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To realize the above insight, blk-switch introduces a

per-core, multi-egress queue block layer architecture for the

Linux storage stack (Figure 1). Applications use standard

Linux APIs to specify their performance goals, and to submit

read/write requests (§3). Underneath, for each application

class, blk-switch creates an “egress” queue on a per-core

basis that is mapped to a unique queue of the underlying

device driver (that is, storage driver for local storage access, or

remote storage driver for remote storage access). Such a multi-

egress queue design allows blk-switch to decouple ingress

(application-side block layer) queues from egress (device-side

driver) queues since requests submitted at an ingress queue

on a core can now be processed at an egress queue at any of

the cores. blk-switch merely acts like a “switch”—at each

individual core, blk-switch steers requests submitted at the

ingress queue of that core to one of the egress queues, based

on application performance goals and load across cores.

blk-switch integrates three ideas within such a switched

architecture to simultaneously enable µs-scale tail latency for

L-apps and high throughput for T-apps. First, blk-switch

maps requests from L-apps to the egress queue on that core,

and processes the outstanding requests in a prioritized order;

that is, at each individual core, requests in L-app egress queues

are processed before requests in T-app egress queues. This

ensures that L-apps observe minimal latency inflation due to

head-of-line blocking from T-app requests. However, strict

prioritization at each core can lead to starvation of T-apps

due to transient load (bursts of requests from an L-app on

the same core) or due to persistent load (multiple contending

L-apps on the same core). To avoid starvation during transient

loads, blk-switch exploits the insight that decoupling the

application-side queues from device-side queues, and inter-

connecting them via a switched architecture enables efficient

realization of different load balancing strategies, even at the

granularity on individual application requests. blk-switch

thus uses request steering to load balance requests from T-

apps across corresponding egress queues at all available cores.

To avoid starvation due to persistent loads, blk-switch uses

application steering, that steers application threads across

available core at coarse-grained timescales with the goal of

minimizing persistent contention between L-apps and T-apps.

At its very core, the two steering mechanisms in blk-switch

highlight the conceptual idea that load balancing within the

Linux storage stack can be applied at two levels of abstraction:

individual requests and individual threads; and, both of these

are necessary to simultaneously achieve µs-scale latency for

L-apps and high throughput for T-apps—the former enables

efficient handling of transient loads, and the latter enables

efficient handling of persistent loads on individual cores.

We have implemented blk-switch within the Linux

storage stack. Our implementation is available at: https:

//github.com/resource-disaggregation/blk-switch. We

evaluate blk-switch over a wide variety of settings and

workloads, including in-memory and on-disk storage, single-

threaded and multi-threaded applications, varying load in-

duced by L-apps and T-apps, varying read/write ratios, varying

number of cores, and with RocksDB [9], a widely-deployed

storage system. Across all evaluated scenarios (except for

sensitivity analysis against number of cores and T-app load),

we find that blk-switch achieves µs-scale average and tail

latency (at both 99th and 99.9th percentiles, or P99 and P99.9,

respectively), while allowing applications to nearly saturate

the 100Gbps link capacity, even when tens of applications con-

tend for host resources. In comparison to Linux, blk-switch

improves the average and the P99 latency by as much as

130× and 24×, respectively, while maintaining 84− 100%

of Linux’s throughput. We also compare blk-switch to

SPDK, a widely-deployed state-of-the-art userspace storage

stack. We find that SPDK achieves good tail latency and high

throughput when each application runs on a dedicated core;

in the more realistic scenario of applications sharing server

cores, in comparison to SPDK, blk-switch improves the

average and P99 tail latency by as much as 12× and 18×, re-

spectively, while achieving comparable or higher throughput;

as we will discuss, this is because polling-based userspace

stacks like SPDK do not interpolate very well with Linux

kernel CPU schedulers. When compared to both Linux and

SPDK, blk-switch achieves similar or higher improvements

for P99.9 tail latency. All these benefits of blk-switch can

be achieved without any modifications in the applications,

Linux CPU scheduler (blk-switch uses the default CFS

scheduler), Linux network stack (blk-switch uses Linux

kernel TCP/IP stack), and/or network hardware.

2 Understanding Existing Storage Stacks

This section presents a deep dive into the performance of

two state-of-the-art storage stacks—Linux (including remote

storage stack [29]) and SPDK (a widely-deployed userspace

stack). We first describe our setup (§2.1), and then discuss

several results and insights (§2.2). Our key findings are:

• Despite significant efforts in improvement of Linux storage

stack performance (per-core queues [19], per-core storage

and network processing [29], etc.), existing Linux-based

solutions suffer from high tail latencies due to head-of-line

blocking, especially in increasingly common multi-tenant

deployments [31, 52], that is, when L-apps compete for

host resources with T-apps that perform high-throughput

reads/writes to remote storage servers. Intuitively, such

scenarios result in a complex interference at three layers

of the stack—compute, storage, and network—requiring

careful orchestration of host resources to achieve µs-scale

tail latency, while sustaining throughput close to hardware

capacity. Existing Linux-based solutions fail to efficiently

achieve such orchestration. For instance, even with one

L-app competing with one T-app, we observe tail latency

inflation of as much as 7× (when compared to isolated

case, where the L-app runs on a dedicated server).
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Table 1: The storage stack, network stack and CPU scheduler

used in the evaluated systems.

System Storage stack Network stack CPU scheduler

Linux kernel, i10 [29] kernel TCP kernel CFS

SPDK userspace kernel TCP kernel CFS

• Polling-based storage stacks (e.g., SPDK) can achieve low

latency and high throughput when each application is given

a dedicated core. However, when multiple applications

share a core, polling-based stacks that use kernel CPU

schedulers suffer from undesirable interactions between

the storage stack and the kernel CPU scheduler. Even when

one L-app shares a core with one T-app, we observe 5× tail

latency inflation and 2.4× throughput degradation, when

compared to the respective isolated cases; both of these

get worse with increasing number of applications sharing

a core (108× tail latency inflation and 6.2× throughput

degradation for the case of four L-apps sharing a core with

one T-app). Prioritizing L-apps does not help—while tail

latency inflation can be avoided, throughput for T-apps

drops to near-zero with just one L-app.

2.1 Measurement Setup

The storage stack, the network stack and the CPU schedulers

used in evaluated systems are summarized in Table 1. Linux

uses block multi-queue design with per-core software queues

mapped to underlying device driver queues (NVMe driver for

local storage access, and i10 [29] queues for remote storage

access). SPDK is a polling-based system, where applications

poll on their I/O queues (for local storage access) and/or

on their respective TCP sockets (for remote storage access);

underneath, SPDK uses its own driver for accessing remote

storage devices over TCP.

In §5, we evaluate these systems over different storage

devices, workloads, and experimental setups. This section

focuses on a specific setting: a single-core setup where one T-

app contends with an increasing number of L-apps to execute

read requests on remote in-memory storage connected via a

100Gbps link. This setting allows us to both hide high NVMe

SSD access latencies, and dive deeper into factors contributing

to individual system performance. Latency-sensitive L-apps

generate 4KB requests and throughput-bound T-apps generate

large requests; to ensure a fair comparison, for each individual

system, we set the “ideal” load and request size for T-apps

using the knee point on the latency-throughput curve for that

system (see discussion in §5.1 for more details, including

information about network and storage hardware).

We measure average and P99 tail latency for L-apps and

throughput-per-core for T-apps for both isolated (where each

application has host resources to itself) and shared scenarios

(where all applications share host resources). An ideal system

would maintain the isolated-latency for L-apps, with minimal

impact on isolated throughput for T-apps.

