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ABSTRACT
Black-box risk scoring models permeate our lives, yet are typically
proprietary or opaque. We propose Distill-and-Compare, an ap-
proach to audit such models without probing the black-box model
API or pre-defining features to audit. To gain insight into black-box
models, we treat them as teachers, training transparent student
models to mimic the risk scores assigned by the black-box models.
We compare the mimic model trained with distillation to a second,
un-distilled transparent model trained on ground-truth outcomes,
and use differences between the two models to gain insight into the
black-box model. We demonstrate the approach on four data sets:
COMPAS, Stop-and-Frisk, Chicago Police, and Lending Club. We
also propose a statistical test to determine if a data set is missing key
features used to train the black-box model. Our test finds that the
ProPublica data is likely missing key feature(s) used in COMPAS.

CCS CONCEPTS
• Computing methodologies → Model verification and vali-
dation; • Mathematics of computing → Hypothesis testing and
confidence interval computation;
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1 INTRODUCTION
Risk scoring models have a long history of usage in criminal jus-
tice, finance, hiring, and other critical domains [13, 29]. They are
designed to predict a future outcome, for example defaulting on
a loan. Worryingly, risk scoring models are increasingly used for
high-stakes decisions, yet are typically proprietary or opaque.

Several approaches have been proposed [1, 2, 14, 18, 21, 36] to
audit black-box risk scoring models: remove, permute, or obscure a
protected feature, then see how the the model’s predictions change
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after retraining the model or probing the model API with the trans-
formed data. However, creators of proprietary risk scoring models
often do not provide unrestricted access to model APIs, much less
release the model form or training data. Moreover, approaches that
focus on one or two protected features defined in advance are less
likely to detect biases that are not a priori known.

In this paper, we study a more realistic setting where we only
have a data set labeled with the risk score (as produced by the risk
scoring model), the ground-truth outcome, and some or all features;
we are not able to probe the model API with new data. We call
this data set the audit data. We add two potential complications:
the audit data may not be the original training data, and the audit
data may not have all features used to train the risk scoring model.
For example, ProPublica obtained data for their COMPAS study
[5] not from the company that created COMPAS, but through a
public records request to Broward County (BC), a US jurisdiction
that used COMPAS in their criminal justice system [4]. ProPublica
may not have had access to all the features BC used for COMPAS.

We propose Distill-and-Compare, an approach to audit black-box
risk scoring models using audit data with both black-box risk scores
and ground-truth outcomes, without pre-defining feature regions
to audit. First, we train a model on the audit data to mimic the
black-box model. Then we train another model to predict outcomes
(Section 2.1). To gain insight into the black-box model, we uncover
feature regions where the two models are significantly different
(Section 2.3), and ask “what could be happening in the black-box
model, that could explain the differences we are seeing between
the mimic and outcome models?”. Finally, we use a statistical test
(Section 2.2) to determine if the black-box model used additional
features we do not have access to (i.e. features not in the audit data).

The contributions of this paper are: 1)We propose an approach to
audit black-box risk scoringmodels under realistic conditions. 2)We
show the importance of calibrating risk scores to remove audit data
shift or scale post-processing that may been introduced by creators
of risk scoring models. 3) We propose a statistical test to determine
if the audit data is missing key features used to train the black-box
model. 4)We apply the approach to audit four risk scoringmodels. 5)
An ancillary contribution of this paper is a new confidence interval
estimate for iGAM [10, 27, 28], a type of transparent model.

2 AUDIT APPROACH
Our goal is to gain insight into a black-box risk scoring model. We
draw from model distillation and comparison technique to develop
our approach. Section 2.1.1 discusses related work.

