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Abstract. Lagrangian cobordisms between Legendrian knots arise in Sym-
plectic Field Theory and impose an interesting and not well-understood
relation on Legendrian knots. There are some known “elementary” build-
ing blocks for Lagrangian cobordisms that are smoothly the attachment
of 0- and 1-handles. An important question is whether every pair of non-
empty Legendrians that are related by a connected Lagrangian cobordism
can be related by a ribbon Lagrangian cobordism, in particular one that
is “decomposable” into a composition of these elementary building blocks.
We will describe these and other combinatorial building blocks as well as
some geometric methods, involving the theory of satellites, to construct
Lagrangian cobordisms. We will then survey some known results, derived
through Heegaard Floer Homology and contact surgery, that may provide
a pathway to proving the existence of nondecomposable (nonribbon) La-
grangian cobordisms.

1. Introduction

A contact manifold is an odd-dimensional manifold Y 2n+1 together with a
maximally non-integrable hyperplane distribution ξ. In a contact manifold,
Legendrian submanifolds play a central role. These are the maximal integral
submanifolds of ξ: Λn such that TpΛ ⊂ ξ, for all p ∈ Λ. In general, Legendrian
submanifolds are plentiful and easy to construct. In this article we will restrict
our attention to the contact manifold R3 with its standard contact structure
ξ = kerα, where α = dz − ydx. In this setting, every smooth knot or link
has an infinite number of non-equivalent Legendrian representatives. More
background on Legendrian knots is given in Section 2.

The even-dimensional siblings of contact manifolds are symplectic mani-
folds. These are even-dimensional manifolds M2n equipped with a closed,
non-degenerate 2-form ω. In symplectic manifolds, Lagrangian submanifolds
play a central role. Lagrangian submanifolds are the maximal dimensional
submanifolds where ω vanishes on the tangent spaces: Ln such that ω|L = 0.
When the symplectic manifold is exact, ω = dλ, it is important to understand
the more restrictive subset of exact Lagrangians: these are submanifolds where
λ|L is an exact 1-form. Geometrically, L exact means that for any closed curve
γ ⊂ L,

∫︁
γ
λ = 0. In this article, we will restrict our attention to a symplectic

manifold that is symplectomorphic to R4 with its standard symplectic struc-
ture ω0 =

∑︁
dxi∧dyi. In contrast to Legendrians, Lagrangians are scarce. For
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example, in R4 with its standard symplectic structure, the torus is the only
closed surface that will admit a Lagrangian embedding into R4. A famous
theorem of Gromov [Gro85] states that there are no closed, exact Lagrangian
submanifolds of R4.

There has been a great deal of recent interest in a certain class of non-closed,
exact Lagrangian submanifolds, known as Lagrangian cobordisms. These La-
grangian submanifolds live in the symplectization of a contact manifold and
have cylindrical ends over Legendrians. In this article, we will focus on exact,
orientable Lagrangian cobordisms from the Legendrian Λ− to the Legendrian
Λ+ that live in the symplectization of R3; this symplectization is R × R3

equipped with the exact symplectic form ω = d(etα), where t is the coor-
dinate on R and α = dz − ydx is the standard contact form on R3. See
Figure 5 for a schematic picture of a Lagrangian cobordism and Definition 1
for a formal definition. Such Lagrangian cobordisms were first introduced
in Symplectic Field Theory (SFT) [EGH00]: in relative SFT, we get a cat-
egory whose objects are Legendrians and whose morphisms are Lagrangian
cobordisms. Lagrangian fillings occur when Λ− = ∅ and are key objects in the
Fukaya category, which is an important invariant of symplectic four-manifolds.
A Lagrangian cap occurs when Λ+ = ∅.

A basic question tied to understanding the general existence and behav-
ior of Lagrangian submanifolds is to understand the existence of Lagrangian
cobordisms: Given two Legendrians Λ±, when does there exist a Lagrangian
cobordism from Λ− to Λ+? There are known to be a number of obstructions
to this relation on Legendrian submanifolds coming from both classical and
non-classical invariants of the Legendrians Λ±. Some of these obstructions
are described in Section 2.3. To complement the obstructions, there are some
known constructions. For example, it is well known [EG98, Cha10, EHK16]
that there exists a Lagrangian cobordism between Legendrians Λ± that dif-
fer by Legendrian isotopy. In addition, by [EHK16, Cha12], it is known that
there exists a Lagrangian cobordism from Λ− to Λ+ if Λ− can be obtained
from Λ+ by a “pinch” move or if Λ+ = Λ−∪U , where U denotes a Legendrian
unknot with maximal Thurston-Bennequin number of −1 that is contained in
the complement of a ball containing Λ−. Topologically, between these slices,
the cobordism changes by a saddle move (1-handle) and the addition of a lo-
cal minimum (0-handle); see Figure 1. It is important to notice that there is
not an elementary move corresponding to a local maximum (2-handle) move.
By stacking these individual cobordisms obtained from isotopy, saddles, and
minimums, one obtains what is commonly referred to as a decomposable La-
grangian cobordism. Through these moves, it is easy to construct Lagrangian
cobordisms and fillings; see an example in Figure 7.

Towards understanding the existence of Lagrangians, it is natural to ask:
Does there exist a Lagrangian cobordism from Λ− to Λ+ if and only if there
exists a decomposable Lagrangian cobordism from Λ− to Λ+? We know the an-
swer to this question is “No”: by studying the “movies” of the not necessarily
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(A) (B)

Λ+

Λ−

Λ+

Figure 1. (A) The pinch move on Λ+ produces a Lagrangian
saddle. (B) Λ+ obtained by introducing an unknotted compo-
nent to Λ− corresponds to the Lagrangian cobordism having a
local min.

Legendrian slices of a Lagrangian. Sauvaget, Murphy, and Lin [Sau04, Lin16]
have shown that there exists a genus two Lagrangian cap of the Legendrian
unknot with Thurston-Bennequin number equal to −3 and rotation number 0.
The Lagrangian diagram moves used by [Lin16] to construct a Lagrangian cap
are described in Section 3.3. The necessity of a local maximum when Λ+ ̸= ∅
is not currently understood.

To formulate some precise motivating questions, we will use ribbon cobor-
dism to denote a 2n-dimensional manifold that can be built from k-handles
with k ≤ n. This idea of restricting the handle index is well known in symplec-
tic topology: Eliashberg [CE12, Oan15] has shown that any 2n-dimensional
Stein manifold admits a handle decomposition with handles of dimension at
most n, and thus any 2n-dimensional Stein cobordism between closed, (2n−1)-
dimensional contact manifolds must be ribbon. Working in the relative set-
ting with submanifolds and using the handle decomposition from the “height”
function given by the R coordinate on R × R3, we see that all decompos-
able 2-dimensional Lagrangian cobordisms between 1-dimensional Legendrian
submanifolds are ribbon cobordisms. We are led to the following natural ques-
tions.

