, Robinson et al., 
2018). 

Using Google Earth Engine, we extracted Landsat GPP at each Phe
noCam tower location to pair with corresponding PhenoCam and flux 
tower data. Modeled Landsat GPP values were aggregated to 90x90-m 
(3x3 30-m pixels) to be commensurate with flux tower footprints (Li 
et al., 2008) and PhenoCam fields of view that can range depending on 
sensor configuration (e.g., circa 7300-m2 area estimated by Browning 
et al., 2017). The original values of Landsat GPP were transformed from 
kg C m−2 16-day−1 to g C m−2 day−1 to make pairwise comparisons with 
the daily PhenoCam and flux tower measurements. 

3.3. Estimating season start and end date 

For each site in the analysis, there are four time series: 1) PhenoCam 
GCC, 2) eddy covariance (EC) flux measurement derived GPP, 3) Landsat 
NDVI, and 4) Landsat-derived GPP. The PhenoCam and EC flux tower 
measurements are daily while the Landsat GPP and NDVI values are 
reported every 16 days. For every available year of each time series and 
for each of the three data streams we estimated the start and end of the 
growing season based on the rising/falling method described in Seyed
nasrollah et al. (2019b). The PhenoCam dataset provides a pre- 
processed transition date product, while the two GPP datasets were 
processed separately with the same methodology. Each time series was 

truncated to a calendar year and smoothed with a locally weighted 
scatterplot smoothing (LOESS) algorithm. The start of season (SOS) es
timate was the first day in which the smoothed time series reached 50% 
of the maximum value of GPP or GCC, and the end of season (EOS) es
timate was the last day of each calendar year when the smoothed time 
series dropped below 50% of the maximum values. Before choosing the 
50% threshold, we also tested thresholds of 10% and 25%. A 25% 
threshold had similar correspondence among the three data streams for 
all towers (data not shown). The 10% threshold had very low corre
spondence due to the higher uncertainty signified by the lower initial 
slope of greenness curves and high daily variability in the three time 
series, especially in dormant periods. 

We characterized growing season patterns (i.e., phenological pro
files) by amplitude and shape of annual curves. In addition, we tabulated 
growing season length (GSL) as the difference between EOS and SOS for 
each year, site and sensor combination. 

3.4. Comparing phenology and productivity metrics and landscape 
heterogeneity 

3.4.1. Phenology metrics 
To evaluate correlations among SOS and EOS metrics from different 

sensors, we made six pairwise comparisons of SOS and EOS dates among 
all sites (i.e., PhenoCam vs EC GPP, PhenoCam vs satellite GPP, EC GPP 
vs satellite GPP, satellite NDVI vs satellite GPP, satellite NDVI vs EC GPP, 
and satellite NDVI vs PhenoCam) and calculated the Pearson correlation 
coefficient for each combination. Not all towers had complete years for 
all three data sets, thus the sample sizes for each comparison vary 
slightly. We tested for differences in GSL using a 2-way ANOVA (sensor 
× production system) and used a post-hoc Tukey test to identify the 
pairwise differences. 

We examined correlations between annual productivity estimated as 
the total in-season integral for all time series via six pairwise compari
sons between sites. The in-season integral was computed as the sum of 
the smoothed time series within the bounds of SOS and EOS dates. This 
corresponds to the annual GPP for the EC and satellite time series, and 
provides a unitless measure of summed GCC that has previously shown to 
be correlated with GPP (Toomey et al., 2015, Hufkens et al., 2016). 

3.4.2. Landscape heterogeneity 
We assessed how site heterogeneity affects the mismatch of transi

tion date estimates from different sensors. We used the 30-m Cropland 
Data Layer (CDL, USDA-NASS, 2021) to calculate, for each tower and 
year, the Shannon diversity index (H) of all pixels within a 100-m radius 
(Shannon, 1948, Turner, 1989). We fit six linear models, one for each 
pairwise sensor comparison, using H as an explanatory variable and the 
absolute difference in transition dates as the response, with the expec
tation that transition date mismatch would rise with increasing het
erogeneity of surrounding cropland (i.e., a positive slope). 

