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The performance of coordinated distributed experiments designed to compare ecosystem sensitivity to global-change drivers depends on whether
they cover a significant proportion of the global range of environmental variables. In the present article, we described the global distribution
of climatic and soil variables and quantified main differences among continents. Then, as a test case, we assessed the representativeness of
the International Drought Experiment (IDE) in parameter space. Considering the global environmental variability at this scale, the different
continents harbor unique combinations of parameters. As such, coordinated experiments set up across a single continent may fail to capture the
full extent of global variation in climate and soil parameter space. IDE with representation on all continents has the potential to address global
scale hypotheses about ecosystem sensitivity to environmental change. Our results provide a unique vision of climate and soil variability at the
global scale and highlight the need to design globally distributed networks.
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Il terrestrial ecosystems are being affected to some

extent by alterations in climate, biogeochemistry, and
disturbance regimes as a consequence of human activities
(Vitousek et al. 1997, IPCC 2013, Flombaum et al. 2017).
Indeed, the scope and pace of change occurring in ecological
systems today—and forecasted for the future—are unprec-
edented in human history (IPCC 2013). Although there are
many approaches ecologists may use to better understand
how and why ecosystems respond to global changes, experi-
ments have long been recognized as critical for identifying
mechanisms underlying ecological responses (Rustad 2008,
Smith 2011a, Beier et al. 2012). However, most manipula-
tive experiments are conducted with different approaches
and methods, making it challenging to determine whether
the variation in ecological responses is due to different
methodologies or to differences in key ecosystem attributes
(Smith 2011a, Borer et al. 2014). Although syntheses and
meta-analyses are useful tools for assessing broadscale
drivers of change (Wu et al. 2011, Komatsu et al. 2019), the
different methodologies used across studies can limit our
ability to draw inferences (Gurevitch and Mengersen 2010).
Consequently, knowledge of how and why ecosystems differ
in their sensitivity to global changes remains poorly quanti-
tied because we lack an understanding of the mechanisms
driven ecosystem responses. Network-level experiments
with common research protocols and methodologies are
increasingly being used to fill this gap (Beier et al. 2004,
2012, Smith 2011b, Vicca et al. 2012, Fraser et al. 2013,

Borer et al. 2014, Knapp et al. 2015a). However, their ability
to shed insight on the ecosystem sensitivity to global change
depends on the degree to which they cover a significant
proportion of the global range of climate, soil, and vegeta-
tion variables.

Coordinated distributed experiments
Coordinated distributed experiments (sensu the Nutrient
Network; Borer et al. 2014) go beyond unique, local-scale
studies and have the potential to be important for under-
standing mechanisms underlying differential ecosystem sen-
sitivity to global change (Pefiuelas et al. 2007, Smith 2011a,
Knapp et al. 2015a, Reinsch et al. 2017). Although coordi-
nated approaches account for the fact that environmental
parameters differ among locations, a global distribution of
experiments may be required to encompass the full range of
natural variability of climate and soil variables. As such, the
success of a coordinated distributed experiment depends on
the distribution of sites in soil-climate space. Experiments
encompassing the full range of environmental variables have
the possibility of testing the entire spectrum of ecosystem
responses. In contrast, networks of experiments limited
in parameter space may miss part of the response surface.
Moreover, they may be severely constrained in their predic-
tive power and in their ability of addressing global change
questions.

A global distribution of experimental sites makes sense
only if climate and soil variables differ among continents.
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In the present article, we aimed to assess whether any single
continent contains sufficient variation in climatic and soil
parameters to allow for the testing of global hypotheses in
selected regions or whether a full multicontinent approach is
needed. As site locations in coordinated distributed experi-
ments are generally established on the basis of voluntary
willingness to participate, it is important to assess the real-
ized representation of each of them.

Climate and soil parameter space

When analyzing the main environmental factors, we might
conclude that almost all possible terrestrial climate and soil
conditions are represented within a single large region or
that multiple regions are required to encompass existing
global patterns. For instance, several hypotheses indicate
that aboveground net primary production sensitivity to
precipitation amount depends on key climatic and edaphic
variables related to fertility and soil-water availability
(Yahdjian et al. 2011, Smith et al. 2017). These variables
include mean annual precipitation (Huxman et al. 2004,
Sala et al. 2012), mean annual temperature (Epstein et al.
1996), seasonality, which measures the synchrony between
wet and warm seasons based on monthly data of precipita-
tion and temperature (Sala et al. 1997, Saha et al. 2018),
continentality or the temperature and monthly precipita-
tion range. Also, soil characteristics that determine water-
holding capacity, such as soil texture (Hanks and Ashcroft
1980), soil depth and slope (Fan et al. 2017), and soil
organic carbon (Chapin et al. 2002) have been hypothesized
as important variables dictating aboveground net primary
production response per unit of precipitation. However,
the environmental parameter space is usually described in
terms of mean annual temperature and mean annual pre-
cipitation only, and the inclusion of other climate variables
or soil attributes is much less common.