2.1 Distill and Compare
Model distillation was first introduced to transfer knowledge from
a large, complex model (teacher) to a faster, simpler model (student)
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[7, 9, 22]. This was done by running unlabeled samples (either new
unlabeled data or training data with labels discarded) through the
teacher model to obtain the teacher’s outputs, then training the
student model to mimic the teacher’s outputs. We draw parallels
to our setting, taking the risk scoring model to be the teacher and
the audit data to be unlabeled samples ran through the teacher
(risk scoring model) to obtain the teacher’s output (risk scores). We
train the mimic model to minimize mean squared error between
the teacher and student, i.e.,

L(S, Ŝ) =
1
T

T∑
t=1

(
S(xt ) − Ŝ(xt )

)2
, (1)

where xt is the t-th sample in the audit data, S(xt ) is the output of
the teacher model (risk scores) for sample xt , Ŝ(xt ) is the output
of the mimic model for sample xt , and T is the number of samples.
Throughout this paper, we will call the teacher model the black-box
model and the student model the mimic model.

Next, we leverage the ground-truth outcome information. We
train our own risk scoring model on the audit data to predict the
ground-truth outcome, i.e.,

L(O, Ô) =
1
T

T∑
t=1

{
O(xt ) log

(
P(Ô(xt ) = 1)

)
+

(1 −O(xt )) log
(
P(Ô(xt ) = 0)

)}
, (2)

whereO(xt ) ∈ {0, 1} is the ground-truth outcome for sample xt and
Ô(xt ) ∈ {0, 1} is the output of the model for sample xt . Throughout
this paper, we call this model the outcome model. Note that the
outcome model is not a mimic model.

Figure 1: Distill-and-Compare audit approach on a loan risk
scoring model.

It is critical that both the mimic model and outcome model are
trained using the same model class that allows for interpretation
and comparison. Not all model classes have the property that two
models of that class can be compared. For example, it is not obvious
how to compare two decision trees, random forests or neural nets.
We want a model class that is as rich and complex as possible so
that the mimic model can be faithful to the black-box model and
the outcome model can accurately predict ground-truth outcomes.
However, this model class should still be transparent [17] so that we
can examine its predictions across different feature regions. In this
paper, we use a particular transparent model class, iGAM (Section
2.3.1); other choices are possible.

The risk score and the ground-truth outcome are closely related—
the ground-truth outcome is what the black-box risk scoring model

was meant to predict. If the black-box model is accurate and gener-
alizes to the audit data, it would predict the ground-truth outcomes
in the audit data correctly; the converse is true if the black-box
model is not accurate or does not generalize to the audit data.

Because both the mimic and outcomemodels are trained with the
samemodel class on the same audit data using the same features, the
more faithful the mimic model, and the more accurate the outcome
model, the more likely it is that observed differences between the
mimic and outcome models stem from differences between the
black-box model and ground-truth outcomes. This allows us to ask,
“what could be happening in the black-boxmodel, that could explain
the differences we are seeing between the mimic and outcome
models?”. In addition, similarities between the mimic and outcome
models (e.g., on COMPAS in Section 3.2, the Number of Priors
feature is modeled very similarly by the two models) increases
confidence that the mimic model is a faithful representation of
the black-box model, and that any differences observed on other
features are meaningful.

2.1.1 Related Work. Several auditing approaches also use model
distillation techniques to distill black-box models when they cannot
be queried or to understand them [1, 2]. Other approaches also train
their own outcome models, then uncover feature regions where the
model is not accurate [3, 23, 24, 38]. Kim et al.’s iterative procedure
[24] not only uncovers such regions but also modifies the model to
improve accuracy in these regions. However, they require repeated
calls to the model; Agarwal et al. [3] and Kearns et al. [23] similarly
require repeated calls or knowledge of the model. Tramer et al.
uncovered unexplained associations between black-box outputs
and protected features on audit data [35].

Our approach is different from the above, as we avoid repeated
calls to the black-box model API (that may not realistically be
available), and instead utilize information on both risk scores and
outcomes already available in some data sets in this domain (e.g.
ProPublica COMPAS data). Some other approaches also compare
two models, but not risk scores and outcomes at the same time.
Wang et al. trained a model to predict outcomes and another to pre-
dict membership in a protected feature region [37]. Chouldechova
and G’Sell trained two different outcome models then identified
feature regions where the two models differed [12].