3.5. Aggregating management information 

To provide management context for selected agroecosystems, we 
present the sensor time series at two LTAR network (one cropland and 
one grazing land) sites in 2017 and 2018. The Upper Mississippi River 
Basin (UMRB) ARS research location in Stevens County, MN (45.6838◦, 
−95.8005◦) has towers deployed in two adjacent fields planted with 
soybeans in 2017 and wheat or corn in 2018. The UMRB cropland site 
experienced a range of management activities on two fields across two 
growing seasons. The first field, Field 1 South, was planted with soy
beans in 2017 and with corn in 2018. The second field, Field 2 North, 
was planted with soybeans in 2017 and wheat in 2018 followed by a 
cover crop planted in late 2018. 

At Central Plains Experimental Range (CPER) in Weld County, CO, 
(40.8330◦, −104.760◦) towers are in part of an experiment comparing 
the effects of traditional rangeland management (TRM; 10 herds in 10 

Fig. 1. Thirty year (1981–2010) mean and standard deviation of mean annual 
temperature and total annual precipitation calculated from the 4-km gridded 
daily PRISM data for the LTAR PhenoCam sites (PRISM Climate Group, 2004). 
Deviations from long-term precipitation and temperature for 2017 and 2018 are 
represented by symbols to put study years in context of long-term normals. 
Production systems are indicated by color and location names identified 
with text. 
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pastures) with collaborative adaptive rangeland management (CARM; a 
single large herd rotated among 10 pastures) (Wilmer et al., 2018). At 
CPER, the single large herd was rotated into the 123-ha (CARM) pasture 
in June of 2017 (244 head of cattle) and late July of 2018 (280 head), 
with each instance lasting approximately-two weeks. These short-term, 
high intensity grazing events in the CARM treatment pasture were 
contrasted with the traditional moderate intensity grazing treatment 
(TRM) pasture (23 head in 2017 and 26 head in 2018 from early May to 
late September). 

4. Results 

4.1. Phenological profiles across LTAR network and platforms 

Phenological profiles for croplands had the highest daily GPP with a 
single peak in productivity that was common across all sensor types 
(Fig. 2). Grazing sites had lower daily GPP overall (relative to cropland 
sites) and exhibited high between-site variability for all sensors (Fig. 2B, 
E, H, K). Productivity profiles for integrated system sites had multiple 
peaks in productivity across all sensors, with maximum GPP values 
slightly lower than croplands (Fig. 2C, F, I). Across sensors, GPP from 
eddy covariance towers demonstrated the highest daily and annual 
between-site variability while satellite GPP had the lowest. Among 
production systems, croplands exhibited the least inter-annual vari
ability with integrated systems and grazing sites exhibiting the most 
variability between 2017 and 2018 growing seasons (Fig. 2A, D, G, H). 

Mean growing season length (GSL) was significantly different across 
production systems (F = 12.06, df = 2, p < 0.0001) and metric type (F =
36.4, df = 3, p < 0.0001). Growing season length estimates derived from 
16-day Satellite GPP (179.1 days) were significantly longer than those 
from PhenoCam GCC (70.4 days, padj < 0.0001) and EC GPP (79.6 days, 
padj < 0.0001). Comparison of estimates of GSL by metric type revealed 
mean GSL from satellite GPP and NDVI was longer than estimates from 
PhenoCam GCC (padj < 0.0001) and EC GPP (padj < 0.0001; see Supp. 
Table 2). GSL from PhenoCam GCC and EC GPP were not significantly 
different (padj = 0.888). Mean GSL differed significantly among pro
duction systems and pairwise comparisons revealed that mean GSL for 
cropland sites was significantly shorter compared to grazing sites (Fig. 3, 
padj = 0.0001) and integrated sites (padj < 0.0001) but did not differ 
between grazing and integrated sites (padj = 0.482; Supp. Table 2). 

