Rowhammering Storage Devices

Tao Zhang
The University of North Carolina
at Chapel Hill
zhtao@cs.unc.edu

Dan Tsafrir
Technion - Israel Institute of
Technology &
VMware Research
dan@cs.technion.ac.il

ABSTRACT

Peripheral devices like SSDs are growing more complex, to
the point they are effectively small computers themselves.
Our position is that this trend creates a new kind of at-
tack vector, where untrusted software could use peripherals
strictly as intended to accomplish unintended goals. To ex-
emplify, we set out to rowhammer the DRAM component
of a simplified SSD firmware, issuing regular I/O requests
that manage to flip bits in a way that triggers sensitive infor-
mation leakage. We conclude that such attacks might soon
be feasible, and we argue that systems need principled ap-
proaches for securing peripherals against them.

ACM Reference Format:

Tao Zhang, Boris Pismenny, Donald E. Porter, Dan Tsafrir, and Aviad
Zuck. 2021. Rowhammering Storage Devices. In 13th ACM Work-
shop on Hot Topics in Storage and File Systems(HotStorage 21), Fuly
27-28, 2021, Virtual, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3465332.3470871

1 INTRODUCTION

A single computer system is increasingly composed of multi-
ple embedded systems, which are smaller, but still resemble
full systems themselves. In the case of SSDs, which serve as
the focus of this study, even a commodity drive is typically
equipped with hundreds of MBs of DRAM and a multicore
ARM chip running nontrivial firmware [2, 6, 24, 58]. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotStorage °21, July 27-28,2021, Virtual, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8550-3/21/07...$15.00
https://doi.org/10.1145/3465332.3470871

Boris Pismenny
Technion - Israel Institute of
Technology
borispi@cs.technion.ac.il

77

Donald E. Porter

The University of North Carolina
at Chapel Hill
porter@cs.unc.edu

Aviad Zuck

aviad.zuck@gmail.com

complexity is driven by factors such as the ever-increasing
throughput of the peripherals and richer offloading capabil-
ities. Alas, increased complexity implies a greater security
risk. A well-known example highlighting this risk, and our
tendency to ignore it, is the fact that many were surprised to
learn that Intel’s Management Engine (ME) was running a
full Minix OS capable of accessing the local hardware with-
out the end-user’s knowledge [18]; ME exploits shortly fol-
lowed [15, 39]. Another example is the Thunderstrike boot
kit that leverages compromised thunderbolt accessories to
subvert the UEFI boot firmware [22].

We observe the possibility of constructing a new kind of
attack against a peripheral: exclusively using it as “intended”
while exploiting the mere fact that it is a full system in order
to accomplish unlawful goals. In particular, we try to attack
a Flash Translation Layer (FTL) by using its SSD via unprivi-
leged software, supposedly as it was meant to be used: for
reading and writing. Our proposal exploits the fact that SSDs
are sophisticated peripherals and, as such, include DRAM
that might be susceptible to rowhammering [26]. Our attack
triggers standard NVMe commands with the goal of generat-
ing fast enough reads to: (1) flip bits and corrupt FTL data in
SSD-internal DRAM; (2) in a manner that possibly exfiltrates
sensitive information or even gains administrative control
over the system.

To demonstrate the feasibility of this class of attacks, our
work-in-progress study simplifies the target system: we ex-
periment with an emulated FTL rather than an actual one.
Instead of presenting a complete attack, which we do not
have yet, we explain at each step (i) which pieces of the
attack that we envision are missing, (ii) the probability of
success where possible, and (iii) the remaining obstacles for a
motivated attacker to overcome. Despite our simplified setup,
our attack does manage to flip real DRAM bits as described,
and our initial results indicate that we are at the cusp of
unprivileged FTL rowhammering being feasible.



HotStorage "21, July 27-28,2021, Virtual, USA

Our study leaves us with two questions. Firstly, we wonder
if additional “large” system attacks, analogous to rowham-
mering, are applicable to peripherals. Secondly, and more
importantly, we wonder if there exists some principled way
to ensure end-to-end security isolation in a system that is
composed of “smaller” systems—the peripheral devices. In
light of a trend toward self-multiplexing devices, using tech-
nologies such as SRIOV [7, 14, 16], wherein the OS does not
mediate the data path for performance reasons, we expect an
increase in the difficulty and risks of failing to harden devices
against direct access by untrusted software [4, 46, 57].

2 WHY SSDS ARE ROWHAMMER-ABLE

2.1 SSDs and FTLs

Vendors deliver higher-capacity, more capable SSDs, which
can serve millions of I/O requests per second [9, 55, 56].
Flash memories lack support for in-place writes and perform
accesses in large units due to physical limitations of flash
cell technology. For this reason, among others, SSDs and
other flash memory devices typically include an indirection
layer—the FTL— to map logical block addresses (LBAs) to
physical block addresses (PBAs). The FTL is usually imple-
mented in software on top of an embedded system within
the SSD. Similarly to host systems, such embedded systems
are themselves commonly equipped with high-frequency
multicore CPUs to regulate flash chips’ operations, and FTLs
use on-board DRAM modules for storing metadata and data
including logical-to-physical mapping tables, caching fre-
quently accessed data, and incoming writes.