2.2 Testing for Missing Features
If the audit data is missing features used by the black-box model, the
audit data alone may be insufficient to audit the black-box model.
We propose a statistical test to check the likelihood of the audit data
missing important features based on the following observation:

If the black-box model used features that are missing
from the audit data but are useful for predicting the
ground-truth outcome, the error between the mimic
model (learned on the audit data) and the risk score,
| |Ŝ − S | |E , should be positively correlated with the error
between the outcome model (learned on the audit data)
and ground-truth outcome, | |Ô −O | |E .

where E is an error metric. Since the test uses predictions from both
the mimic and outcome models, the test is performed after both
models are trained. In Section 3.4, we perform the test on all risk
scoring models we audit in this paper, to check if the audit results
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Figure 2: Eight features the Chicago Police says are used in
their risk scoring model. Best seen on screen.
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Figure 3: Eight features the Chicago Police says are not used
in their risk scoring model. Best seen on screen.

are significantly affected by missing features. Note that this test
does not require the mimic and outcome models to be transparent.

2.3 Comparing Mimic and Outcome Models
In this section, we provide technical details on how to train the
mimic and outcome models so that they are comparable.

2.3.1 Choice of model class. As noted in Section 2.1, we train the
mimic model and outcome model using the same transparent model
class—in this paper, iGAM [10, 27, 28]. We point the reader to
[10, 27, 28] to learn more about iGAMs and to [34] for a distillation
example where it was used as a student. Briefly, iGAM has the form

E[д(y)] = h0 +
∑
i
hi (xi ) +

∑
i,j

hi j (xi ,x j ), (3)

where д is the logistic function for classification and identity func-
tion for regression, h0 is the intercept, and the contribution of any
one feature xi or pair of features xi and x j to the prediction can be
visualized in graphs such as Figure 2 (with hi (xi ) on the y-axis) and
Figure 5 (with regions colored by hi j (xi ,x j )). For classical GAMs
[20], h(·) are fitted using splines; for iGAM, they are fitted using
ensembles of shallow trees and centered for identifiability. Crucially,
since iGAM is an additive model, two iGAM models can be com-
pared by simply taking a difference of their feature contributions
h(·), which we exploit in Section 2.3.3 to detect differences between
the mimic and outcome models.

2.3.2 Calibrating model inputs. Calibration is the process of match-
ing predicted and empirical probabilities [15, 31]. If a risk score is
well-calibrated, the relationship between the risk score and empiri-
cal probabilities will be linear (e.g., COMPAS and Stop-and-Frisk
in the top row of Figure 6 in the Appendix). While developing the
method, we discovered that not all risk scores exhibit the desired
linear relationship with outcomes in the audit data. For example,
the Chicago Police risk score (third column of Figure 6 in the Ap-
pendix) is rather flat for risk scores less than 350, then exhibits a
sharp kink upwards.

One possible explanation for any nonlinear relationship is that
the risk score was well-calibrated on its original training data, but
the audit data has a different distribution (data shift) [32]. Another
possible explanation is post-processing by model creators to reduce
sensitivity in less important parts of the risk score scale and enhance
separation in more important parts of the scale [26].

We make the reasonable assumption that risk scores should
be monotonic and well-calibrated [26] and use this assumption
to undo scale post-processing or audit data shift before training
the mimic and outcome models. Specifically, we learn a nonlinear
transformation of the risk score (the blue line in Figure 6 in the
Appendix), similar to isotonic regression [31], to make the risk
scores and outcomes linearly related on a scale of choice. The mimic
model is then trained with the transformed risk scores as labels;
the outcome model is trained with outcomes, unchanged.

This pre-training calibration step is necessary to compare the
mimic and outcome models, as it makes their labels linearly related
on a scale that their predicted labels will later be compared on.
We select this scale to be logit probability (since the predicted
outcomes are already on this scale), and perform this calibration
step for Chicago Police and Lending Club but not COMPAS and
Stop-and-Frisk, since the latter two already exhibit the desired
linear relationships. See Appendix B for details.