4.2. Correlations among phenology metrics 

Correlations (Pearson r) and root mean square error (RMSE) values 
between the estimates for EOS across sensors were higher than estimates 
for SOS (Fig. 4). Pearson correlation for SOS estimates between sensors 
ranged from 0.46 to 0.69, while EOS estimates had values from 0.50 to 
0.70. RMSE values for SOS estimates ranged from 40.4 to 66.2, while 
EOS estimates ranged from 32.5 to 67.8. The largest RMSE corresponded 
to EOS estimates between satellite NDVI and EC GPP (Fig. 4L). Outliers 
for SOS estimates which drove the low correlations were primarily low 
productivity grazing sites. Dates for 2018 SOS at two grazing sites were 

Fig. 2. Summary of daily GPP (g/m−2/day−1) from eddy covariance (A-C), GCC vegetation greenness index from PhenoCam (D-F) and GPP (G-I) and NDVI (J-L) from 
Landsat for the three production system. Gray lines represent individual sites. One site is highlighted per production system with a colored line, with PhenoCam 
tower names in parentheses in the legend. Y-axis ranges are different for the three production types for clarity. 
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earlier via EC GPP than via PhenoCam (Fig. 4B) and three were earlier 
than satellite GPP (Fig. 4C). Specific site references are provided in the 
Fig. 4 caption. 

When clustering along the 1:1 line is considered with the correlation 
coefficient and RMSE, seasonal start and end dates from PhenoCams and 
EC had high agreement and low RMSE values (40.4 for SOS, Fig. 4B and 
35.0 for EOS, Fig. 4E) even with outlier SOS dates at grazing sites where 
EC SOS preceded those detected by PhenoCam. The dynamics for EC 
GPP and PhenoCam GCC are more similar to one another than either is to 
satellite GPP. Satellite NDVI and GPP were highly correlated as expected 
given the fact that NDVI is an input to the GPP algorithm. Satellite es
timates of SOS were consistently earlier than EC tower estimates. 
Overall, moderate to high correlations between metrics from different 
sensors complemented one another with special consideration for lower 
productivity sites where estimating SOS is more challenging to identify. 

4.3. Correlations for production metrics 

The annual integral, representing annual productivity for satellite 
and EC GPP, satellite NDVI, and a unitless metric for PhenoCam GCC, 
were moderately correlated among all four metrics (Fig. 5). Correlation 
among the annual integrals was lowest with Phenocam and Satellite GPP 
measurements (Fig. 5 A). Satellite NDVI had high agreement with the 
three other sensors (Fig. 5 D, E, F). EC GPP measurements had annual 
integrals which correlated well with both Satellite NDVI and GPP, and 
slightly lower for PhenoCam GCC (Fig. 5B, C, E). 

Satellite GPP for cropland and integrated sites between 1000 and 
1500 gC m−2 yr−1 exhibited low correspondence and were highly var
iable for both PhenoCam GCC (Fig. 5A) and EC GPP (Fig. 5C). Thus, the 
annual estimates of productivity from EC GPP and PhenoCam GCC 
diverged (i.e., differed strongly) from satellite GPP estimates at sites 
with annual production above 1000 gC m−2 yr−1. 

4.4. Effects of landscape heterogeneity on differences in phenology metrics 

Landscape heterogeneity had no effect on transition date disagree
ment for start of season metrics. In all six pairwise comparisons of start 
of season (SOS), landscape heterogeneity within a 100 m radius had 
little effect on disagreement between sensors (Fig. 6). We chose the 100 
m radius to be conservatively within the tower footprint. Differences in 
SOS dates for sensor comparisons were highest for the grazing sites 
identified in Fig. 4C (Fig. 6A-C). There was, however, a significant effect 
of landscape heterogeneity on differences for EOS estimates between 
PhenoCam GCC and satellite GPP EOS estimates (p = 0.017), satellite 
NDVI and EC GPP (p = 0.034), and satellite NDVI and PhenoCam Gcc (p 

= 0.006), although the explanatory power was low for all three of these 
cases. (Fig. 7). Negative slopes in the satellite NDVI comparisons (that 
yielded later EOS estimates) were primarily driven by low productivity 
grazing sites highlighted as outliers in Fig. 4. 