To assess the global range of environmental parameter
space, we describe the global distribution of climatic and
soil variables and identify the main differences among con-
tinents to establish a baseline against which the representa-
tiveness of global distributed experiments can be assessed.
To do so, we constructed 95% confidence ellipses for a suite
of environmental variables from global databases using the
plotGroupEllipses function in R (R core Team 2018), and
we estimated the overlap of the standard ellipses fitted by
maximum likelihood using the maxLikOverlap function
(SIBER package, R core Team 2018). This procedure allowed
comparison among ellipses from continents with differ-
ent number of data points (Jackson et al. 2011). We then
estimated the area of each ellipse with the siberConvexhull
function to quantify the range of variation within each
continent. As a case study, we compared the environmen-
tal context of the International Drought Experiment (IDE,
http://drought-net.colostate.edu; Smith et al. 2017) with the
global range of environmental variation that occurs across
continents. This coordinated distributed experiment is test-
ing hypotheses about the control of ecosystem sensitivity to
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extreme drought and how they vary globally among deserts,
grasslands, shrublands, and forests. To determine how well
the DroughtNet sites represent global variation, we assessed
the environmental distribution of IDE sites within the glob-
ally defined environmental space (box 1).

Climate and soil data sources

Comparable climate and soil data are needed to describe
the global physical-environmental space. We selected nine
climatic and soil variables and extracted them from publicly
available global data sets that ensure consistency across the
globe (see table 1 for a complete list of variables and data
sources). For each global terrestrial 1-degree pixel, we identi-
fied the appropriate continental region (i.e., North America,
Central and South America, Europe, Africa, Asia, and
Australia). Climate data were extracted from WorldClim’s
global climate data (version 1.4, available at www.worldclim.
org), and loaded in R with a raster package for all terrestrial
pixels. Mean annual values of total precipitation and tem-
perature represent the long-term values (years 1960-1990)
of terrestrial condition from WorldClim version 1.4, the
most recent version for R (Hijmans et al. 2005).

Annual values of temperature and precipitation do
not fully represent how environments vary seasonally.
Therefore, water balance dynamics over seasonal time
frames cannot be captured by climatic variables described
at the annual scale. To address this deficiency, we calculated
a measure of seasonality, in this case the overlap between
wet and warm seasons, which was estimated by the Pearson
correlation coefficient on monthly data of precipitation and
temperature extracted from the same climate data source
(Sala et al. 1997). As all Pearson correlation coefficients,
seasonality values can be negative or positive and zero
means no correlation. Seasonality ranges from -1 to 1, and
negative values describe Mediterranean climates with dry
summers and rainy winters, whereas positive, values cor-
respond to sites with summer (warm season) precipitation
(Kottek et al. 2006).

Continentality was estimated by the annual temperature
range, which is the difference between maximum (hottest)
and minimum (coldest) monthly temperature. Similarly,
mean precipitation range represents the difference between
the maximum and minimum monthly precipitation over
the year, so large values of continentality or mean monthly
precipitation range represent high variability in monthly
temperature or precipitation. We also extracted and tested
for other precipitation and temperature-related variables
such as growing-season precipitation, precipitation of the
warmest or wettest quarter, potential evapotranspiration,
and the aridity index (the mean annual precipitation to
potential evapotranspiration ratio) but discarded those
variables because they were strongly correlated with mean
annual precipitation or mean annual temperature (supple-
mental figure S1).

Soil texture, a categorical (unitless) variable, was extracted
from the Hydrology Soil database (http://iridl.l1deo.columbia.
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Box 1. Empirical evaluation of a globally distributed drought experiment.