2.3.3 Detecting differences. To not mistake random noise for real
differences between the mimic and outcome models, we control
potential sources of noise during the training process. To avoid data
sample-specific effects, we train the mimic and outcome models on
the same data sample. Let shi (xi ) be feature xi ’s contribution to the
mimic model, and similarly ohi (xi ) for the outcome model. We cal-
culate the difference in feature xi ’s contribution to the two models,
shi (xi ) − ohi (xi ), and construct a confidence interval for this differ-
ence to tell if it is statistically significant. One ancillary contribution
of this paper is a new method to estimate confidence intervals for
the iGAM model class, by employing a bootstrap-of-little-bags ap-
proach [33] to estimate the variance of hi (xi ) and shi (xi ) − ohi (xi ).
See Appendix A for details. The resulting confidence intervals are
the dotted lines in Figures 2–4.

3 RESULTS
3.1 Validating the Audit Approach
In this section, we demonstrate Distill-and-Compare on risk scoring
models where we have some information on how they were trained,
and check that the approach can recover this information.

3.1.1 Stop-and-Frisk. Using the New York Police Department’s
Stop-and-Frisk1 data, Goel et al. [19] proposed a simple risk scoring
1http://www1.nyc.gov/site/nypd/stats/reports-analysis/stopfrisk.page
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Figure 4: Feature contributions of four features to the COMPAS mimic model (in red) and outcome model (in green).

model for weapon possession: S = 3 × 1PS + 1 × 1AS + 1 × 1Bulдe ,
where S is the risk score, PS denotes primary stop circumstance
being presence of suspicious object, AS denotes secondary stop
circumstance being sight of criminal activity, and Bulдe denotes
bulge in clothing [19]. Since we know the risk scoring model’s
functional form, we can verify that the mimic model correctly
recovers these coefficients. We apply the risk scoring model to
label 2012 data (T=126,457, p=40) after following Goel et al.’s data
pre-processing steps [19].
Result. The mimic model recovers the coefficients (3, 1, 1) for the
three features used in the risk scoring model (PS , AS , Bulдe) and 0
for the remaining features.

3.1.2 Chicago Police “Strategic Subject” List. The Chicago Police
Department released arrest data2 from 2012 to 2016 that was used
to create a risk score for an individual being involved in a shooting
incident as a victim or offender. This data set contains 16 features,
but only 8 are used by the black-box model, which gives us an
opportunity to test if Distill-and-Compare can accurately detect
which features are and are not used by a black-box model.

We trained a mimic model, intentionally including all 16 features.
Figure 2 shows the feature contributions of the mimic model (in
red) and outcome model (in green) for the 8 features the Chicago
Police says were used by the black-box model; Figure 3 shows the
8 features the Chicago Police says were not used in their model.
Result. There is a striking difference between Figures 2 and 3: the
mimic model (in red) assigns importance to the features in Figure
2, but does not assign any importance to the features in Figure 3.
This agrees with Chicago Police’s statement about which features
were and were not used in the black-box model. We also note
that the outcome model (in green) does assign importance to the
unused features (Figure 3), suggesting that there is signal available
in the 8 unused features that the Chicago Police risk scoring model
could have used, but chose not to use. Race and sex are 2 of these
8 features, which the Chicago Police especially emphasized are
not used. These experiments show that mimic models can provide
insights into black-box models, and demonstrate the advantages of
using outcome information.