2.2 Existing Storage Stacks: Low latency or

high throughput, but not both

We start by discussing the isolated performance for each of the

systems (shown in Figure 2 in the leftmost bars). Here, Linux

achieves P99 tail latency of 118µs and throughput-per-core of

26Gbps; when compared to Linux, SPDK achieves 5× lower

latency, and 1.5× higher throughput. While these results are

not surprising in comparison, some interesting numbers stand

out in an absolute sense. In particular, the absolute numbers

for Linux—118µs P99 tail latency (comparable to our NVMe

SSD access latency) and > 25Gbps throughput-per-core—

may be surprising. We attribute these to several relatively

recent optimizations in the Linux storage stack (e.g., blk-

mq [19] and CPU-efficient remote storage stacks [29]).

High tail latencies due to lack of prioritization: head-of-

line (HoL) blocking. In early incarnations of Linux storage

stacks, requests submitted at all cores were processed at a

single queue, resulting in contention across cores as well as

HoL blocking due to requests submitted across cores. To-

day’s Linux alleviates these issues using per-core block layer

queues [19]; however, we find that HoL blocking can still

happen at the block layer queues (rare) or at the device driver

queues (more prominent). This is because the Linux storage

stack [19, 29] uses a single per-core non-preemptive thread to

process all requests submitted on that core. When multiple ap-

plications contend on a core, this results in high tail latencies

for L-apps due to HoL blocking caused by large requests from

T-apps; we observe as much as 7× higher latencies in Fig-

ure 2. Figure 3(a) shows that, as expected, the impact of HoL

blocking increases linearly with the request size of T-apps.

High tail latencies due to lack of prioritization: fair CPU

scheduling. We find that polling-based designs do not inter-

play well with the default kernel CPU scheduler—Completely

Fair Scheduler (CFS)—that allocates CPU resources equally

across applications sharing the core (albeit, at coarse-grained

millisecond timescales, referred to as “timeslices”). Polling

completely utilizes the core; thus, the scheduler deallocates

the core from an application only when the application has

used its share of the core. As a result, requests from L-apps

initiated at the boundary of L-app timeslices are the ones

whose latency is impacted the worst since these would not be

processed until the application’s next timeslice. As a result,

even when one L-app contends with one T-app, SPDK suffers

from 5× inflation in tail latency when compared to the iso-

lated case; the latency inflation increases to 108× and higher

when multiple L-apps share the core with a T-app. Since CPU

is fairly shared across contending applications, such polling-

based systems not only suffer from latency inflation but also

from degraded throughput for T-apps proportional to the num-

ber of applications contending at the core.

The impact on tail latency depends on two factors: (1)

length of individual timeslices; and (2) the time gap between

successive timeslices. The former determines the number of
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Figure 2: When each application runs in isolation (isolated case, with no other applications on the server), existing storage stacks can

achieve low latency and high throughput. However, when multiple applications compete for host resources, performance of existing

storage stacks stumbles—they are either unable to maintail µs-scale latency (Linux and SPDK), or are unable to maintain high throughput

(SPDK+priority). With increasing number of L-apps contending with the T-app, performance degrades further. See §2.2 for discussion.
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Figure 3: Root cause for the trends in Figure 2. (left–right) (a): Linux suffers from high tail latency due to HoL blocking. (b): SPDK

suffers from high tail latency and low throughput since CPU scheduler performs fair scheduling of CPU resources, resulting in increasingly

higher waiting times and increasingly lower runtimes for each application. (c, d): SPDK+priority suffers from complete starvation of T-app;

increasing the sleep interval and/or niceness value of L-apps leads to an increase in T-app throughput, at the cost of increased average and tail

latency for L-apps. Detailed discussion in §2.2.

requests that can be processed within a single timeslice (these

requests will achieve near-optimal latency), and the latter de-

termines the amount of “waiting time” for requests that could

not be processed within the timeslice in which they were sub-

mitted. We measure these two factors in our experiments by

examining CFS scheduler traces. In Figure 3(b), the “Run”

bar shows the average length of the timeslice given to each

L-app, and the “Wait” bar shows the average time gap be-

tween consecutive timeslices of each L-app. We observe that

as the number of L-apps increases, the length of individual

L-app timeslices decreases, and the wait time increases. This

leads to (1) a larger latency impact for requests at the bound-

ary of timeslices, hence inflation in tail latency; and, (2) a

larger fraction of requests being impacted by the gap between

consecutive timeslices, hence inflation in average latency.

Near-zero throughput due to strict prioritization: starva-

tion in polling-based designs. Linux CPU scheduler allows

prioritization of L-apps. Unfortunately, polling-based designs

do not interplay well with prioritization either. We rerun

SPDK results above but with L-apps having higher priority

(niceness value −20) than T-app. The corresponding results,

referred to as “SPDK+priority” in figures, show that such

prioritization results in two undesirable effects: (1) complete

starvation of T-apps—since L-apps have higher priority and

are always active due to their polling-based design, the sched-

uler does not preempt these applications; and (2) if more than

a single L-app contend on a core, CPU resources are shared

fairly across these applications, resulting in increased average

latency. We note that tail latency is not impacted much when

the number of L-apps is increased. This is because, when

given higher priority, L-apps get longer timeslices, and are

able to process more requests in each timeslice, leaving only

a small fraction of requests to be impacted by the gap be-

tween consecutive timeslices. Hence, while the waiting time

between timeslices increases, the effect is not visible at P99

(higher percentiles see significant inflation). This is also the

reason for the case of four L-apps in Fig. 2: the tail latency

is worse than the average (since the latency distribution is

extremely skewed towards higher percentiles).

In Figure 3(c), we re-run the single L-app and T-app case,

this time making the L-app sleep for a certain interval after

submitting requests, and vary this interval. When the L-app

sleeps, it yields, allowing the T-app to get scheduled. As can

be seen, increasing the sleep interval leads to an increase in

T-app throughput. However, it comes at the cost of increasing

tail latency for L-apps. In Figure 3(d), we repeat the single

L-app and single T-app experiment, but with varying the L-

app priority by adapting the niceness value (lower niceness

implies higher priority): T-app’s niceness value is set to 0, and

we vary L-app niceness value from −20 (highest priority) to

0. CFS allocates timeslices to processes based on the niceness

value. Hence, with increasing niceness values, the L-app gets

a smaller share of CPU cycles, leading to an increase in the

T-app’s share. As a result, T-app’s throughput increases but

only at the cost of inflated latency for the L-app.
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3 blk-switch Design

As mentioned earlier, blk-switch builds upon the insight

that Linux’s per-core block layer queues [19, 27], combined

with modern multi-queue storage and network hardware [8],

makes the storage stack conceptually similar to network

switches. To realize the above insight, blk-switch intro-

duces a “switched” architecture for the Linux storage stack

that allows requests submitted by an application to be steered

to and processed at any core in the system. In §3.1, we de-

scribe this switched architecture, and how it enables the key

technique in blk-switch to achieve low latency for L-apps—

prioritized processing of individual requests. In §3.2 and

in §3.3, we describe how decoupling the application-side

queues from device-side queues, and interconnecting them

via blk-switch’s switched architecture enables efficient re-

alization of different load balancing strategies to achieve high

throughput for T-apps.

Before diving deeper into blk-switch design details, we

make two important notes. First, we describe blk-switch de-

sign using a single target device (local and/or remote storage

server) since, similar to Linux, blk-switch treats each tar-

get device completely independently. Second, blk-switch

does not require modifications in applications and/or system

interface—applications submit I/O requests to the kernel via

standard APIs such as io_submit(). Similar to any other sys-

tem that provides differential service, blk-switchmust iden-

tify application goals. Being within the Linux kernel makes

this task easy for blk-switch: it uses the standard Linux

ionice interface [6] that allows setting a “scheduling class”

for individual applications/processes (without any changes

in applications and/or kernel request submission interface).