4.5. Metric correspondence in context of management at two sites 

For the cropland location (UMRB) growth trajectories (i.e., 
increasing values) followed planting date and were discernible for all 
four metrics in both years and fields (Fig. 8A and 8B). Management 
activities preceding harvest (e.g., tillage, herbicide and fertilizer appli
cations) occurred prior to peak greenness and peak productivity with no 
noticeable effect on sensor time series. In both fields and growing sea
sons, harvest had a distinct effect on PhenoCam GCC, where the lowest 
GCC value occurred at the end of crop senescence, and increased slightly 
on or around the harvest date (Fig. 8A and B). 

The peak of satellite GPP in both cropland fields was offset (earlier) 
from PhenoCam GCC and EC GPP by several weeks, except for the 2018 
corn crop (Fig. 8A). In late 2018 satellite GPP did not show any increase 
from a growing cover crop, which produced increases in the EC GPP and 
PhenoCam GCC signals and a prolonged decrease or browndown signal 
in NDVI. 

At the grazing location (CPER) in 2017 there was a noticeable 
decline in PhenoCam GCC and EC GPP followed by an increase that 
coincided with the period of high intensity grazing near peak produc
tivity at the CARM pasture (Fig. 8C). In the same year, the 133-ha TRM 
pasture experienced a similar drop and subsequent increase in Pheno
Cam GCC and EC GPP, but the timing and magnitude of the drop and rise 
seemed to differ between the grazing intensity treatments (Fig. 8C and 
D). In 2018, the high intensity grazing event occurred later in the season, 
following peak productivity, with less noticeable differences in Pheno
Cam GCC and EC GPP between the two treatments. Small late season 
increases in GCC in both pastures occurred in 2017 only. 

Certain management activities are readily discerned in the sensor 
time series (e.g., planting, harvest) and others are not (e.g. herbicide and 
fertilizer applications in Fig. 8A and B). In addition, satellite GPP did not 
capture seasonal dynamics of multiple crop growth cycles (Fig. 8B). 
Detection of grazing effects are specific to time series and grazing 
practice (Fig. 8 C and D, e.g., large herd for short duration versus smaller 
herd for longer duration). 

5. Discussion 

Agroecosystems comprise complex actively-managed landscapes 
that are vital to sustainably meeting the world’s growing demand for 

Fig. 3. Mean growing season length (EOS date - SOS date) from eddy covariance GPP, PhenoCam GCC, Landsat GPP and NDVI time series by production system. Error 
bars represent one SD. Letters in parentheses indicate significant groupings among production systems (along x-axis), and among metric types (along legend) using a 
2-way ANOVA. 
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food. Until recently, agroecosystems were not well-represented in 
existing research and data networks. Using data from the LTAR and 
collaborating networks, we offer foundational steps to evaluate re
lationships among growing season and production metrics. 

We hypothesized that high landscape heterogeneity would lead to 
larger differences in metrics from different sensors. We found no effect 

of landscape heterogeneity on SOS differences, and a negative effect on 
EOS differences (Figs. 6 and 7). We selected a conservative radius within 
100-m radius of the tower that has been shown to be a reasonable tower 
footprint (Chu et al., 2021). In the case of EOS estimates higher het
erogeneity made sensor estimates more similar. This could be due to low 
productivity grazing sites having low to no heterogeneity (i.e., 