Motivating Questions. Suppose Λ+ ̸= ∅ and there exists a connected La-
grangian cobordism L from Λ− to Λ+. Then:

(1) Does there exist a decomposable Lagrangian cobordism from Λ− to Λ+?
(2) Does there exist a ribbon Lagrangian cobordism from Λ− to Λ+?
(3) Is L Lagrangian isotopic to a ribbon and/or decomposable Lagrangian

cobordism?

There are some results known about Motivating Question (3) for the spe-
cial case of the simplest Legendrian unknot. If U denotes the Legendrian
unknot with Thurston-Bennequin number −1, it is known that every (ex-
act) Lagrangian filling is orientable [Rit09], and there is a unique (exact,
orientable) Lagrangian filling of U up to compactly supported Hamiltonian
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isotopy [EP96]. Moreover, any Lagrangian cobordism from U to U is La-
grangian isotopic, via a compactly supported Hamiltonian isotopy, to one in
a countable collection given by the trace of a Legendrian isotopy induced by
a rotation [CDRGG].

Motivating Questions (1) and (2) are closely related and have deep ties to
important questions in topology. Observe that a “yes” answer to (1) implies a
“yes” to (2): if the existence of a Lagrangian cobordism implies the existence
of a decomposable Lagrangian cobordism, then we also know the existence of
a ribbon cobordism. Also note that when Λ+ is topologically a slice knot and
Λ− = ∅, (2) is a symplectic version of the topological Slice-Ribbon conjecture:
is every Lagrangian slice disk a ribbon disk? Cornwell, Ng, and Sivek conjec-
ture that the answer to Motivating Question (1) and (3) is “No”: using the
theory of satellites, we know that there is a Lagrangian concordance between
Λ± shown in Figure 2, and in [CNS16, Conjecture 3.3] it is conjectured that
the concordance between the pair is not decomposable.

Λ+

Λ−

Figure 2. There is a Lagrangian concordance between these
Legendrian knots that is conjectured to be non-decomposable.
Here Λ− is a Legendrian trefoil and Λ+ is a Legendrian White-
head double of m(946).

Very recently, Roberta Guadagni has discovered additional combinatorial
moves that can be used to construct a “movie,” meaning a sequence of slice
pictures, of a Lagrangian cobordism; Figure 9 illustrates one of these tangle
moves. With one of Guadagni’s moves, it is possible to construct a movie of
a Lagrangian cobordism between the Legendrians pictured in Figure 2; see
Figure 10. Guadagni’s moves are “geometric”: they are developed through
proofs similar to those used in the satellite procedure, and thus the handle
attachments involved in the cobordism are not obvious. In particular, at this
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point it is not known if Guadagni’s tangle moves are independent from the
decomposable moves.

This survey article is organized as follows. In Section 2, we provide some
background on Legendrians and Lagrangians, formally define Lagrangian cobor-
disms, and summarize known obstructions to the existence of Lagrangian
cobordisms. In Section 3, we describe three “combinatorial” ways to construct
Lagrangian cobordisms, and in Section 4, we describe more abstract “geo-
metric” ways to construct Lagrangian concordances and cobordisms through
satellites. Then in Section 5, we describe some potential pathways – through
the theory of rulings, Heegaard-Floer homology, and contact surgery – to po-
tentially show the existence of Legendrians that are Lagrangian cobordant but
are not related by a decomposable Lagrangian cobordism.

Acknowledgements: This project was initiated at the workshop Women in
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at ICERM in July 2019. The authors thank the NSF-HRD 1500481 - AWM
ADVANCE grant for funding this workshop. Leverson was supported by NSF
postdoctoral fellowship DMS-1703356. We thank Emmy Murphy for suggest-
ing and encouraging us to work on this project. In addition, we thank John
Etnyre, Roberta Guadagni, Tye Lidman, Lenny Ng, Josh Sabloff, and Bülent
Tosun for useful conversations related to this project.

2. Background

2.1. Legendrian Knots and Links. In this section, we give a very brief
introduction to Legendrian submanifolds in R3 and their invariants. More
details can be found, for example, in the survey paper [Etn05].

In R3, the standard contact structure ξ is a 2-dimensional plane field
given by the kernel of the 1-form α = dz − ydx. In (R3, ξ = kerα), a Leg-
endrian knot is a knot in R3 that is tangent to ξ everywhere. A useful way
to visualize a Legendrian knot is to project it from R3 to R2. There are two
useful projections: the Lagrangian projection

πL : R3 → R2

(x, y, z) ↦→ (x, y),

as well as the front projection

πF : R3 → R2

(x, y, z) ↦→ (x, z).

An example of a Legendrian trefoil is shown in Figure 3.
Legendrian submanifolds are equivalent if they can be connected by a 1-

parameter family of Legendrian submanifolds. In fact, for each topological
knot type there are infinitely many different Legendrian knots. Indeed, we
can stabilize a Legendrian knot (as shown in Figure 4) to get another Legen-
drian knot of the same topological knot type. We can see that these are not
Legendrian equivalent using Legendrian invariants.



6 CONSTRUCTIONS OF LAGRANGIAN COBORDISMS
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Figure 3. The front projection (left) and the Lagrangian pro-
jection (right) of a Legendrian trefoil.

Figure 4. Two ways to stabilize a Legendrian knot in front projection.

Two useful classical invariants of Legendrian knots Λ are the Thurston-
Bennequin number tb(Λ) and the rotation number r(Λ). They can be com-
puted easily from front projections. Given the front projection of a Legendrian
knot or link Λ, the Thurston-Bennequin number is

tb(Λ) = writhe(πF (Λ))−#(right cusps),

where the writhe is the number of crossings counted with sign. Once the
Legendrian knot is equipped with an orientation, the rotation number is

r(Λ) =
1

2

(︂
#(down cusps)−#(up cusps)

)︂
.

One can use these two invariants to see that stabilizations change the Legen-
drian knot type.

In future sections, we will not assume that our Legendrians Λ± come equipped
with an orientation. In our Motivating Questions described in Section 1, our
Lagrangian cobordisms are always orientable, so the existence of a Lagrangian
cobordism from Λ− to Λ+ will induce orientations on Λ±.