3.2 Auditing COMPAS
COMPAS, a proprietary score developed to predict recidivism risk,
has been the subject of scrutiny for racial bias [5, 8, 11, 13, 16, 25].
2https://data.cityofchicago.org/Public-Safety/Strategic-Subject-List/4aki-r3np

We do not know what model class, input features or data were used
to train COMPAS. As described in Section 1, the COMPAS audit
data3 was collected by ProPublica; it is likely different from the
original COMPAS training data. Figure 4 compares the COMPAS
mimicmodel (in red) and outcomemodel (in green) for four features:
Age, Race, Number of Priors, and Gender. The dotted lines are 95%
pointwise confidence intervals. We observe the following:
COMPAS agrees with ground-truth outcomes regarding the
number of priors. In the 3rd plot in Figure 4, the mimic model
and outcome model agree on the impact of Number of Priors on
risk; their confidence intervals overlap through most of its range.
COMPAS disagrees with ground-truth outcomes for some
age and race groups. The 1st and 2nd plots in Figure 4 show
the effect of Age and Race on the mimic and outcome models. The
mimic model (red) and the outcome model (green) are very similar
between ages 20 to 70, and their confidence intervals overlap. For
ages greater than 70, there is evidence that the models disagree as
the confidence intervals do not overlap.

The mimic and outcome models are also different for ages 18
and 19: the mimic model predicts low risk for young individuals,
but we see no evidence to support this in the outcome model, with
risk appearing to be highest for young individuals.

The mimic model predicts that African Americans are even
higher risk, and Caucasians lower risk, than the ground-truth out-
comes suggest is warranted. Note that the ground-truth outcomes
might themselves be biased due to historical discrimination against
African Americans.
Gender has opposite effects onCOMPAS compared to ground-
truth outcome. In the 4th plot in Figure 4, we see a discrepancy
between the mimic model and outcome model on Gender. The
mimic model predicts higher risk than warranted by ground-truth
outcomes for females, and conversely for males.
Using differences to gain insight into COMPAS. We now ask
“what could be happening in COMPAS, that could explain the dif-
ferences we are seeing between the mimic and outcome models?”:

(1) Some feature regions may be underrepresented in the black-
box model’s training data and/or the audit data. In this audit
data, only 3% of samples are between 18 and 20 years old,
only 0.5% are older than 70 years old, and only 19% are fe-
male, which makes learning accurate models in these regions
harder.

3https://github.com/propublica/COMPAS-analysis
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Figure 5: Interaction between loan issue year and home own-
ership in Lending Club mimic model (in red) and outcome
model (in green). Regions colored by hi j (xi ,x j ).

(2) The black-box model may be deliberately simple for some
feature regions. For ages greater than 70, the outcome model
has much wider confidence intervals than the mimic model.
The ground-truth outcomes are potentially high-variance
in this region, yet the black-box model’s scoring function
may have been kept deliberately simple for extreme feature
values like this.

(3) The black-box model may have a very different form than
the transparent model class. The mimic model predicts low
risk for young individuals, but there is no evidence to sup-
port this in the outcome model. We trained an iGAM model
with interactions between pairs of features, and observed
strong interactions between very young age and other vari-
ables such as Gender, Charge Degree, and Length of Stay.
If COMPAS has a more simple form and does not model
interactions well, this may explain why COMPAS needs to
predict low risk for very young individuals (because it can-
not otherwise predict a reduced risk via interactions of age
with other variables).

(4) The black-box model may have used features missing from
the audit data, that interact with the non-missing features.
We investigate this in Section 3.4.

While we cannot tell (without further investigation) the definitive
reason that explains a particular difference between the mimic and
outcome models, this has surfaced ideas about the black-box model
and uncovered potentially problematic feature regions that we did
not a priori know, but can now proceed to investigate further.

3.3 Auditing Lending Club
Lending Club, an online peer-to-peer lending company, rates loans
it finances on an A1-G5 scale. We use a subset of five years (2007-
2011) of loans4 that have matured, so that we have ground-truth on
whether the loan defaulted. We do not know what model class or
input features Lending Club used to train their risk scoring model.
We believe the data sample we have is similar to the data they
would have used to train their models. According to Lending Club,
their models are refreshed periodically.

We use this Lending Club example to discuss an insight gained
into the black-box model from inspecting feature interactions in the
transparentmodels. Figure 5 shows the interaction of loan issue year

4https://www.lendingclub.com/info/download-data.action

Table 1: Statistical test for likelihood of audit data missing
key features used by black-box model.