Fig. 4. Six pairwise comparisons of estimated transition dates for start of season (SOS) and end of season (EOS) with Pearson (r) coefficient and RMSE. Comparisons 
of SOS dates from PhenoCam and satellite GPP (A), PhenoCam and EC GPP (B), and satellite GPP and EC GPP (C) along with EOS dates for the same pairwise 
comparisons (D, E, and F, respectively). Comparisons for SOS dates from satellite NDVI and satellite GPP (G), satellite NDVI and PhenoCam (H), and satellite NDVI 
and EC GPP (I) along with EOS dates for the same pairwise comparisons (J, K, L, respectively). The solid line represents the 1:1 line. Point color and shapes respect the 
three agroecosystem types: cropland, grazing, and integrated sites. The number of site-years analyzed were not the same for all site-sensor combinations. Points 
considered outliers are identified with numbers representing Site-PhenoCam-year: 1) JER-jerbajada-2017, 2) JER-NEON.D14.JORN.DP1.00033–2017, 3) GACP- 
arsgacp1-2018, 4) NEON- NEON.D06.KONA.DP1.00033–2017, 5) CPER-cpertgm-2018, 6) WGEW-luckyhills-2018, 7) ABS-UF-ufona-2018, 8) LTER-sevilletashrub-2018, 
9) LTER-sevilletashrub-2017, 10) ABS-UF-archboldpnot-2018, and 11) ABS-UF-archboldpnot-2017. 
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Fig. 5. Relationships between four annual integrated metrics. Season start and end for all data sets were defined using a 50% threshold as in the transition date 
comparisons. PhenoCam greenness index GCC versus satellite GPP (A), PhenoCam greenness index GCC versus EC GPP (B), and satellite GPP versus EC GPP (C). 
Second row comparisons represent satellite NDVI versus satellite GPP (D), satellite NDVI versus EC GPP (E), and satellite NDVI versus PhenoCam greenness index 
GCC (F). 

Fig. 6. Absolute difference in SOS transition date estimates (y-axis) between metrics from different sensors explained by landscape heterogeneity using the Shannon 
diversity index (x-axis). Values near zero indicate similar SOS dates for the two metrics while higher values indicate the first metric corresponds to a later SOS date. 
Transition dates were defined using a threshold of 50% of the maximum as explained in section 3.3. 
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Fig. 7. Absolute difference in EOS transition date estimates (y-axis) between metrics from different sensors explained by landscape heterogeneity using the Shannon 
diversity index (x-axis). Values near zero indicate similar EOS dates for the two metrics while higher values indicate the first metric corresponds to a later EOS date. 
Transition dates were defined using a threshold of 50% of the maximum as explained in section 3.3. 

Fig. 8. Time series for GPP from eddy covariance (daily), PhenoCam GCC (daily), GPP and NDVI from Landsat time series (16-day) for four LTAR PhenoCams. 
Management interventions are denoted by vertical lines. Associated PhenoCam towers are arsmorris1 (A) and arsmorris2 (B) for Upper Missouri River Basin locations 
(UMRB), and cperagm (C) and cpertgm (D) for Central Plains Experimental Range (CPER) locations. CPER pastures represent the collaborative adaptive rangeland 
management (CARM, C) and traditional rangeland management (TRM, D). Values are rescaled from 0 to 1 to facilitate comparison across metrics. 
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consisting of a single land cover pixel type). 
Our comparisons of seasonal productivity patterns across 34 U.S. 

agricultural sites indicate that while metrics produced by different 
sensors were correlated, correlations between metrics varied across 
production systems with selected lower productivity grazing lands 
serving as outliers (Figs. 4 and 5). Below, we consider our findings in the 
context of complementarity, redundancy, and divergence among sensor 
metrics. 