The impact of drought on ecosystems depends on the magnitude of the precipitation anomaly and the relative response rate of eco-
systems to drought (Seddon et al. 2016). Evidence showed that some ecosystems are relatively insensitive to short-term (e.g., 1 year)
changes in precipitation, whereas others are highly sensitive and respond dramatically to similar drought events (Knapp et al. 2015).
It is unclear if this observed differential sensitivity among ecosystems is a consequence of different ecological, climatic, and/or soil
parameter space. A coordinated, distributed drought experiment (the “International Drought Experiment,” IDE, http://drought-net.
colostate.edu/) was established to test hypotheses about the control of ecosystem sensitivity to extreme drought through a distributed
rainfall manipulation experiment (Smith et al. 2017, Hilton et al. 2019). In this network, comparable drought treatments among the
broad range of terrestrial ecosystems with disparate climates were achieved by simulating dry years with the same low probability of
occurrence (once every 100 years; Lemoine et al. 2016, Knapp et al. 2017). To test hypotheses about the drivers of drought sensitivity,
the network had to cover a representative portion of the climatic-soil parameter space. In the present article, we assessed the realized
representation of IDE against the background of the global patterns generated in our analysis to evaluate how well experimental IDE
sites through voluntary participation captured soil and climate gradients at the global scale described with our approach.

The IDE sites were those registered in the network data base (www.drought-net.org) and carrying out the same rainfall manipulation
experiments (supplemental figure S2, supplemental table S5). We identified 127 sites covering the six continental regions and encom-
passing the hyper-arid through hyper-humid gradient of bioclimatic zones (Le Houérou 1996; table S5). Climate and soil data for the
IDE locations were extracted from the same data bases used in this study (table 1). In addition, we extracted the Global Aridity index
(mean annual precipitation to potential evapotranspiration ratio; a high value means low aridity), from the Global Aridity database
(www.cgiar-csi.org/data/global-aridity-and-pet-database) to classify the experimental IDE sites along the arid—-humid bioclimatic
zones (Le Houérou 1996, table S5).

The IDE sites represent an even distribution of rainfall manipulation experiments in the mean annual temperature and mean annual
precipitation space, specifically in the mean annual precipitation range between 0 and 2500 millimeters per year and mean annual
temperature higher than -5 degrees Celsius (figure 1), which is also the most represented on Earth (the background in figure 1). The
effects of climate change on ecosystem functioning depend on the interactions between climate events and ecosystem sensitivity to
predicted climate changes (Sala et al. 2015). Our results provide insights about the potential of IDE to address questions regarding
ecosystem responses to drought. The IDE network will advance our understanding on drought sensitivity that is imperative to assess
future ecosystem functioning and the provisioning of ecosystem services.
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Figure 1. IDE coverage in global mean annual temperature as a function of mean
annual precipitation. The background shows in a grayscale the representation

of the global combinations of mean annual temperature and mean annual
precipitation, where the range from white to dark grey and black depicts the
density of pixels in the world with that combination of variables. The distribution
of IDE sites is deployed with the same colors according to continents in figure 2.
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Table 1. Climate and soil variables included in this analysis, defined in a globally consistent manner.

Climatic Abbreviations  Units Source References

Mean annual precipitation ~ MAP Millimeters per year BIO12 WorldClim

Mean annual temperature MAT Degrees Celsius BIO1 http://WorldClim.org

Seasonality (correlation) SEASON Unitless -

Continentality (temperature CONT Degree Celsius BIO7(BIO5-BIOG)

range)

Monthly precipitation range MPR Millimeters BIO13-Bl014

Soil texture TEXT Unitless Hydrology Soils http://iridl.Ideo.columbia.edu/SOURCES/.NASA/ .

Data set ISLSCP/.GDSLAM/ .HydrologySoils/.soils/.data set_

documentation.html

Soil depth DEPTH Meters http://esdac.jrc.ec.europa.eu/ESDB_Archive/octop/
octop_data/

Average slope SLOPE Percentage

Soil organic carbon SOC Tons per hectare

edu/SOURCES/.NASA/.ISLSCP/.GDSLAM/.Hydrology-
Soils/.soils), a 1-degree grid resolution Soil Map of the
World (Zobler 1986, FAO 1988). Texture is classified accord-
ing to the relative size of soil particles, following the scheme
proposed by Zobler (1986). Textural classes reflected the rel-
ative proportions of clay (fraction less than 2 micrometers),
silt (2-50 micrometers), and sand (50-2000 micrometers)
in the soil. The original FAO data used the terms coarse,
medium, fine, or a combination of these terms on the basis of
the relative amounts of clay, silt, and sand present in the top
30 centimeters (cm) of soil. Zobler (1986) converted these
data into a 1-degree grid resolution array, and then assigned
the common names sandy loam, sandy clay loam, loam,
and clay loam, which correlated with the USDA soil texture
triangle (table 1).