Risk Score Pearson ρ Spearman ρ Kendall τ

COMPAS [0.10, 0.13] [0.10, 0.14] [0.08, 0.10]
Lending Club [0.00, 0.03] [-0.01, 0.01] [-0.01, 0.01]
Stop-and-Frisk [0.00, 0.01] [-0.03, 0.01] [-0.02, 0.01]
Chicago Police [0.00, 0.01] [0.01, 0.03] [0.01, 0.02]

and home ownership in the Lending Club mimic model (in red) and
ground-truth outcomemodel (in green). Having a homemortgage in
2007-2008 increases the loan default risk more than having a home
mortgage in 2009 and beyond. Recall that 2007-2008 is around the
time of the subprime housing crisis. Note the difference in ranges
between the two plots—the range goes up to 0.2 for the outcome
model (in green) whereas the range is much lower for the mimic
model (in red). One possible explanation for this difference is that
the Lending Club risk scoring model is updated conservatively
(with some lag time), instead of being rapidly updated as economic
conditions and behavior change.

3.4 Which Audit Data Are Missing Features?
As black-box models may use additional features we do not have
access to, we developed a test (Section 2.2) to assess the impact
missing features could have on the audit. Table 1 provides 95%
confidence intervals for three correlation measures (linear and
nonlinear) used in the test. If zero is in the confidence interval,
the error of the mimic model (trained on the audit data) is not
correlated with the error of the outcome model (also trained on
the audit data). Then, it is unlikely that the audit data is missing
key feature(s) that are a) predictive of outcomes (and hence will
negatively affect the error of the outcome model if missing); and b)
used in the black-box model (and hence will negatively affect the
error of the mimic model if missing).

In Lending Club and Stop-and-Frisk we cannot distinguish these
correlations from zero, suggesting that no key features are missing
from the audit data. For Chicago Police, the confidence intervals
contain 0 or are very close to 0 (lower limit 0.01), hence there is little
evidence of missing key features. For COMPAS, there is evidence
of positive correlation, indicating that the ProPublica data may be
missing key features used in the COMPAS model. This is supported
by the findings in Section 3.5 that no mimic models trained on the
ProPublica data, however powerful (e.g., random forests), could
mimic COMPAS well.

3.5 Fidelity and Accuracy
To quantitatively evaluate the audit approach, we report fidelity
(how well the mimic model predicts the black-box model’s risk
scores, measured in RMSE) and accuracy (how well the outcome
model predicts the ground-truth outcomes, measured in AUC) for
all the risk scoring models we audit in Table 2. For comparison,
we also train linear models (a simpler model class than iGAM) and
random forests (more complex, but less interpretable).

For COMPAS, all model classes (linear model, iGAM, random
forest) have roughly equal fidelity and accuracy. Interestingly, none
obtained RMSE lower than 2 on a 1-10 scale. Comparing outcome
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Table 2: Fidelity of mimic model and accuracy of outcome model. Lower RMSE is better, higher AUC is better.

Risk Score Metric Linear model iGAM iGAM w/ interactions Random Forest

Fidelity
of mimic
model

COMPAS RMSE (1-10) 2.11 ± 0.057 2.01 ± 0.045 2.00 ± 0.047 2.02 ± 0.053
Lending Club RMSE (2-36) 3.27 ± 0.037 2.60 ± 0.049 2.52 ± 0.051 2.48 ± 0.033
Chicago Police RMSE (0-500) 17.4 ± 0.102 17.2 ± 0.125 16.5 ± 0.130 14.0 ± 0.280
Stop-and-Frisk RMSE (0-5) 0.00 ± 2 × 10−15 0.00 ± 1 × 10−5 0.00 ± 2 × 10−5 0.01 ± 2 × 10−3