5.1. Metric assessment framework - complementarity, redundancy, and 
divergence of metrics 

The metric assessment framework is conceptual and can be applied 
to situations where individuals or groups have access to data from 
multiple sensors and where decisions regarding optimal sensor use are 
needed. The framework comprises relationships among metrics 
including “redundancy”, “complementarity”, and “divergence” (Fig. 9). 
This is not an exhaustive list of relationships among metrics and sensors, 
only the most salient in our experience. We refrain from suggesting 
specific thresholds for each relationship and instead offer the framework 
as a flexible approach for optimizing the selection of sensors and metrics 
for a range of applications. 

5.1.1. Redundancy 
Redundant metrics are those that are highly correlated and that offer 

similar interpretation (Fig. 9A). If sensors offer redundant information, 
users can consider acquisition, installation and maintenance costs for 
each sensor, personnel costs for processing the data, internet access and 
risk of vandalism as criteria for selection in the case of resource limi
tation. Redundant independent metrics can also be helpful for filling 
data gaps as needed. In this study, we found sensor redundancy between 
PhenoCam and eddy covariance estimates of EOS and SOS which were 
well correlated and offered similar transition dates (Fig. 4B). Exceptions 
most commonly occurred in lower productivity, water-limited grazing 
systems. 

5.1.2. Complementarity 
Complementary metrics provide more information together on 

phenological patterns than each metric does individually. The nature of 
the relationships is contingent on the management, monitoring, or 
research goals. If sensors have complementary relationships, decision 
makers can use the same evaluation criteria described above (in case of 

redundancy), in addition to considering whether the added information 
is worth the cost of both instruments (Fig. 9B). In this study, PhenoCam 
image time series were complementary to both EC and satellite time 
series by increasing spatial and temporal resolution with ground-level 
imagery that is captured multiple times daily. The daily near-surface 
PhenoCam image time series currently offers the capacity to discern 
phenological profiles for specific plant functional types or crop types (e. 
g., Browning et al., 2017; Hufkens et al., 2019) and an independent 
source of land surface phenology with which EC and satellite time series 
metrics can be verified. Daily time series can be further leveraged to 
evaluate outlying data points (e.g., Fig. 9B) and devise automated image 
classification protocols to identify specific plant growth phases. Phe
noCams are cost-effective and can be useful for monitoring agricultural 
production. There is ample opportunity for PhenoCams to complement 
other sensors by partitioning data into the important phenological 
periods. 

5.1.3. Divergence 
Divergent metrics are weakly correlated, provide different signals for 

the same phenomena that lead to different interpretations and the cause 
is unknown (Fig. 9C). We highlight three divergent scenarios. The first 
example of divergence was the poor relationship between annual pro
duction values estimated from satellite GPP with either PhenoCam GCC 
or EC GPP at sites with >1000 gC m−2 yr−1. The second case of diver
gence pertained to SOS dates from NDVI and GPP from satellite for some 
sites. In these few cases, high NDVI values in early winter led to early 
SOS estimates not seen in the modelled satellite GPP data product (see 
grazing land sites in Fig. 4G). Here NDVI can be influenced by gap-filling 
or low quality pixels, while the derived GPP product constrains these 
values, resulting in more realistic SOS estimates in these cases. 

The third example of divergence was detected in the lower produc
tivity grazing systems in New Mexico and Arizona. This was likely due to 
flux dynamics in water-limited ecosystems where periods of greenness 
are decoupled from GPP due to stomatal regulation (Biederman et al., 
2017; Yan et al., 2019). Many grazing lands comprise perennial grasses 
that have extensive shallow (<1 m) root systems. Thus, the onset and 
end of season measured by uptake differs from patterns of above ground 
greenness (Delpierre et al., 2016). More research is needed to under
stand the causes of divergence between sensors. Differences may be 
related to different scales of detection or measuring different underlying 
processes. In cases of low correspondence in annual production esti
mates, one might consider using a different satellite GPP data product (e. 