2.2 DRAM and Rowhammering

DRAM realizes high throughput by operating hardware units
in parallel. Modern DRAM modules are composed of multi-
ple chips operating in tandem. Chips are further composed
of multiple banks, which in turn contain multiple two-dimen-
sional arrays of DRAM cells. A line of cells accessed as a unit
in each array constitutes a row, which corresponds to a mem-
ory address. DRAM modules must refresh data periodically
(e.g., every 64ms) to ensure retention.

Kim et al. were the first to demonstrate the possibility of
a “rowhammer attack”, where intentional repeated accesses
to a DRAM row introduce uncorrectable errors to cells in
adjacent rows if the accesses are carefully scheduled between
the chip’s refresh interval [26]. Google’s Project Zero subse-
quently proposed a privilege escalation exploit on systems
with susceptible DRAM modules [45]. Multiple follow-up
studies have since then demonstrated various ways to induce
rowhammering exploits [13, 17, 19, 20, 40, 42, 49, 50]. Kim
et al. provide a recent, detailed overview of the mechanics,
history, and state-of-the-art of rowhammering attacks and
mitigations [25, 36].

78

Tao Zhang, Boris Pismenny, Donald E. Porter, Dan Tsafrir, and Aviad Zuck

Nethammer and Throwhammer first explored the feasi-
bility of launching a rowhammer attack remotely [31, 48].
Instead of rowhammering via direct memory accesses, they
issue network requests to a remote host quickly enough to,
in turn, trigger rapid memory accesses inside the kernel net-
work driver code or memcached internal data structures,
which then eventually causes bitflips in the server’s main
memory. We face a similar situation, where direct access to
victim DRAM is not allowed; what is different in this position
paper is the focus on bitflips within the peripheral device’s
internal DRAM, rather than of main memory of the host
system.

Interestingly, several studies recently demonstrated how
to deliberately induce uncorrectable errors to flash cells [8,
28] and other types of storage [36]; the attack we consider in
this study is different in that it targets the system embedded
in the peripheral rather than the storage media.

2.3 The Risk

It is easy to overlook rowhammering vulnerabilities in pe-
ripherals, since there is a level of indirection and physical
separation between their on-board DRAM chip and malicious
attackers. In particular, rowhammering attacks require direct
access to victim DRAM modules, which is usually not feasi-
ble in peripherals. Rather, unprivileged attackers are usually
constrained to running host-level, and often user-level, code;
they cannot run code on the peripheral.

We contend, however, that the ever-increasing perfor-
mance of modern SSDs make their memories vulnerable
to rowhammering nevertheless. Specifically, state-of-the-art
rowhammering attacks on modern DRAM modules require
as few as ~50K row accesses per a 64ms refresh interval [17],
i.e., ~780K accesses per second. Consequently, NVMe in-
terfaces easily allow sufficiently high 4KiB-based I/O rates
necessary for a successful rowhammering attack.

We further note that the architecture of modern SSDs
includes several key design choices that make the attacks
more likely to succeed, discussed next.

First, SSD capacity is proportional to its internal DRAM
size, e.g., 1 GiB of SSD capacity requires 1 MiB of DRAM [6].
Modern SSDs (including consumer-level) already support ca-
pacities of up to several Terabytes and thus utilize Gigabytes
of on-board DRAM (Middleboxes and SmartNICs similarly
include Gigabytes of DRAM as well [10, 34]). In addition
to increasing the DRAM size, vendors are concerned with
keeping costs low and power-efficiency high.

The problem is that the risk of rowhammering worsens
when either increasing DRAM size (by making it denser),
or when reducing its power consumption [19, 26]. Indeed,



Rowhammering Storage Devices

L2P table
(on-board
memory)

row n-2 | LBA 0—_ ... LBA 255

row n-14LBA 256 | LBA 511
rown J[LBA512 N\ N.BA767
T WA

~~"". JBE@E @ rhysical blocks

host reads
over time

Figure 1: A simple example of a two-sided FIL rowhammering
attack. The onboard memory stores the L2P table. After an initial
sequential write setup, a read workload accesses L2P table entries in
the first and third rows (n-2 and n, called aggressors). This flips bits in
the middle, victim row (n-1), redirecting LBA 256 to a different PBA.

rowhammering mitigation techniques tend to sacrifice power-
efficiency and performance [36], making them unlikely to
be used in the peripheral settings we consider.

SSD internals are typically unknown and unpublished. But
in our experience, which is based on reverse engineering one
modern SSD from a popular vendor, the internal DRAM is
not cached. We speculate that the FTL’s CPU does not have
caches to lower costs, or that it disables caches to simplify
concurrency, perhaps because the performance benefit of
caching is marginal. Regardless of the reason, no caching
makes the DRAM more prone to rowhammering [26, 31, 43,
50, 51], as caches reduce DRAM access frequency.

In total, this section shows that sufficient bandwidth to
launch a rowhammering attack against SSD-internal DRAM
is either present already in some devices, or will be soon.

3 FITL ROWHAMMERING

This section shows how an unprivileged attacker can use
an SSD as intended and still rowhammer device-side mem-
ory. We first present an overview of the attack primitives
(§3.1), and then how FTL rowhammering can lead to data
corruption, information leak, and privilege escalation (§3.2).

Threat model. We assume attackers have access to an un-
privileged user process with high-speed read/write access to
an SSD whose DRAM modules are vulnerable to rowham-
mering. The SSD is shared with other users (e.g., root), and
the specific SSD model details are known to the attacker.
Attackers with direct access to unmapped/trimmed blocks
may accelerate access rates by avoiding the overheads of
additional, slower, accesses to flash. Such access may require
elevated privileges, such as in VMs sharing an SSD (see §4).