In the current implementation (§4), blk-switch uses two of

the ionice classes to differentiate L-apps from T-apps. It is

easy to extend blk-switch to support additional application

requirements—for instance, applications that require both low

latency and high throughput can use an additional application

class (using ionice) to specify their performance goal, and

blk-switch can be extended in a manner that each core not

only appropriately prioritizes but also performs load balanc-

ing for requests for such applications. In addition, the ion-

ice interface also allows applications to dynamically change

their class, if performance goals change over time (e.g., from

latency-sensitive to throughput-sensitive requests). Note that

ionice is only for the storage stack interpretation, and is dif-

ferent from CPU scheduling priority classes.

3.1 Block Layer is the New Switch

Linux storage stack architecture, in particular the block layer,

has evolved over time. In early incarnations of Linux storage

stacks, requests submitted at all cores were processed at a

single queue. In today’s Linux, block layer uses a per-core

queue (blk-mq [19]) where requests submitted by all appli-

cations running on that core are processed. We refer to these

per-core block layer queues as ingress queues. Today, these

ingress queues are directly mapped to the driver queues (stor-

age device driver for local storage access, or remote storage

driver [21, 29] for remote storage access)1. Introduction of

per-core ingress queues in Linux storage stack resolved con-

tention across cores; however, since all requests submitted to

an ingress queue are processed at the same core, it can lead

to high tail latency due to head-of-line blocking at the driver

queues when L-apps and T-apps submit requests to the same

ingress queue (Figure 2). blk-switch’s architecture avoids

this using a multi-egress queue design, that we describe next.

Multiple egress queues. blk-switch introduces a per-core,

multi-egress queue block layer architecture for the Linux stor-

age stack. For each class of application running on the server,

blk-switch creates an “egress” queue on a per-core basis.

Each of these egress queues is mapped to a unique queue of

the underlying device driver—storage driver for local stor-

age access, and remote storage driver [29] with a dedicated

network connection for remote storage access. blk-switch

assigns a dedicated kernel thread for processing each individ-

ual egress queue and assigns priorities to these threads based

on application performance goals. For instance, in the case

of L-apps and T-apps, blk-switch assigns highest priority

to the thread processing L-app requests (both in transmit and

receive queues); thus, at each individual core, the kernel CPU

scheduler will prioritize the processing of L-app requests over

T-app requests, immediately preempting the T-app request

processing thread. As a result, the latency inflation observed

by L-app requests over the isolated case is minimal: in addi-

tion to the necessary overhead of a context switch, the only

source of latency is other L-app requests on that core.

Decoupling request processing from application cores.

Existing block layer multi-queue design tightly couples re-

quest processing to the core where the application submits the

request. While efficient when cores are underutilized, such

a design could result in suboptimal core utilization: if a core

C0 is overloaded and another core C1 is underloaded, current

storage stacks do not utilize C1 cycles to process requests

submitted at C0.

blk-switch exploits its multi-egress queue design to en-

able a switched architecture that alleviates this limitation

(Figure 4): it allows requests submitted at a core to be steered

from the ingress queue of that core to any of the other cores’

egress queues (for that application class), be processed on

that core, and responses returned on that core to be rerouted

back to the appropriate application core. Decoupling request

processing from application cores has some overheads (both

in terms of latency and CPU), but allows blk-switch to ef-

1Modern storage devices have multiple hardware queues and correspond-

ing drivers allow creating a large number of queues (e.g., NVMe standard

allows creating as many as 64k queues); in case of multiple hardware de-

vices, each device has its own set of queues. Similarly, modern remote storage

stacks [29] also create one driver queue per-core for each remote server.
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steering at the granularity of individual requests. Upon a re-

quest submission, blk-switch first checks if the local core is

available: if the load on the local core is less than threshold,

the local core is considered available and the request is en-

queued in its egress queue. This is to ensure that blk-switch

only incurs the overhead of request steering when necessary.

If the local core is overloaded, blk-switch uses a mecha-

nism based on power-of-two choices [41] to select a core to

steer the request to. Among egress queues to the same des-

tination (as described in §3.1), it randomly chooses two of

these cores, and steers the request to the core with the lower

load. The power-of-two choices is efficient as (1) at most

two egress ports need to be examined when the local core is

overloaded; and (2) it reduces contention between cores on

queues since two cores are unlikely to write requests to the

same core at the same time.

We provide details about blk-switch’s request steering

implementation in §4. blk-switch does not implement re-

quest steering at the remote storage server side; if there is

transient congestion at the remote storage server, then corre-

sponding egress queues at the application side will build up.

In that case, our application-side request steering algorithm

will not pick this egress queue, and will forward the requests

to queues at other cores. Thus, application-side request steer-

ing alone is enough to deal with transient congestion at both

the application and the remote storage server.

3.3 Application Steering

The benefits of request steering at a per-request granularity

can be overshadowed if each request submitted at a core has

to be steered to other cores, e.g., due to persistent load on a

core due to multiple contending L-apps submitting requests

at that core. For instance, if L-apps generate requests at low

but consistent loads, frequent context switching between L-

app and T-app request processing threads leads to reduced

throughput. Similarly, if two high-load T-apps are contending

on a core, it is better to move one of them to a less utilized

core, avoiding long-term overheads of request steering.

To handle such persistent loads, blk-switch observes that

load balancing within the Linux storage stack can be done at

two levels of abstraction: individual requests and individual

threads—while the former enables efficient handling of tran-

sient loads, the latter enables efficient handling of persistent

loads. Thus, under such persistent loads, blk-switch per-

forms application steering, that is CPU allocation to individual

application threads by steering threads from persistently over-

loaded cores to one of the underutilized cores. Figure 4 shows

an example. blk-switch performs application steering at

coarse-grained timescales (in our implementation, default is

10 milliseconds) since it is required only for handling persis-

tent loads. Note that application steering is performed at the

granularity of individual application threads. Unlike request

steering, blk-switch implements a version of application

steering at both the application side and at the remote storage

Algorithm 2 : blk-switch application steering framework.

L̂c: weighted average load induced by L-apps at core c.

T̂c: weighted average load induced by T-apps at core c.

L⋆: threshold on weighted average load induced by L-apps

L-apps:

1: candidates← all cores with 0 < L̂c < L⋆

2: c⋆ ← core in candidates with minimum {L̂c + T̂c}
3: Move the application to c⋆

T-apps:

1: candidates← all cores with L̂c less than local core

2: ĉ← core in candidates with minimum T̂c

3: Move the application to ĉ

server; for the latter, it steers threads that perform processing

at blk-switch’s receive-side egress queues.

For application steering, blk-switch uses a frame-

work similar to request steering with minor modifications

(Algorithm 2). Unlike the request steering framework,

blk-switch’s application steering explicitly takes into ac-

count the weighted average load on the core induced by L-

apps. This is due to two reasons. First, application steering

is performed to reduce long-term contention between L-apps

and T-apps; thus, we want T-apps to be steered to the core

with low weighted average load induced by L-apps (with an

additional constraint that the weighted average of T-app load

on the new core is lower than the current core). Together, this

ensures that steering the T-app does not increase the num-

ber of context switches (the new core has lower L-app load),

and also that the new core’s T-app load is lower than that of

the current core, thus minimizing contention among T-apps.