Soil depth was extracted from the soil profile thickness
file (Webb et al. 1993) derived from information contained
in volumes 2-10 of the FAO and UNESCO Soil Map of
the World (FAO 1988). The average topographical slope
(SLOPE) for each 1-degree x 1-degree square was derived
from data sets constructed by the Science and Applications
Branch of the EROS Data Center in Sioux Falls, South
Dakota (table 1). Soil organic carbon content was extracted
from the Harmonized World Soil Database and values were
expressed in tons of carbon per hectare (Nachtergaele et al.
2010, Hiederer and Kochy 2011). The resolution of soil
organic carbon data was 30 arc seconds (approximately
1 kilometer for Ecuador), and two data sets were available,
from 0-30 cm and 30-100 cm of soil depth. In the present
article, we used only the 0-30 cm because it had a better
resolution and is associated with the soil profile where plant
roots concentrate (Jackson et al. 1996).

All climate data used for this study are available from
WorldClim (global climate data, version 1.4, www.world-
clim.org; global aridity database, www.cgiar-csi.org/data/
global-aridity-and-pet-database; and soil data, http://iridl.
ldeo.columbia.edu/SOURCES/.NASA/.ISLSCP/.GDSLAM/.
Hydrology-Soils/.soils). To harmonize climate and soil data
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sets, we used the coarse resolution of the Worldclim,
2.5 minutes (around 5 square kilometers).

Patterns in global environmental space

The terrestrial climate space determined by the joint com-
bination of macroclimatic parameters mean annual tem-
perature versus precipitation had a triangular shape, as was
proposed by Whittaker (1975), resulting from the spherical
configuration of Earth that creates a larger area and precipi-
tation-temperature combinations around the tropics than in
polar regions (figure 2a). There was an interaction between
mean annual precipitation and mean annual temperature
values (figure 2a; Koenig 2002). The wettest regions in the
warmest climates have more energy to fuel the water cycle.
Consequently, the mean annual temperature range was
broader in drier regions of the world (figure 2a). However,
there were differences in mean annual temperature and pre-
cipitation among continents (figure 2a) and very low over-
lap among the six continents (ellipses in figure 2b, table 2,
supplemental table S1).

The global seasonality of precipitation was evenly dis-
tributed on the basis of mean annual precipitation (figure
3a). Winter and summer precipitation regimes (negative
and positive correlations, respectively) were equally rep-
resented in the 0-3000 millimeters range of mean annual
precipitation, but extreme seasonality was less common in
locations with higher mean annual precipitation rate (figure
3a). Different continents had distinct seasonality patterns
(figure 3d, supplemental table S2). For example, South
America had a large representation of winter precipita-
tion and low seasonality sites that were not represented in
either North America or Europe (figure 3d). Continentality
showed a global pattern of decreasing temperature range
with increasing mean annual precipitation and wettest
regions located in low continental (low temperature range)
climates (figure 3b). In other words, sites located far from
the oceans, and therefore with high continentality, tended to
have lower precipitation compared with maritime regions.
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Figure 2. Global mean annual temperature as a function of mean annual precipitation, with colors representing the six
continents. (a) The dots represent a pixel of terrestrial area depicted according to each continent. (b) 95% confidence
ellipses estimated by maximum likelihood using the maxLikOverlap function (SIBER package in R).

It is important to highlight that there were large differ-
ences in temperature ranges among continents (figure 3e,
supplemental table S3). In the Southern Hemisphere, high
continentality is extremely rare because of the smaller land-
masses in the middle latitudes and nearly absent of land
at 40-60 degrees south. By contrast, North America and
Asia in the Northern Hemisphere showed higher tempera-
ture ranges (over 30 degrees Celsius), whereas Europe and
Australia showed intermediate values. Africa and South
America exhibited the lowest continentality (figure 3e). The
monthly precipitation range showed a strong correlation
with mean annual precipitation, with monthly precipitation
range increasing with mean annual precipitation (figure 3c).
A clear continental pattern emerged from this climate space
with Asia and South America showing higher monthly pre-
cipitation range than Europe and North America (figure 3f,
supplemental table S4).