3.1 Attack Primitive

In this attack, we use rowhammering to flip a bit in the
logical to physical (L2P) table. Flipping a bit in this table can
effectively overwrite the mapping of a victim logical block
to a different physical address.

Our proposed attack requires an I/O workload on the order
of millions of requests per second. At the firmware level,

79

HotStorage ’21, July 27-28,2021, Virtual, USA

these IOs translate to repeated accesses to aggressor rows
that are adjacent in memory to a victim row.

Existing interfaces available to unprivileged users, includ-
ing (O_DIRECT) combined with high-performance asynchro-
nous interfaces, such as Linux AIO or io_uring, can realize
1.5M IOPS on the latest PCle 4.0 NVMe SSDs [1]. Upcoming
PCle 5.0 NVMe SSDs are expected to reach over 2M IOPS [5].

The attack is illustrated in Figure 1. First, the attacker
prepares the L2P table by writing data to contiguous LBAs;
the goal is for the SSD firmware to then allocate physical
pages and corresponding L2P table entries in two aggressor
rows (n-2 and n). The attacker then identifies the aggressor
rows using a combination of prior device DRAM structure
knowledge and trial and error. For simplicity, we depict a
row as storing 256 LBAs; in practice, rows are much larger.

Next, the attacker issues a carefully orchestrated read
workload (italic text and dashed lines in Figure 1) that in-
duces rowhammering. Our attack workload repeatedly issues
a read request sequence that alternates between addresses
whose L2P table entries reside in the two aggressor rows. The
result is a series of repeated, frequent, and alternating row ac-
tivations by the firmware, effectively inducing a double-sided
rowhammering attack on the target row. In our demonstra-
tion, we used a double-sided row hammer [45], although a
one-location [19] variant can be simpler to implement on a
device with sufficient throughput.

Finally, the translation in the victim row (n-1) is corrupted
such that it points to a different physical location.

3.2 Attack Scenarios

The FTL Rowhammering vulnerability leads to several secu-
rity sensitive outcomes: (1) data corruption, (2) information
leak, and (3) privilege escalation.

Data corruption. The most straightforward outcome of the
attack is causing random data corruption. The corruption
may lead to more severe damage if the corruption happens on
critical file system metadata or other SSD-internal metadata,
rendering the file system unmountable or bricking the device.

Information leak. If the attacker can remap an LBA in a file
under the attacker’s control to the PBA hosting a victim’s file
block, the attacker can read that block, bypassing file system
access controls. For instance, an attacker may get a redirec-
tion to a file block containing another user’s SSH private
key. This can potentially also lead to a privilege escalation
if credentials are leaked. This redirection does not provide
attackers with the ability to directly write victim LBAs, as
flash writes are copy-on-write (§2.1). Although most bitflips
will not point to sensitive PBAs, the attacker can repeat this
process until successful.



HotStorage "21, July 27-28,2021, Virtual, USA
>

VM1l
attacker victim attacker
process process
user
kernel

kernel
0]1].._partition Y 0]1].._partitionz §

-

M2
attacker

user user

kernel

1. sas]

0B08000o; O 0800
physical blocks \ physical blocks
$SD i SSD
(a) (b)

Figure 2: On our existing testbed, we need a helper attacker VM to
reach a high-enough access rate to make rowhammering possible (b);
in the future, we foresee that such assistance will be unneeded (a).

Privilege escalation. Attacker bitflips that redirect the vic-
tim’s LBAs to attacker PBAs will grant attackers a write-
something-somewhere primitive: both the location and the
contents of the victim data are not known in advance. This
vulnerability is the hardest to exploit.

Before flipping any bits, the attacker needs to blindly spray
the disk with polyglot blocks [21], i.e., blocks that are valid
as executable code, file data, and file metadata. Replacing a
victim LBA in a sensitive file with a polyglot block can result
in a privilege escalation. For example, rewriting a binary
executable that has setuid permission (e.g. sudo) can result
in executing malicious code as root.

4 CLOUD CASE STUDY

This section demonstrates how, using the SSD only as in-
tended, to turn an FTL bitflip into a privileged information
leak in a VM hosted on cloud server over a shared SSD, and
potentially escalate privilege using the Ext4 file system. Vari-
ous cloud providers advertise over 2 million IOPS storage per-
formance provided to VMs [11, 38]. For a proof-of-concept,
we emulate an SSD in main memory and select an older
system with DRAM comparable to what is in modern SSDs.
There are a number of prerequisite complexities in reverse
engineering an SSD that are time-consuming, orthogonal to
the primary point, but needed to build an end-to-end attack.
We leave the complexities for future work and ignore them
for now.

4.1 Prototype Setup

We set up the testbed for our proof-of-concept attack as
shown in Figure 2 (b). This setup is representative of a multi-
tenant cloud server. We place the victim in a VM, includ-
ing an unprivileged attacker process, which has non-root
user privileges to create, delete, read, and write files but
no direct access to the underlying storage (e.g., VMware’s
Hatchway [52]). And a second, attacker-controlled VM is
co-located on the same server, sharing the same SSD with

80

Tao Zhang, Boris Pismenny, Donald E. Porter, Dan Tsafrir, and Aviad Zuck

year  refs type rate (K access/s)
2014 [26] DDR3 2200
DDR3 2500
DDR3 4400
2016  [20,49] DDR3 672
LPDDR3 4000
2018 [31,48] DDR3 9400
DDR4 6140
2020 [17,25] DDR4 300
DDR3 (old) 4800
DDR3 (new) 750
DDR4 (old) 547
DDR4 newf 313
LPDDR4 (old) 1400
LPDDR4 (new) 150

Table 1: Reported minimal access rate to trigger bitflips.

the victim VM. In a typical cloud hosting service, the attacker
has privileged direct access to the SSD inside their own VM,
via hardware multiplexing techniques like SRIOV [44] or
namespaces [35]. Each VM’s storage space is a partition of
the shared SSD, treated as a block device with its own logical
address space. In each VM, therefore, a block address is only
valid within its partition. However, the underlying FTL and
its mapping table are shared across partitions.