There are many powerful non-classical invariants that can be assigned to
a Legendrian knot. Although this will not be a focus of this paper, we will
give a brief description of some of these invariants. One important invariant
stems from normal rulings, defined independently by Chekanov and Pushkar
[PC05] and Fuchs [Fuc03]. A count of normal rulings leads to ruling poly-
nomials [PC05]; more details will be discussed in Section 5.1. Through the
closely related theory of generating families, one can also associate invari-
ant polynomials that record the dimensions of generating family homology
groups [Tra01, JT06, FR11, ST13]. In addition, through the theory of pseudo-
holomoprhic curves, one can associate to a Legendrian Λ a differential graded
algebra (DGA), A(Λ) [Che02, Eli98]. An augmentation is a DGA map from
A(Λ) to a field. The count of augmentations is closely related to the count
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of ruling polynomials [Fuc03, NR13, NS06]. Augmentations can be used to
construct finite-dimensional linearized contact homology groups [Che02], which
are often known to be isomorphic to the generating family homology groups
[FR11]. In addition, there are invariants for Legendrian knots coming from
Heegaard Floer Homology [LOSS09] [OST08].

2.2. Lagrangian Cobordisms. Lagrangian cobordisms between Legendrian
submanifolds always have “cylindrical ends” over the Legendrians, but other
conditions vary: sometimes it is specified that the Lagrangian is exact, is
embedded (or immersed), is orientable, or has a fixed Maslov class. In this
paper, a Lagrangian cobordism is always exact, embedded, and orientable.

Definition 1. Let Λ± be two Legendrian knots or links in (R3, ξ = kerα).
A Lagrangian cobordism L from Λ− to Λ+ is an embedded, orientable
Lagrangian surface in the symplectization (R×R3, d(etα)) such that for some
N > 0,

(1) L ∩ ([−N,N ]× R3) is compact,
(2) L ∩ ((N,∞)× R3) = (N,∞)× Λ+,
(3) L ∩ ((−∞,−N)× R3) = (−∞,−N)× Λ−, and
(4) there exists a function f : L → R and constant numbers c± such that

etα|TL = df , where f |(−∞,−N)×Λ− = c−, and f |(N,∞)×Λ+ = c+.

A Lagrangian filling of Λ+ is a Lagrangian cobordism with Λ− = ∅; a La-
grangian cap of Λ− is a Lagrangian cobordism with Λ+ = ∅. A Lagrangian
concordance occurs when Λ± are knots and L has genus 0.

Figure 5 is a schematic representation of a Lagrangian cobordism.

t

N
Λ+

Λ−

L

−N

Figure 5. A Lagrangian cobordism from Λ− to Λ+.

Remark 1. In condition (4) of Definition 1, the fact that Λ± are Legendrian
will guarantee that f± will be locally constant. Using this, it follows that
any genus zero Lagrangian surface that is cylindrical over Legendrian knots
will be exact. When Λ± have multiple components, one needs to check that
the constant does not vary: this condition guarantees the exactness of the
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Lagrangian cobordism obtained by “gluing” together Lagrangian cobordisms
[Cha15a].

Remark 2. In contrast to topological cobordisms, Lagrangian cobordisms form
a non-symmetric relationship on Legendrian knots [Cha15b]. In this article
we will always denote the direction of increasing Rt coordinate by an arrow.

2.3. Obstructions to Lagrangian Cobordisms. The focus of this paper
is on constructing Lagrangian cobordisms between two given Legendrians Λ±.
In the smooth world, any two knots are related by a smooth cobordism, but in
this more restrictive Lagrangian world, there are a number of obstructions that
are important to keep in mind when trying to explicitly construct Lagrangian
cobordisms. Here we mention a few that come from classical and non-classical
invariants of the Legendrians Λ±.

Obstructions:

(1) If there exists a Lagrangian cobordism of genus g between Λ− and
Λ+, then there must exist a smooth cobordism of genus g between the
smooth knot types of Λ− and Λ+. Thus any obstruction of a smooth
genus g cobordism between Λ− and Λ+ would obstruct a Lagrangian
genus g cobordism.

(2) Since there are no closed, exact Lagrangian surfaces [Gro85], if there
exists a Lagrangian cap (respectively, filling) for Λ, then there cannot
exist a Lagrangian filling (respectively, cap) of Λ.

(3) As shown in [Cha10], if there exists a Lagrangian cobordism L from
Λ− to Λ+, then

r(Λ−) = r(Λ+) and tb(Λ+)− tb(Λ−) = −χ(L).

In particular, if a Legendrian knot Λ admits a Lagrangian filling or
cap, then r(Λ) = 0. Also, combining this equality on tb and the
slice-Bennequin inequality [Rud97], we see that, when Λ is a single
component knot, if there exists a Lagrangian cap L of Λ, then tb(Λ) ≤
−1 and g(L) ≥ 1.

(4) If there exists a Maslov 0 ([EES05]) Lagrangian cobordism Σ from Λ−
to Λ+, and Λ− has an augmentation, then
(a) #Aug(Λ+;F2) ≥ #Aug(Λ−;F2), where F2 is the finite field of two

elements, and #Aug(Λ;F2) denotes the number of augmentations
of Λ to F2 up to DGA homotopy [Pan17, CSLL+20], and

(b) the ruling polynomials RΛ±(z) (see Section 5.1 for definitions)
satisfy

RΛ−(q
1/2 − q−1/2) ≤ q−χ(Σ)/2RΛ+(q

1/2 − q−1/2),

for any q that is a power of a prime number [Pan17].
(5) If Λ admits a Maslov 0 Lagrangian filling L, and if ϵL denotes the

augmentation of Λ induced by L, then LCHk
ϵL
(Λ) ∼= Hn−k(L), which

is known as the Ekholm-Seidel isomorphism [Ekh12], and whose proof
was completed by Dimitroglou Rizell in [DR16]. More generally, if
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there is a cobordism from Λ− to Λ+, and if Λ− admits an augmentation,
then [CDRGG20] provides several long exact sequences relating the
homology of the cobordism and the Legendrian contact (co)homologies
of its Legendrian ends. A version of this isomorphism and these long
exact sequences using generating families are given in [ST13].

(6) If Λ admits an augmentation, Λ does not admit a Lagrangian cap, as
the augmentation implies the non-acyclicity of the DGA A(Λ) [EES09,
Theorem 5.5], and from [DR15, Corollary 1.9] if a Legendrian admits
a Lagrangian cap then its DGA A(Λ) (with Z2 coefficients) is acyclic.

There are additional obstructions, obtained through Heegaard Floer Theory,
that can be used to obstruct Lagrangian concordances and cobordisms [BSar,
GJ19, BLWar]. Some of these will be discussed more in Section 5.3.