Accuracy
of outcome

model

COMPAS AUC 0.73 ± 0.029 0.74 ± 0.027 0.75 ± 0.029 0.73 ± 0.026
Lending Club AUC 0.69 ± 0.006 0.69 ± 0.016 0.69 ± 0.014 0.68 ± 0.020
Chicago Police AUC 0.95 ± 0.007 0.95 ± 0.007 0.95 ± 0.007 0.93 ± 0.009
Stop-and-Frisk AUC 0.84 ± 0.020 0.85 ± 0.020 0.85 ± 0.020 0.87 ± 0.024

model AUCs across different model classes, iGAM’s results are
generally comparable to (or slightly better than) more complex
random forests (Table 2). For the risk score mimic models, random
forests are competitive for Lending Club and Chicago Police. Linear
mimic models are not far behind iGAMs for several risk scoring
models (COMPAS, Chicago Police, Stop-and-Frisk), suggesting that
the black-box model’s functional form might be very simple. We
know this to be true for Stop-and-Frisk from Section 3.1.1 where
the model was a simple linear model.

3.6 Using Additional Data for Distillation
One possible reason why COMPAS is challenging to mimic may be
that the ProPublica data is missing key features. This agrees with
the results of the statistical test in Section 3.4. Another possible
reason is the small sample size (less than 7,000 samples).

One advantage of using a model distillation approach to inspect
black-box models is that the approach may be able to benefit from
additional unlabeled data if the black-box model can be queried
to label the additional data [9]. We found an additional 3,000 in-
dividuals in the ProPublica data with COMPAS risk scores but no
ground-truth outcomes. Adding them to the training (not testing)
data for the mimic model and retraining the mimic model, we find
marginal improvement in the mimic model’s fidelity (from RMSE
2.0 to 1.98). Doing the opposite—removing individuals from the
training data in 1,000 increments—decreased the mimic model’s
fidelity only marginally (to RMSE 2.1, training on only 1,000 in-
dividuals). These analyses suggest that for COMPAS, missing key
features is a more pressing issue than insufficient data.

4 DISCUSSION
Sometimes we are interested in detecting bias on features inten-
tionally excluded from the black-box model. For example, a credit
risk scoring model is probably not allowed to use race as an input.
Unfortunately, not using race does not prevent the model from
learning to be biased. Racial bias in a data set is likely to be in the
outcomes — the labels used for learning; not using race as an input
feature does not remove the bias from the labels.

If race were uncorrelated with all other features (and combina-
tions of features) provided to the model, then removing race would
prevent the model from learning to be racially biased because it
would not have any input features on which to model this bias.
Unfortunately, in any real-world, high-dimensional data set, there
is massive correlation among the features, and a model trained to

predict credit risk will learn to be biased from correlation of the
excluded race feature with other features that likely remain in the
model (e.g., income or education).

Hence, removing a protected feature like race or gender does
not prevent a model from learning to be biased. Instead, removing
protected features make it harder to detect how the model is biased,
or correct the bias, because the bias is now spread in a complex way
among all the correlated features throughout the model instead
of being localized to the protected features. The main benefit of
excluding protected features like race or gender from the inputs of
a machine learning model is that it allows the group deploying the
model to claim (incorrectly) that their model is not biased because
it did not use these features.

When training a transparent model to mimic a black-box model,
we intentionally include all features—even protected features like
race and gender—specifically because we are interested in seeing
what the mimic model could learn from them. If, when the mimic
model mimics the black-box model, it does not see any signal on
the race or gender features and learns to model them as flat (zero)
functions, this suggests whether the black-box model did or did not
use these features, but also if the black-box model exhibits race or
gender bias even if race or gender were not used as inputs.

5 CONCLUSION
The Distill-and-Compare approach to auditing black-box models
was motivated by a realistic setting where access to the black-box
model API is not available. Instead, only a data set labeled with the
risk score (as produced by the risk scoring model) and the ground-
truth outcome is available. The efficacy of Distill-and-Compare
increases when a model class that can be highly faithful to the
black-box model and highly accurate at predicting the ground-
truth outcomes is used, and when the audit data is not missing key
features used in the black-box model.