The SSD in the testbed is emulated using Intel’s Storage
Performance Development Kit (SPDK) [23], which uses a
memory-backed block device (ramdisk). The SPDK FTL li-
brary, like most flash-based storage devices [29], stores a
large L2P table in memory as a linear array. Our proposed
attack works on other L2P table layouts, such as a hash
table [6, 37], provided the attacker can learn the structure
offline. Notably, a linear layout is more challenging for a two-
sided rowhammering attack than a hash map, as it is more
challenging to place an aggressor on each side of the victim
row. The SPDK FTL library also uses the emulating host ma-
chine’s cached memory for storing the L2P table. In order to
further mimic the behavior of real-life SSDs (§2.2), we modi-
fied the SPDK FTL library to perform cache invalidation on
every access to L2P entries.

We set up a 1 GiB emulated SSD on a machine with Intel
Corei7-2600 CPU and 16 GiB DDR3 DRAM modules (4x4 GiB
Samsung DIMMs, organized as 2 channels X 2 DIMMs X
2 ranks X 8 banks X 2" rows) known to be vulnerable to
rowhammer attacks. The emulation environment doesn’t
support ECC (Error Correction Code) or TRR (Target Row
Refresh). The L2P table size for our SSD is 1MiB [6]. As a
comparison, Samsung PM1733 enterprise SSD is equipped
with up to 16 GiB on-board DDR4 memory (ECC and TRR
support status unknown) [44].

Rowhammering requires a minimal access rate to aggres-
sor rows, which varies with factors such as DDR generation
and memory controller configuration. As shown in Table 1,
common minimal rates on DDR3 range from 2 million to
9 million accesses per second, although a bitflip has been



Rowhammering Storage Devices

inode indirect blk sprayed data blk secret data blk

(fake metadata)

(real metadata)
e ] mrrra—

=

ext4 -
4 reroute caused by bitflip

Figure 3: Example of an exploit on Ext4 indirect block.

observed at rates as low as 700K per second [17, 20, 26, 31, 48,
49]. The smaller technology node in newer DRAM modules
makes them even more vulnerable to disturbance errors [25].

Because our L2P table is small relative to system memory
in our testbed, we place the table in a physical memory region
which we have confirmed is vulnerable to a rowhammer
attack. Our testbed DRAM shows bitflips from direct accesses
at a rate of 3M per second; because SPDK adds other accesses,
we must issue SPDK-level accesses at a higher rate (about
7M/s). To emulate this, we manually amplified each L2P row
activation (5 hammers per I/O request) in SPDK. Note that
with DRAM modules that are more vulnerable to rowhammer
attack, the rate amplification can be reduced or even dropped
completely.

We choose the setup in Figure 2 (b) because our main
system is relatively slow, so that direct access from user
space is not sufficiently fast for the attack. Given a system
that provides fast enough unprivileged direct access to the
SSD, the attacker VM can be dropped and a simpler setup,
as shown in Figure 2 (a), can be used to launch the attack.

4.2 Attacking the Ext4 File System

For concreteness, we attack the ext4 [33] file system. By de-
fault, ext4 inodes index file blocks using an extent tree. To
prevent metadata corruptions, the extent tree is protected
by CRC-32C checksum. However, for backward compati-
bility with previous versions, ext4 also has an optional di-
rect/indirect block addressing mechanism used to map in-file
blocks to filesystem blocks. Critically, indirect blocks are not
verified against any checksum. Users may also select the
direct/indirect block mechanism on files they have write
access to.

In a nutshell, our attack redirects an FTL mapping entry
from a victim inode to a victim’s indirect block to an attacker-
provided indirect block. The attacker’s indirect block points
to LBAs containing privileged content on the victim VM. A
successful attack will modify an unprivileged file, owned
by the attacker process in the victim VM, to point to the
contents of a privileged file.

Our attack follows these steps:

Filesystem spraying stage. The attacker process inside
the victim VM first sprays the victim filesystem with files
configured to use indirect blocks. Each file includes a single

81

HotStorage ’21, July 27-28,2021, Virtual, USA

indirect block pointing to a lone data block. The attacker
creates each file with a hole of 12 blocks (to avoid storing
direct data blocks) and then stores a single data block mapped
using an indirect block. The data blocks in turn contain a
maliciously formed indirect block pointing at target LBAs of
potentially privileged content (Figure 3).

This spraying is needed to increase the probability of a
successful attack. The locations of bitflips at the L2P table
are unpredictable, so the more malicious indirect blocks on
the disk, the higher the probability of success.

To further increase the possibility of a successful exploit,
the attacker’s VM sprays its own partition with blocks that
contain similar malicious indirect blocks.