Remark 3. Observe that the obstructions in (4) and (6) assume that the bot-
tom Λ− has an augmentation, and stabilized knots will never have an augmen-
tation. It would be nice to have more obstructions when Λ− is a stabilized
knot. This might be possible using the theory of “satellites” described in Sec-
tion 4.1: it is possible for the satellite of a stabilized Legendrian to admit an
augmentation. See Section 4.3 for more discussions in this direction.

3. Combinatorial Constructions of Lagrangian Cobordisms

A convenient way of visualizing topological cobordisms is through “movies”:
a sequence of pictures that represent slices of the Lagrangian. In this section,
we describe three known combinatorial ways to construct Lagrangian cobor-
disms through such an approach.

3.1. Decomposable Moves. It is well known that if Λ− and Λ+ are Leg-
endrian isotopic, then there exists a Lagrangian cobordism from Λ− to Λ+;
see, for example, [EG98, Cha10, EHK16]. Isotopy, together with two types of
handle moves, form the basis for decomposable Lagrangian cobordisms.

Theorem 2 ([EHK16, BST15]). If the front diagrams of two Legendrian links
Λ− and Λ+ are related by any of the following moves, there is a Lagrangian
cobordism L from Λ− to Λ+.

Isotopy: There is a Legendrian isotopy between Λ− and Λ+; see Fig-
ures 6(a)-6(c) for Reidemeister Move I-III.

1-handle: The front diagram of Λ− can be obtained from the front di-
agram of Λ+ by “pinching” two oppositely-oriented strands; see Fig-
ure 6(d). We will also refer to this move as a “Pinch Move.”

0-handle: The front diagram of Λ− can be obtained from the front dia-
gram of Λ+ by deleting a component of Λ+ that is the front diagram
of a standard Legendrian unknot U with maximal Thurston-Bennequin
number of −1 as long as there exist disjoint disks DU , DUc ⊂ R2

xz

containing the xz-projection of U and the other components of Λ+,
respectively. Such an “unknot filling” can be seen in Figure 6(e).
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(a) (b) (c) (d) (e)

∅

Figure 6. Decomposable moves in terms of front projections.
Arrows indicate the direction of increasing Rt coordinate in the
symplectization. The move in (b) only shows the Reidemeister
II move in the left cusp case, but there is an analogous move for
the right cusp.

Definition 3. A Lagrangian cobordism L from Λ− to Λ+ is called elemen-
tary if it arises from isotopy, a single 0-handle, or a single 1-handle. A La-
grangian cobordism L from Λ− to Λ+ is decomposable if it is obtained by
stacking elementary Lagrangian cobordisms.

Observe that there is not an elementary move corresponding to a 2-handle
(maximum). Also note that the elementary 1-handle (saddle) move can be
used to connect two components or to split one component into two.

Decomposable cobordisms are particularly convenient as they are easy to
describe in a combinatorial fashion, through a list of embedded Legendrian
curves,

Λ− = Λ0 → Λ1 → · · · → Λn = Λ+,

where the front projection of the Legendrian Λi+1 is related to that of Λi by
isotopy or one of the 0-handle or 1-handle moves.

Example 4. One can construct a Lagrangian filling of a positive Legendrian
trefoil with maximal Thurston-Bennequin number using the series of moves
shown in Figure 7: a 0-handle, followed by three Reidemeister I moves, fol-
lowed by two 1-handles (or pinch moves). This gives a genus 1 (orientable,
exact) Lagrangian filling of this Legendrian trefoil. Since we are assuming
that Lagrangian fillings and caps are always exact, this implies that this tre-
foil cannot admit a Lagrangian cap; see Section 2.3 Obstructions (2).

Example 5. Using elementary moves, one can also construct a Lagrangian
concordance from the unknot with tb = −1 to a Legendrian representative of
the knot m(946), as shown on Figure 8.

3.2. Guadagni Moves. Very recently, Roberta Guadagni has discovered a
new “tangle” move; see Figure 9. This is not a local move: there are some
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Figure 7. A decomposable Lagrangian filling of a Legendrian trefoil.

Figure 8. A decomposable Lagrangian cobordism from a Leg-
endrian unknot to a Legendrian m(946).

global requirements. In particular, this move cannot be applied if all compo-
nents of the tangle are contained in the same component of Λ−: the component
of Λ− containing the blue strand must be different than the components con-
taining the other strands of the tangle.

Figure 9. Under some global conditions, there exists a La-
grangian cobordism between these tangles.

Example 6. With Guadagni’s tangle move, it is possible to construct a La-
grangian cobordism between the Legendrians pictured in Figure 2; see Fig-
ure 10. However, at this point it is not known if Guadagni’s tangle move is
independent of the decomposable moves.

3.3. Lagrangian Diagram Moves. As shown in Section 3.1, decomposable
cobordisms are constructed from 0-handles and some 1-handles (saddles) but
no 2-handles (caps). Based on the work of Sauvaget [Sau04], Lin [Lin16] con-
structs a genus two cap of a twice stabilized unknot, and thus gives the first
explicit example of a non-decomposable Lagrangian cobordism. The construc-
tion describes time-slices of a Lagrangian cobordism through a list of moves
on “decorated Lagrangian diagrams.”
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Figure 10. Amovie, using a Guadagni move, of an (orientable,
exact) Lagrangian cobordism from the trefoil to the Whitehead
double of m(946) in Figure 2.

A decorated Lagrangian diagram is a curve in the xy-plane with the
compact regions decorated by a positive number, which is the area of the
region. Figure 11 shows some examples: in the illustration of the F move, U
is a Lagrangian projection of the Legendrian unknot with maximal Thurston-
Bennequin number; in the illustration of the C move, Um is a decorated La-
grangian diagram, but is not the Lagrangian projection of a Legendrian knot.

Theorem 7 ([Lin16]). Let Λ± be Legendrian links and D± be their corre-
sponding decorated Lagrangian projections. If one can create a sequence of
decorated Lagrangian diagrams

D− = D0 → D1 → · · · → Dn = D+

such that each diagram Di+1 can be obtained from Di by the following com-
binatorial moves, then there is a compact Lagrangian submanifold in R × R3

with boundary Λ− ∪ Λ+, where Λ± ⊂ {±N} × R3, for some N > 0.

(1) R0: a planar isotopy that changes areas by the amount ±A, for A > 0.
This operation can only be done in the direction specified.

(2) R2: a Reidemeister II move. One can either introduce or eliminate two
crossings assuming some area conditions are satisfied: it is possible to
introduce or remove two crossings as long as the area of the inner
region, denoted by 0 in the diagram, is less than either the area δ or
the area η. One can also do this move with the lower strand passing
under the upper strand.