The global pattern of soil properties showed no correlation
between mean annual precipitation and texture (figure 4a)
or soil depth (figure 4b). All types of soil texture were spread
along the arid-humid mean annual precipitation gradi-
ent with Australian sites showing coarser soils and South
American sites largely represented in the loam and clay soil
textural classes (figure 4a). Soil slope showed that globally,
flat and low-slope soils were more represented on earth
than slopes higher than 30% without a continental pattern
(figure 4c). The soil organic carbon in the 0-30 cm depth
showed a slightly positive correlation with mean annual
precipitation and a broader soil organic carbon range in

https://academic.oup.com/bioscience

drier regions, with South America region more varied for
soil organic carbon and mean annual precipitation than the
other continents (figure 4d).

The multivariate analysis of terrestrial climate and soil
variables highlights the global distribution of these variables
among continents (figure 5). The plane defined by the first
two principal components accounted for 42% of the vari-
ance. The first principal component included sites tending
to have high mean annual temperature or mean annual
precipitation on one end and large seasonality and continen-
tality on the other end (figure 5). The second principal com-
ponent included soil variables, and range from low to high
slope, depth, and soil organic carbon (arrows in figure 5).
The ellipses delineated continent patterns and clearly dem-
onstrate that no single continent covers the integrated global
climate-soil space (figure 5). Continental patterns stress the
necessity of a global network given that no single continent
covers the integrated climate-soil space (table 2).

Implications

Coordinated distributed experiments provide a framework
for both comparing ecosystem sensitivity to global-change
drivers and for identifying the mechanisms that underlie
those responses. However, the ability of coordinated net-
works to shed insight on fundamental drivers of ecosystem
dynamics depends on whether the location of the experi-
ments cover a significant proportion of the global range of
climate, soil, and vegetation variables. The pattern of macro-
climatic variables mean annual precipitation, mean annual
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Table 2. Percentage of bivariate climate variables depicted in figures 2 and 3 and of PCA in Figure 5, accounted for by
each continent.

Climatic MAT SEASON CONT MPR PCA
Africa 30 40 26 16 49
Asia 74 79 77 73 81
Australia 45 68 34 22 45
Europe 48 42 41 4 46
North America 48 37 34 8 48
South America 69 84 50 34 55

Note: Each variable listed was deployed against mean annual precipitation (MAP). See abbreviation and units of each climate variable in
table 1. The last column refers to the area of the 95% confidence ellipses in principal component space depicted in figure 5. Abbreviations:
CONT, continentality; MAT, mean annual temperature; MPR, monthly precipitation range; PCA, principal component analysis.
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Figure 3. Global distribution of climatic variables as a function of mean annual precipitation in the six continental masses. (a, d)
Seasonality index showing the overlap between wet and warm seasons, calculated as the Pearson correlation coefficient between
monthly precipitation and temperature (unitless). (b, e) Continentality based on temperature range estimated as the difference
between maximum (hottest) and minimum (coldest) monthly temperature. (c, f) Monthly precipitation range estimated as

the difference between the maximum and minimum monthly precipitation over the year. Panels (d), (e), and (f) contain 95%
confidence ellipses estimated by maximum likelihood using the maxLikOverlap function (SIBER package in R).
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Figure 4. Global distribution of soil variables as a function
of mean annual precipitation. (a) Soil texture, (b) soil depth,
(c) slope, and (d) soil carbon content (tons of carbon per
hectare). Texture classes in panel (a) are abbreviated CL,
clay loam; L, loam; SCL, sandy clay loam; SL, sandy loam.
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temperature, and continentality that measured the tempera-
ture range, showed important distinctions among continents
that emphasize the necessity of a global network to account
for differences in climate. Indeed, the soil-climate integra-
tion space described by the multivariate analysis of climatic
and soil variables showed that six continental regions of the
world are needed to cover the full combination of different
climate and soil variables in Earth’s terrestrial ecosystems.