Hammering stage. The attacker VM launches a double-
sided rowhammering attack on the L2P table. We assume
that the attacker can map out potential aggressor and victim
rows in a given SSD model offline; the row-level adjacency
should be consistent among instances of the same model [40].
The attacker must also identify which set of rows are actually
rowhammerable (the attacker could randomly pick rows to
rowhammer, but the success rate may be unacceptably low);
rowhammerability is determined primarily by variation in
the manufacturing process and must be tested online and on
the specific device.

The remaining challenge, then is getting a victim row
between two aggressor rows, when the L2P table is a simple
physical partition. We can run a single-sided rowhammering
on the boundary area of attacker and victim partition, but
single-sided attacks flip fewer bits in practice.

Fortunately, modern memory controllers also use a map-
ping function to spread DRAM accesses across different hard-
ware units [12, 40, 47, 53, 54]. By reverse engineering or read-
ing documentation, we can also identify a contiguous run of
three rows (vulnerable to a double-sided rowhammer) that
do not have monotonically increasing physical addresses.
In our example system, we were able to identify 32 sets of
three vulnerable rows that could potentially place the victim
row in a separate memory partition from the aggressors. We
note that 32 sets of vulnerable rows is on the lower end;
other DRAM mapping functions or L2P structures (e.g., hash
tables) could generate many more vulnerable pairs.

Scan for bitflip. After a certain period (e.g., 5 minutes) of
hammering, the attacker process in the victim VM iterates
over files created in the spraying stage to detect content
modifications due to bitflips in the L2P table (see Figure 3).
A successful bitflip causes an unprivileged file’s inode to
point at a maliciously formed indirect block. The attacker
can then dump potentially-privileged content and repeat the
process as necessary by editing the malicious indirect block
to map other LBAs. If no bitflips are detected the attacker
can re-spray the system with new files, forcing the FTL to



HotStorage "21, July 27-28,2021, Virtual, USA

re-shuffle all address mappings to reside in new memory
rows.

By repeating these steps enough times, the attacker can
eventually dump the content of the entire victim partition
even as an unprivileged user. The resulting content can also
be used for privilege escalation, e.g., by reading the private
key file of an administrator user.

The time needed to flip single bit and control a victim
indirect block can vary widely. On our testbed this took about
two hours, which is longer than expected in practice because
SPDK limits file spraying to 5% of the victim partition due
to technical issues in the FTL library.

4.3 Probability of Success

We estimate the probability that a given bitflip will be useful
to the attacker following one cycle of the attack described in
§4.2. We assume the following parameters: LB and PB repre-
sent the total number of logical and physical addresses of the
SSD, respectively; the number of blocks related to the victim
and attacker partitions are C, and Cg, respectively (where
Cy+C, < LB); the overall number of blocks related to sprayed
files that attacker can create inside the victim and attacker
partitions is F,, and F,, respectively. Then the number of
sprayed indirect blocks is F,/2, and total number of mali-
cious data block on the device is F, + F, /2.

The probability that a bitflip happens on an LBA belonging
to a sprayed victim partition indirect block is: Fgﬁ 2 The proba-
bility that the bitflipped L2P entry is redirected to a malicious

block is: %. Consequently, the combined probability rate

of getting a useful bitflip is Fg—/z . F”/ﬁgF“ = F”ig”fg“)

To illustrate, if the attacker and victim partitions equally
share the SSD (i.e., C, = C, = PB/2 = LB/2). Conservatively
assuming the attacker user can only fill 25% of victim par-
tition (i.e., F, = 1/4C,), and 100% of attacker partition (i.e.,
F, = C,), the resulting success rate is 7% for a single attack
cycle. Simply repeating the attack cycle for 10 times brings
the chances of success to more than 50%.

5 MITIGATIONS

A number of proposed techniques can protect DRAM against
rowhammering (3, 25, 36, 50]. Some methods, such as strength-
ening ECC, may also protect against FTL rowhammering.
Others may not be applicable. For example, increasing DRAM
refresh rate reduces the window of vulnerability, but is con-
sidered prohibitively power-hungry even in host systems.
As discussed above, SSDs could enable caches on the inter-
nal CPUs. Although there are already attacks that make use
of cache eviction policies and successfully trigger bitflips in
DRAM [13, 20], these attacks are not directly applicable to
the memory accesses in SSD FTLs. We speculate that, with

82

Tao Zhang, Boris Pismenny, Donald E. Porter, Dan Tsafrir, and Aviad Zuck

more details about FTL memory access behavior, an attack
could bypass the FTL-side cache and disturb FTL memory.

One can mitigate vulnerabilities in the SSD itself. Physi-
cally isolating memory and flash hardware units across parti-
tion boundaries may protect against attacks on shared SSDs
(see §4), but potentially increases manufacturing costs. Rate-
limiting user IOs below the rowhammering access rate can
also remove this potential attack, but it is at odds with the
overall performance goals of NVMe. One could also random-
ize the FTL-internal structures, thwarting the assumption
that the attacker could gain this knowledge offline; this is
most easily accomplished with a hashed L2P table that uses
a device-specific key. Finally, block data integrity [41] and
encryption [32] algorithms protect data integrity and confi-
dentiality from misdirected writes by relying on the block’s
LBA to digest and encrypt block data.

Alternatively, one can mitigate vulnerabilities in software
by encrypting data using per-tenant keys to protect data con-
fidentiality, or by enforcing extent tree addressing to exclude
indirect file data block overwrites. The checksum protection
on the extent tree should make it much more difficult to
exploit, but the attacker can still induce data corruptions as
described in §3.2.