(3) R3: a Reidemeister III move. One can perform a Reidemeister III
move as long as the area of the inner region, denoted by 0 in the dia-
gram, is less than either the area ϵ, the area δ or the area η. The fixed
center crossing can be reversed. Additionally, the moving strand can
also occur as an overstrand.
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∅

∅

+A

+A−A
−A 0δ η

0

ϵ

δ η

0

H+ H− F C

R0 R2 R3

U
a a

a a

Um

Figure 11. The Lagrangian diagram moves. The labels in R0

move represent the change of area through the move, while other
labels 0, ϵ, δ, η, a indicate the area of the corresponding regions;
here 0 represents a positive area that is smaller than either the
area ϵ, the area δ or the area η.

(4) H+: a handle attachment that creates a positive crossing in the dia-
gram.

(5) H−: a handle attachment that removes a negative crossing in the dia-
gram.

(6) F : a filling that creates the diagram U , which is the Lagrangian pro-
jection of an unknot with maximal Thurston-Bennequin number.

(7) C: a cap that eliminates the diagram Um, which is the topological mir-
ror of U .

These moves are called Lagrangian diagram moves. Moreover, the con-
structed Lagrangian will be exact if, in addition,

(E1) Each move results in a diagram with all components having a total
signed area equal to 0. The signed area of a region is determined by
the sum of the signed heights of its Reeb chords.

(E2) If a handle attachment merges two components of a link, the compo-
nents being merged must be vertically split, meaning that the images of
the xy-projections of these components are contained in disjoint disks.
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Remark 4. (1) For condition (E2), the H− can never be applied to merge
components, and H+ can only be applied if the components being
merged are vertically split.

(2) A main distinction between the Lagrangian diagram moves and the
decomposable moves is that each diagram Di in the middle of the
sequence is not necessarily the Lagrangian projection of a Legendrian
link. They are just the xy-projection of some time ti-slice of the cobor-
dism. Thus the Lagrangian diagram moves are more flexible than the
decomposable moves. However, keeping track of the areas is an added
complication.

Example 8. Figure 12 illustrates the construction of a Lagrangian torus using
the Lagrangian diagram moves. This torus fails to be exact since condition
(E1) is violated. Figure 13 gives another construction of a Lagrangian torus.
This time, all components have signed area 0, but now condition (E2) is
violated.

∅ ∅F H− H+ C

a

a

a

a

a

a

Figure 12. A (non-exact) Lagrangian torus constructed using
the Lagrangian diagram moves. The middle figure violates (E1).

∅ 6 6 6 5 0 1 6 5 3 4

6 5 1 3 4
6
0 15 3 4

0

6
15 3 4

0

2 15 3 0

4

5 5 1
4

99 1

0
9 9 ∅

Figure 13. A (non-exact) Lagrangian torus constructed using
the Lagrangian diagram moves. These figures satisfy (E1) but
(E2) is violated in the step labelled by a red arrow.
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4. Geometrical Constructions of Lagrangian Cobordisms

An important general way to know of the existence of Lagrangian cobor-
disms without using the constructions described in Section 3 comes through
the satellite operation. In this section, we review the satellite construction and
then state results from [CNS16, GSY20] about the existence of a Lagrangian
concordance/cobordism from Λ− to Λ+ implying the existence of a Lagrangian
concordance/cobordism between corresponding satellites.

4.1. The Legendrian Satellite Construction. We begin by reviewing the
construction of a Legendrian satellite; see also [NT04, Appendix] and [CNS16,
Section 2.2]. To construct a Legendrian satellite, begin by identifying the open
solid torus S1×R2 with the 1-jet space of the circle, J1S1 ∼= T ∗S1×R, equipped
with the contact form α = dz − ydx, where x, y are the coordinates in T ∗S1

and z is the coordinate in R. Similar to the situation for R3 ∼= J1R, we can
recover a Legendrian knot in J1S1 from its front projection in S1

x×Rz, which is
typically drawn by representing S1 as an interval with its endpoints identified.

Given an oriented Legendrian companion knot Λ ⊂ R3 and a oriented
Legendrian pattern knot P ⊂ J1(S1), the Legendrian neighborhood theorem
says that Λ has a standard neighborhood N(Λ) such that there is a contacto-
morphism κ : J1(S1) → N(Λ). The Legendrian satellite, S(Λ, P ), is then
the image κ(P ). The front projection of S(Λ, P ) is as shown in Figure 14. In
particular, suppose that the front projection of the pattern P intersects the
vertical line at the boundary of the S1 interval n times. We then make an
n-copy of Λ by using n-disjoint copies of Λ that all differ by small translations
in the z-direction. Take a point on the front projection of Λ that is oriented
from left to right, cut the front of the n-copy open along the n-copy at that
point, and insert the front diagram of P . The orientation on the satellite
S(Λ, P ) is induced by the orientation on P .

Λ

P

S(Λ, P )

Figure 14. A example of Legendrian satellite.

Remark 5. The satellite operation often makes Legendrian knots “nicer”; for
example, in Figure 14, the companion Λ is stabilized and does not admit an
augmentation or a normal ruling. However, the satellite S(Λ, P ) does admit
a normal ruling and augmentation.
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4.2. Lagrangian Cobordisms for Satellites. In [CNS16, Theorem 2.4],
Cornwell, Ng, and Sivek, show that Lagrangian concordance is preserved by
the Legendrian satellite operation.

Theorem 9 ([CNS16]). Suppose P ⊂ J1S1 is a Legendrian knot. If there
exists a Lagrangian concordance L from a Lengendrian knot Λ− to a Lengen-
drian knot Λ+, then there exists a Lagrangian concordance LP from S(Λ−, P )
to S(Λ+, P ).

In particular, as shown in Figure 8, there is a Lagrangian concordance
from Λ−, which is the Legendrian unknot with tb = −1, to Λ+, which is
the Legendrian m(946) with maximal tb = −1. Using the Legendrian “clasp”
tangle P as shown in Figure 14 – which produces the Legendrian Whitehead
double – we can conclude that there exists a Lagrangian concordance from
S(Λ−, P ) to S(Λ+, P ). In fact, S(Λ−, P ) is the positive trefoil with tb = 1.
Thus Theorem 9 implies that there exists a Lagrangian concordance between
the Legendrian knots in Figure 2.

Conjecture 10 ([CNS16, Conjecture 3.3]). The Lagrangian concordance from
S(Λ−, P ) to S(Λ+, P ) built through the satellite construction is not decompos-
able.