Fig. 9. Relationships in the metric assessment framework using data points from hypothetical, yet common situations in diverse production types (colored symbols). 
The framework is designed to help the user compare relative benefits of metrics from different sensors to meet specific management, monitoring or research goals. We 
define a redundant relationship where two sensors provide essentially the same information and interpretation (A); a complementary relationship where dis
agreements are well understood and can be integrated into decision making (B); and a divergent relationship where there is high disagreement between two sensors 
and the underlying cause is unknown (C). 
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g., one with a shorter revisit time than the 16-day revisit interval used 
here). 

5.2. Key challenges identified across sensors and site types 

While all four metrics examined can be used to address broadly 
similar questions in agroecosystems, they are, by design, built to capture 
different processes at different temporal and spatial scales. Our com
parisons suggest some key principles to bear in mind when integrating 
sensor outputs across agricultural systems and scales. 

5.2.1. Eddy covariance in remote agroecosystem landscapes 
Eddy covariance flux tower measurements have provided numerous 

ecological insights (Baldocchi, 2020) and are commonly used to verify 
larger-scale modeling efforts (Jung et al., 2011, Zhang et al., 2015, 
Robinson et al., 2018, Badgley et al., 2019, Pei et al., 2020). By 
measuring biogeochemical fluxes at the ecosystem level they give a true 
phenological profile of soil and plant carbon fluxes processes within the 
tower footprint with high temporal frequency; even though energy 
balance closure problems at a site can affect the calculation of turbulent 
fluxes (Foken, 2008, Mauder et al., 2020). Instruments are expensive to 
establish, maintain and the data are difficult to process. Across the three 
production systems featured in this paper, EC towers were more com
mon in cropland systems with heavily instrumented field and pasture- 
level operations. Establishing and maintaining EC towers can be cost- 
prohibitive for remote research sites. 

In many western U.S. grazing systems, landscape elements based on 
dominant vegetation and soils are diverse and much of the terrain is 
remote (Browning et al., 2015). The combination of remote, diverse soil- 
landscape units makes the deployment and upkeep of EC instruments 
challenging. In the case of remote grazing lands, identifying sensors (e. 
g., PhenoCam) that yield metrics that are redundant or complementary 
to EC is beneficial. We found that annual production estimates from 
PhenoCams were better correlated with those from EC in grazing lands 
and moderately correlated in integrated and cropping systems. This 
finding suggests that less expensive PhenoCams might be a suitable 
proxy for EC towers in remote grazing systems. This solution is predi
cated on the availability of internet or cell phone network coverage. For 
example, PhenoCam and satellite data can be combined to provide a 
locally calibrated estimate of productivity (Wang et al., 2020). 

5.2.2. Resolution of satellite revisit frequency 
Earlier SOS, later EOS, and hence longer growing season length 

(GSL) estimated from the satellite platform was a consistent and unex
pected finding. The general trend of increasing GSL from EC to Pheno
Cam to satellite (Fig. 3) could be explained by the size of the area over 
which the GPP and GCC values are estimated. However, the pattern of 
longer GSL for sensors integrating over larger areas did not hold for 
grazing land sites that demonstrated the shortest mean GSL. This might 
be due to the larger range in latitude and precipitation for grazing land 
sites in this study (e.g., Fig. 1). We cannot attribute this effect to land
scape heterogeneity, as the Shannon diversity index of surrounding land 
cover was poorly correlated with SOS differences among sensors 
although it did affect EOS estimates. Another possible explanation is that 
earlier onset dates were artifacts of the smoothing algorithm used in the 
upstream Landsat GPP dataset combined with a coarse 16-day temporal 
resolution. 

We recognize that new satellite platforms provide higher spatial 
resolution and revisit frequencies than the Landsat GPP data product 
(Robinson et al., 2018) used in this study. A combination of increased 
spatial and temporal resolutions based on the fusion of Landsat and 
MODIS data, harmonized Landsat Sentinel-2 time series and future 
Landsat missions would be useful to evaluate in the future (Gao et al., 
2015, Claverie et al., 2018; Bolton et al., 2020). We used the Landsat 
satellite GPP data product because it is the only GPP product available at 
a 30-m spatial resolution with CONUS coverage and also fully accessible 

through the Google Earth Engine platform. Another satellite platform 
that could potentially become a viable option for estimating produc
tivity and phenological parameters is Planet Labs constellation, which 
has spatial resolutions ranging from 0.5 to 7 m and short (<16 days) 
revisit times (Moon et al., In Review). Agreements between research 
institutions and companies in the private sector, such as Planet Labs, are 
emerging and could allow for new options. 