Second, we also want to potentially place multiple L-apps on

the same core in order to further reduce interference between

L-apps and T-apps—colocating L-apps on a core will not neg-

atively impact their performance as long as L-apps generate

low weighted average load on the core. The second modifi-

cation is for the case of applications performing data access

on remote storage servers: we now use a default threshold of

L⋆
= 100KB to ensure that only a small number of L-apps are

aggregated on the same core.

4 blk-switch Implementation Details

We have implemented blk-switch in Linux kernel 5.4.

Throughout the implementation, our focus was to reuse ex-

isting kernel storage stack infrastructure as much as possible.

To that end, our current implementation adds just 928 lines

of code—530 in blk-mq layer, 118 at device driver layer, and

280 for target-specific functions at remote storage layer. In

this section, we summarize the core components of Linux ker-

nel implementation that blk-switch uses, along with some

of the interesting blk-switch implementation details.
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Figure 5: Request datapath in blk-switch for T-app. A request

from T-app is forwarded to T-app egress queue obtaining a tag from

that I/O queue. Linux maintains several data structures to enable

forwarding back the response to the right application. blk-switch

uses the same infrastructure.
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Figure 6: Request datapath in blk-switch. (a) (w/ request steer-

ing): request is steered to the queue on core1 via hctx(1,1) acquiring

a tag from the steered queue. The response comes back to the steered

queue on core1. (b) (w/ application steering): When an applica-

tion is moved from core0 to core1, the in-flight request, sent before

application steering, comes back on core0. blk-switch finds the

corresponding kioctx via the tag and wakes up the application.

Linux block layer overview. We describe how the Linux

storage stack works with the asynchronous I/O interface [4]

(see Figure 5, but ignore prioritization). Before creating I/O

requests, application needs to setup an I/O context using

io_setup(), which creates a kioctx structure at VFS layer.

This kioctx includes (1) a ring buffer where request comple-

tion events are enqueued (so that the application pulls them up

later asynchronously); and, (2) application process informa-

tion to wake up the application whenever a new completion

event is ready. Each kioctx is associated with a context iden-

tifier. When application submits a request with the context

identifier, the VFS layer creates kiocb that represents the I/O

request and finds the corresponding kioctx using the iden-

tifier. kiocb has a pointer for the kioctx. The block layer

creates a bio instance, based on kiocb, and encapsulates it in

a request instance: this includes a hardware context (hctx)

that is associated with one of the device-driver I/O queues.

Before forwarding the request to the device-driver queue,

the block layer needs to get a tag number. tags is an array of

request pointers, and its size is the same as the queue depth of

the driver queue.The block layer maintains a bitmap to keep

track of the occupancy of the tags. When all tags are occupied

(i.e., the driver queue is full), then the block layer needs to

wait for a tag to be available. After getting the tag, the request

is sent to the driver queue associated with hctx.

After I/O processing at the device, the response is returned

to the kernel with the same tag number. The kernel finds the

corresponding request instance from the tags array using

the tag number. The tag number is released, and kiocb from

the bio instance is extracted to find the kioctx. Finally, the

completion event is enqueued into the ring buffer of kioctx

and a notification is sent to the application.

blk-switch request steering implementation. Since each

hctx is regarded as an egress queue, the main goal of the

request steering algorithm is to select a non-congested hctx

across cores if the local one is congested. blk-switch main-

tains the per-core load required for request steering (updating

on a per-request basis). After that, the request will obtain

a tag from the steered hctx. Once the request is enqueued

into the corresponding driver queue, the following driver-level

and block-layer receive processing will be done on the core

that is associated with the steered hctx. When the response

comes back to the kernel from the device, we are able to find

the steered request instance from the tags; thus, going back

to the original kioctx is straightforward as the kioctx can

be extracted from the request instance (Figure 6(a)). The

kernel sends a wake-up signal to the application running on

the core associated with the ingress port via the kioctx.

blk-switch application steering implementation. Upon

application steering deciding to move the application to a new

core, blk-switch invokes the sched_setaffinity kernel

function to execute the move. Once this is done, requests

generated by the steered application will be submitted to

the ingress queue on the new core. blk-switch maintains

the weighted average per-core load required for application

steering (updating on a per-request basis). It is easy to main-

tain application semantics even when there are “in-flight”

requests during application moving from one core to another.

blk-switch forwards the “in-flight” requests to the right

application by exploiting the tags (Figure 6(b)); similar to

the request steering, blk-switch is able to find the origi-

nal kioctx that keeps track of the application’s location and

thus can wake up the associated application. Therefore, the

responses can be delivered to the right application.

5 Evaluation

We now evaluate blk-switch performance, with the goal of

understanding the envelope of workloads where blk-switch

is able to provide µs-scale average and tail latency, while

maintaining high throughput for T-apps. To do so, we evaluate
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blk-switch across a variety of scenarios and workloads with

varying amount of load induced by L-apps and T-apps, number

of cores, read/write sizes, read/write ratios and storage settings

(in-memory and SSD). In each evaluated scenario, a number

of latency-sensitive applications (#L-apps) compete for host

resources with a number of throughput-bound applications

(#T-apps) that perform large read/write requests on remote

storage servers. We describe the individual settings inline.

We describe our evaluation setup in §5.1, followed by a

detailed discussion of our results in §5.2 and §5.3. Finally, in

§5.4, we provide a detailed breakdown of how each design

aspect of blk-switch contributes to its overall performance.

5.1 Evaluation Setup

blk-switch focuses on rearchitecting the storage stack for

µs-scale latency and high throughput. Thus, our evaluation

setup focuses on scenarios where performance bottlenecks

are pushed to the storage stack—that is, where systems are

bottlenecked by processing of storage requests, and not by

network bandwidth.

Evaluated Systems. We compare blk-switch performance

with Linux and widely-deployed userspace storage stack

(SPDK) [51] (the CPU scheduler, storage stack and TCP/IP

stack used for Linux and SPDK are shown in Table 1). For

accessing data in remote servers, we make one modification

in Linux: rather than using its native NVMe-over-TCP driver,

we use i10 [29], a state-of-the-art Linux-based remote stor-

age stack since it provides much higher throughput (using its

default parameters, at the cost of introducing ∼50−100µs la-

tency at low loads); for accessing data on remote servers with

SPDK, we use its native support for NVMe-over-TCP [13].

We apply core affinity to applications in Linux since that

provides best performance. SPDK pins threads to cores by

default since it makes use of DPDK’s Environment Abstrac-

tion Layer (EAL). For both Linux and SPDK, we evenly

distribute the applications across cores to the extent possible.

For blk-switch, we use its default parameters (§3).

Hardware setup. All our experiments are run on a testbed

with two servers directly connected via a 100Gbps link. The

servers have a 4-socket NUMA-enabled Intel Xeon Gold

6234 3.3GHz CPU with 8 cores per socket, 384GB RAM and

a 1.6TB Samsung PM1735 NVMe SSD. Both servers run

Ubuntu 20.04 (kernel 5.4.43). To achieve CPU-efficient net-

work processing for all evaluated systems (since all of them

use Linux kernel network stack), we enable TCP Segmenta-

tion Offload (TSO), Generic Receive Offload (GRO), packet

coalescing using Jumbo frames (9000B), and accelerated Re-

ceive Flow Steering (aRFS). To minimize experimental noise,

we disable irqbalance and dynamic interrupt moderation

(DIM) [10]. Finally, we disable hyper-threading since doing

so maximizes performance for all evaluated systems.