Theorem 9 has been extended to higher genus cobordisms by Guadagni,
Sabloff, and Yacavone in [GSY20]. To state their theorem, we need to first
introduce the notion of “twisting” and then closing a tangle T ⊂ J1[0, 1].
Given a Legendrian tangle T ⊂ J1[0, 1], ∆T is the tangle obtained by adding
the tangle T and the full twist tangle ∆, which is illustrated in Figure 15;
the tangle ∆tT can be thought of as T followed by t full twists. Given a
Legendrian tangle T ⊂ J1[0, 1], T ⊂ J1(S1) will denote the associated closure
to a Legendrian link.

...

Figure 15. For an n-stranded tangle, repeating this basic tan-
gle n times produces a full twist.

Theorem 11 ([GSY20]). Suppose T ⊂ J1[0, 1] is a Legendrian tangle whose
closure T ⊂ J1(S1) is a Legendrian knot. If there exists a Lagrangian cobor-
dism L from Λ− to Λ+ of genus g(L), then there exists a Lagrangian cobordism

LT from S(Λ−,∆2g(L)+1T ) to S(Λ+,∆T ).

In fact, Theorem 11 can be generalized to use the closure of different tangles
T− and T+ that are Lagrangian cobordant; for details, see [GSY20].
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Remark 6. It is natural to wonder if, along the lines of Conjecture 10, this
higher genus satellite procedure can create additional candidates for Legen-
drians that can be connected by a Lagrangian cobordism but not by a de-
composable Lagrangian cobordism. In [GSY20, Theorem 1.5], it is shown
that if the cobordism L from Λ− to Λ+ is decomposable and the handles in
the decomposition satisfy conditions known as “Property A”, then the cor-
responding satellites S(Λ−,∆

2g(L)+1P ) and S(Λ+,∆P ) will also be connected
by a decomposable Lagrangian cobordism. In particular, if there exists a de-
composable cobordism L that does not satisfy Property A and is not isotopic
to a cobordism that satisfies Property A, then the satellite construction would
lead to a higher genus candidate that generalizes Conjecture 10.

4.3. Obstructions to Cobordisms through Satellites. In Section 2.3,
some known obstructions to the existence of a Lagrangian cobordism were
mentioned. As mentioned in Remark 3, a number of these obstructions re-
quire Λ− to admit an augmentation, and thus in particular Λ− must be non-
stabilized. However, as mentioned in Remark 5, it is possible for the satellite
of a Legendrian Λ to admit an augmentation even if Λ does not. So the
contrapositive of Theorem 9 provides a potential strategy for further obstruc-
tions to the existence of a Lagrangian cobordism when Λ− does not admit
an augmentation. For example, motivated by Obstruction (4) in Section 2.3,
one can ask: Can a count of augmentations give an obstruction to the ex-
istence of a Lagrangian concordance from S(Λ−, P ) to S(Λ+, P ) and thereby
obstruct the existence of a Lagrangian concordance from Λ− to Λ+? In fact,
this augmentation count will not likely provide a further obstruction: a simple
computation shows that when Λ is stabilized enough, the number of augmen-
tations of S(Λ, P ) only depends on the Legendrian pattern P . If trying to
pursue this path to obtain further obstructions to Lagrangian cobordisms, it
is useful to keep in mind the following result of Ng that shows the DGA of the
satellite of a Legendrian Λ might only remember the underlying knot type of
Λ.

Theorem 12 ([Ng01]). Suppose Λ1 and Λ2 are stabilized Legendrian knots that
are of the same topological knot type and have the same Thurston-Bennequin
and rotation numbers. For a Legendrian pattern P whose front intersects a
vertical line by two points, the DGAs of S(Λ1, P ) and S(Λ2, P ) are equivalent.

5. Candidates for Non-Decomposable Lagrangian Cobordisms

Now that we have developed some ways to construct a Lagrangian cobor-
dism through combinatorial moves and satellites, we state some theorems that
show if a Lagrangian cobordism does exist, then it cannot be decomposable:
this addresses Motivating Question (1). While we discuss these theorems, it
is useful to keep in mind the known obstructions to Lagrangian cobordisms
that were mentioned in Section 2.3.
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5.1. Candidates for Non-decomposable Lagrangian Cobordisms from
Normal Rulings. One simple way to show that two Legendrians Λ± cannot
be connected by a decomposable Lagrangian cobordism comes from a count
of “combinatorial” rulings. Roughly, a normal ruling of a Legendrian Λ is a
“decomposition” of the front projection into pairs of paths from left cusps to
right cusps such that

(1) each pair of paths starts from a common left cusp and ends at a com-
mon right cusp, has no further intersections, and bounds a topological
disk whose boundary is smooth everywhere other than at the cusps
and certain crossings called switches, and

(2) near a switch, the pair of paths must be arranged as in one of the
diagrams in Figure 16; observe that near the switch, vertical slices of
the associated disks are either disjoint or the slices of one are contained
in the slices of the other.

Formal definitions of normal rulings can be found in, for example, [PC05] and
[Fuc03].

Figure 16. Normal rulings near a switch.

As an illustration, all normal rulings of a particular Legendrian trefoil are
shown in Figure 17.

Figure 17. All normal rulings of this max tb positive Legen-
drian trefoil.

For each normal ruling R, let s(R) and d(R) be the number of switches and
number of disks, respectively. By [PC05], the ruling polynomial is

RΛ(z) =
∑︂
R

zs(R)−d(R),

where the sum is over all the normal rulings, is an invariant of Λ under Leg-
endrian isotopy. Normal rulings and augmentations are closely related even
though they are defined in very different ways [Fuc03, FI04, NS06, Sab05].
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We have the following obstruction to decomposable cobordisms in terms of
normal rulings.

Theorem 13. If Λ− has m normal rulings and Λ+ has n normal rulings with
m > n, then there is no decomposable Lagrangian cobordism from Λ− to Λ+.

Proof. One can compare the number of normal rulings of the two ends for the
decomposable moves, as shown in Figure 18. Thus any normal ruling of Λ−
induces a normal ruling of Λ+. Different normal rulings of Λ− induce different
normal rulings of Λ+. Therefore the number of normal rulings of Λ+ is bigger
than or equal to the number of normal rulings of Λ−. □

Figure 18. Comparison of normal rulings for decomposable moves.

Here is a strategy to show the existence of Legendrians that can be con-
nected by a Lagrangian cobordism but not by one that is decomposable.

Strategy 1. Choose Legendrians Λ± such that:

(1) Λ+ has fewer graded normal rulings than Λ−, and
(2) it is possible to construct, via a combination of the combinatorial con-

structions from Section 3 or the satellite construction from Section 4,
a Lagrangian cobordism from Λ− to Λ+.