A key advantage of using transparent models to audit black-box
models is that we do not need to know in advance what to look for.
Many current auditing approaches focus on one or two protected
features defined in advance, and thus are less likely to detect bi-
ases that are not a priori known. The Distill-and-Compare audit
approach using transparent models can hence be most useful for
real-world, high-dimensional data with multiple, unknown sources
of bias.
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A A NEW CONFIDENCE INTERVAL
ESTIMATE FOR IGAM

It is not trivial to estimate confidence intervals for nonparametric
learners such as trees [30]; iGAM’s base learners are shallow trees.
We employ a bootstrap-of-little-bags approach originally developed
for bagged models in [33] to estimate the variance of feature xi ’s
contribution to the model, hi (xi ), and difference in feature xi ’s
contribution to the mimic and outcome models, shi (xi ) − ohi (xi ).

Bootstrap-of-little-bags exploits two-level structured
cross-validation (e.g. 15% of data points are selected for the test
set, with the remaining 85% split into training (70%) and validation
(15%) sets). Repeating this inner splitting L times and outer splitting
K times gives a total of KL bags on which we train the model. Let
hlki (xi ) be feature xi ’s contribution to the model in the lth inner
and kth outer fold. The variance of hi (xi ) can then be estimated as

V̂ar(hi (xi )) =
1
K

K∑
k=1

(
1
L

L∑
l=1

hkli (xi ) −
1
KL

l∑
l=1

K∑
k=1

hkli (xi )

)2
,

and its mean hi (xi ) can be estimated by averaging hlki (xi ) over KL
bags.

We can now construct pointwise confidence intervals (CI) for
feature contributions to iGAM models. The 95% CI for feature xi ’s

contribution to the model, hi (xi ), is hi (xi ) ± 1.96
√
V̂ar(hi (xi )) and

the 95% CI for the difference in feature xi ’s contribution to the
mimic and outcome models, shi (xi ) −ohi (xi ), is shi (xi ) −ohi (xi ) ±

1.96
√
V̂ar(shi (xi )) + V̂ar(ohi (xi )) − 2Ĉov(shi (xi ),ohi (xi )), with

Ĉov(shi (xi ),ohi (xi )) also estimated using bootstrap-of-little-bags.
This variance estimate is conservative (meaning it overestimates

true variability), however, given that we are trying to detect dif-
ferences between the mimic and outcome models, overestimating
meanswe are less likely tomistake random noise for real differences.
For large K and L, consistency of this estimate was established in
[6].

Note that are pointwise, not uniform, CIs. That is, using the
feature Age as an example, these CIs capture the variability of the
effect of Age at Age=50, not the entire effect of Age. Uniform CIs
can be constructed by adjusting the critical value of the CI.
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B CALIBRATION PLOTS
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Figure 6: Empirical probability (y-axis) vs. risk score (x-axis) for COMPAS, Stop-and-Frisk, Chicago Police, and Lending Club
on probability scale (top row) and logit probability scale (middle row). The risk score distribution is in the bottom row. The red
lines on the logit probability scale (middle row) are best-fit straight lines. A good fit (COMPAS and Stop-and-Frisk) suggests
that the risk score and logit probability of outcomes (middle row) have a linear relationship. In this case, the mimic model can
be trained directly on the raw risk score. When the relationship is not linear (Chicago Police and Lending Club), the risk score
must be calibrated (Section 2.3.2). The blue monotonic curves (middle row) are the nonlinear transformations learned during
the calibration step. This transformation is applied to the raw risk score to yield the transformed risk score (see Figure 7).
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Figure 7: Logit empirical probability (y-axis) vs. transformed risk score (x-axis). The red lines are best-fit straight lines. A good
fit suggests that the transformed risk score and logit probability of outcomes now have a linear relationship. Themimicmodel
can now be trained on the transformed risk score. See Section 2.3.2 for more details.
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