We present results for both in-memory storage (RAM block

device) and on-disk storage (NVMe SSD). Except for SSD

and RocksDB experiments, we use the former due to three rea-

sons. First, unlike on-disk storage, in-memory storage allows

us to evaluate scenarios where T-apps generate load close to

our network hardware capacity (100Gbps). Second, a single

NVMe SSD can be saturated using two cores [29]; in-memory

storage, on the other hand, allows us to evaluate scalability of

blk-switch (and other systems) with larger number of cores.

Finally, our NVMe SSDs have an access latency of ∼80µs,

which hides a lot of latency benefits of userspace stacks; we

find it a fairer comparison to use in-memory storage to hide

such high latencies.

Performance metrics. We evaluate system performance in

terms of average and tail latency for L-apps, total throughput

of all applications, and throughput-per-core calculated as “to-

tal throughput / core utilization” (we take the maximum of the

application-side and the storage server-side core utilization

when computing core utilization). Unless mentioned other-

wise, we present results for average latency (shown by bars)

and P99 tail latency (shown by top whiskers) since, as we will

show, SPDK has significantly worse P99.9 tail latency.

Default workload. To generate loads for L-apps and T-apps,

we use the standard methodology, where applications submit

storage requests to the underlying system in a closed-loop

(that is, the I/O depth of the application specifies a maximum

number of outstanding requests). For Linux, we use FIO [16]

that uses the lightweight libaio interface. For SPDK, we

use its default benchmark application, perf (while FIO has

been ported to SPDK, it has higher overheads compared to the

lightweight perf application). These benchmarking applica-

tions are used to evaluate system performance to again push

the bottlenecks to the underlying system (since real-world

storage-based applications can have high overheads); never-

theless, we also evaluate blk-switch with RocksDB [9], a

prominently used storage system.

L-apps generate 4KB read/write requests with an I/O depth

of 1. To ensure that each system is running at its “knee-point”

in its latency-throughput curve, we use the optimal T-app op-

erating point for each system—for RAM block device, the op-

timal (request size, I/O depth) for T-apps is as follows: Linux

(64KB, 32), SPDK (128KB, 8), and blk-switch (64KB, 16).

While our default setup uses the above request sizes and I/O

depths, we also present sensitivity analysis against varying

I/O depths and request sizes. Finally, we use the random read

workload in our default setup, and also present results for

varying read/write ratios.

Unless stated otherwise, we give each system 6 cores on

a single NUMA node. We use six cores for each system

because we observed that, when given more than 6 cores,

Linux ends up being bottlenecked by network bandwidth

(that is, it can saturate the 100Gbps link in our testbed) in

several of our experimental scenarios. Nevertheless, we also

show performance with varying number of cores.
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Figure 7: blk-switch achieves µs-scale average and tail latency for L-apps and high throughput for T-apps even with tens of L-apps

competing for host compute and network resources with T-apps. As we increase the number of L-apps, both Linux and SPDK fail to

simultaneously achieve low latency and high throughput for reasons discussed in §2. Linux achieves high throughput, but at the cost of high

average and tail latencies; SPDK, on the other hand, suffers from both high tail latency and low throughput. Detailed discussion in §5.2.

5.2 Goal: Low-Latency and High-Throughput

Recall that an ideal system would ensure that both L-apps and

T-apps observe performance close to the respective isolated

performance (that is, when the application has all the host and

storage server resources to itself).

Impact of increasing number of L-apps competing for

host resources with T-apps (Figure 7 and Figure 8). For

this experiment, each system is given six cores, and executes

requests from six T-apps and varying number of L-apps.

Linux and SPDK performance trends are similar to Fig-

ure 2 in §2. Linux suffers from high average and tail latencies,

but maintains high throughput even with increasing number

of L-apps. SPDK achieves high throughput when number of

L-apps is less than the number of cores; however, it suffers

from inflated latency and degraded throughput with increasing

number of L-apps (significantly degraded performance with

just six L-apps). We already discussed the root cause for this

behavior for each system in §2; however, for both Linux and

SPDK, we observe slightly worse latency and throughput-per-

core relative to that observed in Figure 2. Digging deeper, we

found that both of these are due to increased L3 cache miss

rates. Specifically, since the cores used by the systems are on

the same NUMA node, they share a common L3 cache; the

resulting increased contention for L3 cache leads to higher

cache miss rate—for x = 1 in Figure 2, cache miss rates for

Linux and SPDK are 1.12% and 3.68%, respectively, but for

x = 6 in Figure 7, cache miss rates increase to 34% and 63%.

Higher cache miss rates lead to an increase in the per-byte

CPU overhead for kernel TCP processing (mainly due to data

copy), resulting in lower throughput-per-core. Interestingly,

for Linux, this also leads to higher latency inflation for L-apps

(when comparing x = 6 in Figure 7 to x = 1 in Figure 2), as

each T-app request takes a larger number of CPU cycles to

process, hence exacerbating the effect of HoL blocking. Fig-

ure 8 single-threaded case shows the P99.9 tail latency for all

systems for the x = 6 data point in Figure 7. Both Linux and

SPDK exhibit high P99.9 tail latency, but SPDK in particular

observes significantly worse P99.9 tail latency (33× higher

than the P99). As discussed in §2, this is because L-app re-

quests processed at the boundary of time slices are impacted,

and this effect is prominently visible in higher percentiles.

 1

 10

 100

 1000

 10000

Single−threaded Multi−threaded

P
9
9
.9

 L
a
te

n
c
y
 (

̀
s
)

Linux SPDK blk−switch

Figure 8: The P99.9 tail latency corresponding to x = 6 in Fig-

ure 7 and Figure 9.

blk-switch consistently achieves µs-scale latency for L-

apps, even with 12 L-apps competing for host resources with

6 T-apps. In comparison to Linux, blk-switch achieves

28− 110× better average latency, 10− 25× better P99 tail

latency and 6− 15× better P99.9 tail latency; in compar-

ison to SPDK, blk-switch achieves 2− 12× better aver-

age latency, 2− 15× better P99 tail latency and 33− 101×
better P99.9 tail latency. blk-switch achieves all these la-

tency benefits while sacrificing 5−10% throughput relative

to Linux. blk-switch achieves such performance benefits

using a combination of its techniques: it first performs ap-

plication steering to isolate L-apps to a subset of cores, and

to distribute T-apps over the remaining cores. This results

in slightly increased tail latency for L-apps compared to a

single L-app case, but significantly reduces context switch-

ing overheads when compared to L-apps and T-apps shar-

ing individual cores. Further, blk-switch performs request

steering to utilize unused L-app cores for processing T-app

requests opportunistically. Finally, separation of I/O queues

along with prioritization enables maintaining low latency for

L-apps even when T-app requests are steered to the L-app

cores. Note that prioritization of I/O queue processing also

leads to blk-switch having slightly better average and tail

latencies when compared to the isolated Linux latency in

Figure 2; however, this is not fundamental.

We observe a somewhat surprising and counter-intuitive

benefit of blk-switch’s application steering mechanism that

steers L-apps onto a small number of cores—for example, in

Figure 7, blk-switch’s average latency reduces with increas-

ing number of L-apps. This is because of better packet aggre-

gation opportunities through TSO/GRO and Jumbo frames:

as more L-apps are steered on the same core, they begin to
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Figure 9: blk-switch achieves µs-scale average and tail latency for L-apps and high throughput for T-apps even when tens of L-app

threads compete for host compute and network resources with T-apps. We observe the same trend as in Figure 7 for each system; the only

difference is that SPDK does not support more application threads than the number of cores.
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Figure 10: As the load induced by T-apps increases, blk-switch continues to achieve low latency and high throughput. For reasons

discussed in §2, Linux and SPDK fail to simultaneously achieve low latency and high throughput: Linux suffers from high latency due to HoL

blocking; SPDK experiences increasingly higher latency and lower throughput as the load induced by T-apps increase.

share the same egress queue and hence the same underlying

TCP connection (recall that blk-switch maintains a single

per-core egress queue for each application class); as a result,

more L-app requests can be aggregated, resulting in lower per-

request processing overheads, and improved average latency.