Remark 7. If Λ± admit normal rulings, they will admit augmentations [FI04,
Sab05]. From Section 2.3 obstructions (4)b, we then know that if there is a
Lagrangian cobordism from Λ− to Λ+, their ruling polynomials satisfy

RΛ−(q
1/2 − q−1/2) ≤ q−χ(Σ)/2RΛ+(q

1/2 − q−1/2),

for any q that is a power of a prime number. Satisfying condition (1) in
Strategy 1 means that the polynomial on the right side of the inequality has
fewer terms than the polynomial on the left side of the inequality. If following
this approach, it may be helpful to start by first finding a pair of positive
integer coefficient polynomials that satisfy this inequality and condition (1) at
the same time. One can start with checking the ruling polynomials of small
crossing number Legendrian knots on [CN13].

5.2. Candidates for Non-decomposable Lagrangian Concordances from
Topology. Observe that any decomposable Lagrangian concordance will be a
smooth ribbon concordance. Thus it is potentially possible to use known ob-
structions to ribbon concordances to find examples of smooth knots whose Leg-
endrian representatives cannot be connected by a decomposable Lagrangian
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concordance: constructing a Lagrangian concordance between very stabilized
Legendrian representatives of these knot types, via the combinatorial tech-
niques of Section 3 or geometric techniques of Section 4, will give an example
of an exact Lagrangian concordance between knots that cannot be connected
by a decomposable Lagrangian concordance.

For example, it is known [Gor81, Zem19, LZ19] that the only knot that
admits a ribbon concordance to the unknot is the unknot itself. This has as
a corollary the following obstruction to a decomposable Lagrangian concor-
dance.

Theorem 14 ([CNS16, Theorem 3.2]). If Λ− is topologically non-trivial and
Λ+ is topologically an unknot, then there is no decomposable Lagrangian con-
cordance from Λ− to Λ+.

Example 15. To illustrate this theorem, here is a possible low crossing num-
ber Legendrian knot to examine as Λ−. Consider the topological knot 61 which
is slice and ribbon. Its maximum tb Legendrian representative Λ61 (see Fig-
ure 19) has tb = −5 and r = 0. The DGA of this Legendrian A(Λ61) admits
an augmentation, and thus Λ61 does not admit a Lagrangian cap; see obstruc-
tions (6) in Section 2.3. Since we are trying to construct a Legendrian Λ− that
could be Lagrangian concordant to a stabilized unknot, which might have a
Lagrangian cap, we will add some stabilizations that will prevent augmenta-
tions and thereby allow the possibility of a Lagrangian cap. If we now add a
positive and a negative stabilization to Λ61 , we get a knot Λ±

61
with tb = −7

and r = 0, which has no augmentation and is still topologically the knot 61.
If, by a sequence of moves in Section 3, one can construct a concordance from
Λ±

61
to the tb = −7 stabilized unknot, then by Theorem 14 this Lagrangian

concordance will not be decomposable; see Figure 20. In fact, one can stabilize
Λ61 as many times as we wish resulting in tb(Λ−) = t and r(Λ−) = r and try,
using the combinatorial constructions of Section 3, to construct a Lagrangian
concordance to Λ+, where Λ+ is a Legendrian unknot with tb(Λ+) = t and
r(Λ+) = r. If possible, such a construction would prove the existence of a
non-decomposable Lagrangian concordance.

Figure 19. Front diagram of Λ61 .

There are additional results from topology that give obstructions to the
existence of ribbon concordances. For example, as shown by Gilmer [Gil84]
and generalized by Friedl and Powell [FPar], if K− is ribbon concordant to
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Figure 20. Any Lagrangian concordance from the doubly sta-
bilized Λ61 to the tb = −7, r = 0 Legendrian unknot would
necessarily be non-decomposable.

K+, then the Alexander polynomial of K− divides the Alexander polynomial
of K+. We can invoke these results in a strategy to show the existence of
non-decomposable Lagrangian concordances.

Strategy 2. (1) Use results from smooth topology to find examples of smooth
knots K± such that K− is not ribbon concordant to K+.

(2) For any pair of Legendrian representatives Λ± of the knot type K±,
even highly stabilized, use a combination of the combinatorial moves
described in Section 3 to construct a Lagrangian concordance from Λ−
to Λ+.

The example with the knot 61 given above is a concrete example to try
to apply this strategy with K− = 61 and K+ being an unknot. A possible
example when K+ is non-trivial is the following.

Example 16. Let K− be the connect sum of the right- and left-handed tre-
foils, K− = Tr#Tl, and let K+ be the connect sum of the figure 8 knot with
itself, K+ = F8#F8. These knots are concordant but there is no ribbon concor-
dance from K− to K+, as first shown by Gordon [Gor81]. Choose Legendrian
representatives Λ± of K± such that tb(Λ−) = tb(Λ+) and r(Λ−) = r(Λ+); note
that Λ± can be very stabilized. If we can construct a Lagrangian concordance
from Λ− to Λ+, via the combinatorial moves of Section 3, then we will have
shown the existence of a pair of Legendrians that are (exactly, orientably) La-
grangian concordant but cannot be connected by a decomposable Lagrangian
concordance.

Remark 8. Some known obstructions to ribbon concordance are, in fact, ob-
structions to generalizations of ribbon concordance, namely strong homo-
topy ribbon concordance and homotopy ribbon concordance. A strong
homotopy ribbon concordance is one whose complement is ribbon, i.e., can be
built with only 1-handles and 2-handles. A homotopy ribbon concordance
from K− to K+ is a concordance where the induced map on π1 of the comple-
ment of K− (resp. K+) injects (resp. surjects) into π1 of the complement of
the concordance. Gordon [Gor81] showed that

ribbon concordant =⇒ strong homotopy ribbon concordant

=⇒ homotopy ribbon concordant.
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There have been a number of recent results obstructing (homotopy or strong
homotopy) ribbon concordances from Heegaard-Floer and Khovanov homol-
ogy [Zem19, LZ19, MZer, GL20]; these results play an important role in Strat-
egy 2.

5.3. Candidates for Non-decomposable Lagrangian Cobordisms from
GRID Invariants. Some candidates for non-decomposable Lagrangian cobor-
disms of higher genus come from knot Floer homology. Using the grid formu-
lation of knot Floer homology [OST08], Ozsváth, Szabó, and Thurston defined
Legendrian invariants of a Legendrian link Λ ⊂ R3, called GRID invariants,
which are elements in the hat flavor of knot Floer homology of Λ ⊂ −S3:ˆ︁λ+(Λ), ˆ︁λ−(Λ) ∈ ˆ︂HFK(−S3,Λ).