6 CONCLUSIONS

This position paper demonstrates a new kind of attack on
a peripheral, using only user-level requests as intended. Al-
though an end-to-end attack is not yet demonstrated, we
believe the remaining work will yield to effort. We are left
with an open question about whether there is a more princi-
pled solution, and what other high-profile attacks, such as
Spectre or Meltdown [27, 30], may work on these peripherals.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Peter
Desnoyers, for their insightful comments on earlier drafts
of the work. We also thank Philipp Giithring, Carlo Meijer,
and Eyal Ronen for their support in earlier iterations of this
project. This research was supported in part by a grant from
the United States-Israel Binational Science Foundation (BSF),
Jerusalem, Israel, grant # 2017702; the United States National
Science Foundation (NSF) grant #CNS-1816263, VMware, the
Technion Hiroshi Fujiwara cyber security research center,
and the Israel cyber directorate.

REFERENCES

[1] Adam Armstrong. KIOXIA CM6 PCle 4.0 SSD Review. https://www.
storagereview.com/review/kioxia-cm6-pcie-4-0-ssd-review, 2020. Ac-
cessed: Jun 2021.



Rowhammering Storage Devices

(2]

—
w
=

—
S
flaar?

—
O
[’

(10]

[11

—

[12

—

[13

—_

(14

[l

(15

=

[16]

Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis,
Mark Manasse, and Rina Panigrahy. Design tradeoffs for SSD per-
formance. In USENIX Annual Technical Conference (ATC), pages 57—
70, 2008. https://www.usenix.org/legacy/events/usenix08/tech/full
papers/agrawal/agrawal.pdf.

Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetu-
parna Das, Matthew Hicks, Yossi Oren, and Todd Austin. Anvil:
Software-based protection against next-generation rowhammer at-
tacks. In ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 743~
755, 2016. https://doi.org/10.1145/2872362.2872390.

Adam Bates, Benjamin Mood, Joe Pletcher, Hannah Pruse, Masoud
Valafar, and Kevin Butler. On detecting co-resident cloud instances
using network flow watermarking techniques. International Journal
of Information Security, 13(2):171-189, 2014. https://doi.org/10.1007/
$10207-013-0210-0.

Billy Tallis. Marvell announces first pcie 5.0 nvme ssd controllers: Up to
14 gb/s. https://www.anandtech.com/show/16703/marvell-announces-
first-pcie-50-nvme-ssd-controllers, 2021. Accessed: Jun 2021.
Andrew Birrell, Michael Isard, Chuck Thacker, and Ted Wobber. A
design for high-performance flash disks. ACM SIGOPS Operating
Systems Review, 41(2):88-93, 2007. https://doi.org/10.1145/1243418.
1243429.

Edouard Bugnion, Jason Nieh, and Dan Tsafrir. Hardware and Software
Support for Virtualization. Morgan & Claypool Publishers, 2017. https:
//doi.org/10.2200/S00754ED1V01Y201701CAC038.

Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F
Haratsch. Vulnerabilities in MLC NAND flash memory programming:
Experimental analysis, exploits, and mitigation techniques. In IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 49-60, 2017. https://doi.org/10.1109/HPCA.2017.61.
Wonil Choi, Jie Zhang, Shuwen Gao, Jaesoo Lee, Myoungsoo Jung, and
Mahmut Kandemir. An in-depth study of next generation interface
for emerging non-volatile memories. In 5th Non-Volatile Memory
Systems and Applications Symposium (NVMSA), pages 1-6, 2016. https:
//doi.org/10.1109/NVMSA.2016.7547177.

Cisco. Cisco ASR 1000 Series Router Specifications.
https://www.cisco.com/c/en/us/td/docs/routers/asr1000/install/
guide/asrirouters/asr-1000-series-hig/asr-hig-spfy.pdf, 2008.
Accessed: Dec 2020.

Google Cloud. Block storage performance. https://cloud.google.com/
compute/docs/disks/performance, 2021. Accessed: Apr 2021.

Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu,
Alec Wolman, and Onur Mutlu. Are we susceptible to rowhammer?
an end-to-end methodology for cloud providers. In IEEE Symposium
on Security and Privacy (S&P). IEEE, May 2020. https://doi.org/10.1109/
SP40000.2020.00085.

Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cris-
tiano Giuffrida, and Kaveh Razavi. SMASH: Synchronized Many-sided
Rowhammer Attacks From JavaScript. In USENIX Sec, August 2021.
Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silber-
stein. NICA: An infrastructure for inline acceleration of network appli-
cations. In USENIX Annual Technical Conference (ATC), pages 345-362,
2019. https://www.usenix.org/conference/atc19/presentation/eran.
Mark Ermolov and Maxim Goryachy. How to hack a turned-off com-
puter, or running unsigned code inintel management engine. BlackHat,
https://papers.put.as/papers/firmware/2017/eu-17-Goryachy-How-
To-Hack- A-Turned-Off- Computer-Or-Running- Unsigned- Code-In-
Intel-Management-Engine.pdf, 2017. Accessed: Jan 2021.

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh

83

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

HotStorage ’21, July 27-28,2021, Virtual, USA

Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. Azure
accelerated networking: Smartnics in the public cloud. In USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI), pages
51-66, 2018. https://www.usenix.org/conference/nsdi18/presentation/
firestone.

Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor Van Der Veen,
Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
TRRespass: Exploiting the many sides of target row refresh. In
IEEE Symposium on Security and Privacy (S&P), pages 747-762, 2020.
https://doi.org/10.1109/SP40000.2020.00090.

Matthew Garrett. Intel’s remote AMT vulnerablity. https://mjg59.
dreamwidth.org/48429.html, 2017. Accessed: Jan 2021.

Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. An-
other flip in the wall of rowhammer defenses. In IEEE Symposium on
Security and Privacy (S&P), pages 245-261, 2018. https://doi.org/10.
1109/SP.2018.00031.

Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A remote software-induced fault attack in javascript. In Inter-
national conference on detection of intrusions and malware, and vulner-
ability assessment, pages 300-321. Springer, 2016. https://doi.org/10.
1007/978-3-319-40667-1_15.

H.LJ.Laloge. Polyglot database. https://github.com/Polydet/polyglot-
database, 2018.

Trammell Hudson and Larry Rudolph. Thunderstrike: EFI firmware
bootkits for Apple MacBooks. In ACM International Systems and
Storage Conference (SYSTOR), pages 1-10, 2015. https://doi.org/10.
1145/2757667.2757673.

Intel. Storage Performance Development Kit (SPDK). https://spdk.io,
2015. Accessed: Jan 2021.

Hyukjoong Kim, Dongkun Shin, Yun Ho Jeong, and Kyung Ho Kim.
SHRD: Improving spatial locality in flash storage accesses by sequen-
tializing in host and randomizing in device. In USENIX Conference on
File and Storage Technologies (FAST), pages 271-284, 2017. https://www.
usenix.org/conference/fast17/technical-sessions/presentation/kim.
Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, Ro-
knoddin Azizi, Lois Orosa, and Onur Mutlu. Revisiting rowham-
mer: An experimental analysis of modern dram devices and mit-
igation techniques. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages 638-651, 2020.
https://doi.org/10.1109/ISCA45697.2020.00059.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-
ping bits in memory without accessing them: An experimental study
of dram disturbance errors. In ACM International Symposium on Com-
puter Architecture (ISCA), pages 361-372, 2014. https://doi.org/10.1145/
2678373.2665726.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution. In
IEEE Symposium on Security and Privacy (S&P), pages 1-19, 2019. https:
//doi.org/10.1109/SP.2019.00002.

Anil Kurmus, Nikolas Ioannou, Matthias Neugschwandtner, Niko-
laos Papandreou, and Thomas Parnell. From random block cor-
ruption to privilege escalation: A filesystem attack vector for
rowhammer-like attacks. In USENIX Workshop on Offensive Tech-
nologies (WOOT), 2017. https://www.usenix.org/conference/woot17/
workshop-program/presentation/kurmus.



HotStorage "21, July 27-28,2021, Virtual, USA

[29]

(30

[t

(31

—

(32]

(33

=

(34

=

(35

[

(36

[l

(37]

(38

=

(39

-

(40

[t

(41

—

[42

—

[43

=

[44]

Kim Kwonyoup and Lee Seungjoon. A new hope: The one
last chance to save your ssd data. Black Hat USA, 2020,
2020. https://i.blackhat.com/eu-20/Wednesday/eu-20-Lee- A-New-
Hope-The-One-Last-Chance-to-Save-Your-SSD-Data.pdf.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading ker-
nel memory from user space. In USENIX Security Symposium, pages
973-990, 2018. https://www.usenix.org/conference/usenixsecurity18/
presentation/lipp.

Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster,
Misiker Tadesse Aga, Clémentine Maurice, and Daniel Gruss. Netham-
mer: Inducing rowhammer faults through network requests. In IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW),
pages 710-719, 2020. https://doi.org/10.1109/EuroSPW51379.2020.
00102.

Luther Martin. XTS: A mode of AES for encrypting hard disks. IEEE
Security & Privacy, 8(3):68-69, 2010. https://doi.org/10.1109/MSP.2010.
111.

Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas
Dilger, Alex Tomas, and Laurent Vivier. The new ext4 filesystem:
current status and future plans. In Proceedings of the Linux symposium,
volume 2, pages 21-33, 2007. https://www.kernel.org/doc/ols/2007/
ols2007v2-pages-21-34.pdf.

Mellanox. Bluefield SmartNIC for Ethernet. https://www.mellanox.
com/sites/default/files/related-docs/prod_adapter_cards/PB_
BlueField_Smart_NIC.pdf, 2019. Accessed: Dec 2020.

Micron. Micron 9300 NVMe SSD. https://media-www.micron.com/-
/media/client/global/documents/products/product-flyer/9300_ssd_
product_brief.pdf?la=en&rev=b6908d03082d4fd7b022a2f40d1b731e,
2020. Accessed: Dec 2020.

Onur Mutlu and Jeremie S. Kim. Rowhammer: A retrospective, 2019.
http://arxiv.org/abs/1904.09724. Accessed: Dec 2020.

Fan Ni, Chunyi Liu, Yang Wang, Chengzhong Xu, Xiao Zhang, and
Song Jiang. A hash-based space-efficient page-level ftl for large-
capacity ssds. In 2017 International Conference on Networking, Ar-
chitecture, and Storage (NAS), pages 1-6, 2017. https://doi.org/10.1109/
NAS.2017.8026838.

Oracle. Oracle cloud infrastructure-cloud storage. https://www.oracle.
com/cloud/storage/, 2021. Accessed: Apr 2021.