Impact of increasing number of L-app threads competing

for host resources with T-app threads (Figure 9 and Fig-

ure 8). We now evaluate the performance of existing storage

stacks for multi-threaded applications. To do this, we slightly

modify the evaluation setup from Figure 7 experiment: we

now use one T-app with six T-threads and one L-app with

varying number of L-threads (varying from 1 to 12). Note

that, while the recent SPDK NVMe-oF target implementation

supports user-level threads [13], SPDK’s perf benchmark ap-

plication running on the host-side does not support user-level

threads; as a result, it does not support creating more threads

than the number of cores in the system (for each individual ap-

plication). As one would expect, Figure 9 and Figure 8 results

show exactly the same trend as single-threaded applications.

Impact of increasing the load induced by T-apps (Fig-

ure 10). We now evaluate the performance of each system

with varying load induced by T-apps. There are two ways

to vary the load induced by T-apps—by varying I/O depth,

and by varying request sizes. Since our setup uses TSO/GRO,

these two mechanisms to vary the load induced by T-apps

lead to essentially the same set of results. We present and

discuss results for the former here; the latter can be found

in [30]. For this experiment, we fix the number of L-apps and

T-apps to 6 each, and increase the I/O depth for T-apps. The

request size for T-apps is now fixed to 64KB for all systems.

Linux and SPDK show trends similar to previous results.

Average and tail latencies for L-apps increase with increased

contention for host resources (in these results, increased con-

tention is due to higher load induced by T-apps). As one

would expect, for both of these systems, total throughput and

throughput-per-core for T-apps increases with an increase

in load induced by T-apps. blk-switch handles contention

differently from both of these systems: by prioritizing L-app

requests, and using request and application steering to effi-

ciently load balance T-app requests across unused cores. Thus,

blk-switch continues to maintain µs-scale latency with in-

crease in T-app load—in comparison to Linux, blk-switch

achieves 5−33× lower average and 2−8× lower tail latency;

in comparison to SPDK, blk-switch achieves 2−7× lower

average and 1.3−6× lower tail latency. blk-switch’s mech-

anisms for handling contention results in a slightly different

tradeoff in terms of T-app performance. When the load in-

duced by T-apps is small, blk-switch reduces Linux latency

without any degradation in throughput (since it does not pay

the overheads of request steering at low loads); at higher loads,

blk-switch continues to achieve low latency, but observes

10% lower throughput than Linux due to the overheads of

request steering.

We note that blk-switch average latency improves with

load induced by T-apps. For smaller loads, blk-switch’s

application steering does not steer L-apps on to a subset of

cores (as in previous experiments), leaving L-apps evenly

distributed across available cores. As a result, blk-switch

does not get to exploit the benefits of reduced per-request

processing overheads (due to TSO/GRO and jumbo frames)

associated with aggregating multiple L-apps on the same core.
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Figure 11: blk-switchmaintains its µs-scale average and tail latency for L-apps with varying number of cores, even when scheduling

across NUMA nodes. For small number of cores, compared to Linux, blk-switch trades off improvements in latency with slightly reduced

throughput (due to request prioritization, and fewer opportunities for application and request steering). For smaller number of cores, SPDK

achieves low latency; as the number of cores are increased, SPDK starts suffering from inflated tail latency and degraded throughput.

Impact of number of cores (Figure 11). We now evaluate

the performance of all systems with varying number of cores,

including the case when the cores belong to different NUMA

nodes. The challenge with doing this evaluation is that, if

T-apps were to not interfere with L-apps, ∼4 cores would be

sufficient to saturate the network bandwidth (as can be in-

ferred from the isolated case in Figure 2); thus, to understand

the performance with increasing number of cores, we have to

ensure that L-apps and T-apps continue to contend at host stor-

age and network processing resources rather than competing

for network bandwidth. Thus, we use the following evaluation

strategy. Our servers have eight cores on each NUMA node;

for each data point up to x = 8 on the x-axis (x = number

of cores used for that data point), we use the cores on the

same NUMA node and for the last two data points, we use

two additional cores from one of the other NUMA nodes. For

each data point, we run a total of x L-apps and x T-apps to en-

sure that the system is neither lightly-loaded nor overloaded.

With this setup, we are able to evaluate for larger number of

cores—Linux, blk-switch and SPDK now become network

bandwidth bottlenecked at 7,8 and 10 cores, respectively.

Linux and SPDK performance can be explained using our

prior insights. As the number of cores increase, Linux experi-

ences increasingly higher latency but is able to achieve high

throughput; SPDK, on the other hand, suffers from increas-

ingly higher latency, and relatively lower throughput.

For the single core case, blk-switch improves Linux’s

latency, but at the cost of 40% lower throughput (similar to

SPDK); this is due to lack of request steering and applica-

tion steering opportunities, and due to prioritization being

the dominant mechanism for isolation. As the number of

cores increase, blk-switch starts exploiting the benefits of

request and application steering—it achieves µs-scale latency

as in earlier experiments, while getting throughput increas-

ingly closer to Linux (with 7 cores, it is only 4.2% worse

than Linux; for 8 or more cores, blk-switch’s throughput

matches Linux as the network link is saturated). For number of

cores between 3 and 8, we see a reduction in blk-switch’s

average latency due to higher opportunities to exploit the

benefits of TSO, GRO and jumbo frames (due to application

steering aggregating increasingly more L-apps on same subset
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Figure 12: blk-switch is able to maintain low average and tail

latencies even when applications operate at throughput close to

200Gbps. The experiment uses 16 L-apps and 16 T-apps running

across 16 cores from two NUMA nodes.

of cores). Beyond 8 cores, we see slight increase in average

and tail latency for blk-switch because of NUMA effects.

Besides latency results, there are several other interest-

ing observations to be made in Figure 11(center). First,

blk-switch is able to completely saturate a 100Gbps link

using 8 cores, at which point it is bottlenecked by network

bandwidth. Since the server has many more cores, we expect

that these cores will allow blk-switch to maintain its perfor-

mance with future NICs that have larger bandwidths (we show

this for 200Gbps network bandwidth setup below). Second,

while the total throughput of blk-switch scales well with

the number of cores, it has slightly lower total throughput

compared to Linux for smaller number of cores. This is due

to application steering resulting in T-apps being steered away

from L-apps, and the L-apps cores observing transient un-

derutilization when request steering decisions are imperfect.

Under such imperfect decisions, fewer number of cores are

available for T-app request processing. However, as the num-

ber of cores increase, the benefits of reduced context switching

(due to lower contention between L-app and T-app requests

after application steering) start to offset core underutilization

resulting in similar or even higher throughput when compared

to other systems. Finally, Figure 11(right) demonstrates that

all systems experience reduced throughput-per-core with in-

creasing number of cores. We found that this is due to an

increased number of L3 cache misses with increase in total

throughput as the number of cores is increased.

Performance beyond 100Gbps (Figure 12). We now eval-

uate the performance of all systems in the Terabit Ethernet
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Figure 13: For experiments with SSDs (corresponding to Figure 7), blk-switch latency is largely overshadowed by SSD access latency.