For more background, see [OST08, MOS09].
Baldwin, Lidman, and Wong [BLWar] have shown that these GRID in-

variants can be used to obstruct the existence of decomposable Lagrangian
cobordisms.

Theorem 17 ([BLWar, Theorem 1.2] ). Suppose that Λ± are Legendrian links
in R3 such that either

(1) ˆ︁λ+(Λ+) = 0 and ˆ︁λ+(Λ−) ̸= 0, or

(2) ˆ︁λ−(Λ+) = 0 and ˆ︁λ−(Λ−) ̸= 0.

Then there is no decomposable Lagrangian cobordism from Λ− to Λ+.

Remark 9. By [BVVV13], in the standard contact manifold R3, the GRID
invariants agree with the LOSS invariant [LOSS09]. The LOSS invariant is
functorial on Lagrangian concordances by [BS18, BSar]. Thus Theorem 17
would also obstruct the existence of general Lagrangian concordances and
not only the decomposable ones. To find non-decomposable cobordisms using
obstructions from [BLWar], we should focus on non-zero genus cobordisms.

Using the facts that the GRID invariants are non-zero for the tb = −1 Leg-

endrian unknot and that ˆ︁λ+(Λ+) (resp. ˆ︁λ−(Λ+)) vanish for positively (nega-
tively) stabilized Legendrian links, Theorem 17 gives the following corollary.

Corollary 18 ([BLWar, Corollaries 1.3, 1.4]). (1) If Λ ⊂ R3 is a Legen-

drian link such that ˆ︁λ+(Λ) = 0 or ˆ︁λ−(Λ) = 0, then there is no decom-
posable Lagrangian filling of Λ.

(2) Suppose Λ± are Legendrian links such that either

(a) ˆ︁λ+(Λ−) ̸= 0 and Λ+ is the positive stabilization of a Legendrian
link, or

(b) ˆ︁λ−(Λ−) ̸= 0 and Λ+ is the negative stabilization of a Legendrian
link.

Then there is no decomposable Lagrangian cobordism from Λ− to Λ+.

This provides another strategy to show the existence of Legendrians Λ±
that are Lagrangian cobordant but cannot be connected by a decomposable
Lagrangian cobordism.
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Strategy 3. (1) Find Legendrians Λ± satisfying the GRID invariants con-
ditions of Corollary 18 and Theorem 17 such that there are no known
obstructions, as described in Section 2.3, to the existence of a La-
grangian cobordism from Λ− to Λ+.

(2) Use a combination of the combinatorial moves described in Section 3
to construct a Lagrangian cobordism from Λ− to Λ+.

Example 19. Concrete examples mentioned in [BLWar, Section 4.1] can be
used for Strategy 3. Let Λ0,Λ1 be the Legendrian m(10132) knots and Legen-
drian m(12n200) knots shown in [NOT08, Figures 2 and 3]. Modify them with
a pattern shown in [BLWar, Figure 13] to get Λ′

0 and Λ′
1, which are of knot

type m(12n199) and m(14n5047) (or its mirror), respectively. For i, j = 0, 1
we have tb(Λ′

i) = tb(Λi) + 2 and r(Λ′
i) = r(Λi). There is no decomposable

Lagrangian cobordism from

(1) Λ0 to Λ′
1, or

(2) Λ1 to Λ′
0.

If we can construct, using the combinatorial techniques of Section 3, a La-
grangian cobordism (necessarily of genus 1) from Λ0 to Λ′

1 or from Λ1 to Λ′
0,

then we will have found a non-decomposable Lagrangian cobordisms.

Example 20. In [BLWar, Section 4.3], the authors provide an infinite fam-
ily of pairs of Legendrian knots where there does not exist a decomposable
Lagrangian cobordism between them.

Remark 10. In Strategies 2 and 3, we emphasized the construction of La-
grangian cobordisms using the combinatorial techniques of Section 3. It would
be interesting to know if the geometric constructions of Section 4 could also
be used to show the existence of a Lagrangian concordance/cobordism from
the theory of normal rulings, topology, or grid invariants, that are known to
not be decomposable.

5.4. Non-decomposable Candidates through Surgery. An additional
strategy to show the existence of a non-decomposable Lagrangian filling comes
from understanding properties of the contact manifold that is obtained from
surgery on the Legendrian knot. In particular, Conway, Etnyre, and Tosun
[CETar] have detected a relationship between Lagrangian fillings of a Legen-
drian and symplectic fillings of the contact manifold obtained by performing
a particular type of surgery on the Legendrian.

Theorem 21 ([CETar, Theorem 1.1]). There is a Lagrangian disk filling of
Λ+ if and only if the contact +1-surgery on Λ+ ⊂ R3 ⊂ S3 produces a contact
manifold that is strongly symplectically fillable. If Λ+ has a decomposable
Lagrangian filling, then the filling can be taken to be Stein.

In fact, [CETar] also shows that a filling will be a Stein filling if and only
if Λ+ bounds a regular Lagrangian disk: a Lagrangian disk is regular if there
is a Liouville vector field that is tangent to the disk. Any decomposable
Lagrangian filling is regular.
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We now see another strategy to construct a non-decomposable Lagrangian
filling.

Strategy 4. Find a Legendrian Λ such that the +1-surgery on Λ produces a
contact manifold that is strongly symplectically fillable but does not admit a
Stein filling.

An issue with this approach is a lack of examples: there are very few man-
ifolds which carry strongly fillable but not Stein fillable contact structures.
The main examples are the 1/n surgeries on the positive and negative trefoils;
see works by Ghiggini [Ghi05] and Tosun [Tos20]. However it is not obvi-
ous whether any of these contact structures are a contact +1 surgery on a
Legendrian knot in S3.

6. Conclusion

The desire to understand the flexibility and rigidity of Lagrangian submani-
folds has led to a great deal of interesting research in symplectic topology. Sim-
ilarly, trying to understand constructions of and obstructions to Lagrangian
cobordisms has led to many interesting results. At this point, we have few
concrete answers to the Motivating Questions stated in our Introduction. In
particular, regarding Motivating Question (1), there are presently many can-
didates for Legendrians Λ± that can be connected by a Lagrangian cobordism
but not by a decomposable Lagrangian cobordism: by understanding all the
obstructions to Lagrangian cobordisms, one can come up with some good
candidates. When trying and failing to construct a Lagrangian cobordism
between a given pair, one may gain intuition for additional obstructions to
Lagrangian cobordisms that are waiting to be discovered.
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