ID Pankov, AS Konoplev, and A Yu Chernov. Analysis of the security
of uefi bios embedded software in modern intel-based computers.
Automatic Control and Computer Sciences, 53(8):865-869, 2019. https:
//doi.org/10.3103/S0146411619080224.

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM addressing for
cross-cpu attacks. In 25th USENIX Security Symposium (USENIX Se-
curity 16), pages 565-581, 2016. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/pessl.

Martin K Petersen. T10 data integrity feature (logical block guard-
ing). https://www.usenix.org/legacy/event/Isf07/tech/petersen.pdf,
2007. Accessed: Dec 2020.

Salman Qazi, Yoongu Kim, Nicolas Boichat, Eric Shiu, and Mat-
tias Nissler. Introducing half-double: New hammering technique
for dram rowhammer bug. https://security.googleblog.com/2021/05/
introducing-half-double-new-hammering. html, May 2021.

Rui Qiao and Mark Seaborn. A new approach for rowhammer attacks.
In IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), pages 161-166, 2016. https://doi.org/10.1109/HST.2016.
7495576.

Samsung. Samsung PM1733 NVMe SSD. https://
samsungsemiconductor-us.com/labs/pdfs/PM1733_U2_Product_

84

Tao Zhang, Boris Pismenny, Donald E. Porter, Dan Tsafrir, and Aviad Zuck

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Brief.pdf, 2020. Accessed: Dec 2020.

Mark Seaborn and Thomas Dullien. Exploiting the DRAM rowham-
mer bug to gain kernel privileges. http://googleprojectzero.blogspot.
com.tr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html, 2015.
Accessed: Jan 2021.

Igor Smolyar, Muli Ben-Yehuda, and Dan Tsafrir. Securing self-
virtualizing Ethernet devices. In USENIX Security Symposium, pages
335-350, 2015. https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/smolyar.

Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. De-
feating software mitigations against rowhammer: a surgical precision
hammer. In International Symposium on Research in Attacks, Intrusions,
and Defenses, pages 47-66, 2018. https://doi.org/10.1007/978-3-030-
00470-5_3.

Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cris-
tiano Giuffrida, Herbert Bos, and Kaveh Razavi. Throwhammer:
Rowhammer attacks over the network and defenses. In USENIX
Annual Technical Conference (ATC), pages 213-226, 2018. https:
//www.usenix.org/conference/atc18/presentation/tatar.

Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clementine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic rowham-
mer attacks on mobile platforms. In ACM Conference on Computer
and Communications Security (CCS), pages 1675-1689, 2016. https:
//doi.org/10.1145/2976749.2978406.

Victor van der Veen, Martina Lindorfer, Yanick Fratantonio, Harikrish-
nan Padmanabha Pillai, Giovanni Vigna, Christopher Kruegel, Herbert
Bos, and Kaveh Razavi. GuardION: Practical mitigation of DMA-based
rowhammer attacks on ARM. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (AHES), pages
92-113, 2018. https://doi.org/10.1007/978-3-319-93411-2_5.

Pepe Vila, Boris Kopf, and José F Morales. Theory and practice of
finding eviction sets. In IEEE Symposium on Security and Privacy (S&P),
pages 39-54, 2019. https://doi.org/10.1109/SP.2019.00042.

VMware. Project Hatchway: Persistent Storage for Cloud-Native Ap-
plications. https://blogs.vmware.com/cloudnative/2017/09/06/project-
hatchway-persistent-storage-cloud-native-applications/, 2017. Ac-
cessed: Jan 2021.

Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya Nepal.
Dramdig: A knowledge-assisted tool to uncover dram address map-
ping. In ACM/IEEE Design Automation Conference (DAC), pages 1-6,
2020. https://doi.org/10.1109/DAC18072.2020.9218599.

Yuan Xiao, Xiaokuan Zhang, Yingian Zhang, and Radu Teodorescu.
One bit flips, one cloud flops: Cross-vm row hammer attacks and
privilege escalation. In USENIX Security Symposium, pages 19-35,
2016. https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/xiao.

Jie Zhang, Miryeong Kwon, Michael Swift, and Myoungsoo Jung.
Manycore-based scalable ssd architecture towards one and more
million IOPS. In Annual Non-Volatile Memories Workshop (NVMW),
2021. http://nvmw.ucsd.edu/nvmw2021-program/nvmw2021-data/
nvmw2021-final27.pdf.

Tao Zhang, Aviad Zuck, Donald E. Porter, and Dan Tsafrir. Apps
can quickly destroy your mobile’s flash: why they don’t, and how to
keep it that way. In ACM International Conference on Mobile Systems,
Applications, and Services (MobiSys), pages 207-221, 2019. https://doi.
org/10.1145/3307334.3326108.

Zhe Zhou, Zhou Li, and Kehuan Zhang. All your VMs are disconnected:
Attacking hardware virtualized network. In ACM Conference on Data
and Application Security and Privacy (COADSPY), 2017. https://doi.org/
10.1145/3029806.3029810.



Rowhammering Storage Devices HotStorage ’21, July 27-28,2021, Virtual, USA

[58] Aviad Zuck, Philipp Githring, Tao Zhang, Donald E Porter, and Dan USENIX Workshop on Hot Topics in Operating Systems (HOTOS), 2019.
Tsafrir. Why and how to increase ssd performance transparency. In https://doi.org/10.1145/3317550.3321430.

85