Rest of the trends are similar to those in Figure 7.
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Figure 14: Evaluation results with RocksDB: blk-switch performance benefits over Linux are similar to previous results.

regime (above 100Gbps). For this we installed an additional

NIC on each of the two servers in our setup, and connected

these NICs with an additional 100Gbps link, enabling a total

of 200Gbps network bandwidth between the servers. The two

NICs on each server are attached to separate NUMA nodes.

We use all of the cores on both of these NUMA nodes (total of

16), while running 16 L-apps and 16 T-apps. The performance

trends remain identical to previous results — blk-switch is

able to maintain µs-scale average and tail latency (10µs av-

erage, 143µs P99 , and 296µs P99.9), while nearly saturating

the 200Gbps network bandwidth (within 1% of Linux).

Performance with different storage access latency. We re-

peat the experiment shown in Figure 7, but with L-app requests

being executed on an NVMe SSD (T-app requests are still

executed in-memory). The access latency of our SSD (∼80µs)

causes increase in average latencies for all systems, but the

performance trends among the evaluated systems remain iden-

tical to earlier results. Importantly, blk-switch’s latency is

largely overshadowed by SSD access latency.

Additional results. We present several additional results

in [30], including performance with varying request sizes

for T-apps, varying read/write ratios, applications that access

data distributed between local and remote storage servers, and

bursty application workloads.

5.3 RocksDB with blk-switch

We now evaluate blk-switch with RocksDB [9], a widely-

deployed storage system, as the L-app. We mount a remote

SSD block device at the host-side with XFS file system (only

Linux and blk-switch support mounting a file system). We

setup RocksDB to use the mounted XFS file system backed

by remote SSD device and enable direct I/O. To generate

workload for RocksDB, we use the db_bench benchmarking

tool with ReadRandom workload and 4KB request sizes, with

an I/O depth of 1 for each thread. We colocate a T-app that

accesses remote RAM block device using FIO [16], as before.

We run this benchmark on 6 cores, with 6 T-app threads and

varying number of L-app threads.

Figure 14 shows that both Linux and blk-switch achieve

slightly higher latency compared to previous results due to

RocksDB’s higher application-layer overheads. However, in

comparison, blk-switch achieves over an order of magni-

tude latency reduction when compared to Linux, while sacri-

ficing throughput by at most 10%. Furthermore, blk-switch

maintains these benefits even with increasing number of L-app

threads competing for host resources with T-app threads.

5.4 Understanding blk-switch Performance

We now quantify the contribution of each of blk-switch’s

mechanisms to its overall performance. To do so, we run a

simple microbenchmark: we start the experiment with one L-

app and one T-app on core0, and set the I/O depth of T-app to

be 32. We then add blk-switch mechanisms (prioritization,

request steering and application steering) incrementally.

Figure 15 shows that each of blk-switch’s mechanism

contributes to its overall performance. Enabling prioritiza-

tion only reduces tail latency by an order of magnitude (Fig-

ure 15(a)), but at the cost of lower T-app throughput on core0

(Figure 15(b)); since request and application steering are dis-

abled, strictly prioritizing processing of L-app requests re-

sults in reduced throughput due to larger number of context

switches. As shown in Figure 15(c) and Figure 15(d), en-

abling request steering with prioritization allows the T-app

to achieve high T-app throughput by utilizing spare capacity

on less loaded cores (by steering T-app requests from heavily

loaded core0 and processing these requests at core1); how-

ever, this comes at the cost of slight increase in latency for

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation    125



 1

 10

 100

 1000

 10000

Latency

L
a

te
n

c
y
 (

̀
s
)

(a) Latency

 0

 10

 20

 30

 40

T−app throughput
T

h
ro

u
g

h
p

u
t 

(G
b

p
s
)

(b) T-app throughput

 0

 20

 40

 60

 80

 100

core0 core1

U
ti
liz

a
ti
o

n
 (

%
)

(c) Core utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

core0 core1F
ra

c
ti
o
n
 o

f 
re

q
u
e
s
ts

Generated Processed

(d) Fraction of requests generated

and processed at each core, before

application steering.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

core0 core1F
ra

c
ti
o
n
 o

f 
re

q
u
e
s
ts

Generated Processed

(e) Fraction of requests generated

and processed at each core, after

application steering.

Figure 15: Contribution of different techniques in blk-switch

to its overall performance. (blk-switch-P-RS-AS) is

blk-switch with all mechanisms disabled; we then cumu-

latively enable prioritization (blk-switch-RS-AS), request

steering (blk-switch-AS), and application steering (blk-switch).

See discussion in §5.4.

L-apps (albeit, still µs-scale)—due to non-trivial CPU over-

heads of request steering and non-real-time prioritization in

Linux kernel CPU schedulers, some of the L-app requests get

blocked by the thread doing request steering. This problem

is alleviated by blk-switch’s application steering algorithm

(Figure 15(e))—it steers the T-app away from the L-app, al-

lowing blk-switch to simultaneously achieve low latency

and high throughput.

6 Related Work

We have already compared blk-switch with state-of-the-art

Linux-based and widely-deployed userspace storage stacks.

We now compare and contrast blk-switch with other

closely-related systems.

Existing storage stacks. There is a large and active body

of research on designing storage stacks that target various

goals, including fairness [1, 2, 7, 26], deadlines [5, 7], priori-

tization [3], and even policy-based storage provisioning and

management [24, 39, 47, 49]. However, none of these stacks

target µs-scale latency. Furthermore, many of them can have

high CPU overheads (for high-performance storage devices,

the standard recommendation in Linux is to use no sched-

uler [26]), especially for applications that perform operations

on remote storage servers [14,23,25,50]. Recent work on stor-

age stacks for remote data access [12, 29] achieves high CPU

efficiency and throughput; however, as we have shown in our

evaluation, they fail to achieve low latency in multi-tenant

deployments when latency-sensitive and throughput-bound

applications compete for host resources.

User-space stacks. We have already performed evaluation

against SPDK, a widely-deployed state-of-the-art user-space

storage stack. Our evaluation focuses on using SPDK with

Linux kernel CPU scheduler and network stack, and highlights

the poor interplay with SPDK’s polling-based architecture and

Linux CPU scheduler. It is possible to overcome some of these

limitations by integrating SPDK with high-performance user-

space or RDMA-based network stacks [13, 18, 32, 35–37, 40],

user-space CPU schedulers [34], or both [22, 42–45]. How-

ever, with the exception of [22, 42], these user-space network

stacks and CPU schedulers either do not provide µs-scale iso-

lation in multi-tenant deployments, or require dedicated cores

for each individual L-app resulting in potentially high core

underutilization. The state-of-the-art among these user-space

stacks [22, 42] demonstrate that by carefully orchestrating

compute resources across L-apps and T-apps, it is possible to

simultaneously achieve µs-scale latency and high throughput.

However, they currently provide fewer features than Linux

and require modifications in applications. blk-switch shows

that it is possible to simultaneously achieve µs-scale latency

and high throughput without any modifications in applica-

tions, Linux kernel CPU scheduler and/or network stack.

Hardware-level isolation. There has also been work on

achieving performance isolation by exploiting hardware-level

mechanisms in NVMe SSDs [20, 28, 48], including mech-

anism specification in the NVMe standard [11, 33]. These

are complementary to blk-switch’s goals that focuses on

software bottlenecks.