5.2.3. Tracking multiple growing seasons 
The perennialization of cover is increasingly an objective in cropping 

systems (Wittwer et al., 2017). In the focal years of this study (2017 and 
2018), a pattern of multiple growth cycles in one year was evident in 
integrated systems, but multiple cropping cycles per year is also a 
common aspect of crop-only systems, notably those associated with 
diversification objectives (Spiegal et al., 2018). Moreover, growing 
season length and phenological profiles are projected to increasingly 
shift with climate change (Hufkens et al., 2016). Detecting the start and 
end of the growing season from time series with multiple annual cycles is 
not a trivial task (Richardson et al., 2018a). We overcame this challenge 
by choosing the last EOS date for the calendar year, which may have 
over-estimated production by including fallow periods or time between 
first harvest and second growth in cropland systems. One solution to this 
problem would be to refine algorithms for identifying growing season 
start and end to improve estimates of annual production. For example 
we found better correspondence using a 50% threshold for our transition 
date extraction, and a suite of other methods are available which may be 
more appropriate in some scenarios (White et al., 2009). 

5.3. Future directions 

Linking on-the-ground agricultural management activities and so
phisticated monitoring tools is among the greatest opportunities pro
vided by the LTAR network. Future directions will explore the degree to 
which we can use sensor platforms to evaluate the impacts of manage
ment activities and climate change, including changes in the relation
ships among GPP, climate, and growing season length. Importantly, a 
priority will be assessing how those relationships can be used to predict 
the effects of management on sustainability outcomes such as soil 
health, carbon sequestration, food and fiber production, water conser
vation and overall human well-being. 

Boundary organizations such as the Department of Interior Climate 
Adaptation Science Centers, NOAA Regional Integrated Science and 
Assessments and the USDA Climate Hub network operate at the interface 
of science to service, ultimately supporting management decisions. 
Climate Hubs translate scientific information and data into decision 
support tools, enabling producers and the USDA service agencies (e.g., 
National Resource Conservation Service, Farm Services Agency and Risk 
Management Agency) to support climate-informed decision-making. 
The USDA Climate Hubs are uniquely poised to interface with scientists 
and data networks to develop systems that enable economically viable 
agricultural management decisions relevant for cropland, grazing lands, 
and integrated systems in subtropical, temperate, and semi-arid regions 
that are represented in this analysis. 

Despite the importance of management effects in agroecosystems, 
the collection and curation of detailed management data is notoriously 
difficult. In addition, complementing EC and satellite time series with 
regard to productivity and season length, ground-based PhenoCam 
photographs can help identify timing and nature of management events 
(e.g., dates of harvest, irrigation, grazing or fire) and even the effects of 
management on sustainability outcomes such as avian biodiversity. 
Cropping systems for site-years featured in this study constituted largely 
corn, soybean, and corn-soybean and cover crop rotations (Spiegal et al., 
2018). Thus, there is potential for the PhenoCam network and auto
mated image classification to develop datasets for management activ
ities in croplands, and in grazing lands to some extent, that can be used 
as inputs for models and context for monitoring (Lombardozzi et al., 
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2020). Understanding how growing season metrics correlate or vary 
across platforms is foundational to informed decision-making for tech
nological investment. We offer the metric assessment framework 
designed to optimize instrumentation selection for monitoring, 
modeling, and forecasting ecosystem functioning with the ultimate goal 
of informing decisions to meet sustainability goals in agriculture. 
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