Global patterns of climate were related to the spheri-
cal shape of the Earth and the uneven distribution of
continental masses relative to water in Northern and
Southern Hemispheres (Akin 1991, Chapin et al. 2002).
Soil characteristics modulate water infiltration, water stor-
age, water potential, and soil fertility, all of which affect
plant responses to precipitation change (Smith et al. 2017).
Soil variables represent another dimension of the physical
space that also determines ecosystem functioning. In con-
trast with the observed differences in climate variables, no
continental patterns emerged in soil variables. This global
analysis confirmed previous studies of aboveground net
primary production controls at the subcontinental scale
showing that climate variables changed at a coarser scale
than soil variables (Sala et al. 1988). A study of aboveground
net primary production of more than 900 sites in North
America captured the climate effect when those sites were
lumped into 100 larger units but needed to be disaggregated
to evaluate the effect of soil texture on productivity (Sala
et al. 1988). Therefore, distributed experiments may need
to encompass large-scale climate patterns as well as finer
scale soil patterns.

Our analyses serve as a basis for the design and deploy-
ment of future coordinated distributed experiments, and
they provide an underlying mechanism to evaluate the
generality of conclusions from existing global experimental
networks. As the analysis represents a spatial description
of the terrestrial environmental parameter space, the range
of variation of climate variables is wider than the expected
by climate change because it covers the full extent of global
variation. In addition, our approach identified the main
factors that capture the global variability of the physical-
environmental space, including not only the macroclimatic
variables mean annual precipitation and mean annual tem-
perature, but additional climate and soil variables that also
control the functioning of ecosystems and their response
to different global-change drivers (Flombaum et al. 2017).
Finally, our framework is based on a data-driven approach
and publicly available sources of information, so it could be
applied to assess the representativeness of environmental
observatory networks and complement previous assess-
ments at the national scale (Villarreal et al. 2018, Villarreal
et al. 2019).

Most coordinated distributed experiments have a national
or continental extent or cover a specific biome or climate
type (Beier et al. 2004, Fraser et al. 2013, Borer et al. 2014a,
Maestre and Eisenhauer 2019). Many of them use coarse
grids, sample locations in some regions and often do not
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Figure 5. Soil-climate space as depicted by a principal component analysis (PCA) showing continental representation

(the colored dots). The plane defined by the first two principal components accounted for 42% of the variance. PCA axis 1
included sites ranging from high mean annual temperature (MAT) or mean annual precipitation (MAP) on one end and
large seasonality (SEASON) and continentality (CONT) on the other end. PCA axis 2 included soil variables and ranges
from low to high slope, depth and soil organic carbon (SOC). Solid arrows indicate direction and weighing of vectors
representing the relative contribution of the five climate and four soil parameters considered (table 1). The 95% confidence
ellipses represent data clusters in the PCA by continents (Fox and Weisberg 2011). Variables are described in table 1 and
the percent cover of the ellipses accounted for by each continent area is informed in the last column of table 2.

span the whole north to south gradient or lack extreme envi-
ronments. Moreover, most coordinated distributed experi-
ments, including the International Drought Experiment
(IDE), did not have an a priori design but instead were
built on voluntary participation from around the world.
Consequently, they are often biased toward regions with
the highest concentrations of scientist and resources such
as North America and Europe (Wu et al. 2011). Our analy-
sis highlighted the importance of deploying coordinated
distributed experiments that widely represent the environ-
mental parameter space, with the understanding that differ-
ent networks may need different configurations depending
on the type of questions that they address. Our sampling
approach implied a spatial integration of data into grid cells,
and therefore, the results can mask heterogeneous physical
conditions that occur at smaller scales. The result may sug-
gest that these scale differences may be more important for
soil variables than climate variables.

In conclusion, this study represents a step forward in
the analysis of climate and soil parameter space that can be
useful in the design of distributed experimental networks,
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which are increasingly being developed to address large-
scale ecological questions. Coordinated distributed experi-
ments may benefit from a design that captures as much as
possible the full extent of global variation in climate and
soil parameter space, which admittedly may be challenging
to achieve in some extreme environments. The latitudinal
changes in most environmental variables and the differ-
ent patterns in the Northern versus Southern hemisphere
because of the land-ocean ratio stress the importance of
widening the coverage of the parameter space. Generally,
climate change will result in drier climates in dry regions
and wetter climate in wetter regions. As a consequence, the
development or expansion of existing coordinated global
networks need to be cognizant of zones of rapidly changing
climate or hot spots of climate change as priorities of inclu-
sion into these networks wherever possible. The expected
changes in climate in the next 50-100 years will have huge
implications for ecosystems and human wellbeing but will be
small relative to the spatial gradient described in the present
article. Nevertheless, our results provide a unique vision of
climate and soil variability at the global scale and highlight
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the need to consider global patterns of climate and soil
variables as much as possible when designing coordinated
distributed experiments.
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