7 Conclusion

Using design, implementation and evaluation of blk-switch,

this paper demonstrates that it is possible to achieve µs-scale

tail latency using Linux, even when tens of latency-sensitive

applications compete for host resources with throughput-

bound applications that access data at throughput close to

hardware capacity. The key insight in blk-switch is that

Linux’s multi-queue storage design, along with multi-queue

network and storage hardware, makes the storage stack con-

ceptually similar to a network switch. blk-switch uses this

connection to adapt techniques from the computer networking

literature (e.g., prioritized processing of individual requests,

load balancing, and switch scheduling) to the Linux kernel

storage stack. blk-switch is implemented entirely within

the Linux kernel storage stack, and requires no modification

in applications, network and storage hardware, kernel CPU

schedulers and/or kernel network stack.
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J. Gandhi, S. Novaković, A. Ramanathan, P. Subrah-

manyam, L. Suresh, K. Tati, R. Venkatasubramanian,

and M. Wei. Remote regions: a simple abstraction for

remote memory. In USENIX ATC, 2018.

[15] R. Apte, L. Hu, K. Schwan, and A. Ghosh. Look Who’s

Talking: Discovering Dependencies between Virtual Ma-

chines Using CPU Utilization. In USENIX HotCloud,

2010.

[16] J. Axboe. Flexible IO Tester (FIO) ver 3.13. https:

//github.com/axboe/fio, 2019.

[17] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan.

Attack of the killer microseconds. Communications of

the ACM, 60(4):48–54, 2017.

[18] A. Belay, G. Prekas, A. Klimovic, S. Grossman,

C. Kozyrakis, and E. Bugnion. IX: A Protected Dat-

aplane Operating System for High Throughput and Low

Latency. In USENIX OSDI, 2014.

[19] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet. Linux

Block IO: Introducing Multi-queue SSD Access on

Multi-core Systems. In ACM SYSTOR, 2013.

[20] M. Bjørling, J. Gonzalez, and P. Bonnet. LightNVM:

The Linux Open-Channel SSD Subsystem. In USENIX

FAST, 2017.

[21] N. Express. NVM Express over Fabrics 1.0 Ratified

TPs. https://nvmexpress.org/, 2018.

[22] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay. Caladan:

Mitigating Interference at Microsecond Timescales. In

USENIX OSDI, 2020.

[23] P. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,

R. Agarwal, S. Ratnasamy, and S. Shenker. Network

Requirements for Resource Disaggregation. In USENIX

OSDI, 2016.

[24] R. Gracia-Tinedo, J. Sampé, E. Zamora, M. Sánchez-

Artigas, P. García-López, Y. Moatti, and E. Rom. Crys-

tal: Software-Defined Storage for Multi-tenant Object

Stores. In USENIX FAST, 2017.

[25] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.

Efficient Memory Disaggregation with Infiniswap. In

USENIX NSDI, 2017.

[26] M. Hedayati, K. Shen, M. L. Scott, and M. Marty. Multi-

Queue Fair Queuing. In USENIX ATC, 2019.

[27] C. Hellwig. High Performance Storage with blk-mq and

scsi-mq. https://events.static.linuxfound.org/

sites/events/files/slides/scsi.pdf.

[28] J. Huang, A. Badam, L. Caulfield, S. Nath, S. Sengupta,

B. Sharma, and M. K. Qureshi. FlashBlox: Achieving

Both Performance Isolation and Uniform Lifetime for

Virtualized SSDs. In USENIX FAST, 2017.

[29] J. Hwang, Q. Cai, A. Tang, and R. Agarwal. TCP ≈
RDMA: CPU-efficient Remote Storage Access with i10.

In USENIX NSDI, 2020.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation    127



[30] J. Hwang, M. Vuppalapati, S. Peter, and R. Agar-

wal. Rearchitecting Linux Storage Stack for µs La-

tency and High Throughput. https://github.com/

resource-disaggregation/blk-switch/techreport,

2021.

[31] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety, M. Sya-

mala, V. N. H. Herodotou, P. Tomita, A. Chen, J. Zhang,

and J. Wang. PerfIso: Performance Isolation for Com-

mercial Latency-Sensitive Services. In USENIX ATC,

2018.

[32] E. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han,

and K. Park. mTCP: a Highly Scalable User-level TCP

Stack for Multicore Systems. In USENIX NSDI, 2014.

[33] K. Joshi, K. Yadav, and P. Choudhary. Enabling NVMe

WRR support in Linux Block Layer. In USENIX Hot-

Storage, 2017.

[34] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Maz-

ières, and C. Kozyrakis. Shinjuku: Preemptive schedul-

ing for µsecond-scale tail latency. In USENIX NSDI,

2019.

[35] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter

RPCs can be general and fast. In USENIX NSDI, 2019.

[36] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Kr-

ishnamurthy, and T. Anderson. TAS: TCP Acceleration

as an OS Service. In ACM Eurosys, 2019.

[37] A. Klimovic, H. Litz, and C. Kozyrakis. ReFlex: Remote

Flash ≈ Local Flash. In ACM ASPLOS, 2017.

[38] J. Li, N. K. Sharma, D. R. Ports, and S. D. Gribble.

Tales of the Tail: Hardware, OS, and Application-level

Sources of Tail Latency. In ACM SoCC, 2014.

[39] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi. Retro:

Targeted Resource Management in Multi-tenant Dis-

tributed Systems. In USENIX NSDI, 2015.

[40] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,

C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans,

S. Gribble, N. Kidd, R. Kokonov, G. Kumar, C. Mauer,

E. Musick, L. Olson, E. Rubow, M. Ryan, K. Springborn,

P. Turner, V. Valancius, X. Wang, and A. Vahdat. Snap:

a Microkernel Approach to Host Networking. In ACM

SOSP, 2019.

[41] M. Mitzenmacher. The power of two choices in random-

ized load balancing. IEEE Trans. Parallel Distrib. Syst.,

12(10):1094–1104, Oct. 2001.

[42] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-

akrishnan. Shenango: Achieving High CPU Efficiency

for Latency-sensitive Datacenter Workloads. In USENIX

NSDI, 2019.

[43] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Kr-

ishnamurthy, T. Anderson, and T. Roscoe. Arrakis: The

operating system is the control plane. ACM Trans. Com-

put. Syst., 33(4), Nov. 2015.

[44] G. Prekas, M. Kogias, and E. Bugnion. ZygOS: Achiev-

ing Low Tail Latency for Microsecond-scale Networked

Tasks. In ACM SOSP, 2017.

[45] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout.

Arachne: Core-Aware Thread Management. In USENIX

OSDI, 2018.

[46] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. CloudScale:

Elastic Resource Scaling for Multi-Tenant Cloud Sys-

tems. In ACM SoCC, 2011.

[47] I. Stefanovici, B. Schroeder, G. O’Shea, and E. Thereska.

sRoute: Treating the Storage Stack Like a Network. In

USENIX FAST, 2016.

[48] A. Tavakkol, M. Sadrosadati, S. Ghose, J. Kim, Y. Luo,

Y. Wang, N. Mansouri Ghiasi, L. Orosa, J. Gómez-Luna,

and O. Mutlu. Flin: Enabling fairness and enhancing

performance in modern nvme solid state drives. In ACM

ISCA, 2018.

[49] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis,

A. Rowstron, T. Talpey, R. Black, and T. Zhu. IOFlow: A

Software-Defined Storage Architecture. In ACM SOSP,

2013.

[50] M. Vuppalapati, J. Miron, R. Agarwal, D. Truong,

A. Motivala, and T. Cruanes. Building An Elastic Query

Engine on Disaggregated Storage. In USENIX NSDI,

2020.

[51] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu,

C. Chang, G. Cao, J. Stern, V. Verma, and L. E. Paul.

SPDK: A development kit to build high performance

storage applications. In IEEE CloudCom, 2017.

[52] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale,

and J. Wilkes. CPI2: CPU performance isolation for

shared compute clusters. In ACM Eurosys, 2013.

128    15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association


